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We propose D mesons as probes to investigate finite-volume effects for chiral symmetry breaking at
zero and finite temperatures. By using the 2þ 1-flavor linear sigma model with constituent light quarks,
we analyze the Casimir effects for the σ mean fields; the chiral symmetry is rapidly restored by the
antiperiodic boundary for light quarks, and the chiral symmetry breaking is catalyzed by the periodic
boundary. We also show the phase diagram of the σ mean fields on the volume and temperature plane.
For D mesons, we employ an effective model based on the chiral-partner structure, in which the volume
dependence of D mesons is induced by the σ mean fields. We find that Ds mesons are less sensitive to
finite volume than D mesons, which is caused by the insensitivity of σs mean fields. An anomalous mass
shift of D mesons at high temperature with the periodic boundary will be useful in examinations with
lattice QCD simulations. The dependence on the number of compactified spatial dimensions is also
studied.
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I. INTRODUCTION

Chiral symmetry breaking induced by the chiral con-
densate is a unique property in the low-energy QCD. It is
related to the properties of many hadrons, such as masses
and decay constants. Under an extreme environment
such as high temperature/density, the chiral symmetry
is partially restored by the external effects, and hadron
properties are simultaneously modified. An intuitive
scenario connecting the chiral symmetry to hadron proper-
ties is the chiral-partner structure, which means that the
masses of partners become degenerate in the chiral-
restored phase.
The chiral-partner structure for D mesons was first

suggested in Refs. [1,2], and it was later extended to strange

sectors such as Ds mesons [3–5].1 Since a heavy-light
meson consists of one light (u, d, or s) quark and one heavy
(c or b) quark, the light quark can be a probe of the chiral
symmetry breaking/restoration. In particular, heavy-light
mesons are slightly different from hadrons including only
light quarks in the sense that the heavy quark cannot be a
probe of the chiral condensate. Thanks to this point, heavy-
light meson chiral partners at chiral-restored environments
could be a more visible probe than light-hadron partners.2

Recent lattice QCD simulations at finite temperature
showed the thermal behaviors of D and Ds meson masses

*tsuto@post.kek.jp
†katumasa@post.kek.jp
‡suenaga@mail.ccnu.edu.cn
§k.suzuki.2010@th.phys.titech.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Note that this model is similar to the heavy-meson chiral
perturbation theory (HMχPT) [6–8] in the sense that both the
models are motivated by the heavy-quark effective theory [9,10]
based on the heavy-quark spin symmetry [11,12], but they differ
in that the chiral-partner structure for heavy-light mesons is
absent in the HMχPT.

2In the language of QCD sum rules, the chiral partners of light
hadrons such as ρ-a1 mesons are significantly affected by the
four-quark condensates, while the contribution from the two-
quark chiral condensate is suppressed. On the other hand, the
contributions from four-quark condensates to heavy-light mesons
are highly suppressed [13], which is useful for studying pure
effects of the two-quark chiral condensate without suffering from
contamination by little-known four-quark condensates.
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through the screening masses [14,15] and the peak posi-
tions on the spectral functions [16]. One of the open
questions is whether the pseudoscalar D meson mass
increases or decreases as the chiral symmetry is partially
restored. This is because the “sign” of the mass shift is
nontrivial even if the pseudoscalar D and scalar D�

0 are the
chiral partners, and their masses become degenerate at the
chiral-restored phase. The results in Refs. [14–16] imply an
increase of the pseudoscalar D meson mass.
Furthermore, the relation between D meson masses

and the chiral condensate (or σ-mean field) at finite
temperature/density has been discussed by using phenom-
enological approaches such as QCD sum rules [13,17–25]
and effective models [26–42] (see Refs. [43] for a recent
review).3 Some of these theoretical studies are also moti-
vated by future experiments of low-energy heavy-ion
collisions which can create both the high-density baryonic
matter and charmed hadrons, such as FAIR, NICA, and
J-PARC. In addition,Dmesons in a magnetic field can also
be useful probes of chiral symmetry breaking in magnetic
fields [56–60].
In this paper, we focus on a novel situation to study theD

meson chiral partners: finite-volume systems with a boun-
dary condition (see Fig. 1). This is because chiral symmetry
breaking is sensitive to the volume of the system. Finite-
volume systems with a “box” geometry, in which all the
spatial dimensions are compactified, are automatically
realized in lattice simulations. For advantages of lattice
simulations, we can tune artificial parameters on the lattice,
such as boundary conditions for quarks and the number
of compactified dimensions (denoted as δ in this paper).

Examining responses of D mesons to such tunable param-
eters will provide us with a deeper understanding of D
meson chiral partners. In particular, the compactification
of one spatial dimension is related to an energy shift of
the nonperturbative QCD vacuum with two parallel plates,
which is the so-called Casimir effect [61]. Such a situa-
tion will also be approximately realized in lattice QCD
simulations (e.g., see Refs. [62–67] as simulations for
nonperturbative vacua such as Yang-Mills vacua). Thus,
finite-volume effects for D mesons will be also useful as a
hadronic observable of the Casimir effect for the chiral
condensate.
In most of the previous works, the finite-volume effects

for heavy-light mesons have been described by finite-
volume corrections for dynamical pions coupled with the
heavy-light mesons [68–72], using theoretical approaches
such as the heavy-meson chiral perturbation theory
(HMχPT) [69,70,72] and the resummed Lüscher formula
[71]. Here, we emphasize that in our model finite-volume
effects are induced by that for a meson mean field (or
chiral condensate), and it is essentially different from the
understanding based on pion degrees of freedom. Thus,
our study will provide an alternative interpretation of
finite-volume effects for D mesons measured from lattice
QCD simulations.
This paper is organized as follows. In Sec. II, we

introduce our model to describe D mesons in a finite
volume, which is based on the chiral-partner structure.
Numerical results are shown in Sec. III. Section IV is
devoted to our conclusion and outlook.

II. MODEL

A. Linear sigma model

To investigate finite-temperature and/or finite-volume
effects to D mesons in the viewpoint of a chiral symmetry
restoration, to begin with, we need to construct such
environments. In the present work, the 2þ 1-flavor linear
sigma model with quarks is employed for this purpose,
which is given by

LLS ¼ Lq þ Lm; ð1Þ
with Lq and Lm being

Lq ¼ q̄Li∂qL þ q̄Ri∂qR − gðq̄LΣqR þ q̄RΣ†qLÞ; ð2Þ
and

Lm ¼ tr½∂μΣ†∂μΣ� − μ̄2tr½Σ†Σ� − λ1ðtr½Σ†Σ�Þ2
− λ2tr½ðΣ†ΣÞ2� þ cðdetΣþ detΣ†Þ
þ tr½HðΣþ Σ†Þ�: ð3Þ

In Eqs. (2) and (3), qLðRÞ denotes a left-handed (right-
handed) quark column vector,

FIG. 1. Sketches of setups studied in this paper: D mesons in
the 3þ 1-dimensional space-time with compactified spatial
length L. δ is defined as the temporal and compactified spatial
dimensions. At δ ¼ 4,Dmesons are affected by the finite-volume
effect in the cubic geometry, which is a usual setup in lattice
simulations. At δ ¼ 3, D mesons are put in a squared tube (or a
wave guide). At δ ¼ 2, D mesons are affected by the finite-
volume effect between two parallel plates, which is similar to the
usual setup in the Casimir effect.

