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and Centro Científico-Tecnológico de Valparaíso, Avenida Espana 1680, Casilla 110-V, Valparaíso, Chile

(Received 29 May 2019; published 12 August 2019)

We show that in order to obtain a successful description of the transverse momenta distribution for
charged particles in ion-ion collisions, one must include a thermal emission term. The temperature of this
emission T th turns out to be proportional to the saturation scale, T th ¼ 1.8Qs=2π. The formalism for the
calculation of the transverse momenta spectra in color glass condensate/saturation approach is developed,
in which two stages of the process are seen: creation of the color glass condensate, and hadronization of the
gluon jets. Our calculations are based on the observation that even for small values of pT , the main
contribution in the integration over the dipole sizes stems from the kinematic region in the vicinity of the
saturation momentum, where theoretically, we know the scattering amplitude. Nonperturbative corrections
need to be included in the model of hadronization. This model incorporates the decay of a gluon jet with
effective mass m2

eff ¼ 2Qsμsoft where μsoft denotes the soft scale, with the fragmentation functions at all
values of the transverse momenta. We use the Kharzeev-Levin-Nardi model which, provides a simple way
to estimate the cross sections for the different centrality classes. Comparing the results of this paper with the
transverse distribution in the proton-proton scattering, we see two major differences. First, a larger
contribution of the thermal radiation term is needed, in accord with higher parton densities of the produced
color glass condensate. Second, even changing the model for the hadronization, without a thermal radiation
term, we fail to describe the pT spectrum. Consequently, we conjecture that the existence of the thermal
radiation term is independent of the model of confinement.

DOI: 10.1103/PhysRevD.100.034013

I. INTRODUCTION

In this paper we continue to discuss the processes of
multi-particle generation at high energy, in the framework
of the color glass condensate (CGC)/saturation approach
(see Ref. [1] for the review). The main ideas of our
approach have been discussed in our paper (see Ref. [2])
for hadron-hadron scattering at high energies. Here, we
consider heavy ion collisions in which, we believe,
the distinctive features of the CGC/saturation approach
manifest themselves in the clearest way. For theoretical
descriptions of these processes we have to develop a
nonperturbative approach, since these processes occur at
long distances. In particular, we have to deal with the

unsolved problem of the confinement of quarks and gluons.
Fortunately, in the framework of the CGC/saturation
approach, the most basic features of the processes of the
multiparticle generation stem from the production of the
new phase of QCD: the dense system of partons (gluons
and quarks) with a new characteristic scale: saturation
momentumQsðWÞ, which increases as a function of energy
W [3–5]. In ion-ion collisions the new phase of QCD is
produced with a larger density than in hadron-hadron
scattering, and we believe, that the essential properties
of this phase will manifest themselves in a clear way.
However, the transition from this system of partons to the
measured state of hadrons, is still an unsolved problem.
Due to our lack of theoretical understanding of the

confinement of quarks and gluons, at the moment, we need
to use a pure phenomenological input for the long distance
nonperturbative physics. In particular, we wish to use
phenomenological fragmentation functions. Hence, our
model for confinement is that the parton (quark or gluon)
with the transverse momenta of the order of Qs decays into
hadrons according to the given fragmentation functions.
Experimental data supports this model of hadronization,
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which provides the foundation of all Monte Carlo simu-
lation programs, and leads to descriptions of the transverse
momenta distribution of the hadrons, at the LHC energies.
As an example, we refer to Ref. [6], which shows that next-
to-leading order QCD calculations with formation of the
hadrons in accord with the fragmentation functions ([7]), is
able to describe the transverse momentum spectra, for the
LHC range of energies. In a sense, at present, this model is
the best that we can propose to describe multihadron
production.1

The space-time picture of the high energy interaction in
the CGC/saturation approach, is as follows: The parton
configuration in QCD is formed long before the interaction
at distances RA=x, where RA denotes the nucleus radius,
and x the fraction of longitudinal momentum carried by the
parton which interacts with the target. However, before the
collision, the wave function of this partonic fluctuation is
the eigenfunction of the Hamiltonian and, therefore, the
system has zero entropy. The interaction with the target of
size RA destroys the coherence of the parton wave function
of the projectile. The typical time, which is needed for this,
is of the order of Δt ∝ RA, and is much smaller than the
lifetime of all faster partons in the fluctuation. Hence, this
interaction can be viewed as a rapid quench of the
entangled partonic state [9] with substantial entanglement
entropy. After this rapid quench, the interaction of the
gluons change the Hamiltonian. Since in the CGC/satu-
ration approach all partons with rapidity larger than that of
a particular gluon yi, live longer than this parton, so they
can be considered to be the source of the classical field that
emits this gluon. It has been shown that after the quench,
the fast gluons create the longitudinal chromoelectrical
background field. Moving in this field the gluon accelerates
and emits gluons which have the thermal distribution (the
first term of Eq. (2) below) [10–12]. The temperature of this
distribution is intimately related to the saturation momen-
tum, which provides the only dimensional scale in the color
glass condensate. It determines both the strength of the
longitudinal fields and the ultraviolet cutoff on the quantum
modes, resolved by the collision. It turns out [10–14] that

T th ¼ c
Qs

2π
ð1Þ

with the semiclassical estimates [11] for the con-
stant c ¼ 1.2.
The appearance of a thermal emission in a high energy

proton-proton collision is a remarkable feature of the
interaction, since the number of the secondary interactions

in proton-proton collisions is rather low, and cannot provide
the thermalization due to the interaction in the final state.
The origin of thermal radiation in the framework of the CGC
approach was clarified a decade ago [10,11,13,14] and,
recently, the new idea that the quantum entanglement is at
the origin of the parton densities, has been added to these
arguments [9].
The goal of this paper is to revisit the process of inclusive

production in the CGC/saturation approach, for more
thorough consideration, and to show that the thermal term
with the temperature given by Eq. (1), is needed for
describing the experimental data for ion-ion collisions at
high energies. At first sight, it looks as we are pushing at an
open door, since it has been shown [12,15–19] that the
experimental data [6,20–24] at high energy both for
hadron-hadron and ion-ion scattering, can be described
as the sum of two terms:

dσ
dyd2pT

¼ Atherme
−mT
Tth|fflfflfflfflfflffl{zfflfflfflfflfflffl}

thermal radiation

þ Ahard
1

ð1þ m2
T

T2
hn
Þn|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

hard emission

ð2Þ

with

T th ¼ 0.098

� ffiffiffiffiffi
s
s0

r �
0.06

GeV;

Th ¼ 0.409

� ffiffiffiffiffi
s
s0

r �
0.06

GeV; ð3Þ

The first term in Eq. (2) is the desired thermal radiation,
while the second term describes hadron production in the
hard processes, showing the powerlike decrease at high pT .
The same dependence on energy of both T th and Th
supports the main idea of CGC, i.e., both parameters are
related to the saturation momentum (Qs). However, it turns
out that this dependence differs from the saturation

scale Qs ∝
� ffiffiffi

s
s0

q �
λ
.

