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The dynamical picture of a quark-antiquark interaction in light mesons, which provides linearity of radial
and orbital Regge trajectories (RT), is studiedwith the use of the relativistic stringHamiltonianwith flattened
confining potential (CP) and taking into account three negative corrections: the gluon-exchange, the self-
energy, and the string corrections. Due to the flattening effect the radial slope βn and the orbital slope βl of the
Regge trajectories decrease by∼30% as compared to those in linear CP, while the string correction decreases
only the orbital slope by the value ∼10%. The self-energy correction is very important and has large
magnitude, ∼ −300 MeV for high excitations. It also provides the linearity of the RT, built for the centroid
squared masses, and gives a small value of the intercept, β0 ¼ 0.50ð1Þ GeV2, equal to the squared centroid
mass of ρð1SÞ. If the universal gluon-exchange potential without fitting parameters and screening function,
as in heavy quarkonia, is taken, then the radial slope, βn ¼ 1.15ð9Þ GeV2 (l ≠ 0), and the orbital slope,
βl ¼ 1.03ð9Þ GeV2, have close values and the RT can be considered as approximately universal.
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I. INTRODUCTION

The spectroscopy of light mesons refers to the field where
nonperturbative QCD dominates and the Regge trajectories
(RT), both orbital and radial, appear to be the most explicit
manifestation of nonperturbative effects. It is known that the
leadingRTin the ðM2; JÞ-plane has a linear behaviorwith the
slope βJðexpÞ ¼ 2πσ ¼ 1.13ð1Þ GeV2, which corresponds
to the value of the string tension σ ¼ 0.180ð2Þ GeV2 in the
string models [1,2], and precisely this σ has been used in the
realistic potential model with linear confining potential (CP)
[3,4]. Also, systematization of radial excitations of light
mesons, suggested in Ref. [5], has shown that their squared
masses lie on linear, or approximately linear, radial trajecto-
ries in the ðM2; nÞ-plane (n ¼ nr is the radial quantum
number) and has the slope, βn ¼ ð1.25� 0.15Þ GeV2 [5].
Later inRefs. [6,7] a smaller slope βn¼ð1.143�0.013ÞGeV2

was extracted from the Crystal Barrel data [8].

It was also observed that the slopes of the ðM2; JÞ-
trajectories for the masses with spin S ¼ 0 and S ¼ 1 differ
only ∼10% [9] and it was assumed that within this accuracy
a universal RT can exist in the ðl; nÞ-plane,

M2ðn; lÞ ¼ aðlþ nÞ þ c; ð1Þ

with the universal slope a ¼ 1.10ð2Þ GeV2 and the inter-
cept c ¼ 0.68 GeV2. From Eq. (1) it follows that the
masses of resonances with equal quantum number N ¼
lþ n have to be equal and this assumption agrees with the
experimental masses of the vector resonances with N ¼ 2,
3, 4 (S ¼ 1) (see Table I).
However, in another analysis of the experimental data,

where the PDG masses and widths were used, a larger
βn ¼ ð1.35� 0.04Þ GeV2 was extracted [11] and later,
after reanalysis of the experimental data, the same authors
have obtained a smaller βn ¼ 1.28ð5Þ GeV2 [12] with the

TABLE I. The PDG masses of the isovector resonances (in
MeV) [10] and Mðn; lÞ according to Eq. (1).

N ¼ 2 N ¼ 3 N ¼ 4

Meson ρ3ð1690Þ ρ3ð1990Þ ρ3ð2250Þ
Mass 1689(2) 1982(14) 2234
Meson a2ð2PÞ a4ð2040Þ ρ5ð2350Þ
Mass 1705(40) 1995(10) 2330(35)
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conclusion that the universality of the radial and orbital
RTs is not fulfilled at the level of 2.4 standard deviations.
These results, irrespective of the fact whether slopes of
radial and orbital RTs are equal or not, raise an important
theoretical issue, namely, what dynamical effects are
responsible for the values of the slopes, observed in
experiments, and whether a universal RT exists or not.
At present new studies of the RT nature continue [13,14].
A study of the light meson spectra in relativistic models