3For D meson mass shifts from phenomenological approaches
without the modification of the chiral condensate (or σ-mean
field), see also Refs. [44–51] at finite baryon density and
Refs. [52–55] at finite temperature. Such effects may be inter-
preted as an additional contribution different from the chiral
symmetry restoration.
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qLðRÞ ¼

0
B@

uLðRÞ
dLðRÞ
sLðRÞ

1
CA; ð4Þ

and Σ denotes a scalar and pseudoscalar meson nonet
matrix,

Σ ¼
X8
a¼0

ðσa þ iπaÞ λ
a

2
: ð5Þ

In Eq. (5), σa and πa are scalar and pseudoscalar mesons,
respectively, and λa (a ¼ 1;…; 8) is the Gell-Mann matrix,

while λ0 ¼
ffiffi
2
3

q
1. The 3 × 3 matrix H is of the form

H ¼

0
BB@

hq
2

0 0

0
hq
2

0

0 0 hsffiffi
2

p

1
CCA: ð6Þ

Under the Uð3ÞL ×Uð3ÞR chiral transformation, qL and qR
are transformed as

qL → gLqL; qR → gRqR; ð7Þ

where gL ðgRÞ is an element of the Uð3ÞL (Uð3ÞR) chiral
group, while the meson nonet Σ is

Σ → gLΣg†R: ð8Þ

Then, the Lagrangians (2) and (3) are invariant under the
Uð3ÞL ×Uð3ÞR chiral transformation except the last two
terms in Eq. (3). The term proportional to c is responsible
for the Uð1ÞA axial anomaly, while the one proportional to
H is included due to the explicit breaking of the chiral
symmetry.
One way to incorporate the spontaneous breakdown of

the chiral symmetry is to replace the mesons matrix Σ in
Eq. (5) into a mean field:

Σ →

0
BB@

σq
2

0 0

0
σq
2

0

0 0 σsffiffi
2

p

1
CCA: ð9Þ

Then, within this mean field approximation for mesons and
the one-loop approximation for quarks,4 a thermodynamic
potential per volume Ω̂ (the symbol X̂ refers to the value of
X per volume: X̂ ¼ X=V) reads

Ω̂ ¼ Ω̂q þ Ω̂m; ð10Þ

with

Ω̂q ¼ −
4Nc

β

X
l0

Z
d3k
ð2πÞ3 lnðω

2
l0
þ jk⃗j2 þM2

qÞ

−
2Nc

β

X
l0

Z
d3k
ð2πÞ3 lnðω

2
l0
þ jk⃗j2 þM2

sÞ; ð11Þ

and

Ω̂m ¼ μ̄2

2
ðσ2q þ σ2sÞ þ

λ1
4
ðσ2q þ σ2sÞ2 þ

λ2
4

�
σ4q
2
þ σ4s

�

−
c

2
ffiffiffi
2

p σ2qσs − hqσq − hsσs: ð12Þ

In Eqs. (11) and (12), β and ωl0 are the inverse of the
temperature β ¼ 1=T and the Matsubara mode defined by
ωl0 ¼ 2π

β ðl0 þ 1
2
Þ with l0 ¼ 0;�1;…, respectively. Mq ¼

g σq
2
and Ms ¼ g σsffiffi

2
p are the constituent quark mass of the

light quark and strange quark, respectively. The factor 4Nc
and 2Nc denote the degrees of freedom of the systems for
the light quarks and strange quark.
For fixing the parameters in Eqs. (2) and (3), in this

work, we use the same parameter set utilized in Ref. [73]
with mσ ¼ 800 MeV, which is listed in Table. I. To get
these values, the pion massmπ ¼ 138 MeV, the kaon mass
mK ¼ 496 MeV, the averaged squared mass of η and η0

mesons m2
η þm2

η0 ¼ 1.21 × 106 MeV2, the pion decay
constant fπ ¼ 92.4 MeV, the kaon decay constant fK ¼
113 MeV, and the light-quark constituent quark mass
Mq ¼ 300 MeV, together with the sigma meson mass
mσ ¼ 800 MeV are used as inputs.
By the minimum condition (or the gap equation) for

the potential (10) at zero temperature, we can obtain the
values of the mean fields: ∂Ω̂

∂σq ¼ ∂Ω̂
∂σs ¼ 0. As a result, σq ¼

92.4 MeV and σs ¼ 94.5 MeV.

B. Finite-volume effect

Ω̂q in Eq. (11) includes UV divergences, which must
be eliminated by a certain analytic continuation or

TABLE I. Parameters of the linear sigma model. These values
are extracted from Ref. [73] with mσ ¼ 800 MeV.

c (MeV) 4807.84
μ̄2 (MeV2) −ð306.26Þ2
λ1 13.49
λ2 46.48
hq (MeV3) ð120.73Þ3
hs (MeV3) ð336.41Þ3
g 6.5

4We neglect the quantum and thermal fluctuations of meson
fields, which are an approximation used in a conventional quark-
meson model (e.g., see Refs. [73,74]). Studies including mesonic
fluctuations are also interesting (e.g., see Refs. [75–78] for
studies of quark-meson model in the infinite volume).
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regularization technique. Here, we make use of the regu-
larization scheme with the Epstein-Hurwitz inhomo-
geneous zeta function.
Here, we demonstrate the case at δ ¼ 2; i.e., one spatial

direction in addition to the temporal direction is com-
pactified. Then, for light and strange quarks, we impose
the antiperiodic boundary condition [ψðτ; x; y; z ¼ 0Þ ¼
−ψðτ; x; y; z ¼ LÞ] or the periodic boundary condition
[ψðτ; x; y; z ¼ 0Þ ¼ ψðτ; x; y; z ¼ LÞ], where only the z
component of the 3-momentum of quarks is discretized as

kz → kapz ¼ 2π

L

�
l1 þ

1

2

�
; ð13Þ

kz → kpz ¼ 2l1π
L

; ð14Þ

where l1 ¼ 0;�1;… is the label of discretized levels. The
discretized energy of the light (strange) quarks is given by

EqðsÞðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥ þM2

qðsÞ
q

, where k2⊥ ¼ k2x þ k2y. Then,

the momentum integral with respect to kz in the thermo-
dynamic potential (11) is replaced by the summation with
respect to the discretized levels, and Eq. (11) is rewritten as

Ω̂qðβ;L;δ¼ 2Þ ¼ 2Ω̂ap=p
Cas;qðLÞþ Ω̂ap=p

Cas;sðLÞ

−
1

L

X∞
l1¼−∞

Z
d2k⊥
ð2πÞ2

�
1

β
f8Nc ln½1þ e−βEqðkÞ�

þ 4Nc ln½1þ e−βEsðkÞ�g
�
; ð15Þ

where Ω̂Cas;qðsÞðLÞ is the Casimir energy for light (strange)
quarks per V, which is finite because the UV divergence is
already subtracted. Note that Ω̂Cas;qðsÞðLÞ is independent of
temperature, and all the temperature effects are included
only in the third and fourth terms of Eq. (15).5

For the antiperiodic boundary condition, the Casimir
energy for massive quarks is given by6

Ω̂ap
Cas;qðsÞ ¼ 2Nc

X∞
n1¼1

ð−1Þn1
�
MqðsÞ
n1πL

�
2

K2ðn1MqðsÞLÞ; ð16Þ

where K2 is the modified Bessel function. For the periodic
boundary condition,

Ω̂p
Cas;qðsÞ ¼ 2Nc

X∞
n1¼1

�
MqðsÞ
n1πL

�
2

K2ðn1MqðsÞLÞ: ð17Þ

For massive fermions with a mass M and a degeneracy
factor γ, a more general form including δ ¼ 1, 2, 3, 4 is
given by (see Ref. [83] for a derivation)

Ω̂qðβ;L;δÞ¼ Ω̂0

þ 2γ

ð2πÞ2

2
642Xδ−1

i¼0

X∞
ni¼1

ð−1Þniαi
�

M
niLi

�
2

K2ðniMLiÞ

þ���þ2δ
X∞

n0;…;nδ−1¼1

Yδ−1
i¼0

ð−1Þniαi

×

 
MffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
δ−1
i¼0n

2
i L

2
i

q
!

2

K2

0
B@M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXδ−1
i¼0

n2i L
2
i

vuut
1
CA
3
75;
ð18Þ

where Ω̂0 is the UV divergence caused by the vacuum
energy, which should be subtracted by hand. The label
i ¼ 0, 1, 2, 3 denotes the direction of the compactified
space-time. L0 ¼ β is the temporal length (equivalent to the
inverse temperature), and Li with i ¼ 1, 2, 3 is the spatial
length for ith direction. The antiperiodic temporal boun-
dary is α0 ¼ 1. For the antiperiodic (periodic) spatial
boundary, we set αi ¼ 1 (αi ¼ 0). When we focus on
δ ¼ 2, γ ¼ 4Nc for light quarks and γ ¼ 2Nc for strange
quarks, this form is equivalent to Eq. (15).
As seen in Eq. (18), the thermal effect and the Casimir

effect with the antiperiodic boundary are similar to each
other, while the effect with the periodic boundary differs in
a factor of ð−1Þniαi . The purpose of this paper is not only to
investigate either the thermal or Casimir effect but also to
examine the competition between the two effects. Such a
setup will be studied in future lattice simulations by using
approaches similar to Refs. [66,67].
Practically, in our numerical calculation, we have to

truncate the infinite series in Eq. (18) by introducing a
cutoff for ni. The error caused by this truncation is
discussed in Appendix Appendix.

C. D meson Lagrangian

Here, we introduce a Lagrangian for D mesons based on
the chiral-partner structure [1,2]. We derive the Lagrangian
assuming an exact heavy-quark spin symmetry (HQSS) to
give a transparent argument in terms of masses of D
mesons although the HQSS is violated for the observed
D. Such violations to the D meson masses will be included
in Sec. II D in deriving mass formulas for D mesons.
The fundamental fields in constructing the Lagrangian

within the chiral-partner structure are heavy-light fieldsHL

5In that sense, we can separate the Casimir effect at zero
temperature from the combinatorial effect of finite temperature
and volume. The combinatorial effect may be also understood as
a kind of “thermal” Casimir effect.

6The Casimir effect for massless fermions was first derived in
the context of the MIT bag model by Johnson [79]. For a
derivation for massive fermions, see Refs. [80–82].
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(∼cq̄L) and HR (∼cq̄RÞ, which transform under the
Uð3ÞL ×Uð3ÞR chiral transformation as

HL → HLg
†
L; HR → HRg

†
R ð19Þ

and the SUð2ÞS heavy-quark spin transformation as

HL → SHL; HR → SHR; ð20Þ

[S is an element of the SUð2ÞS heavy-quark spin group],
respectively. Then, a Lagrangian invariant under the chiral
transformation, heavy-quark spin transformation, and par-
ity is given by [3–5]

LDmeson ¼ −Tr½HLiv · ∂H̄L þHRiv · ∂H̄R�
−
gπ
4
Tr½HRΣ†H̄L þHLΣH̄R�

þ i
gA
2fπ

Tr½HRγ5∂Σ†H̄L −HLγ5∂ΣH̄R�; ð21Þ

up to one derivative with respect to Σ. In Eq. (21), H̄LðRÞ is
defined by H̄LðRÞ ≡ γ0H

†
LðRÞγ0, and v is a velocity of the

heavy-light meson. Σ is the meson nonet in Eq. (5).
Although the gA term is put for reproducing the
ΓD�→Dπ decay width, in the following analysis, this term
will be neglected in evaluating D meson masses at finite-
temperature and/or volume systemwithin amean field level.
The Lagrangian (21) is convenient to get the chiral

transformation laws since the heavy-light meson fields HL
and HR are belonging to the fundamental representation of
the Uð3ÞL ×Uð3ÞR chiral group. However, HL and HR do
not correspond to the physical D meson states since these
fields are not parity eigenstates. The parity-even stateG and
the parity-odd state H can be provided via

HL ¼ 1ffiffiffi
2

p ðGþ iHγ5Þ; HR ¼ 1ffiffiffi
2

p ðG − iHγ5Þ; ð22Þ

and G and H are related to the observedD meson fields as7

H ¼ 1þ =v
2

½P� þ iPγ5�; G ¼ 1þ =v
2

½−iD�γ5 þD�:
ð23Þ

Due to the HQSS,H-doublet includes the pseudoscalar and
vector D mesons, while G includes the scalar and axial-
vector D mesons: H ¼ ð0−; 1−Þ and G ¼ ð0þ; 1þÞ.
In Sec. II D, mass formulas forDmesons will be derived

by the Lagrangian (21) incorporating the spontaneous
breaking of the chiral symmetry.

