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A moderately strong vector repulsion between quarks in dense quark matter is needed to explain how a
quark core can support neutron stars heavier than 2 solar masses. We study this repulsion, parametrized by a
four-fermion interaction with coupling gV , in terms of nonperturbative gluon exchange in QCD in the
Landau gauge. Matching the energy of quark matter gVn2q (where nq is the number density of quarks) with
the quark exchange energy calculated in QCD with a gluon propagator parametrized by a finite gluon mass
mg and a frozen coupling αs, at moderate quark densities, we find that gluon masses mg in the range
200–600 MeV and αs ¼ 2–6 lead to a gV consistent with neutron star phenomenology. Estimating the
effects of quark masses and a color-flavor-locked (CFL) pairing gap, we find that gV can be well
approximated by a flavor-symmetric, decreasing function of density. We briefly discuss similar matchings
for the isovector repulsion and for the pairing attraction.
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I. INTRODUCTION

Quarks are active degrees of freedom in the deep interior of
massive neutron stars. For a comprehensive review of quark
matter and the QCD phase diagram, see Refs. [1,2] and
references therein. In Refs. [3–5], we constructed a family of
quark-hadron equations of state in which matter is described
at densities up to about twice the nuclear saturation density:
n0 ≈ 0.16 baryons per fm3 by interacting nucleons, and at
higher densities, nB ≳ 5–10n0, by interacting quark matter
with a highly constrained interpolation of the equation of
state between the two regimes. This equation of state
describes neutron star properties quite consistent with recent
LIGO inferences from the binary neutron star merger
GW170817 [6]. Version QHC18 of this equation of state
at zero temperature is reviewed in Ref. [1], and the latest
version, QHC19, was recently made available [7,8].
We describe quark matter in terms of a Nambu–Jona-

Lasinio (NJL) model with point interactions in the scalar,
diquark, and vector-isoscalar channels, with a Lagrangian
schematically of the form [9,10]

Lint ¼ Gðq̄qÞ2 þHðq̄ q̄ÞðqqÞ − gVðq̄γμqÞ2; ð1Þ

where the vector repulsion in the isoscalar channel [11]
is needed for quark matter to support heavy neutron stars.

The resultant energy density from the vector repulsion is
gVn2q, where nq ¼ 3nB is the quark number density.
While the scalar coupling G and the ultraviolet cutoff

ΛNJL of the NJL model can be directly related to physical
observables such as the properties of pseudoscalar mesons,
the vector repulsion at present is constrained only by
comparing the equation of state of matter with observations
of neutron stars. As we have found in our QHC19 equation
of state, to support neutron stars of masses above 2 solar
masses (including the recently measured neutron star mass,
2.17� 0.1 solar masses in the pulsar PSR J0740þ 6620
[12]) requires that gV be well within the range 0.6–1.3G0,
and H within the range 1.35–1.65G0 [7], where G0 ¼
1.835Λ−2

NJL, with ΛNJL ¼ 631.4 MeV, is the scalar coupling
in the vacuum obtained by a fitting of pion observables
[9,10]. Our aim in this paper is to explore a further
understanding of the structure of Eq. (1) in terms of
QCD and the strength of the vector repulsion in particular.
A simple Fierz transformation of the color-current–color-
current interaction, ∼ðq̄γμλαqÞ2, leads to NJL couplings
[Eq. (1)] with the ratios gV0=G0 ¼ 1=2 and H0=G0 ¼ 3=4
(see the Appendix A) [10], where the “0” continues to
indicate vacuum values. But in the fully interacting system,
these ratios need not hold; as in QHC18 and QHC19, we
focus on more general in-medium values of gV and H,
studying here the density dependence of gV in particular.
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Since gV has dimensions ofmass−2, at asymptotically large
densities, where the only energy scale is the quark Fermi
momentum pF, the value gV should behave as ∼αs=p2

F,
where αs is the QCD running coupling constant. On the
other hand, in the highly nonperturbative vacuum at zero
baryon density, the relevant scale is ΛQCD, and we expect
gV ∼ αs=Λ2

QCD. Thus, the matter-density dependence of gV
can be ignored only when pF ≪ ΛQCD, provided that αs also
freezes at low energy [13]. To smoothly connect gV at low
densitywith that at high density, we adopt amodel ofmassive
gluons [14,15]which includes the nonperturbative generation
of the gluon mass mg, as well as the freezing of αs in the
Landaugauge at lowenergies. This approach is a step towards
conceptually connecting the NJL model and perturbative
QCD [16–18]. As we estimate, a gluon mass mg ∼ 0.4 GeV
and a moderately strong quark-gluon coupling αs ∼ 3 at 5n0
(or similar values, shown in Fig. 3 below,withαs=m2

g roughly
constant) can produce a strong enough gV ∼G0 to allow
quark matter to support neutron stars above 2 solar masses.
At high density, where the matter tends to have equal

populations of up, down, and strange quarks, flavor singlet
channels are much more important than nonsinglet flavor
channels. This allows us to focus on the flavor singlet scalar
and vector couplings as well as CFL-type diquark pairing
[19], favored for equal flavor population. Flavor nonsinglet
interactions are nonetheless important at low densities (see
Appendix B).
This paper is organized as follows: In Sec. II, we present