shows that at first sight the RT parameters depend on the
quark-antiquark potential V0ðrÞ used, but, as shown in the
relativistic string model [15–20], some additional correc-
tions to the meson masses exist. The potential V0ðrÞ was
studied on a fundamental level in lattice QCD [21,22] and
the field correlator method [23] in the region r≲ 1.2 fm. It
was shown that in this region V0ðrÞ is the sum of the linear
CP VCðrÞ ¼ σr and the gluon-exchange (GE) term:
V0ðrÞ ¼ VCðrÞ þ VGEðrÞ. Precisely such a linear CP with
string tension σ ¼ 0.18 GeV2, fixed by the slope of leading
angular-momentum RT, was used in the relativistic models
[3,4], where a good description of the masses of low-lying
states was obtained. However, to describe high excitations
of light mesons, whose sizes ≥ 1.5 fm are large, knowledge
of the quark-antiquark potential at large distances is
needed, which is not defined yet on a fundamental level,
and in lattice QCD a flattening of the CP at r≳ 1.2 fm is
seen with large uncertainties. This flattening (screening)
effect appears due to the creation of light qq̄ holes (loops)
in the Wilson loop and decreases the surface of the Wilson
loop [17]. However, this effect was described only at a
phenomenological level, assuming that a study of the high
excitations can give important information about the qq̄
interaction at large r [15–17].
In light mesons one can use the universal GE potential,

VGE ¼ − 4αVðrÞ
3r , which is now well defined at small dis-

tances, since at present the QCD constant ΛMS, as well as
the vector constant ΛV, are known with a good accuracy for
the number of flavours nf ¼ 3, 4, 5 [24]. In particular, the
value of ΛMSðnf ¼ 3Þ ¼ 315ð15Þ MeV [24], or the corre-
sponding ΛVðnf ¼ 3Þ ¼ 500ð20Þ MeV [25], appears to be
larger than the value used in the past. However, the
behavior of the strong coupling αV at small momenta
and at large distances, as in the case of the CP, is still not
determined [26] and it remains unclear whether a screening
GE effect exists or not. This problem will be discussed in
our paper.
In Refs. [15,17] it was shown that the main contribution

to the light meson mass comes from the CP and as a first
step it is instructive to consider the light meson spectrum,
taking the purely linear CP at all distances, and after that to
take into account the flattening effect and other corrections.
To make the theoretical analysis more clear we consider
only isovector light mesons with l ≤ 3 and pay special
attention to calculations of the centroid masses. For that
we use the relativistic string Hamiltonian (RSH), which

describes the QCD string with spinless quarks at the ends
and mq ¼ 0 [18–20], while the spin-dependent interaction
is taken as a perturbation; in this case the instantaneous qq̄
potential reduces to the linear CP plus the GE term.
The RSH is rather complicated and has different repre-

sentations for large l and small l, l ≤ 3. Its basic term H0,
given by

H0 ¼ 2

ffiffiffiffiffi
p2

q
þ V0ðrÞ; ðl ≤ 3Þ ð2Þ

is well known and widely used. Its eigenvalues (e.v.s)
M0ðnlÞ can be approximated by an analytical expression
with great accuracy, if the light quark mass mq ¼ 0. Notice
that if in relativistic potential models the constituent quark
mass, m̃q ∼ ð150–200Þ MeV, is used, then the parameters of
the RTs depend on the value of the constituent quark mass.
The e.v.s M0ðnlÞ provide the basic contributions to the

meson mass and for the purely linear CP the squared mass
M2

0ðn; lÞ can be approximated with great accuracy by the
expression [15,16],

M2
0ðn; lÞ ¼ σð8lþ 4πnþ 3πξðnlÞÞ; ð3Þ

with ξðnlÞ ¼ 1.0 with the exception of ξð1SÞ≈
ξð1PÞ ≈ 1.05. From the conventional representation of
the RT as

M2ðn; lÞ ¼ βl lþ βn nþ β0; ð4Þ

and using Eq. (3) for the purely linear CP, one obtains the
following slopes and the intercept,

βl ¼ 8σ; βn ¼ 4πσ; β0 ¼ 3πσ: ð5Þ

Now the following problem arises: if the conventional
value of σ ¼ 0.180 GeV2 is taken, then all parameters of
the RT (5) are significantly larger that those extracted from
the experimental data [5,6,11,12]. Namely, the orbital slope
βl ¼ 1.44 GeV2 is 21% larger than βlðexpÞ ¼ 1.13 GeV2