D. D meson mass formula

According to the heavy-light meson Lagrangian in
Eq. (21), under the spontaneous breakdown of the chiral
symmetry, i.e., by replacing Σ into its mean field as in
Eq. (9), mass formulas for D mesons are provided by [3,4]

mHq
¼ m −

gπ
8
σq; mHs

¼ m −
gπ
4
ffiffiffi
2

p σs;

mGq
¼ mþ gπ

8
σq; mGs

¼ mþ gπ
4
ffiffiffi
2

p σs; ð24Þ

with Hq ¼ ðPq; P�
qÞ, Hs ¼ ðPs; P�

sÞ, Gq ¼ ðDq;D�
qÞ, and

Gs ¼ ðDs;D�
sÞ. As one can see in Eq. (24), when the chiral

symmetry is restored, σq ¼ σs ¼ 0, the masses of all D
mesons coincide, which clearly shows a peculiarity of the
chiral partner-structure together with the HQSS.
The parameter m can be determined by

m ¼ 1

4

X
i

m̄i; ð25Þ

in which m̄i is a spin-averaged mass of the doublet i with
i ¼ Hq;Hs; Gq; Gs:

m̄Hq
¼ 3mP�

q
þmPq

4
; m̄Hs

¼ 3mP�
s
þmPs

4
;

m̄Gq
¼ 3mD�

q
þmDq

4
; m̄Gs

¼ 3mD�
s
þmDs

4
: ð26Þ

To fix m̄i, we put the physical values of D meson masses
summarized in Table. II. On the other hand, gπ can be
determined by

gπ ¼
1

2

X
l

glπ; ð27Þ

with l ¼ q, s, where gqπ and gsπ satisfy the extended
Goldberger-Treiman relations

TABLE II. The masses of observed D mesons. J and P are the
total angular momentum and parity, respectively.

Meson JP Notation Value (MeV)

D 0− mPq
1870

D� 1− mP�
q

2010
Ds 0− mPs

1968
D�

s 1− mP�
s

2112
D�

0 0þ mDq
2318

D1 1þ mD�
q

2427
D�

s0 0þ mDs
2317

Ds1 1þ mD�
s

2460

7Throughout this paper, we use P ¼ ðPq; PsÞT , P� ¼
ðP�

q; P�
sÞT , D ¼ ðDq;DsÞT , D� ¼ ðD�

q; D�
sÞT for referring to the

pseudoscalar, vector, scalar, and axial vector D mesons.
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4gqπσq ¼ m̄Gq
− m̄Hq

;

2
ffiffiffi
2

p
gsπσs ¼ m̄Gs

− m̄Hs
; ð28Þ

with respect to the chiral-partner structure for each light
flavor.
The mass formulas in Eq. (24) determine the D meson

masses with the HQSS, while this symmetry is violated by
a small mass difference between the doublets as indicated
in the observed D meson masses in Table. II. Such effects
are included by adding small contributions to the mass
formulas in Eq. (24), which leads to

m
Pð�Þ
q

¼ mHq
þ Δ

Pð�Þ
q
; m

Pð�Þ
s

¼ mHs
þ Δ

Pð�Þ
s
;

m
Dð�Þ

q
¼ mGq

þ Δ
Dð�Þ

q
; m

Dð�Þ
s

¼ mGs
þ Δ

Dð�Þ
s
: ð29Þ

The values of m, gπ , and ΔD are summarized in Table. III.
In Sec III, numerical computations ofDmesons mass shifts
in finite temperature and/or volume will be performed with
the mass formulas in Eq. (29).

III. NUMERICAL RESULTS

In this section, we show the numerical results of D
meson masses after discussing the volume dependence of σ
mean fields.

A. Dependence of σ mean fields

In Fig. 2, we show the L dependences of the σ mean
fields at δ ¼ 2. From these figures, our findings are as
follows:
(1) Chiral symmetry restoration with antiperiodic

boundary.—For the antiperiodic boundary, a smaller
length leads to the chiral symmetry restoration, and
the values of the σ mean fields decrease. At the small
volume limit, the mean fields go to zero, and the
chiral symmetry is completely restored. The tran-
sition length of σq at T ¼ 0 is about L ∼ 1 fm.

(2) Chiral symmetry breaking enhancement with peri-
odic boundary.—For the periodic boundary, a small
length catalyzes the chiral symmetry breaking, and

the values of the σ mean fields increase. This effect is
caused by the appearance of the “zero mode” in
discretized momenta [see Figs. 3(b)–3(d)], which is
a different situation from the antiperiodic boundary
without momentum zero modes. The enhancement
of chiral symmetry breaking with the periodic
boundary condition for fermions is suggested also
by other effective models such as four-Fermi models
[84–95], the linear sigma (or quark-meson) model
[96–102], the Walecka model [83], and the parity-
doublet model for nucleons [83].

(3) Comparison between σq and σs.—The σs mean field
is less sensitive to the length L than σq. This is a
situation similar to finite temperature. For the
antiperiodic boundary, the transition length of σs
is lower than that of σq. At a small volume with the
periodic boundary, σq is enhanced by the chiral
symmetry breaking more rapidly than σs, which
leads to σq > σs. Thus, the reverse of the magnitudes
of σq and σs would be a useful signal for examining
the boundary dependence of chiral condensates from
lattice simulations. For instance, at zero temperature,
we find σq > σs even at L < 1.9 fm, while in a large

TABLE III. Model parameters for D meson mass formula.

m (MeV) 2220.44
gπ 14.5076
ΔPq

[for Dð0−Þ] (MeV) −182.869
ΔP�

q
[for D�ð1−Þ] (MeV) −42.8689

ΔPs
[for Dsð0−Þ] (MeV) −10.1526

ΔP�
s
[for D�

sð1−Þ] (MeV) 133.847
ΔDq

[for D�
0ð0þÞ] (MeV) −70.0061

ΔD�
q
[for D1ð1þÞ] (MeV) 38.9939

ΔDs
[for D�

s0ð0þÞ] (MeV) −145.722
ΔD�

s
[for Ds1ð1þÞ] (MeV) −2.7224  0
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δ ¼ 2. Upper: antiperiodic boundary. Lower: periodic boundary.
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volume, we observe σq < σs since σq ¼ 92.4 MeV
and σs ¼ 94.5 MeV at T ¼ 0 and L → ∞.