The value of λ can be calculated theoretically and
measured experimentally. The leading order QCD evalu-
ation leads to λ ¼ 4.9ᾱS, where ᾱS denotes the running
QCD coupling. Plugging in a reasonable estimate for
ᾱSðQsÞ ≈ 0.2, λ turns out to be large, about 0.8-1. The
phenomenological description of the hard processes both
for nucleus interactions [25] and deep inelastic scattering
(DIS) (see Ref. [26] and references therein), give the value
of λ ¼ 0.2–0.24. Thus, in the CGC approach we expect

T th ∝ Th ∝
� ffiffiffiffiffi

s
s0

r �
λ=2

∼
� ffiffiffiffiffi

s
s0

r �
0.1−0.112

:

Hence, in spite of the fact that Eqs. (2) and (3) show that
both temperatures have dependence on energy in accord
with the CGC result, this dependence contradicts the

1We have to mention, that actually the model of hadronization
with given fragmentation function describes the experimental
data at large values of pT (pT ≥ 3 GeV [7] and pT ≥ 5 GeV [8]).
In our model of the hadronization we assume that we can describe
the data with the fragmentation function at any value of pT . We
will demonstrate that such a description is possible.
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CGC prediction. Especially, the different Qs energy
dependence in the second term of Eq. (2), which corre-
sponds to the contribution of the hard processes, looks
strange if not wrong, since the CGC approach to the hard
processes has been confirmed both theoretically and
experimentally, and we know that the typical scale in these
processes, is the saturation momentum. The second remark
is related to the value of the hard contribution. In the CGC
approach it should be calculated theoretically, and not be
determined by a fitting procedure.

II. INCLUSIVE PRODUCTION IN CGC/
SATURATION APPROACH FOR ION-ION

COLLISON

A. General formulas

The general formula for the gluon jet production in
ion-ion collisions in the CGC/saturation approach, has the
following form (see Ref. [27] for the proof):

dσG
dyd2pT

¼ 2CF

αsð2πÞ4
1

p2
T

Z
d2reipT ·r

×
Z

d2b∇2
TN

A1

G ðy1 ¼ lnð1=x1Þ; r; bÞ

×
Z

d2b0∇2
TN

A2

G ðy2 ¼ lnð1=x2Þ; r; b0Þ; ð4Þ

where NAi
G ðy1¼ lnð1=x1Þ;r;bÞ can be found from the ampli-

tude of the dipole-nucleus scatteringNAiðyi¼ lnð1=xiÞ;r;bÞ:

NAi
G ðyi¼ lnð1=xiÞ;r;bÞ
¼ 2NAiðyi ¼ lnð1=xiÞ;r;bÞ− ðNAiðyi¼ lnð1=xiÞ;r;bÞÞ2

ð5Þ

where r denotes the size of the dipole,b its impact parameter,
and

x1 ¼
pT

W
ey; x2 ¼

pT

W
e−y; ð6Þ

wherey denotes the rapidity of theproducedgluon in center of
mass frame and W the c.m.f. energy of the collision. In this
paper we consider the gluon production at y ¼ 0. CF ¼
ðN2

c − 1Þ=2Nc and ᾱS ¼ αSNc=π with the number of colors
equals Nc. αS denotes the running QCD coupling, ∇2

T the
Laplace operatorwith respect to r, it is equal to∇2

T¼ 1
r
d
drðr d

drÞ.
In our paper [2] we found that the main contribution at

high energies stems from the specific kinematic region in
the vicinity of the saturation scale. Indeed, at high energies
and sufficiently small values of pT the dipole amplitudes
are in the saturation region, where the parton densities
are large and the dipole scattering amplitude displays
geometric scaling behavior, being a function of only one
variable: τ ¼ rQsðW; bÞ [28–30]. Deep in the saturation

region the dipole amplitude tends to approach 1, but

∇2
TN

A1

G ðy1 ¼ lnð1=x1Þ; r; bÞ!τ≫1
0. Consequently the main

contribution in Eq. (4) stems from the kinematic region
where τ ∼ 1 or, in other words, from the vicinity of the
saturation scale. The most attractive features of this obser-
vation is the fact that we know theoretically the behavior of
the scattering amplitude in this region. It has the form
(Ref. [31]):

Nðyi ¼ lnð1=xiÞ; r; bÞ ¼ N0ðr2QsðA; Y; bÞÞγ̄ ¼ N0ðτÞ2γ̄
ð7Þ

where γ̄ ¼ 1 − γcr and γcr ¼ 0.37 in the leading order is the
solution to the equation [1]:

dχðγcrÞ
dγcr

¼ −
χðγcrÞ
1 − γcr

: ð8Þ

χðγÞ is given by

χðγÞ ¼ 2ψð1Þ − ψðγÞÞ − ψð1 − γÞ: ð9Þ

Note that ω ¼ ᾱSχðγÞ is the eigenvalue of the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) equation [32].
The saturation momentum QsðA; Y; bÞ has the following

dependence on energy [3–5]

QsðA; Y; bÞ ¼ QsðA; Y ¼ Y0; bÞeλðY−Y0Þ ð10Þ
where λ ¼ ᾱSχðγcrÞ=ð1 − γcrÞ in the LO of perturbative
QCD. We will discuss below the dependence of the
saturation momentum on the number of nucleons in a
nucleus [A in Eq. (7) and in Eq. (10)]. It should be stressed
that Eq. (7) together with Eq. (10) gives the correct
behavior N ∝ exp ð−μbÞ of the scattering amplitude at
large impact parameter, which is determined by the non-
perturbative behavior of the saturation momentum at the
initial energy (Y0). It should be compared with the general
case, for which at the moment we are not able to modify the
main equations in a such way to obtain this behavior [33].
Note, that we can find NG of Eq. (5) only if we know the
impact parameter behavior of the scattering amplitude.
Hence, we conclude that ∇2

TN
A1

G ðy1 ¼ lnð1=x1Þ; r; bÞ
and ∇2

TN
A1

G ðy2 ¼ lnð1=x2Þ; r; bÞ in Eq. (4), as well as the
integral over r, can be calculated in the framework of CGC/
saturation approach, and there is no need to introduce
the nonperturbative corrections due to the unknown physics
at long distances (see Refs. [34,35] for example) in the
dipole scattering amplitude. However, plugging the scatter-
ing amplitude of Eq. (7) in Eq. (4), one can see thatR
d2reipT ·r