the single-gluon exchange energy calculation starting with
free-quark and gluon Green’s functions, at first using the
two-loop running coupling constant in perturbative QCD.
The Landau pole in the running coupling leads to a strongly
divergent result at a density ≲5n0. To avoid such a
divergence, we consider in Sec. III a range of αs and
gluon masses,mg, as estimated nonperturbatively below the
1 GeV scale, and we comment on the connection of the
QHC19 neutron star equation of state, constrained by
neutron star observations, to sub-GeV theories of αs and
massive gluons. We also provide an approximate density-
dependent parametrization of gV , connecting the low-
density and high-density limits. Next, in Sec. IV, we
estimate the effects on gV of a finite quark mass, Mq,
arising from chiral condensation in the quark sector, and in
Sec. V, we estimate the effects of diquark pairing. As we
show, a quark mass term tends to enhance gV , while diquark
pairing decreases it; both effects are suppressed by a gluon
mass, and as a result, a flavor-independent gV is a good
approximation in the NJL model. We summarize our
discussion in Sec. VI. In Appendix A, we show how the
color-current–current interactions can be rearranged via the
Fierz transformation. In Appendix B, we consider effective
vector-isovector couplings, possibly important at inter-
mediate and low densities, and in Appendix C, we estimate
the value of H from the N − Δ mass splitting.

Throughout, we work in natural units ℏ ¼ c ¼ 1
with the metric gμν ¼ diagð1;−1;−1;−1Þ, and we focus
on zero temperature with Nf ¼ Nc ¼ 3 and equal quark
masses, unless stated otherwise. We use the notationR
p ¼ R

d4p=ð2πÞ4.

II. WEAK COUPLING LIMIT

The quark-gluon interaction to leading order in αs leads
to the energy-density shift of the quark matter

EQCD ¼ −
iπαs
2

Z
d4xhJαμðxÞAμ

αðxÞJβνð0ÞAν
βð0Þi; ð2Þ

where the expectation value is in a Fermi gas, x ¼ ðt; xÞ,
and t is integrated from 0 to −i=T (with T being the
temperature). The currents are JαμðxÞ≡ q̄ðxÞγμλαqðxÞ,
where the λα’s are the color SUð3Þ Gell-Mann matrices
normalized to trλαλβ ¼ 2δαβ.
In the weak coupling limit, neglecting diquark pairing,

Eq. (2) becomes the Fock term in terms of the two-quark
interaction

EQCD ≈
παs
2

Z
p;p0

Tr½SðpÞλαγμSðp0Þλβγν�Dαβ
μνðp − p0Þ: ð3Þ

Here the trace Tr runs over flavor, color, and Dirac indices,
and the integrations over the frequencies p0 and p0

0 are
understood as the fermion Matsubara frequency summa-
tions,

R
dp0fðp0Þ → 2πiT

P
n fðiωnÞ, where ωn ¼ 2πTn,

with n ¼ �1=2;�3=2;…. The time-ordered quark Green’s
function is

Sabij ðx − yÞ ¼ −ihT qai ðxÞq̄bj ðyÞi ð4Þ

and is denoted by SðpÞ in momentum space; here a, b are
color indices and i, j flavor indices. The gluon Green’s
function is

Dαβ
μνðx − yÞ ¼ −ihT Aα

μðxÞAβ
νðyÞi: ð5Þ

With no medium modification of the gluons, D in the
Landau gauge takes the form in the momentum space,

Dαβ
μνðqÞ ¼ −δαβ

�
gμν −

qμqν
q2

�
DðqÞ: ð6Þ

The full calculation of the energy leads to divergent Dirac
sea contributions involving antiparticles. Only the gμν term

in Dαβ
μνðqÞ contributes to the particle-particle exchange

(Fock) energy, and we keep only this term.
The traces in Eq. (3) can be reorganized, via a Fierz

transformation (see Appendix A), into traces over quark
Green’s functions in the quark-antiquark channels. The
NJL model contains two such channels: the scalar q̄q
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channel, which is used to characterize the spontaneous
chiral symmetry breaking, and the vector-isoscalar q̄γμq
channel. The energies corresponding to the scalar and
vector channels, after the Fierz expansion of Eq. (3),
denoted by Es

QCD and Ev
QCD, are

Es
QCD ¼ −

8παs
27

Z
p;p0

TrSðpÞTrSðp0ÞDðp − p0Þ; ð7Þ

Ev
QCD ¼ 4παs

27

Z
p;p0

Tr½SðpÞγμ�Tr½Sðp0Þγμ�Dðp − p0Þ: ð8Þ

We first outline how these results are related to
the effective G and gV in the NJL model. Since the
detailed relation depends on the gluon propagator, we first
illustrate the results in the two limiting extremes, low and
high density. Owing to the nonperturbative infrared cutoff
of order ΛQCD, the gluon propagator has a finite limit
Dðq → 0Þ at low energy; thus, at low densities we have

Es;v
QCD ¼ Cs;vαsDð0Þ

�Z
p
Tr½SðpÞΓs;v�

�
2

; ð9Þ

whereCs ¼ −8π=27 ¼ −2Cv andΓs ¼ 1, and provided thatR
p Tr½SðpÞγj� ¼ 0, Γv ¼ γ0. In this form, one can readily
identify the NJL couplings as G ¼ 2gV ¼ CsαsDð0Þ.
At higher densities, we must keep the momentum

dependence of the gluon propagators. For example, with
massless free quark and gluon propagators,

S0;abij ðpÞ ¼ δabδij
γμpμ

ðp0 þ μÞ2 − p2
; ð10Þ

D0ðpÞ ¼ 1

p2
; ð11Þ

where μ is the quark chemical potential, and we find the
perturbative result,1

Ev
QCD ¼ 24παs

�Z
d3p
ð2πÞ3

fðjpj − μÞ
jpj

�
2

; ð12Þ

where fðzÞ ¼ ½expðz=TÞ þ 1�−1 is the Fermi distribution
function; at zero temperature, Eq. (12) reduces to