(4) Anomalous behavior at high temperature.—We find
a difference between T ¼ 190 MeV and T ¼
200 MeV with the periodic boundary, where the
L dependence of σq at T ¼ 200 MeV and around
1 < L < 1.5 fm shows an anomalous behavior. This
is induced by competition between finite length and
temperature effects. In the large-volume region
(L > 1.2 fm), the infrared dynamics of constituent
quarks is dominated by the low Matsubara modes
[ωl0 ¼ 2π

β ðl0 þ 1
2
Þ], particularly the lowest mode

(ω0 ¼ π
β), as shown in (b) of Fig. 3. Then, the σq

mean field is sensitive to T but insensitive to L.
Next, in the intermediate-volume region (0.6 <
L < 1.2 fm), the quark dynamics is determined
by not only the lowest Matsubara mode but
also discretized modes of spatial momentum
(kzl1 ¼ 2π

L l1) [see Fig. 3(c)]. In the small-volume
region (L < 0.6 fm), the dynamics is dominated by
the (gapless) zero mode induced by the periodic
boundary [see Fig. 3(d)]. As a result, T dependence
from the lowest Matubara mode becomes invisible.
In other words, the enhancement of chiral symmetry
breaking by the spatial zero mode overcomes the

suppression of the chiral condensate by the lowest
Matsubara mode. Thus, the L dependence of the
mean field shows an anomalous shift at a “boundary”
region in which dominated modes interchange. We
will discuss that such behavior of mean fields can be

(a) (b)

(c) (d)

FIG. 3. Sketches of discretization of momentum at finite
temperature and volume with the periodic boundary condition.
(a) At zero temperature and infinite volume (β ¼ L ¼ ∞), all the
components of the 4-momentum k of a quark are continuous.
(b) At larger volume and high temperature (L ≫ β), the lowest
mode of temporal component k0 is dominant in infrared dynamics
of quarks. (c) A volume comparable to temperature scale (L ∼ β).
(d) At smaller volume and high temperature (L ≪ β), the zero
mode of spatial component kx;y;z becomes dominant.
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FIG. 4. δ dependence of length transition for σ mean fields in a
finite box at T ¼ 0. Upper: antiperiodic boundary. Lower:
periodic boundary.
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observed even in D meson masses as an anomalous
mass shift. Note that this behavior was also observed
from other models with σ mean field [83].

Next, we examine the dependence on the number of the
compactified spatial dimensions; we compare δ ¼ 2, 3, 4.
In Fig. 4, we focus on the results at T ¼ 0. For the
antiperiodic boundary, larger δ leads to stronger restoration
of the chiral symmetry. As a result, the chiral transition
length for σ mean fields gets larger as δ increases. For the
periodic boundary, larger δ enhances the chiral symmetry
breaking, and it leads to larger σ mean fields.
In Fig. 5, we focus on the results at T ¼ 200 MeV. We

find that the anomalous shift of σq appears at δ ¼ 3, 4 as
well as δ ¼ 2, which means that even the usual cubic
geometry (δ ¼ 4) in lattice QCD simulations can lead to the
anomalous shift of σq by carefully examining the region
around L ∼ 1.5 fm.
In Fig. 6, we show the T dependence (or thermal phase

transition) of the σ mean fields at some fixed L and δ ¼ 2.
In infinite volume (L → ∞), the σq mean field is suddenly
suppressed around T ¼ 200 MeV that is the chiral phase
transition at finite temperature. The transition temperature

for σs is higher than that for σq. In a finite volume with the
antiperiodic boundary, since the chiral condensates
decrease by the finite-volume effect, the transition temper-
ature becomes lower as L decreases. For the periodic
boundary, since the chiral condensates increase, the tran-
sition temperatures also increase.
We note that, for the antiperiodic boundary, the finite-

volume effect for the T dependence of σ and its transition
temperature is similar to the thermal effect for the L
dependence of σ and its transition length. In this sense,
the upper panel of Fig. 6 is similar to the upper panel of
Fig. 2. Such a similarity between L and β ¼ 1=T can be
also understood in the form of Eq. (18).
In Fig. 7, we focus on the δ dependence of the thermal

phase transition at L ¼ 1.0 fm. As with the finite-volume
transitions, for the antiperiodic boundary, larger δ leads to
the lower transition temperature. For the periodic boundary,
larger δ enhances the chiral symmetry breaking, and the
transition temperature becomes higher.
Finally, in Fig. 8, we summarize σq and σs on the L − T

plane at δ ¼ 2. For the antiperiodic boundary, σq < σs is
realized in any L and T. On the other hand, for the periodic
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FIG. 6. Temperature dependence of σ mean fields in a finite box
at δ ¼ 2. Upper: antiperiodic boundary. Lower: periodic boundary.
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boundary, we can observe the domain of σq > σs in smaller
volumes.

B. Finite-L transition with antiperiodic boundary

In Fig. 9, we show the L dependence of theDmesons for
the antiperiodic boundary. The antiperiodic boundary
condition leads to the chiral symmetry restoration (or the
reduction of the σ mean fields), so it affects D meson
masses. The masses of D meson chiral partners (the scalar
partners, 0− and 0þ, and the vector partners, 1− and 1þ)
become degenerate as L decreases. Thus, the degeneracy of
Dmeson masses induced by a small-volume system will be
a useful signal for elucidating the chiral-partner structures
of D mesons from lattice QCD simulations.

In the small-L region, L < 0.5 fm, the Dq meson mass
converges to an L-independent constant, and the mass
splitting between chiral partners survives. The Ds meson
mass also converges to constants after a level crossing
between the chiral partners. Within our model, these
masses in the small-L limit are determined by the averaged
mass m and the violation parameter ΔD of the HQSS [as
defined in Eq. (29)]. However, these behaviors should be
regarded as an artifact of our model because m and ΔD are
fixed to reproduce the experimental values of the D meson
masses in infinite volume at zero temperature. Therefore,
the splitting between the chiral partners in the small-L
limit and the level crossing for Ds mesons, shown in
Fig. 9, should be not physical but artificial. In principle, the
L dependences of these parameters (particularly, ΔD)
would be interesting, but they are beyond the scope of
this paper.