R
d2b∇2

TN
A1

G

R
d2b0∇2

TN
A2

G is not suppressed at
pT → 0. Therefore, we have dσG

dyd2pT
∝ 1=p2

T . This diver-

gence can only be tamed in the process of hadronization,
which has to be treated using a nonperturbative approach
to QCD.
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At the moment, as has been alluded to in the introduc-
tion, we can treat the hadronization only using phenom-
enological models. Our model consists of two elements.
First, every gluon decays into the jet of hadrons with a
known fragmentation function:

dσπ

dyd2pT
¼

Z
1

0

dxG
dσG

dyd2pT

�
pT

xπ

�
Dπ

GðxπÞ ð11Þ

We take the fragmentation function Dπ
G from Ref. [36]

which has the form

Dπ
GðxπÞ ¼ 2.17zαð1 − zÞβð20ð1 − zÞγ1 þ 1Þ; ð12Þ

with α ¼ 0.899, β ¼ 1.57 and γ ¼ 4.91. It should be
stressed, that we assume that Eq. (11) holds for any value
of the transverse momenta of gluons, while it is shown that
this equation gives a good description of the experimental
data for rather large transverse momenta: pT > 3 GeV [7]
and pT > 5 GeV [8]. It is not clear, how such a fragmen-
tation function takes into account resonance production,
which leads to an enhancement at low momenta, and could
affect the value of the thermal term, that we extract from the
experimental data. However, the typical pT , which are
essential in our approach, are rather large pT ∼Qs, these
increase with the growth of energy and of the number of
participants. Therefore, the discussion of the transverse
momenta spectra in the nucleus-nucleus collision provides
a possibility to separate the thermal emission term from the
emissions of the resonances.
We note that Eq. (4) as well as Eq. (11) lead to a cross

section which is proportional to 1=p2
T . This behavior

results in a logarithmic divergency of the integral over
pT , or in other words gives an infinite number of produced
pions at fixed rapidity. The reason for this problem,
is that we neglected the mass of the jet of hadrons that
stems from the decay of the gluon. The simple estimates
[37] give for a gluon with the value of the transverse
momentum pT , the mass of the jet m2

jet ¼ 2pTmeff , where

meff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2T þ k2L

p
− kL, m is the mass of the lightest

hadron in the jet, kT is its transverse momentum and kL ≈
kT is the longitudinal momentum of this hadron. Since most
pions stem from the decay of ρ-resonances we expect
that meff ≈mρ.
As we have mentioned in the Introduction, our model for

confinement is that of the CGC approach, the typical
momentum for the produced gluon is the saturationmomen-
tum. Hence, most hadrons are created in the jets with the
mass m2

jet ¼ 2Qsmeff . However, for rare gluons with pT ≫
Qswe still havem2

jet ¼ 2pTmeff . For numerical estimates we
use m2

jet ¼ 2ðQsΘðQs − pTÞ þ pTΘðpT −QsÞÞmeff which
has these two limits. ΘðxÞ denotes the step function. Using
the same idea we replace Eq. (6) by

x ¼ pT

W
¼ QsΘðQs − pTÞ þ pTΘðpT −QsÞ

W
: ð13Þ

Concluding, we see that our model of the hadroniza-
tion processes includes two ingredients: the fragmentation
function of Eq. (12) which gives us the number and pT
distribution of the produced hadron from one gluon;
and the replacement 1=p2

T in Eq. (4) by 1=ðp2
T þm2

jetÞ
with m2

jet ¼ 2ðQsΘðQs − pTÞ þ pTΘðpT −QsÞÞmeff .

B. Dipole-nucleon scattering amplitude

For completeness of presentation, in this subsection we
give a brief review of our theoretical and phenomenological
approach to the contribution of the dipole-nucleon scatter-
ing amplitude to the inclusive gluon production, that has
been discussed in Ref. [2].

1. τ ∼ 1

In the vicinity of the saturation scale the dipole-
nucleon scattering amplitude has a general form of Eq. (7),
which leads to NGðY;r;bÞ¼ 2NðY;r;bÞ−N2ðY;r;bÞ¼
2N0τ

2γ̄ −N2
0τ

4γ̄. After differentiating we obtain:

∇2
TNGðY; r; bÞ ¼

8γ̄2N0ðrQsÞ2γ̄
r2

ð1 − 2N0ðrQsÞ2γ̄Þ

¼ 8γ̄2N0τ
2γ̄

r2
ð1 − 2N0τ

2γ̄Þ ð14Þ

2. τ > 1

Inside of the saturation domain we suggest using
N ¼ 1 − exp ð−ϕ0τ

2γ̄Þ2 which gives

∇2
TNGðY; r; bÞ ¼

8γ̄2ϕ0ðrQsÞ2γ̄
r2

ð1 − 2ϕ0ðrQsÞ2γ̄Þ
× exp ð−2ϕ0ðrQsÞ2γ̄Þ

¼ 8γ̄2ϕ0τ
2γ̄

r2
ð1 − 2ϕ0τ

2γ̄Þe−2ϕ0τ
2γ̄ ð15Þ

We need to match this formula with Eq. (14) at τ ¼ 1. For
N0 ≪ 1 we obtain ϕ0 ¼ N0.
Reference [2], checked that Eq. (15) describes to a fairly

good accuracy the exact solution for the nonlinear Balitsky-
Kovchegov [38] equation, for the leading twist BFKL
kernel. We wish to remind the reader that the scattering
amplitude in this kinematic region only gives a small
contribution (not more than 15%) to an event at pT ¼ 0.

2The reasons why we can use this formula for the inclusive
production in the saturation region has been discussed in details
in Ref. [2]. In this paper, we showed, that we can use this simple
formula, which describes the vicinity of the saturation scale, in
the entire saturation region, since in ∇2

TNGðY; r; bÞ the region
deeply inside of the saturation domain does not contribute.
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3. τ < 1

In this region we can safely use the perturbative QCD
approach for the scattering amplitude. Therefore, we need
to solve the BFKL evolution equation in this region which
has the following form:

∂NðY;x01;bÞ
∂Y ¼ ᾱS

2π

Z
d2x2Kðx01;x02;x12Þ

×

�
2N

�
Y;x02;b−

1

2
x12

�
−NðY;x01;bÞ

	
ð16Þ

where

Kðx01; x02; x12Þ ¼
x2
01

x2
02x

2
12

ð17Þ

NðY; x01; bÞ denotes the dipole scattering amplitude.
x01 ¼ x1 − x0 ≡ r the size of the dipole. The kernel
Kðx01; x02; x12Þ describes the decay of the dipole with
size x01 into two dipoles of size: x02 and x12 ¼ x01 − x02.
After integrating Eq. (16) over b the equation reduces
to the BFKL equation [32] with the eigenfunctions ðr2Þγ .
Therefore, the general solution takes the form:

Z
d2bNðY; x01; bÞ ¼

Z
ϵþi∞

ϵ−i∞

dγ
2πi

eᾱSχðγÞðY−Y0Þþðγ−1ÞξninðγÞ

ð18Þ

where χðγÞ is given by Eq. (9) and ξ ¼ ln ð1=ðr2Q2
sðY0ÞÞÞ

with r≡ x01. In the definition of ξ we introduce a new
momentum scale which characterizes the value of the initial
condition. For simplicity, we have that

NðY ¼ Y0; rÞ ¼ r2Q2
sðY0Þ: ð19Þ

We can view this momentum as the saturation momentum
at Y ¼ Y0, since N ∼ 1 at r2 ¼ 1=Q2

sðY0Þ. Equation (19)
leads to nin ¼ 1

γ.
Finally,

Z
d2bNðY; x01; bÞ ¼

Z
ϵþi∞

ϵ−i∞

dγ
2πi

eᾱSχðγÞðY−Y0Þþðγ−1Þξ 1
γ

¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

eΨðY;ξ;γÞ
1

γ
ð20Þ

In the vicinity of the saturation scale, the integral over
γ can be evaluated using the method of steepest descent,
with the equations for the saddle point γSP ≡ γcr:

ð1Þ ᾱSχðγcrÞðY − Y0Þ þ ðγcr − 1Þξ ¼ 0;

ð2Þ ᾱS
dχðγÞ
dγ






γ¼γcr

ðY − Y0Þ þ ξ ¼ 0: ð21Þ

Dividing the first equation by the second one, we obtain the
value for γ̄ ¼ 1 − γcr which is the solution of Eq. (8).
The first equation gives the value of the saturation

momentum

lnðQ2
sðYÞ=Q2ðY0ÞÞ ¼ ᾱS

χðγcrÞ
1 − γcr

ðY − Y0Þ ¼ λðY − Y0Þ

ð22Þ
Expanding ΨðY; ξ; γÞ at γ → γ̄ we obtain

ΨðY; ξ; γÞ ¼ γ̄z − ðγ − γcrÞzþ
1

2
ᾱS

d2χðγÞ
dγ2






γ¼γcr

× ðγ − γcrÞ2ðY − Y0Þ
where z ¼ ln τ2 ¼ λðY − Y0Þ − ξ ð23Þ

Plugging Eq. (23) into Eq. (20) and integrating over
γ − γcr, the resulting solution can be written in the form

NðY ¼ lnð1=xÞ; r; bÞ ¼ N0ðr2QsðY; bÞÞγeff ¼ N0ðτÞ2γeff
ð24Þ

with

γ̄ → γeff ¼ γ̄ þ lnð1=τÞ
κλ lnð1xÞ

with

κ ¼ χ00γγðγÞ
χ0γðγÞ






γ¼γcr

≈ 9.9 in LO BFKL: ð25Þ

In the method of steepest descend, the saddle point for
the integration turns out to be

ðγ − γcrÞSP ¼ z

ᾱS
d2χðγÞ
dγ2





γ¼γcr

ðY − Y0Þ
ð26Þ

4. Impact-parameter dependent CGC dipole model

As we have mentioned, the advantage of Eq. (24) is that
we can introduce the correct behavior of the amplitude at
large impact parameter, by imposing the phenomenological
decrease in saturation momentum for large b, by writing it
in the form:

Qs ¼ QsðxÞSðbÞ ¼ Q0

�
1

x

�
λ

SðbÞ ð27Þ

In the LO BFKL [1] λ ¼ ᾱS
χðγcrÞ

γ̄ . Parameters N0 and Q0,
as well as function SðbÞ should in future be taken from
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nonperturbative QCD calculations but, at the moment,
has to be determined from a fit to experimental DIS data.
We have two models [26,39]3 on the market that describe
the final set of the HERA experimental data on deep
inelastic structure functions [42]. They have different forms
for SðbÞ:

Ref:½15�∶ → SðbÞ ¼ exp

�
−
b2

B

�
¼ exp

�
−

b2

4γ̄BCGC

�
;

ð28Þ

Ref:½41�∶ → SðbÞ ¼ ðmbK1ðmbÞÞ1=γ̄; ð29Þ

The ansatz of Eq. (29) is preferable, since it leads to

SðbÞ !b≫1=m
exp ð−mbÞ, which is in accord with the Froissart

theorem [43]. However, we choose Eq. (28) which allows
us to do several integrations analytically. Using Eq. (30),
∇2

TN takes the following form, after integrating over b:Z
d2b∇2

TNðY;r;bÞ

¼ 1

r2

(
8πBγ̄N0τ

2γ̄ð1−N0τ
2γ̄Þ; for τ¼ rQsðxÞ< 1

8πBγ̄ϕ0τ
2γ̄ expð−2ϕ0τ

2γ̄Þ for τ¼ rQsðxÞ> 1;

ð30Þ

with ϕ0e−2ϕ0 ¼ N0ð1 − N0Þ.
Before discussing the details of our model, we would

like to outline, which features of Eq. (30) stem from the
theorem, and which from phenomenological assumptions.
The expression for τ ≤ 1, aswe havementioned [see Eq. (7)]
follows from the theory. However, the calculation ofNG [see
Eq. (5)] takes into account the term of the order N2. The
corrections of the order of N2 has to be estimated for τ < 1
and, in principle, they change Eq. (7). In Ref. [2] we
discussed these corrections, but we do not take them into
account, in Eq. (30) as we view N ¼ N0τ

2γ̄ as a phenom-
enological expression that describes the DIS data [26].
The fact that the impact parameter behavior of the

saturation momentum determines the b-dependence of
the scattering amplitude, comes from theory, while the
particular form and result of integration over b, stems from
the model for SðbÞ.

For τ ≥ 1 we have discussed the form of Eq. (30) in the
previous section (see also Ref. [2]). The b integration is
performed with the phenomenological SðbÞ.
In our estimates we use the values of the parameters from

Ref. [26] (see Table I). In this paper the HERA data were
fitted in the wide range of Q2 from 0.75 GeV2 to
650 GeV2. The expression for QsðxÞ in this model is taken
in the form4

QsðxÞ ¼
1

2

�
x0
x

�λ
2

GeV ð31Þ

It should be noted, that the value of x from Eq. (13) even
at W ¼ 13 TeV, is about 10−5, which is in the region that
has been measured at HERA.

5. Inclusive production for pT ≫ Qs

We can significantly simplify our calculation for
pT ≫ Qs. Indeed, for such large pT the integral over r
in Eq. (4) is concentrated in the region τ ≪ 1, where we can
safely use the simple expression of Eq. (14). The integral
can be calculated explicitly and leads to the following

dσG
dyd2pT

¼ 2CF

αs2π

1

p2
T
N2

0B
2γ̄2

�
Γð2γ̄ − 1Þ
Γð2 − 2γ̄Þ ðp̃TÞ2−4γeff

− N02
2γ̄þ1

Γð3γ̄ − 1Þ
Γð2 − 3γ̄Þ ðp̃TÞ2−6γeff

þ N2
02

2γ̄ Γð4γ̄ − 1Þ
Γð2 − 4γ̄Þ ðp̃TÞ2−8γeff

�
ð32Þ

We know that in the vicinity of the saturation scale the
scattering amplitude in the momentum representation has
the following behavior:

NðpTÞ ¼ Const

�
p2
T

Q2
sðxÞ

�
γ̄

ð33Þ

Therefore, from Eq. (32) we can determine the value of the
constant in Eq. (33) from the value of N0.
Equation (32) allows us to take into account the violation

of the geometric scaling behavior, given by Eqs. (24) and
(25). We can make such a replacement directly in the
momentum representation, since r ∝ 1=pT . However, we

TABLE I. Fitted parameters of the model [26], which we use for our estimates.

γ̄ N0 λ x0 BCGC (GeV−2)

0.6599� 0.0003 0.3358� 0.0004 0.2063� 0.0004 0.00105� 1.1310−5 5.5

3Actually, the same set of the data was described in the model
of Ref. [40], but this model does not include the correct behavior
deep in the saturation region[41], and we do not discuss it here.