of the leading RT. The radial slope βn ¼ 2.26 GeV2 is
about two times larger than the experimental βnðexpÞ ∼
1.2ð1Þ GeV2 for the states with l ≠ 0 [5,6] (and 1.5 times
larger than βnðl ¼ 0Þ for the radial ρ–trajectory), while the
intercept β0 ¼ 3πσ ¼ 1.696 GeV2 is 2.5 times larger than
the corresponding one in Eq. (1). Notice that the value of
the intercept cannot be decreased by introducing a negative
(fitting) constant to the potential V0, as it is often done in
potential models. Moreover, appearance of this constant in
the mass (or potential) violates the linearity of the RT. It is
important that in the RSH, used here, the qq̄ potential does
not contain a fitting constant.
Our goal here is to understand what effects are respon-

sible for the strong decrease of the intercept and the slopes
of the RT (5), to establish the interrelation between the
parameters of the RTs and the potential V0ðrÞ, and to show
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the role of the string and the self-energy corrections, which
are present in the mass formulas. In contrast to our previous
analysis [15,16] we do not assume here that a screening of
the GE potential VGE takes place at distances r < 1.2 fm
and this assumption agrees with the results of Ref. [27],
where it was shown that the screening effect of the GE
potential is not seen at distances r < 1.0 fm. We also
consider how the parameters of the RTs change for strong
and weak vector coupling, taken in VGE.
Our analysis is restricted to orbital excitations with l ≤ 3,

because high orbital excitations with l > 3 have to be
considered in another approximation of the RSH, where
the string corrections are very large and cannot be
considered as a perturbation [20], and the ground state
masses are described by the expression M2ðl; nr ¼ 0Þ ¼
2πσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

, in which the orbital slope of the leading RT
βlðnr ¼ 0Þ agrees well with the experimental number 2πσ,
if l ≥ 3.
We pay special attention to the negative correction

produced by the self-energy (SE) term [28], whose magni-
tude remains large, δSE ∼ −300 MeV, even for high exci-
tations of light mesons; being proportional to 1=MðnlÞ, it
maintains linearity of the RT.

II. THE MASS FORMULAS

Here we present the structure of the mass formula,
using the simplified version of the RSH, where the spin-
dependent potentials, as well as the self-energy and the
string contribution, are considered as a perturbation and the
values of the angular momentum are restricted to l ≤ 3
[15,16]. This RSH H with mq ¼ 0,

H ¼ μþ p2

μ
þ V0ðrÞ; ð6Þ

is expressed via the variable μ, determined by the extremum
condition, ∂H

∂μ ¼ 0. It gives μ ¼
ffiffiffiffiffi
p2

p
, i.e., μ is the kinetic

energy of a quark. Then the Hamiltonian H reduces to the
form H0 Eq. (2) and its e.v.s are defined by the spinless
Salpeter equation (SSE),

�
2

ffiffiffiffiffi
p2

q
þ V0ðrÞ

�
φnlðrÞ ¼ M0ðnlÞφnlðrÞ: ð7Þ

The e.v. M0ðnlÞ is an important part of the centroid mass
McogðnlÞ and for an instantaneous qq̄ interaction the
potential V0ðrÞ is taken as the sum of the confining and
GE terms,

V0ðrÞ ¼ VCðrÞ þ VGEðrÞ; ð8Þ

where the linear CP VCðrÞ is given by

VCðrÞ ¼ σr; σ ¼ 0.18 GeV2; ð9Þ

and also a flattened (screened) CP will be used,

VfðrÞ ¼ σfðrÞr: ð10Þ

The function σfðrÞ will be given in Sec. VI. The conven-
tional form of VGEðrÞ is

VGEðrÞ ¼ −
4αVðrÞ
3r

; ð11Þ

if there is no a screening effect, and the problem of the GE
screening will be discussed in Sec. V. The contributions
from the GE potential to the masses of excited states are not
large, ≲90 MeV, nevertheless, the GE correction is very
important, decreasing all parameters of the RTs.
The masses can be calculated in two ways: either solving

Eq. (7) with the potential V0ðrÞ ¼ VCðrÞ þ VGE, or con-
sidering VGEðrÞ as a perturbation. It can be shown that for
high excitations the exact and approximate values of mass
coincide within ∼10 MeV. Then in the RSH the centroid
mass McogðnlÞ includes the e.v. M0ðnlÞ and three negative
corrections: the self-energy and string corrections, and δGE,