Ev
QCD ¼ 3αsp4

F

2π3
: ð13Þ

This result is identical to the exchange energy of a highly
relativistic electron gas to within the flavor and color
factors.2,3

The vector repulsion contributes an energy density in the
NJL model [7],

Ev
NJL ¼ gVn2q; ð15Þ

which we identify with Ev
QCD in the matching density

region ∼5–20 n0 corresponding to pF ∼ 0.4–0.6 GeV, and
one finds

gV ¼ παs
6p2

F
: ð16Þ

The dashed line in Fig. 1 shows gV obtained using
Eq. (16) and the two-loop running coupling constant
αsðμqÞ:

αsðμqÞ ¼
4π

9 ln μ̃2

�
1 −

64 ln ln μ̃2

81 ln μ̃2

�
; ð17Þ

with μ̃≡ μq=ΛQCD and ΛQCD ¼ 340 MeV [13]. The
shaded horizontal band indicates the range of (constant)
gV in QHC19 [7]. Although gV in Fig. 1 approaches the
needed range below 20n0, the factor p−2

F and the running αs
near the Landau pole at ΛQCD already causes strongly
divergent behavior of gV even at 5n0 (corresponding to
pF ∼ 400 MeV), in contrast to the simple treatment in NJL
of gV as constant in this regime. However, extending the
pQCD calculation down to ΛQCD is not reliable. The solid
line in Fig. 1 shows gV for αs frozen at 3.0 at low energies
[13]. Although the divergence from the Landau pole is
removed in this case, gV still increases rapidly at low
energy.

1While the full trace in Eq. (3) contains contributions from
both particles and antiparticles, we focus only on modifications
due to nonzero particle densities here.

2Equation (12) includes the interactions between quark-
number densities q̄γ0q, as well as those between spatial currents,
q̄γjq. These contributions yield the matrix element, for on-shell
momenta,

Tr½SðpÞγμ�Tr½Sðp0Þγμ� ∝
jpjjp0j − p · p0

2jpjjp0j ; ð14Þ

whose numerator cancels the pole from the massless gluon
propagator, giving Eq. (12).

3In deriving Ev
QCD in Eq. (12) from Eq. (9) with a momentum-

dependent gluon propagator, the correlation functions hq̄ γ⃗ qi are
as important as hq̄γ0qi; the former is not included in the NJL
mean field description. Such a deficiency in the NJL model can
be compensated by absorbing the contribution from hq̄ γ⃗ qi into
the density dependence of gV itself; in this way, we can directly
compare the NJL gV with the current definition of gV in terms of
QCD parameters.
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III. NONPERTURBATIVE αs AND MASSIVE
GLUONS BELOW 1 GeV

We now examine the consequences of the nonperturba-
tive behavior of the strong coupling constant αs and the
gluon propagator below the 1 GeV scale. For reviews, see
Refs. [13,15] and references therein. In various nonpertur-
bative approaches for the gluon sector (lattice gauge theory,
Schwinger-Dyson equations, and gauge/gravity duality),
under gauge fixing, αs is of order unity below 1 GeV (with
freezing or decoupling behaviors in the deep infrared limit,
q → 0). Here we focus on gluons dynamically acquiring a
mass, favored by the lattice results (and corresponding to
the decoupling solution of the gluon Schwinger-Dyson
equations in the Landau gauge),

DðpÞ ¼ 1

p2 −m2
g
: ð18Þ

Estimates of mg tend to lie in the range ∼500� 200 MeV
[14,15]. The present use of a massive gluon propagator is
conceptually different from using in-medium generated
masses of the gluon field, as in quasiparticle models, e.g.,
Ref. [20] and references therein; the massive gluon here
originates from nonperturbative physics and exists even in
the vacuum. Equation (18) regulates the divergent behavior
of gV as pF → 0 in Fig. 1 and leads to

Ev
QCDðmgÞ ¼ Ev

QCDð0Þ þ δEv
QCDðmgÞ. ð19Þ

As in the derivation of Eq. (12), Ev
QCDð0Þ results from a

cancellation between the massive gluon propagator and a
part of the quark matrix elements, while the remaining
terms are proportional to m2

g

δEv
QCDðmgÞ ¼ −

3αsm2
g

2π3

Z
pF

0

Z
pF

0

dpdp0 ln
�
1þ 4pp0

m2
g

�

¼ 3αsm4
g

8π3
KðxÞ; ð20Þ

where z≡ð2pF=mgÞ2 and KðzÞ≡ 2z − ð1þ zÞ lnð1þ zÞþ
Li2ð−zÞ, with Li2ð−zÞ≡P∞

l¼1ð−zÞl=l2 being the poly-
logarithm function with n ¼ 2. Thus, one finds

Ev
QCDðmgÞ ¼

3αsp4
F

2π3

�
1þ KðzÞ

z2

�
: ð21Þ

Note that for positive z, 0 ≤ 1þ KðzÞ=z2 < 1, implying
that the finite gluon mass softens the repulsion while
keeping the total vector energy positive.
Matching Eq. (15) with Eqs. (16) and (21), one finds

gVðpF; z ≫ 1Þ → παs
6p2

F
;

gVðpF; z ≪ 1Þ → 4παs
27m2

g
: ð22Þ

Figure 2 shows gV for different gluon masses mg, with a
typical value of the frozen αs ¼ 3.0 at low energies
≲1 GeV [13]. In the infrared, gV is regulated by the gluon
mass, mg, so that there is no divergent behavior at pF ¼ 0.
Figure 3 gives contour plots of the resulting vector

coefficient gV for given different αs and gluon massesmg, at
5n0 and 20n0. For the resulting gV=G0 to be in the interval
0.6–1.3 at 5n0 with mg ¼ 400 MeV, one needs a strong
αs ∼ 2–4, within the range of possible quark-gluon cou-
pling strengths at low energies [13]. Future theories of the
quark-gluon vertex αs together with detailed forms of gluon
correlation functions below 1 GeV will be of interest, as
they can be directly related to effective quark models
constrained by neutron star observations.