4Note that we introduce the extra factor 1
2
in the definition of

the saturation scale, since we use τ ¼ rQs, while in Ref. [26] τ is
defined as τ ¼ rQs=2.
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need to find the coefficient in front of pT and, perhaps, an
additional constant. We calculate the average τ using the
expression:

hτiðp̃TÞ ¼
R
τJ0ðp̃TτÞIðτÞdτR
J0ðp̃TτÞIðτÞdτ

where

IðτÞ ¼
Z

d2bSðbÞ
�
d2NGðzðr; b; x1ÞÞÞ

dz2

�
2

ð34Þ

The results of these estimates are shown in Fig. 1. One can
see at p̃T → 0hτi ¼ 0.478 ≈ 1

2
while at large p̃T it is

proportional to 1=ð4p̃TÞ.
For p̃T ¼ 0, or more generally for pT ≪ Qs, the typical

distance turns out to be r ¼ 1=ð2QsðxÞÞ, and for large p̃T it
is of the order of 1=ð4pTÞ. Hence, we suggest to use in
Eq. (25) the calculated hτiðp̃TÞ for p̃ ≤ 4 and 1=ð4p̃T) for
τ ≥ 4 and to substitute in Eq. (32):

γeffðp̃T; xÞ ¼ γ̄ þ lnð1=hτiðp̃TÞÞ
κλ lnð1xÞ

ð35Þ

where p̃T ¼ pT=Qs.
In Ref. [2] it was shown that this replacement results in

the γeff > 1 at large p̃T . This dependence is essential for

describing the experimental data. Indeed, the value of n in
the hard term in Eq. (2) is n ¼ 3.1. As we have seen above
[see Eq. (32) for example] at large pT the inclusive cross
section is proportional to 1=p4γeff

T . For γeff ¼ γ̄ it is
impossible to obtain a decrease of about 1=p6

T , as indicated
by the data, while Eq. (35) makes such a description
possible (see Ref. [2] for a detailed discussion).

C. Dipole-nucleus scattering amplitude

For the dipole-nucleus scattering amplitude in the
vicinity of the saturation scale τ ∼ 1 we have the same
behavior as for the dipole-nucleon amplitude:

NAðY; r; bÞ ¼ Constðr2QSðA; Y; bÞÞγ̄: ð36Þ

The main question that we will try to answer in this section
is how the value of Const in Eq. (36) is related to N0 for the
dipole-nucleon scattering amplitude.
The principle difference between scattering with a

nucleus and a nucleon is shown in Fig. 2. For dipole-
nucleon scattering the initial condition at Y ¼ Y0 ≡ Ymin is
such that NðY ¼ Y0; r; bÞ ≪ 1 [see Fig. 2(a)]. On the other
hand, for dipole-nucleus scattering even at Y ¼ Y0 the
shadowing corrections are large, and we impose the initial
conditions inside the saturation region [see Fig. 2(b)].
These initial conditions lead to different solutions for
dipole-hadron and dipole-nucleus amplitude in the satu-
ration region (see Refs. [44–47]). In particular, for ξ < 0,
where we expect geometric scaling behavior of the scatter-
ing amplitude, and for ξ > 0 and no such behavior is seen.
However, a glance at Fig. 2, shows that for Y − Ymin ≫ 1

for ∇2
TN

AðY; r; bÞ we do not expect violation of the
geometric scaling behavior of the scattering amplitude,
since, as has been discussed in the previous section, this
observable gives the main contribution in the vicinity of the
saturation scale shown by the red line in Fig. 2. As we have
discussed for the case of the dipole-nucleon scattering, the
behavior of the scattering amplitude in the vicinity of the

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

PT

P
T

FIG. 1. The average τ [see Eq. (34)]. The solid line is the result
of numerical calculations. The dotted line shows that at large p̃T
hτi ∝ 1=ð4p̃TÞ. The figure is taken from Ref. [2]. p̃T ¼ pT=Qs.

z = 0

Perturbative QCD

Saturation region

Y0

s

x = 0

z = 0

Perturbative QCD

Saturation region

Y0

s

GSno GS
x = 0

McLerran−Venugopalan initial condition

(a) (b)

FIG. 2. The QCD map. Figure 2(a) shows the kinematic regions for the dipole-nucleon amplitude, while in Fig. 2(b), we show the
kinematic regions for dipole-nucleus scattering. Note that the saturation domain in this case can be divided in two subregions: (i) for
ξ < 0, where we expect geometric scaling behavior of the scattering amplitude, and ξ > 0 where there is no such behavior. ξs ¼
λðY − YminÞ and ξ ¼ − lnðτ2Þ ¼ ln ðr2Q2

sÞ. z ¼ ξs − ξ and x ¼ ξþ ξ.
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saturation scale is determined by the solution to the linear
BFKL equation [see Eq. (16)].
Therefore, to find the value of Const in Eq. (36), we need

to solve theBFKLequationwith the correct initial condition.
This condition is given by the McLerran-Venugopalan
formula [5], which we use in the simplified form;

NA
inðY¼Y0;r;bÞ¼ 1− expð−r2Q2

sðA;Y ¼Y0;bÞÞ: ð37Þ

The general solution to the BFKL equation of Eq. (16)
has the same form as in Eq. (18):

NAðY; x01; bÞ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

eᾱSχðγÞðY−Y0Þþðγ−1Þξ

× nin

�
γ;
Q2

sðA; b
Q2

sðY0Þ
�

ð38Þ

where QsðY0Þ has been introduced in Eq. (19). We
recall that ξ ¼ − ln ðr2Q2

sðY0ÞÞ. Using Eq. (37) we can

find nAinðγ; Q
2
sðA;Y0;bÞ
Q2

sðY0Þ Þ we takes the following form:

nAin

�
γ;
Q2

sðA;Y0;bÞ
Q2

sðY0Þ
�

¼
�
Q2

sðA;Y0;bÞ
Q2

sðY0Þ
�

1−γ�
ΓðγÞ−Γ

�
γ;
Q2

sðA;Y0;bÞ
Q2

sðY0Þ
��

:

ð39Þ

Plugging Eq. (39) into Eq. (38) we obtain the following
solution:

NAðY; x01; bÞ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

eᾱSχðγÞðY−Y0Þþðγ−1ÞξA

×

�
ΓðγÞ − Γ

�
γ;
Q2

sðA; Y0; bÞ
Q2

sðY0Þ
��

ð40Þ

where ξA ¼ − lnðr2Q2
sðA; Y0; bÞÞ.