C. Finite-L transition with periodic boundary

In Fig. 10, we show the L dependence of the D mesons
for the periodic boundary. Since the periodic boundary
condition leads to the enhancement of chiral symmetry
breaking, the masses of D meson chiral partners split with
decreasing L. In the region of L < 0.5 fm, the temperature
dependence is lost because the finite-volume effect over-
comes the thermal effects.
For the periodic boundary, the L dependences of Dq and

Ds mesons are qualitatively similar to each other at low
temperature, but the Dq mesons are more sensitive to the
finite-volume effects than Ds mesons. Therefore, Dq

mesons could be better as a probe of finite-volume effects
for chiral partner structures.
We comment on “anomalous” mass shifts at high

temperature. For all the Dq mesons at T ¼ 200 MeV,
we find an anomalous mass shift, which is absent at
lower temperature, T ¼ 190 MeV. This mass shift is
induced by the anomalous L dependence of σq, as already
mentioned in Figs. 2 and 5. Such anomalous behaviors
would be a qualitative signal for studying the finite-volume
effect for D mesons by using lattice QCD simulations.
Note that T ¼ 200 MeV is near the pseudocritical
temperature of the chiral phase transition in our model,
so the D mesons may be dissolved, and we cannot
measure the pole masses from the temporal correlators.
Even if that is the case, an anomalous mass shift could be
observed in D meson screening masses from the spatial
correlators.

D. Finite-T transition with antiperiodic boundary

In Fig. 11, we show the T dependence of the D mesons
for the antiperiodic boundary. Since the antiperiodic
boundary condition reduces the chiral symmetry breaking
and the transition temperatures of σ mean fields decrease,

FIG. 8. σq (red) and σs (blue) mean fields on the L-T plane at
δ ¼ 2. Upper: antiperiodic boundary. Lower: periodic boundary.
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FIG. 9. Volume dependences of Dq and Ds meson masses in a finite box at δ ¼ 2 with antiperiodic boundary condition.
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FIG. 10. Volume dependences of Dq and Ds meson masses in a finite box at δ ¼ 2 with periodic boundary condition.
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FIG. 12. Temperature dependences of Dq and Ds meson masses in a finite box at δ ¼ 2 with periodic boundary condition.
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FIG. 11. Temperature dependences of Dq and Ds meson masses in a finite box at δ ¼ 2 with antiperiodic boundary condition.
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the degeneracy temperature of D meson chiral partners
becomes lower as L decreases.
In the high-temperature phase, the values of the σ mean

fields are almost zero by the thermal effects. Here, the
infrared dynamics of quarks is dominated only by the
thermal effects, and the finite-volume effects are invisible.
In this phase, D meson masses are determined only by the
averaged mass m and the violation parameters ΔD of
the HQSS.

E. Finite-T transition with periodic boundary

In Fig. 12, we show the T dependence of the D mesons
for the periodic boundary. Since the periodic boundary
condition catalyzes the chiral symmetry breaking, and the
transition temperature of σ mean fields increases, the
degeneracy temperature of D meson chiral partners gets
higher as L decreases. Thus, the difference between the
degeneracy temperatures with the periodic and antiperiodic
boundaries will be useful in studies with lattice simulations.
D meson masses in the high-temperature phase are

dominated by the averaged mass m and the violation
parameters ΔD of the HQSS. This is the same as the
situation with the antiperiodic boundary, as discussed in the
previous subsection.

IV. CONCLUSIONS

In this work, we constructed a formalism for investigat-
ing possible finite-volume effects for D meson systems.
We analyzed the finite-volume and temperature depend-
ences of the σq and σs mean fields based on the linear sigma
model with 2þ 1-flavor quarks. Here, the finite-volume (or
Casimir) effects for constituent light quarks were intro-
duced by using the regularization scheme with the Epstein-
Hurwitz inhomogeneous zeta function. In other words,
such an effect means the Casimir effects for the chiral
condensates (or σ mean fields). We have shown the phase
diagram of σq and σs on the volume-temperature plane at
δ ¼ 2, as drawn in Fig. 8. Here, for the periodic boundary,
we found the region of σq > σs, while σq < σs at any T in
infinite volume.
The Lagrangian for D mesons was formulated based on

the chiral-partner structure and heavy-quark spin symmetry
for D mesons. As a result, we found the mass shifts of D
mesons induced by the finite-volume effects with the
periodic or antiperiodic boundary. The antiperiodic boun-
dary leads to the chiral symmetry restoration in a small
volume, so the masses of the D meson chiral partners
degenerate. The periodic boundary enhances the chiral
symmetry breaking, and the masses of the chiral partners
split. Furthermore, we pointed out that the anomalous mass
shifts of D mesons with the periodic boundary at high
temperature would be a useful signal for examining finite-
volume effects in lattice QCD simulations for a small
volume.

We emphasize again that D mesons could be one of the
clearest probes of the chiral condensates, which will be
confirmed by future lattice QCD simulations. The pole
masses of D mesons in small volume at low temperature
can be extracted from the temporal correlators of the D
meson currents. At higher temperature, the extraction of the
pole masses would be difficult because of the short distance
of the temporal correlators, but these can be related to other
observables such as the screening masses from the spatial
correlators [14,15] and spectral functions [16]. To inves-
tigate screening masses and spectral functions within mean-
field models will also be interesting.
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APPENDIX: TRUNCATION ERROR FOR
CASIMIR ENERGY

In this Appendix, we discuss a truncation error in our
calculation. Equation (18), which represents the Casimir
energy, has the infinite series with indices ni. In the
numerical calculation, we practically have to truncate the
series by introducing cutoff parameters for ni. Since this
cutoff could be an origin of systematic uncertainty, we
examine the error from this truncation.
In the figures shown in this paper, we plotted the results

using a cutoff of ni ≤ 20. To quantitatively estimate
uncertainty from the truncation, we compare the difference
between ni ≤ 20 and ni ≤ 10. By using this estimate, we
find that the numerical results of σq and σs lead to the error
less than 1 MeV, except for σq with the periodic boundary
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FIG. 13. Truncation dependence of thermal transition for σq
mean field in finite box at L ¼ 1.0 fm and δ ¼ 4 with periodic
boundary. The line at n ¼ 20 is the same as that in the lower panel
of Fig. 7.
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condition in Figs. 5 and 7. In the following, we focus on the
errors in Figs. 5 and 7.
First, we discuss σq in Fig. 5. The results at δ ¼ 2 still

have the precision with the error less than 1 MeV.
The uncertainty at δ ¼ 3 is approximately 3 MeV at
L > 1.4 fm, and that at δ ¼ 4 is approximately 7 MeV
at 1.5 fm. Both the results suffer from the uncertainty in a
volume larger than the transition length, and its uncertainty
becomes more severe in larger volumes.
For the periodic boundary in Fig. 7, σq at δ ¼ 2 also

still has the precision with the error less than 1 MeV.
The error at δ ¼ 3 is less than 5 MeV near the transition
temperature. At δ ¼ 4 and temperature higher than the
transition, σq shows a most serious error, approximately
10 MeV. To discuss the error convergence at δ ¼ 4, in
Fig. 13, we show the cutoff dependence (n ≤ 10, 20, 30,
and 40). In the high-temperature region, there is a

sizable error from the truncation, while the low-temper-
ature region does not suffer from the error. When we
estimate the error from the difference between n ≤ 10
and n ≤ 20, the uncertainty is approximately 10 MeV,
and the difference between n ≤ 20 and n ≤ 40 is
approximately 5 MeV. According to these dependences,
we expect that the uncertainty is approximately 10 MeV.
Finally, we comment on the convergence of the infinite

series. The truncation uncertainty is expected to be large at
smaller σq and larger T. This is because the series in
Eq. (18) converges by the modified Bessel function
K2ðn0MT Þ, and this function is exponentially suppressed as