FIG. 2. The vector coefficient gV as a function of quark Fermi
momentum generated by a frozen αs ¼ 3 below 1 GeV and
different gluon masses mg.

FIG. 1. The dashed line indicates the single-gluon exchange
result for gV in perturbative QCD as a function of the quark matter
Fermi momentum, pF. The horizontal shaded region shows the
range of gV in QHC19 [7], while the vertical shaded region shows
the baryon density ∼5–20 n0. The solid line indicates the result
for αs frozen at 3.0 at low energies [13].
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In the density range ∼5 n0 in a neutron star, where the
quark Fermi momentum lies well below 1 GeV, it is
reasonable to assume an approximately constant αs and
mg. The two limiting results, Eq. (22), thus suggest an
approximate density-dependent parametrization of gV
based on explicit single-gluon exchange:

gVðpF;mgÞ ≃
4παs=3

9m2
g þ 8p2

F
: ð23Þ

This parametrization is useful for including the density
dependence of gV in the quark-hadron crossover equations
of state.

IV. EFFECT OF FINITE QUARK MASS

At high densities, quark matter contains a small chiral
condensate ∼hq̄qi as well as a diquark condensate
∼hqqi, as a consequence of the six-quark Kobayashi-
Maskawa-’t Hooft (KMT) effective interaction [21]. At
densities ≳5n0, the chiral condensate enhanced by the

KMT interaction could result in an effective quark
mass Mq ∼ 50–70 MeV for the light quarks, and
∼250–300 MeV for the s quark [1]. These masses are
not small compared to the quark Fermi momentum at
these densities, and must be taken into account in the
exchange energy calculation.
Here we calculate the effects of Mq on gV only by

modifying the quark propagators in Eq. (9), and not further
correcting the vertices. We recognize that this is not a self-
consistent calculation; rather, we aim here to get a sense of
the effects of a finite quark mass on the vector channel of
the matrix element (2), which is connected to perturbative
QCD at asymptotic density. We take the quark Green’s
function to be

Sabij ðpÞ ¼ δabδij
γμpμ þMq

ðp0 þ μÞ2 − p2 −M2
q

ð24Þ

and assume the same effective mass Mq for all flavors.
With this S, we obtain after some algebra, with ϵp ¼

ðjpj2 þM2
qÞ1=2,

Ev
QCD ¼ 24παs

��Z
d3p
ð2πÞ3

fðϵp − μÞ
ϵp

�
2

− ð2M2
q −m2

gÞ
Z

d3pd3p0

ð2πÞ6
1

ϵpϵp0
·

fðϵp − μqÞfðϵp0 − μqÞ
ðϵp − ϵp0 Þ2 − jp − p0j2 −m2

g

�
: ð25Þ

The asymptotic forms of Eq. (25) for pF ≫ Mq and mg,
and for pF ≪ Mq and mg, can be readily found, with the
result that gVðpF;mg;MqÞ agrees in these limits with
Eq. (22). In particular, gV is independent of Mq at
pF ¼ 0 as long as mg is finite. The combined effects of
Mq and mg are shown in Fig. 4, which compares gV at
several different values of Mq and mg ¼ 400 MeV.
We find that the effect of Mq on gV is almost negligible.

Thus, the assumption that gV is flavor independent is
reasonable, despite flavor symmetry being significantly
broken by the strange quark mass; the parametrization
(23) is approximately useful independent of flavor.

V. EFFECT OF DIQUARK PAIRING

We next consider the effects on Ev
QCD of scalar color-

flavor-locked pairing among quarks through modification

FIG. 3. The vector coefficient gV generated by different con-
stant αs and gluon masses mg, at pF ¼ 400 MeV (∼5 n0). The
central cross indicates αs ¼ 3 and mg ¼ 400 MeV.

FIG. 4. Vector repulsion coefficient gV for different values of
Mq with mg ¼ 400 MeV and αs ¼ 3.
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of the normal quark Green’s function S in Eq. (9).4 In
the CFL phase, it is convenient to expand the quark field
[with SUð3Þ flavor and SUð3Þ color indices], as qia ¼P

8
A¼0 λ

A
iaqA=

ffiffiffi
2

p
, in term of the Gell-Mann matrices, λA

(A ¼ 1; 2;…; 8), and λ0 ¼ 1
ffiffiffiffiffiffiffiffi
2=3

p
. In this basis, the

normal quark propagator becomes diagonal:

Sabij ðx − yÞ ¼
X
A

1

2
λAiaλ

A
bjSAðx − yÞ: ð26Þ

With CFL pairing, the SA¼1;…;8 describe eight paired quark
quasiparticles with the same gap,ΔA¼1;…;8ðpÞ ¼ ΔðpÞ, and
one quasiparticle S0 with double the gap, Δ0ðpÞ ¼ 2ΔðpÞ.
For massless quarks (ϵp ¼ jpj), one finds