Solving Eq. (21), we obtain the solution in the vicinity of
saturation, in the form of Eq. (36) scale with

Const ¼ N0

�
ΓðγcrÞ − Γ

�
γcr;

Q2
sðA;Y0;bÞ
Q2

sðY0Þ
��

ðΓðγcrÞ − Γðγcr; 1ÞÞ
¼ N0R ð41Þ

In Fig. 3 we plot the value of R as function of
q ¼ Q2

sðA; Y0; bÞ=Q2
sðY0Þ. One can see that R is very close

to 1. The chosen range of q we will be discussed in the next
section. In further estimates, we take Const ¼ N0.
As we discussed in the previous section, Eq. (35) which

takes into account the violation of the geometric scaling
behavior, is essential for the description of the experimental
data, since the region of perturbative QCD gives a large
contribution. Bearing this in mind, we take into account the

contribution of nAinðγ; Q
2
sðA;Y0;bÞ
Q2

sðY0Þ Þ into effective γeff as well as

Eq. (35). Considering the resultingΨ in Eq. (20) in the form

ΨðY; ξA; γÞ ¼ ᾱSχðγÞðY − Y0Þ þ ðγ − 1Þξ

þ ln

�
nAin

�
γ;
Q2

sðA; Y0; bÞ
Q2

sðY0Þ
��

ð42Þ

we obtain the following expression for the effective γ:

γeff ¼ γ̄ þ lnð1=τÞ
κλ lnð1xÞ

þ 2DA
lnð1=τÞ

ðκλ lnð1xÞÞ2
ð43Þ

where κ is defined in Eq. (35). Recall that τ ¼ rQsðA; YÞ.
The value of DA is plotted in Fig. 3(b), as a function of
q ¼ Q2

sðA; Y0; bÞ=Q2
sðY0Þ. In the region of q ¼ 1.5–4

DA ≈ 4, and we will argue below that this region contrib-
utes to the ion-ion collisions at the LHC energies.

III. KLN MODEL FOR ION-ION SCATTERING
AT HIGH ENERGY

Figure 4 shows the interaction of two nucleus A1 and A2.
From this picture we see that we need to know how many
nucleons interact, and how this interaction occurs. In
particular, one nucleon can interact with several nucleons
from another nucleus, and so on. We use the KLN model
to answer all similar questions (see Refs. [25,37,48–52]).

1 2 3 4 5 6 7

1.00

1.02

1.04

1.06

1.08

1.10

1.12

q

(a) (b)

R

1.0 1.5 2.0 2.5 3.0 3.5 4.0

3.95

4.00

4.05

4.10

4.15

q

D
A

FIG. 3. Figure 3(a): R vs q ¼ Q2
sðA; Y0; bÞ=Q2

sðY0Þ (see Eq. (41)). Figure 3(b): DA as function of q.
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We choose this model since, on one hand, this model not
only successfully described the RHIC data and its
predictions for the experimental data at the LHC, are
quite good. On the other hand, it is based on the Glauber
approach [53,54], which successfully describes the
nucleus-nucleus interaction over a wide energy range.
In Refs. [49,55] the Glauber approach is developed for
the hadron production for nucleus-nucleus collisions, and
it demonstrates how we can calculate (i) the number of
nucleons that participate in the interactions (number of
participants Npart), their density ρpart at fixed values of b;
and (2) how to correlate the typical values of b with the
centrality c, which is measured experimentally, and which
characterizes the percentile of events with the largest
number of produced particles (as registered in detectors).
Experimentally collisions are grouped into event(centrality)
classes, with the most central class defined by events with
the highest multiplicity(smallest forward energy), which
corresponds to small values of the impact parameter.
Basically centrality cðNÞ is equal to

cðNÞ ≃ πbðNÞ
σn

; ð44Þ

where cðNÞ is the centrality of the events with the
multiplicity higher than N. bðNÞ is the value of the impact
parameter for which the average multiplicity nðbðNÞÞ ¼ N.
In our approach, we use the estimates of Ref. [49] for the

density of the participants at for different centrality classes.5

The key idea of the KLN model [37,49] is, that the
saturation momentum is proportional to the density of the

participants, Qs ∝ ρpart. The arguments for this stem from
the simple equation for the saturation momentum [1,3–5]

Q2
sðA; YÞ ¼

8π2Nc

N2
c − 1

αSðQ2
sÞ
xGAðQ2

sðA; YÞ; YÞ
πR2

A
ð45Þ

where Y ¼ ln ð1=xÞ, Nc denotes the number of colors, RA
the radius of the nucleus and xGA is the gluon structure
function of the nucleus.
For the kinematic region where the gluon densities are

small we can safely consider GAðQ2; xÞ ¼ AxGNðQ2; xÞ,
where GN is the gluon structure function for a nucleon.
Plugging this relation in Eq. (45) as well as RA ¼ RNA1=3,
where RN is the radius of the nucleon, we obtain that

Q2
sðA; YÞ ¼

8π2Nc

N2
c − 1

αSðQ2
sÞ

A
πRA

xGNðQ2
sðA; YÞ; YÞ

¼ ρA
8π2Nc

N2
c − 1

αSðQ2
sÞxGNðQ2

sðA; YÞ; YÞ ð46Þ

where ρA is the density of the nucleons in the nucleus in the
transverse plane.
The KLN model generalizes Eq. (46) proposing

Q2
sðNpart; YÞ ¼

1

2
ρpart

8π2Nc

N2
c − 1

αSðQ2
sÞxGNðQ2

sðNpart; YÞ; YÞ:

ð47Þ

We suggest to rewrite Eq. (47) in the form

Q2
sðNpart;YÞ

¼ 1

2
ρpartπR2

N
8π2Nc

N2
c−1

αSðQ2
sÞ
xGNðQ2

sðNpart;YÞ;YÞ
πR2

N

¼ 1

2
ρpart

Z
d2bQ2

sðN;Y;bÞ: ð48Þ

Factor 1
2
reflects the fact that we are dealing with the

density of those nucleons in a single nucleus, which will
participate in the collision at a given impact parameterb, or in
a definite centrality class. In Eq. (48) wewrite the expression
for the nucleon saturation momentum in the frame.
One can see that for the DIS with a nucleus with Npart ¼

A we obtain from Eq. (48)

Q2
sðA; YÞ ¼ A1=3Q2

sðN; YÞ ð49Þ

in accord with Refs. [57–60]. Using the estimates of ρpart
from Ref. [49] we obtain that the range of q in Fig. 3 for the
lead-lead scattering is q ¼ 1–3.06.
For the gluon transverse momenta pT distributions,

we suggest the following formula for the ion-ion collisions
in the definite centrality class with the number of partic-
ipants Npart:

b1

b
A1

A2

b2

b’

FIG. 4. The kinematics for the nucleus-nucleus interaction. b1
denotes the position of the nucleon in the transverse plane in the
nucleus A1. b2 the position of the nucleon in nucleus A2. b
denotes the distance between the centers of two nuclei
b ¼ b1 − b2. The two nucleons from different nuclei, which
interact at distance b0, are shown by different colors in the figure.