K2ðn0MT Þ ∼
ffiffiffiffiffiffiffiffi
Tπ

2n0M

q
exp−

n0M
T at large n0M

T , where n0 is large

enough. Therefore, we should pay attention to the uncer-
tainty in that case. Such uncertainty is serious in Figs. 5
and 7.
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[50] C. E. Jiménez-Tejero, A. Ramos, L. Tolós, and I. Vidaña,

Phys. Rev. C 84, 015208 (2011).
[51] S. Yasui and K. Sudoh, Phys. Rev. C 87, 015202 (2013).
[52] C. Fuchs, B. V. Martemyanov, A. Faessler, and M. I.

Krivoruchenko, Phys. Rev. C 73, 035204 (2006).
[53] M. He, R. J. Fries, and R. Rapp, Phys. Lett. B 701, 445

(2011).
[54] S. Ghosh, S. Mitra, and S. Sarkar, Nucl. Phys. A917, 71

(2013).
[55] M. Cleven, V. K. Magas, and A. Ramos, Phys. Rev. C 96,

045201 (2017).
[56] C. S. Machado, R. D. Matheus, S. I. Finazzo, and J.

Noronha, Phys. Rev. D 89, 074027 (2014).
[57] P. Gubler, K. Hattori, S. H. Lee, M. Oka, S. Ozaki, and K.

Suzuki, Phys. Rev. D 93, 054026 (2016).
[58] T. Yoshida and K. Suzuki, Phys. Rev. D 94, 074043

(2016).
[59] P. S. Reddy, C. S. A. Jahan, N. Dhale, A. Mishra, and J.

Schaffner-Bielich, Phys. Rev. C 97, 065208 (2018).
[60] N. Dhale, P. S. Reddy, C. S. A. Jahan, and A. Mishra, Phys.

Rev. C 98, 015202 (2018).
[61] H. B. G. Casimir, Proc. Kon. Ned. Akad. Wetensch. 51,

793 (1948).
[62] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Phys.

Rev. D 94, 094504 (2016).
[63] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Phys.

Rev. D 95, 074511 (2017).
[64] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Phys.

Rev. D 96, 094507 (2017).
[65] M. N. Chernodub, V. A. Goy, A. V. Molochkov, and H. H.

Nguyen, Phys. Rev. Lett. 121, 191601 (2018).
[66] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Phys.

Rev. D 99, 074021 (2019).
[67] M. Kitazawa, S. Mogliacci, I. Kolbe, and W. A. Horowitz,

Phys. Rev. D 99, 094507 (2019).
[68] J. L. Goity, Phys. Lett. B 249, 495 (1990).
[69] D. Arndt and C. J. D. Lin, Phys. Rev. D 70, 014503 (2004).
[70] F. Bernardoni, P. Hernandez, and S. Necco, J. High Energy

Phys. 01 (2010) 070.
[71] G. Colangelo, A. Fuhrer, and S. Lanz, Phys. Rev. D 82,

034506 (2010).
[72] R. A. Briceno, Phys. Rev. D 85, 014508 (2012).

[73] B.-J. Schaefer and M. Wagner, Phys. Rev. D 79, 014018
(2009).

[74] O. Scavenius, A. Mócsy, I. N. Mishustin, and D. H.
Rischke, Phys. Rev. C 64, 045202 (2001).

[75] A. Mócsy, I. N. Mishustin, and P. J. Ellis, Phys. Rev. C 70,
015204 (2004).

[76] B.-J. Schaefer and J. Wambach, Nucl. Phys. A757, 479
(2005).

[77] E. S. Bowman and J. I. Kapusta, Phys. Rev. C 79, 015202
(2009).

[78] M. Mitter and B.-J. Schaefer, Phys. Rev. D 89, 054027
(2014).

[79] K. Johnson, Acta Phys. Pol. B 6, 865 (1975).
[80] S. G. Mamaev and N. N. Trunov, Sov. Phys. J. 23, 551

(1980).
[81] M. V. Cougo-Pinto, C. Farina, and A. Tort, Lett. Math.

Phys. 38, 97 (1996).
[82] E. Elizalde, F. C. Santos, and A. C. Tort, Int. J. Mod. Phys.

A 18, 1761 (2003).
[83] T. Ishikawa, K. Nakayama, and K. Suzuki, Phys. Rev. D

99, 054010 (2019).
[84] S. K. Kim, W. Namgung, K. S. Soh, and J. H. Yee, Phys.

Rev. D 36, 3172 (1987).
[85] D. Y. Song and J. K. Kim, Phys. Rev. D 41, 3165 (1990).
[86] D. Y. Song, Phys. Rev. D 48, 3925 (1993).
[87] D. K. Kim, Y. D. Han, and I. G. Koh, Phys. Rev. D 49,

6943 (1994).
[88] A. S. Vshivtsev, B. V. Magnitsky, and K. G. Klimenko,

Pis’ma Zh. Eksp. Teor. Fiz. 61, 847 (1995) [JETP Lett. 61,
871 (1995)].

[89] M. A. Vdovichenko and A. K. Klimenko, Pis’ma Zh. Eksp.
Teor. Fiz. 68, 431 (1998) [JETP Lett. 68, 460 (1998)].

[90] A. S. Vshivtsev, M. A. Vdovichenko, and K. G. Klimenko,
Zh. Eksp. Teor. Fiz. 114, 418 (1998) [J. Exp. Theor. Phys.
87, 229 (1998)].

[91] M. Hayashi and T. Inagaki, Int. J. Mod. Phys. A 25, 3353
(2010).

[92] D. Ebert and K. G. Klimenko, Phys. Rev. D 82, 025018
(2010).

[93] Q.-W. Wang, Y. Xia, and H.-S. Zong, arXiv:1802.00258.
[94] T. Inagaki, Y. Matsuo, and H. Shimoji, Symmetry 11, 451

(2019).
[95] K. Xu and M. Huang, arXiv:1903.08416.
[96] J. Braun, B. Klein, and H. J. Pirner, Phys. Rev. D 72,

034017 (2005).
[97] J. Braun, B. Klein, H. J. Pirner, and A. H. Rezaeian, Phys.