Ev
QCD¼

4παs
27

X
A;B

Z
pp0

tr½SAðpÞγμ�tr½SBðp0Þγμ�
1

ðp−p0Þ2−m2
g
;

ð27Þ

¼ αs
54π3

X
A;B

Z
∞

0

dpdp0v2Apv
2
Bp0

�
4pp0−JABðp;p0;mgÞ

×ln

����1þ 4pp0

JABðp;p0;mgÞ
����
�
; ð28Þ

with v2Ap¼1
2
ð1−ðϵp−μÞ=EA

pÞ, EA
p¼½ðϵp−μÞ2þΔ2

A�1=2, and
JABðp;p0;mgÞ¼m2

gþðp−p0Þ2−ðEA
p−EB

p0 Þ2. Generalization
to the case with finite quark mass Mq is straightforward.
Note that the total quark density is given by

nq ¼ 2
X
A

Z
d3p
ð2πÞ3 v

2
Ap: ð29Þ

The integral in Eq. (28) converges only with a
momentum-dependent gap. Following the numerical study
in Refs. [22,23], we approximate the spatial momentum
dependence of Δ by

ΔðpÞ ¼ ΔðμÞ
ð1þ bðp − μÞ2=μ2Þζ ; ð30Þ

the constant b > 0 parametrizes how fast ΔðpÞ falls off
away from the Fermi surface, and the exponent ζ > 0
parametrizes the behavior of ΔðpÞ at high momenta (see
Fig. 5). In the weak coupling limit, ζ ¼ 1þOðαsÞ and Δ ∼
μg−5e−3π

2=
ffiffi
2

p
g [24,25]. Here we simply vary the gap in the

range, ΔðμÞ ¼ 100–300 MeV, consistent with the QHC19
equation of state. This range of CFL gaps results from the

phenomenologically derived pairing strength [7] H ∼
1.5G0 being notably larger than the conventional Fierz
value 3=4 G in the NJL model; the latter yields the more
commonly discussed range of gaps, ∼10–100 MeV [19].
See particularly Fig. 33 of Ref. [1], and Appendix C, which
argues that the level splitting between N and Δ in the NJL
model favors H ≳ 1.4G. Such larger pairing strengths are
reasonable, since with decreasing density one expects two-
(and three-) quark correlations to build up in quark matter,
eventually leading to well-defined nucleons at lower
densities. Indeed, before diquarks are confined into nucle-
ons, the size of diquarks is expected to be ∼1 fm, consistent
with a gap ∼200 MeV.
As we see in Fig. 6, a gap decreases gV at all densities,

and the dependence of the gap is significant for massless
gluons. For gluon masses mg ∼ 400 MeV, however, even a
large variation ofΔ from 0 to 300 MeV does not change the
qualitative behavior of gV . In comparison with the effects of
Mq, a large gapΔðμÞ ¼ 200 MeV (as in QHC19) still has a
sizable impact: at 5n0, a 200 MeV CFL gap reduces gV
from ∼0.9G0 to ∼0.55G0, even with mg ¼ 400 MeV.

FIG. 5. The parametrization [Eq. (30)] of the momentum-
dependence gap ΔðpÞ for μ¼500MeV, b¼1.0, ΔðμÞ¼50MeV,
and ζ ¼ 1.0.

FIG. 6. The vector repulsion coefficient gV for different ΔðμÞ
withmg ¼ 400 MeV and αs ¼ 3. The curves show how inclusion
of pairing in the presence of a massive gluon has only a small
effect on gV .

4The anomalous Green’s function, Fab
ij ðx − yÞ ¼ −ihT qai ðxÞ

ðqTCÞjbðyÞi, leads as well to the familiar energy shift Epair
QCD

proportional to the square of the pairing gap, an effect related to
inferring the in-medium modification of H.
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The gluon propagator is also modified in a dense quark
medium by Landau damping [24–26], and the Debye
screening mass in the longitudinal sector, and in the
presence of diquark pairing by Meissner masses in the
transverse sector [27,28], of order

ffiffiffiffiffi
αs

p
μ. The interplay of

these modifications of the gluon propagator in the quark
matter in neutron stars and their effects on neutron star
properties are open questions worthy of future research.

VI. CONCLUSION

We have computed the vector repulsion coefficient gV
from the explicit gluon exchange energy in quark matter,
modifying the quark and gluon Green’s functions to
account for a nonperturbative gluon mass mg and for
chiral condensate and diquark pairing, including as well
a possible infrared-finite αs. In the density range ∼5–20n0
with reasonable parameters for αs, gluon mass, quark mass,
and pairing gap, we can begin to understand the origin of a
gV of order ∼0.6–1.3G. The parameters we have chosen,
despite their uncertainties, lie within estimates from a
variety of models and theoretical frameworks of sub-
GeV QCD. Among the nonperturbative effects we have
considered, the resulting gV is most sensitive to αs and mg,
while Mq and Δ induce only relatively small changes
owing to suppression by a gluon mass. Thus, the para-
metrization [Eq. (23)] should be a good approximate
description of the density dependence of gV , to be included
in the equation of state for neutron star matter with a
strongly interacting quark phase.
Many open questions remain. The vector repulsion