5For comparison with the ALICE experimental data we use the
results of the estimates, given by Ref. [56], in which the
procedure of Ref. [49] is used in the Glauber Monte Carlo.
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dnG
dyd2pT






Npart

¼ 1

2
Npart

dN
dyd2pT






proton−proton

¼ 1

2
Npart

1

σin

dσNG
dyd2pT

¼ 1

2
Npart

1

σin

2CF

αsð2πÞ4
1

p2
T

Z
d2reipT ·r

×
Z

d2b∇2
TNGðy1¼ lnð1=x1Þ;r;bÞ

×
Z

d2b0∇2
TNGðy2¼ lnð1=x2Þ;r;b0Þ; ð50Þ

where NG is related to the scattering dipole-nucleon
amplitude [see Eq. (5)], and nG denotes the multiplicity
of the emitted gluons.
σin denotes the inelastic cross section for the nucleon-

nucleon scattering at corresponding energy. One can see,
that in Eq. (50) we consider each participant as a nucleon
which interacts with another nucleon from the different
nucleus, at impact parameter b0 (see Fig. 4). The saturation
momentum for this scattering is given by Eq. (48), for the
effective γeff we take Eq. (43), which includes corrections
from the interaction with the other nucleons. We need also
to fix the dependence of the saturation scale on the impact
parameter of the nucleon-nucleon interaction (b0 in Fig. 4).
Finally, the equation for the saturation scale, which we use
in our estimates of gluon production in nucleon-nucleon
scattering, takes the form:

Q2
sðNpart; Y; b0Þ ¼

1

2
ρpart

Z
d2bQ2

sðY; bÞSðb0Þ ð51Þ

where Qs and Sðb0Þ are given by Eqs. (27) and (28),
respectively.
At first sight, we do not need Eq. (50), since we can use

the master equation [see Eq. (4)] and using the experi-
mental information of gluon structure functions of nucleus
(see for example Ref. [61]), we can calculate the inclusive
cross section as we did for proton-proton scattering in
Ref. [2]. Indeed, for the inclusive production of gluons
for an ion-ion collision, we can proceed in this manner, but
the factorization of Eq. (4) is proven only in the case, when
we did not make any additional selections of the events
summing over all accompanying hadrons. Considering the
different centrality classes we make the additional selection
on the multiplicity of produced hadrons. It is sufficient to
refer to the AGK cutting rules [62], to see that these
selections violate the factorization of Eq. (4). The violation
of the AGK cutting rules in QCD (see Ref. [1]) makes the
situation even worse. Hence, the KLN model gives us the
simple way to estimate the cross sections for the different
centrality classes.

IV. COMPARISON WITH THE EXPERIMENT

We calculate the cross section for gluon production using
Eq. (50). As we have discussed in Sec. II B, the typical
values of r that contribute to the integral in Eq. (50) are rather
small, of the order ofQs. This means that we can safely use
the CGC/saturation approach or/and the perturbative QCD
estimates for this integral. We do not need to incorporate
modifications of the gluon propagators, for example due to
the confinement [34,35], in our calculations.
The factor 1=p2

T in front in Eq. (50) stems from the gluon
propagator [32], and it is affected both by the hadroniza-
tion, and by interactions with comovers in the parton
cascade. In our approach to the confinement problem,
we first need to take into account, the effect of the mass of
produced gluon jet due to hadronization, which changes the
gluon propagator [37]:

GðpTÞ¼
1

p2
T
→

1

p2
Tþ2ðQsΘðQs−pTÞþpTΘðpT−QsÞÞmeff

:

ð52Þ

Therefore, we calculate gluon production using Eq. (50), in
which we use Eq. (52) to replace the factor 1=p2

T.
Therefore, our model of the hadronization consists of
two ingredients: the decay of the gluon into hadron jet
with the fragmentation function [see Eq. (11)], and to
account for the mass of this jet, using Eq. (52). It is
instructive to note, that in our approach we see two stages
of the multiparticle production in an explicit way: the
creation of the color glass condensate [calculation of the
integral over r in Eq. (50)] and the stage of hadronization
[Eq. (52), and fragmentation functions].
For calculating the integral over r in Eq. (50) we use

Eq. (30) for pT ≤ 2QsðxÞ and Eq. (32) for larger values of
pT (see Ref. [2] for more details). The values of σin for
proton-proton scattering at high energies we take from
Ref. [63], which describes all available data on measured
soft cross sections.
We compare with the experimental data of ALICE

collaboration [64–67] on the transverse momentum dis-
tribution of the charged hadrons in different centrality
classes at two energies W ¼ 5 TeV and W ¼ 2.78 TeV.
We add to Eq. (50) the thermal term6 [see first term of
Eq. (2)], and find that in our model of hadronization we
need this term to describe the experimental data. The value
of this contribution essentially depends on the mass of the
gluon jet in the framework of our model. It turns out that the
temperature T th is proportional to the value of the saturation
scale in the given centrality class in accord with Eq. (1), but
the coefficient c turns out to be 1.5 larger than it is predicted
in Ref. [11] (c ¼ 1.8).

6The value of the parameter Atherm is determined by compari-
son with the experimental data.
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In Figs. 5–7 we show that we describe the data fairly well
in the region pT ≤ 10 GeV. It should be noted that we do
not need any K-factor which would account for the higher
order corrections in the framework of CGC/saturation
approach.
However, this conclusion we need to take with a degree

of skepticism, since the value of σin was taken from the
model [63], and the value of ᾱS in Eq. (50) was taken
ᾱS ¼ 0.25. The main uncertainty in σin ¼ σtot − σel − σdiff
is the value of σdiff , which at high energies is about
15%–20% of the total cross sections. The value of
ᾱSðQ2

sÞ ≈ 0.3–0.4. Therefore, these two uncertainties can
lead to the K ≈ 2.
Figures 5–7 show that we describe the behavior of the

transverse momentum distribution at pT ≥ 2 by Eq. (50),

rather well. Wewish to note that this description stems from
the expression for γeff [see Eq. (43)], in which the last term
comes from the corrections related to the nucleus target. In
the description of pT distribution, these corrections are
considerable.
The rate of thermal radiation is shown in Table II, in

which R¼R
d2pTd2σ

charged
thermrad=d

2pT=
R
d2pTd2σ

charged
sum =d2pT .

Note that the contribution of the thermal radiation increases
with the growth of energy. The value of the CGC term
depends on the value of the meff . We believe that most of
the pions are produced from ρ resonances and we consider
meff ¼ 0.5 GeV. We recall that the simple formula

for meff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2T þ k2L

p
− kL leads to meff ¼ 0.5 GeV

if μ is equal to the mass of ρ-resonance since the value of

FIG. 5. Descriptions of the experimental data of the ALICE collaboration [66,67] for lead-lead collisions at W ¼ 5 TeV for different
centralities (solid lines). The dashed lines show the CGC contributions. For the value of σin in Eq. (50) atW ¼ 5 TeV we use the model
of Ref. [63], for σin ¼ σtot − σel − σdiff.
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kT ¼ kL ¼ 0.45 GeV (see Ref. [68] for the measurement
and Ref. [69]) and reference therein for theoretical
discussions). For the minimal mass of μ ¼ mπ ¼
0.14 GeV we obtain meff ¼ 0.2 GeV. To illustrate the
influence of the mass of gluon jet we estimate the
contribution of Eq. (50) with meff ¼ 0.14 MeV. One can
see that even such small mass cannot describe the
spectrum without the thermal radiation term. We see
from Figs. 5–7, and Table II that the value of this term
depends on the value of meff .
In Fig. 8 we plot the estimates for the pT distribution