Rev. D 73, 074010 (2006).
[98] L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G 38,

085101 (2011).
[99] J. Braun, B. Klein, and P. Piasecki, Eur. Phys. J. C 71, 1576

(2011).
[100] R.-A. Tripolt, J. Braun, B. Klein, and B.-J. Schaefer, Phys.

Rev. D 90, 054012 (2014).
[101] T. H. Phat and N. V. Thu, Int. J. Mod. Phys. A 29, 1450078

(2014).
[102] G. A. Almasi, R. D. Pisarski, and V. V. Skokov, Phys.

Rev. D 95, 056015 (2017).

ISHIKAWA, NAKAYAMA, SUENAGA, and SUZUKI PHYS. REV. D 100, 034016 (2019)

034016-14

https://doi.org/10.1103/PhysRevC.99.065201
https://doi.org/10.1016/j.ppnp.2017.04.003
https://doi.org/10.1103/PhysRevC.70.025203
https://doi.org/10.1103/PhysRevC.70.025203
https://doi.org/10.1016/j.physletb.2005.11.046
https://doi.org/10.1016/j.physletb.2005.11.046
https://doi.org/10.1103/PhysRevC.74.065201
https://doi.org/10.1103/PhysRevC.74.065201
https://doi.org/10.1103/PhysRevC.77.015207
https://doi.org/10.1103/PhysRevC.77.015207
https://doi.org/10.1140/epja/i2009-10853-y
https://doi.org/10.1140/epja/i2009-10853-y
https://doi.org/10.1103/PhysRevC.80.065202
https://doi.org/10.1103/PhysRevC.80.065202
https://doi.org/10.1103/PhysRevC.84.015208
https://doi.org/10.1103/PhysRevC.87.015202
https://doi.org/10.1103/PhysRevC.73.035204
https://doi.org/10.1016/j.physletb.2011.06.019
https://doi.org/10.1016/j.physletb.2011.06.019
https://doi.org/10.1016/j.nuclphysa.2013.08.010
https://doi.org/10.1016/j.nuclphysa.2013.08.010
https://doi.org/10.1103/PhysRevC.96.045201
https://doi.org/10.1103/PhysRevC.96.045201
https://doi.org/10.1103/PhysRevD.89.074027
https://doi.org/10.1103/PhysRevD.93.054026
https://doi.org/10.1103/PhysRevD.94.074043
https://doi.org/10.1103/PhysRevD.94.074043
https://doi.org/10.1103/PhysRevC.97.065208
https://doi.org/10.1103/PhysRevC.98.015202
https://doi.org/10.1103/PhysRevC.98.015202
https://doi.org/10.1103/PhysRevD.94.094504
https://doi.org/10.1103/PhysRevD.94.094504
https://doi.org/10.1103/PhysRevD.95.074511
https://doi.org/10.1103/PhysRevD.95.074511
https://doi.org/10.1103/PhysRevD.96.094507
https://doi.org/10.1103/PhysRevD.96.094507
https://doi.org/10.1103/PhysRevLett.121.191601
https://doi.org/10.1103/PhysRevD.99.074021
https://doi.org/10.1103/PhysRevD.99.074021
https://doi.org/10.1103/PhysRevD.99.094507
https://doi.org/10.1016/0370-2693(90)91023-5
https://doi.org/10.1103/PhysRevD.70.014503
https://doi.org/10.1007/JHEP01(2010)070
https://doi.org/10.1007/JHEP01(2010)070
https://doi.org/10.1103/PhysRevD.82.034506
https://doi.org/10.1103/PhysRevD.82.034506
https://doi.org/10.1103/PhysRevD.85.014508
https://doi.org/10.1103/PhysRevD.79.014018
https://doi.org/10.1103/PhysRevD.79.014018
https://doi.org/10.1103/PhysRevC.64.045202
https://doi.org/10.1103/PhysRevC.70.015204
https://doi.org/10.1103/PhysRevC.70.015204
https://doi.org/10.1016/j.nuclphysa.2005.04.012
https://doi.org/10.1016/j.nuclphysa.2005.04.012
https://doi.org/10.1103/PhysRevC.79.015202
https://doi.org/10.1103/PhysRevC.79.015202
https://doi.org/10.1103/PhysRevD.89.054027
https://doi.org/10.1103/PhysRevD.89.054027
https://doi.org/10.1007/BF00891938
https://doi.org/10.1007/BF00891938
https://doi.org/10.1007/BF00398302
https://doi.org/10.1007/BF00398302
https://doi.org/10.1142/S0217751X03014186
https://doi.org/10.1142/S0217751X03014186
https://doi.org/10.1103/PhysRevD.99.054010
https://doi.org/10.1103/PhysRevD.99.054010
https://doi.org/10.1103/PhysRevD.36.3172
https://doi.org/10.1103/PhysRevD.36.3172
https://doi.org/10.1103/PhysRevD.41.3165
https://doi.org/10.1103/PhysRevD.48.3925
https://doi.org/10.1103/PhysRevD.49.6943
https://doi.org/10.1103/PhysRevD.49.6943
https://doi.org/10.1134/1.567890
https://doi.org/10.1134/1.558650
https://doi.org/10.1134/1.558650
https://doi.org/10.1142/S0217751X10049426
https://doi.org/10.1142/S0217751X10049426
https://doi.org/10.1103/PhysRevD.82.025018
https://doi.org/10.1103/PhysRevD.82.025018
http://arXiv.org/abs/1802.00258
https://doi.org/10.3390/sym11040451
https://doi.org/10.3390/sym11040451
http://arXiv.org/abs/1903.08416
https://doi.org/10.1103/PhysRevD.72.034017
https://doi.org/10.1103/PhysRevD.72.034017
https://doi.org/10.1103/PhysRevD.73.074010
https://doi.org/10.1103/PhysRevD.73.074010
https://doi.org/10.1088/0954-3899/38/8/085101
https://doi.org/10.1088/0954-3899/38/8/085101
https://doi.org/10.1140/epjc/s10052-011-1576-7
https://doi.org/10.1140/epjc/s10052-011-1576-7
https://doi.org/10.1103/PhysRevD.90.054012
https://doi.org/10.1103/PhysRevD.90.054012
https://doi.org/10.1142/S0217751X1450078X
https://doi.org/10.1142/S0217751X1450078X
https://doi.org/10.1103/PhysRevD.95.056015
https://doi.org/10.1103/PhysRevD.95.056015