between quarks at densities ≳5n0 may also come from
nonperturbative QCD beyond the single gluon-exchange
contribution treated in this paper; such uncertainty is not
under control at present. As αs could range anywhere from
0 to 10 (or even be divergent at low-momentum scales), the
assumption that the vector repulsion is dominated by a
single gluon exchange with a fixed αs and mg is overly
simplified. Our treatment can be improved and extended in
several directions. The first would be the inclusion of more
realistic quark and gluon propagators, including possible
momentum dependence of masses and differences between
transverse and longitudinal gluons. The second would be to
include the nonperturbative running of αs. Including the
density dependence of gV , as in the parametrization (23),
can have a significant effect on model studies of quark
matter. In particular, corrections to the contributions from
the light and heavy quarks could shift the phase boundaries
and modify the equation of state. Including the density
dependence of the diquark coupling, H, would have a
similar effect.
We note that relating the effective QCD vector couplings

gV and gατ (Appendix B) in the NJL model of dense matter
(an effective field theory for quarks) to nucleon-meson
models (effective field theories for hadrons) would provide

a further probe of quark-hadron continuity [21,29]. If the
transition from nuclear to quark matter is essentially
smooth, one expects the vector repulsion from hadronic
to quark matter to be similarly smooth, since in the quark-
hadron continuity picture, the spectrum of light gluonic
excitations is tightly connected to that of hadronic vector
mesons [30], while quarks are mapped to the baryons in
nuclear matter. Low-energy quark-gluon matter treated in
this way becomes an extension of the baryon-meson picture
of nuclear matter, plausibly enabling a relatively smooth
crossover and in turn mapping gV and gατ from the hadronic
to the quark phases.5
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APPENDIX A: FIERZ TRANSFORMATION

The Fierz transformation is a rearrangement of fermion
operator products in the Dirac, flavor, and color spaces
using index-exchanging properties of the gamma and
SUðNÞ generator matrices. In the quark-antiquark channel,
the rearrangement of the Dirac indices reads

ðγμÞmnðγμÞm0n0 ¼ 1mn01m0n þ ðiγ5Þmn0 ðiγ5Þmn0

−
1

2
ðγμÞmn0 ðγμÞm0n

−
1

2
ðγμγ5Þmn0 ðγμγ5Þm0n; ðA1Þ

and those of the flavor and color indices (Nf ¼ Nc ¼ 3)
read

5One may ask how vector repulsions in the nucleon-meson
description of nuclear matter, a gauge-invariant theory, can be
mapped onto vector repulsions in the gauge-dependent theory of
quarks and gluons, despite the vector repulsions in both being
effective fermion-fermion interactions mediated by massive
boson exchange. In fact, including color charge screening by
CFL diquark condensates [31,32] leads to a low-energy gauge-
invariant description of quarks and gluons of the same form as a
baryon-meson Lagrangian [31].
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1ij1kl ¼
1

3
1il1kj þ

1

2
ðτaÞilðτaÞkj;

λabα λa
0b0

α ¼ 16

9
1ab01a0b −

1

3
λab

0
α λa

0b
α : ðA2Þ

In the quark-quark channel,

ðγμÞmnðγμÞm0n0 ¼ ðiγ5CÞmm0 ðiγ5CÞnn0 þ Cmm0Cnn0

−
1

2
ðγμγ5CÞmm0 ðγμγ5CÞnn0

−
1

2
ðγμCÞmm0 ðγμCÞnn0 ; ðA3Þ

and

1ij1kl ¼
1

2
ðτSÞikðτSÞlj þ

1

2
ðτAÞikðτAÞlj;

λabα λcdα ¼ 2

3
λSacλ

S
bd −

4

3
λAacλ

A
bd; ðA4Þ

where S and A stand for symmetric and antisymmetric
indices, and τα¼1;…;8 are the eight Gell-Mann flavor
matrices. Using these relations, one can transform a single
trace into products of two traces, as is done in, e.g., Eq. (9):

Tr½SðpÞΓISðp0ÞΓI� ¼
X
M

gMTr½SðpÞΓM�Tr½Sðp0ÞΓM�;

ðA5Þ
where ΓI are Dirac, flavor, and color matrices.

APPENDIX B: THE VECTOR-ISOVECTOR
INTERACTION

The discussion in the main text focuses on the flavor-
symmetric case, where in the absence of pairing, the vector
component of single-gluon exchange contributes only to
the isoscalar channel. [In the CFL phase, one finds non-
vanishing contributions in the flavor-color vector channel
ðq̄γμτaλAqÞ2 as well.] For realistic constituent quark
masses, however, the vector-isovector channel (denoted
by τ), corresponding to the interaction ðq̄γμταqÞ2, also
contributes to the single-gluon exchange energy:

Ev;τ
QCD ¼ 2παs

9

Z
p;p0

Tr½SðpÞγμτα�Tr½Sðp0Þγμτα�Dðp − p0Þ:

ðB1Þ
In particular, the α ¼ 3 and 8 terms yield an exchange
energy at low density of the form

gð3Þτ ðnu − ndÞ2 þ
gð8Þτ

3
ðnu þ nd − 2nsÞ2: ðB2Þ

This vector-isovector energy is analogous to the neutron-
proton symmetry energy in nuclear matter. For single-gluon

exchange, gð3Þτ ¼ gð8Þτ ¼ 3
2
gV , indicating an vector-isovector

energy comparable to the vector-isoscalar energy for
significant differences in flavor densities. It is an interesting

future problem to estimate the in-medium values of gð3;8Þτ as
well as gV by matching with, e.g., the chiral nucleon-meson
model [33].