with meff ¼ 0. In this case we have the divergence
GðpTÞ ∝ 1=p2

T , We have not ignored this divergence,
and have plotted pT ≥ 200 MeV. It turns out that we
need to add the thermal emission with R ¼ 42%. This
should be compared with the proton-proton scattering [2],

where for meff ¼ 0 we do not need to add the thermal
emission.
In general, comparing Table II with the estimates for the

ratio R for proton-proton scattering (see Table II of Ref. [2])
we see that the contributions of the thermal radiation are
larger for ion-ion collisions for the classes with small
centrality. It supports the CGC picture in which the
longitudinal fields, that are the sources of the thermal
radiation, are stronger in the denser gluon states which are
produced in ion-ion collisions.
Discussing hadron production, we have to construct a

model for the process of hadronization. Our model where
the production of the gluon jets with the hadronization,
which is given by the fragmentation functions and by the
mass of the gluon jet, requires a thermal radiation term. Our
estimates for meff ¼ 0 show that, possibly, our claim does

FIG. 6. The continuation of Fig. 5.
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FIG. 7. The descriptions of the experimental data of the ALICE collaboration [65–67] for lead-lead collisions at W ¼ 2.76 TeV for
different centralities (solid lines). The dashed lines show the CGC contributions. For the value of σin in Eq. (50) atW ¼ 2.76 TeV we use
the model of Ref. [63], for σin ¼ σtot − σel − σdiff.

TABLE II. R ¼ d2σcharged=d2pTðthermal radiationÞ=d2σcharged=d2pTðsumÞ for different the centrality classes vs
the values of meff .

W ¼ 5 TeV W ¼ 2.76 TeV

Centrality meff ¼ 0.5 GeV meff ¼ 0.14 GeV meff ¼ 0.5 GeV meff ¼ 0.14 GeV

0%–5% 76% 63% 66% 52%
5%–10% 72% 58%
10%–20% 72% 58% 52% 43%
20% −30% 72% 54%
30%–40% 62% 37% 62% 34%
40%–50% 60% 37%
50%–60% 51% 20% 60% 12%
60%–70% 43% 13%
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not depend on the model of the hadronization in the case
of the ion-ion collisions, since the description of the
experimental data in Fig. 8(a) requires a thermal radiation
term of the order of 46%. In Fig. 8(b) we plot the pT

spectrum for a different model, with the gluon propagator
1=ðp2

T þm2Þ with m ¼ T th, instead of Eq. (52). It turns
out that R ¼ 46% is needed to describe the data. The last
case corresponds to a different hadronization model:
the propagator of the gluon with transverse momentum
pT in the CGC medium with the temperature T th,
acquires a mass mg ∝ T th [70] and the propagator has
the form 1=ðp2

T þm2
gÞ. This mass provides the infrared

cutoff in the gluon spectrum. However, we need to take
our estimates in Fig. 8(b) with a grain of salt, since
Ref. [70] predicts that the gluon mass will be m ¼ gT but
with small value of g. However, Fig. 8(a) supports our
claim, that the requirement of the thermal emission does
not depend on the details of the assumption on the
confinement of quarks and gluon.

V. CONCLUSIONS

The main result of the paper is that we show that a
thermal emission term is required to describe the transverse
momenta distribution for charged particles in ion-ion
collision. The temperature of this emission T th turns out
to proportional to the saturation scale [see Eq. (1)] with
coefficient c ¼ 1.8, which is 1.5 times larger than predicted
in Ref. [11].
We develop the formalism for the calculation of the

transverse momenta spectra in CGC/saturation approach, in
which we clearly see two stages of the process: the creation
of color glass condensate, and the hadronization stage. Our
calculations are based on the observation that even for
small values of pT the main contribution in the integration
over r in Eq. (4) and in Eq. (50) stems from the kinematic
region in the vicinity of the saturation momentum, where
theoretically, we know the scattering amplitude. In other
words, it means that we do not need to introduce the
nonperturbative corrections due to the unknown physics at
long distances (see Refs. [34,35] for example) in the dipole

scattering amplitude. The nonperturbative corrections have
to be included to describe the process of hadronization,
which we discuss in the model. This model incorporates
the decay of the gluon jet with the effective mass m2

eff ¼
2Qsμsoft where μsoft is the soft scale, and with the
fragmentation functions of Eq. (12), at all values of the
transverse momenta.
It should be emphasized that we reproduce the exper-

imental data without any K-factor, which is used for
accounting of the higher order corrections. We wish to
mention, that we have calculated the inclusive production
taking ᾱS ¼ 0.25. This value is less that ᾱSðQsÞ ¼ 0.3–0.4
which appears more natural in Eq. (50). For ᾱS ¼ ᾱSðQsÞ,
we need to introduce a K-factor of about 1.3–1.6.
We use the KLN model [25,37,48–52] which gives us

the simple way to estimate the cross sections for the
different centrality classes. At first sight, we do not need
Eq. (50), since we can use the master equation [see Eq. (4)],
and using the experimental information of gluon structure
functions of nucleus (see for example Ref. [61]) we can
calculate the inclusive cross section, as we did for proton-
proton scattering in Ref. [2]. However, considering the
different centrality classes, we make the additional selec-
tion on the multiplicity of produced hadrons, which violates
the factorization of Eq. (4). The KLNmodel suggests a way
to evaluate the contribution of the different centrality
classes.
Comparing the results of this paper with our discussion

of the transverse distribution in the proton-proton scattering
[2] we see two major differences. First, we need the larger
contribution of the thermal radiation term, since we
produce in the ion-ion collision the CGC with higher
parton densities. Second, changing the model for the
hadronization, we failed to describe the pT spectrum
without the thermal radiation term. In Fig. 8 we illustrate
this fact showing that the divergence, coming from the
factor 1=p2

T in Eq. (50), does not lead to a sufficiently large
contribution that we could describe the data without the
thermal radiation term, as was the case for hadron-hadron
scattering [2]. Therefore, we suspect that the existence of
the thermal radiation term does not depend on the model of
confinement.

(a) (b)

FIG. 8. Descriptions of the experimental data of the ALICE collaboration [66,67] for lead-lead collisions atW ¼ 5 TeV for centrality
0–5% with meff ¼ 0 [Fig. 8(a)] and with m ¼ T th for the gluon propagator 1=ðp2

T þm2Þ [Fig. 8(b)]. In both figures R ≈ 46%.

E. GOTSMAN and E. LEVIN PHYS. REV. D 100, 034013 (2019)

034013-14



It should be mentioned that we include nuclei in the
frameworkof the simpleKLNmodel, neglecting a dynamical
evolution of produced matter. We believe this is the correct
first approximation in the CGC approach, in which we only
took into account the dependence on the density of thematter,
through the saturation scale. The result of our description can
be interpreted as an argument that the production in nucleus-
nucleus collision is very similar to the proton-proton scatter-
ing which has been discussed in our first paper.
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