APPENDIX C: ESTIMATING H FROM THE N −Δ
MASS SPLITTING

One of the important ingredients in the QHC19 equation
of state is the parameter H that quantifies the strength of
attractive diquark correlations. At high density, diquark
correlations are the driving force of color superconductiv-
ity, while at low density, the correlations appear in the
context of hadron mass splittings, e.g., the N − Δ splitting,
mΔ −mN ≃ 293 MeV. The density nB ∼ 5n0 ≃ 0.8 fm−3 is
roughly that inside of baryons, and so it suggests the
possibility of inferring the value of H at nB ∼ 5n0 from the
N − Δ splitting.
This splitting has been derived by Ishii et al. [34] by

solving the Faddeev equations of three-quark systems
within the NJL model. They included effective four-quark
interactions in the isoscalar scalar and isovector axial-
vector diquark channels, which in our notation are

LS ¼ H
X

A¼2;5;7

ðψ̄ iγ5τ2λAψCÞðψ̄Ciγ5τ2λAψÞ; ðC1Þ

LA ¼ H0 X
A¼2;5;7

ðψ̄γμτ2τ⃗λAψCÞðψ̄Cγ
μτ2τ⃗λAψÞ: ðC2Þ

Reference [34] finds the approximate formulas:

MN ≃ 1.70 − 0.21r0H − 0.33rH ½GeV�; ðC3Þ

MΔ ≃ 1.52 − 0.22r0H ½GeV�: ðC4Þ

where rH ¼ H=G0 and r0H ¼ H0=G0. The absolute values
of these masses are not quite trustworthy, as they are
sensitive to the physics beyond the NJL model, e.g.,
confinement. In the mass splitting, such uncertainties are
largely canceled, and the physics of short-range correla-
tions become dominant. Using the empiricalMΔ −MN , we
find

−0.01r0H þ 0.33rH ≃ 0.47 ½GeV�: ðC5Þ

Provided r0H ≥ 0 as expected from typical models, we
arrive at

H=G0 ≳ 1.4; ðC6Þ

consistent with the range in QHC19, H=G0 ¼ 1.35–1.65.
More comprehensive studies will be given elsewhere [35].

SONG, BAYM, HATSUDA, and KOJO PHYS. REV. D 100, 034018 (2019)

034018-8



[1] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T.
Takatsuka, From hadrons to quarks in neutron stars: A
review, Rep. Prog. Phys. 81, 056902 (2018).

[2] K. Fukushima and T. Hatsuda, The phase diagram of dense
QCD, Rep. Prog. Phys. 74, 014001 (2010).

[3] K. Masuda, T. Hatsuda, and T. Takatsuka, Hadron-quark
crossover and massive hybrid stars with strangeness, As-
trophys. J. 764, 12 (2013).

[4] K. Masuda, T. Hatsuda, and T. Takatsuka, Hadron-quark
crossover and massive hybrid stars, Prog. Theor. Exp. Phys.
2013, 073D01 (2013).

[5] T. Kojo, P. D. Powell, Y. Song, and G. Baym, Phenomeno-
logical QCD equation of state for massive neutron stars,
Phys. Rev. D 91, 045003 (2015).

[6] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Properties of the Binary Neutron Star Merger
GW170817, Phys. Rev. X 9, 011001 (2019).

[7] G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H. Togashi,
New neutron star equation of state with quark-Hadron
crossover, arXiv:1903.08963.

[8] Posted at https://compose.obspm.fr/eos/140/.
[9] T. Hatsuda and T. Kunihiro, QCD phenomenology based on

a chiral effective Lagrangian, Phys. Rep. 247, 221 (1994).
[10] M. Buballa, NJL-model analysis of dense quark matter,

Phys. Rep. 407, 205 (2005).
[11] T. Kunihiro, Quark-number susceptibility and fluctuations

in the vector channel at high temperatures, Phys. Lett. B
271, 395 (1991).

[12] H. T. Cromartie et al., A very massive neutron star: Relativ-
istic Shapiro delay measurements of PSR J0740þ 6620,
arXiv:1904.06759.

[13] A. Deur, S. J. Brodsky, and G. F. de Teramond, The QCD
running coupling, Prog. Part. Nucl. Phys. 90, 1 (2016).

[14] J. M. Cornwall, Dynamical mass generation in continuum
quantum chromodynamics, Phys. Rev. D 26, 1453 (1982).

[15] A. C. Aguilar, D. Binosi, and J. Papavassiliou, The gluon
mass generation mechanism: A concise primer, Front. Phys.
11, 111203 (2016).

[16] A. Kurkela, P. Romatschke, and A. Vuorinen, Cold quark
matter, Phys. Rev. D 81, 105021 (2010).

[17] B. A. Freedman and L. D. McLerran, Fermions and gauge
vector mesons at finite temperature and density: III. The
ground state energy of a relativistic quark gas, Phys. Rev. D
16, 1169 (1977).

[18] T. Gorda, A. Kurkela, P. Romatschke, M. Säppi, and A.
Vuorinen, NNNLO Pressure of Cold Quark Matter: Leading
Logarithm, Phys. Rev. Lett. 121, 202701 (2018).

[19] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
Color superconductivity in dense quark matter, Rev. Mod.
Phys. 80, 1455 (2008).

[20] A. Peshier, B. Kämpfer, and G. Soff, The equation of state of
deconfined matter at finite chemical potential in a quasi-
particle description, Phys. Rev. C 61, 045203 (2000).

[21] T. Hatsuda, M. Tachibana, N. Yamamoto, and G. Baym,
New Critical Point Induced by the Axial Anomaly in Dense
QCD, Phys. Rev. Lett. 97, 122001 (2006); N. Yamamoto,
M. Tachibana, T. Hatsuda, and G. Baym, Phase structure,
collective modes, and the axial anomaly in dense QCD,
Phys. Rev. D 76, 074001 (2007); H. Abuki, G. Baym, T.
Hatsuda, and N. Yamamoto, The NJL model of dense three
flavor matter with axial anomaly: The low temperature
critical point and BEC-BCS diquark crossover, Phys. Rev. D
81, 125010 (2010).

[22] M. Matsuzaki, Spatial structure of quark Cooper pairs in a
color superconductor, Phys. Rev. D 62, 017501 (2000).

[23] H. Abuki, T. Hatsuda, and K. Itakura, Structural change of
Cooper pairs and momentum-dependent gap in color super-
conductivity, Phys. Rev. D 65, 074014 (2002).

[24] D. T. Son, Superconductivity by long-range color magnetic
interaction in high-density quark matter, Phys. Rev. D 59,
094019 (1999).

[25] R. D. Pisarski and D. H. Rischke, Color superconductivity
in weak coupling, Phys. Rev. D 61, 074017 (2000).

[26] G. Baym, C. J. Pethick, and H. Monien, Kinetics of
quark-gluon plasmas, Nucl. Phys. A498, 313 (1989); G.
Baym, H. Monien, C. J. Pethick, and D. G. Ravenhall,
Transverse Interactions and Transport in Relativistic
Quark-Gluon and Electromagnetic Plasmas, Phys. Rev.
Lett. 64, 1867 (1990).

[27] K. Fukushima, Analytical and numerical evaluation of the
Debye and Meissner masses in dense neutral three-flavor
quark matter, Phys. Rev. D 72, 074002 (2005).

[28] D. H. Rischke, Debye screening and Meissner effect in a
three-flavor color superconductor, Phys. Rev. D 62, 054017
(2000).

[29] T. Schaefer and F. Wilczek, Continuity of Quark and Hadron
Matter, Phys. Rev. Lett. 82, 3956 (1999).

[30] T. Hatsuda, M. Tachibana, and N. Yamamoto, Spectral
continuity in dense QCD, Phys. Rev. D 78, 011501(R)
(2008).

[31] A. Kryjevski and T. Schaefer, An effective theory for
baryons in the CFL phase, Phys. Lett. B 606, 52 (2005).

[32] Y. Song and G. Baym (to be published).
[33] M. Drews and W. Weise, Functional renormalization group

studies of nuclear and neutron matter, Prog. Part. Nucl.
Phys. 93, 69 (2017).

[34] N. Ishii, W. Bentz, and K. Yazaki, Baryons in the NJL model
as solutions of the relativistic Faddeev equation, Nucl. Phys.
A587, 617 (1995).

[35] T. Kojo (to be published).

EFFECTIVE REPULSION IN DENSE QUARK MATTER FROM … PHYS. REV. D 100, 034018 (2019)

034018-9

https://doi.org/10.1088/1361-6633/aaae14
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1088/0004-637X/764/1/12
https://doi.org/10.1088/0004-637X/764/1/12
https://doi.org/10.1093/ptep/ptt045
https://doi.org/10.1093/ptep/ptt045
https://doi.org/10.1103/PhysRevD.91.045003
https://doi.org/10.1103/PhysRevX.9.011001
http://arXiv.org/abs/1903.08963
https://compose.obspm.fr/eos/140/
https://compose.obspm.fr/eos/140/
https://compose.obspm.fr/eos/140/
https://doi.org/10.1016/0370-1573(94)90022-1
https://doi.org/10.1016/j.physrep.2004.11.004
https://doi.org/10.1016/0370-2693(91)90107-2
https://doi.org/10.1016/0370-2693(91)90107-2
http://arXiv.org/abs/1904.06759
https://doi.org/10.1016/j.ppnp.2016.04.003
https://doi.org/10.1103/PhysRevD.26.1453
https://doi.org/10.1007/s11467-015-0517-6
https://doi.org/10.1007/s11467-015-0517-6
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevD.16.1169
https://doi.org/10.1103/PhysRevD.16.1169
https://doi.org/10.1103/PhysRevLett.121.202701
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/PhysRevC.61.045203
https://doi.org/10.1103/PhysRevLett.97.122001
https://doi.org/10.1103/PhysRevD.76.074001
https://doi.org/10.1103/PhysRevD.81.125010
https://doi.org/10.1103/PhysRevD.81.125010
https://doi.org/10.1103/PhysRevD.62.017501
https://doi.org/10.1103/PhysRevD.65.074014
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevD.61.074017
https://doi.org/10.1016/0375-9474(89)90608-8
https://doi.org/10.1103/PhysRevLett.64.1867
https://doi.org/10.1103/PhysRevLett.64.1867
https://doi.org/10.1103/PhysRevD.72.074002
https://doi.org/10.1103/PhysRevD.62.054017
https://doi.org/10.1103/PhysRevD.62.054017
https://doi.org/10.1103/PhysRevLett.82.3956
https://doi.org/10.1103/PhysRevD.78.011501
https://doi.org/10.1103/PhysRevD.78.011501
https://doi.org/10.1016/j.physletb.2004.11.081
https://doi.org/10.1016/j.ppnp.2016.10.002
https://doi.org/10.1016/j.ppnp.2016.10.002
https://doi.org/10.1016/0375-9474(95)00032-V
https://doi.org/10.1016/0375-9474(95)00032-V