McogðnlÞ ¼ M0ðnlÞ þ δGE þ δstrðnlÞ þ δSE: ð12Þ

where the self-energy correction is the largest one and all
three corrections together give a large negative contribu-
tion, ∼ − ð400–500Þ MeV, while the e.v.s of the ground
states (n ¼ 0) are the following: M0ð1SÞ ¼ 1.339 GeV,
M0ð1PÞ ¼ 1.792 GeV, M0ð1DÞ ¼ 2.155 GeV. It is worth
to underline that the centroid mass McogðnlÞ does not
contain a fitting negative constant C0, usually introduced in
potential models; this constant produces a nonlinear term
C0M0ðnlÞ in the squared mass and violates the linearity of
the RT. On the contrary, in our approach a negative
contribution from the self-energy correction, δSEðnlÞ

δSEðnlÞ ¼ −
ηfσ

μðnlÞ ; ηðqq̄Þ ¼ 0.90; ð13Þ

is proportional to 1=M0 via μðnlÞ (see below) and therefore
a nonlinear term does not appear in the RT. In Eq. (13) the
number ηf depends on the quark flavor and in light mesons
we take ηf¼q ¼ 0.90 [28]. The situation is different in
heavy quarkonia, where the self-energy term is small and
usually neglected, since, e.g., in bottomonium ηb ∼ 0.1,
μbðnlÞ ∼ 5 GeV, and δSE ∼ −3 MeV. On the contrary, in a
light meson δSE has large magnitude,∼ − ð300–400Þ MeV,
because the kinetic energy m.e. is small. It is important that
this correction slightly decreases in higher excitations, but
still remains large.
Another negative correction, the string correction

δstrðnlÞ, (l ¼ 1, 2, 3) [15,16], given by
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δstrðnlÞ ¼ −
lðlþ 1Þσhr−1i

8μ2ðnlÞ ; ð14Þ

increases for states with growing l and decreases for larger
n, however, its magnitude∼ð−40;−80;−110Þ (in MeV) for
l ¼ 1, 2, 3 (n ¼ 0) is not large. Notice that the expression of
δstr, Eq. (14) does not change if a flattened CP is taken, but
in this case the string tension σ has to be replaced by the
averaged m.e. hσfðrÞinl, which is different for every state
and smaller than σ.
For high excitations with l ≠ 0 knowledge of the

centroid mass is very important, since due to their large
sizes their fine-structure splittings are small and McogðnlÞ
practically coincides with the masses of the members of the
multiplet. This does not refer to low nS (1P) states, where
the spin-spin (fine-structure) splitting is not small. In
particular, in the n3S1 states the hyperfine correction, equal
to − 1

4
δhfðnSÞ, with

δhfðnSÞ ¼
8

9
αhfτðnSÞ; with τðnSÞ ¼ jRnSð0Þj2

μ2ðnSÞ ; ð15Þ

is not small even for the 43S1 resonance. Calculations show
that the ratio τðnSÞ, Eq. (15), weakly depends on the
parameters of the GE potential, e.g., for the ground 1S state
τð1SÞ ¼ ð0.85–1.05Þ GeV is obtained for different types of
GE potentials. This fact allows us to extractMcogð1SÞ from
experiment with an accuracy ∼10 MeV (see below).
Notice that knowledge of Mcogð1SÞ is of special

importance since it determines the intercept of the leading
l–trajectory (n ¼ 0),

M2
cogðl; n ¼ 0Þ ¼ βllþ βcog; ðn ¼ nr ¼ 0Þ; ð16Þ

with the intercept βcog ¼ M2
cogð1SÞ, where Mcogð1SÞ ¼

Mðρð1SÞÞ − 1
4
δhfð1SÞ. In Eq. (15) the hyperfine correction

can be determined with ∼10 MeV accuracy, if the universal
hyperfine coupling αhf ¼ 0.33ð1Þ, the same as in heavy-
light mesons and bottomonium [29], and the theoretical
number τð1SÞ ¼ 0.95ð10Þ GeV is used. It gives δhfð1SÞ ¼
280ð25Þ MeV and Mcogð1S; expÞ ¼ ð775 − 1

4
280ð25ÞÞ ¼

705ð6Þ MeV, so that the “experimental” intercept,

βcogðexpÞ ¼ ð0.705ð6ÞÞ2 GeV2 ¼ 0.50ð1Þ GeV2; ð17Þ

is smaller than the intercept of the leading RT in the
ðM2; JÞ-plane, defined by the mass of ρð13S1Þ: β0ðexpÞ ¼
M2ðρð1S; expÞÞ ¼ 0.60 GeV2.
Notice that for radial excitations the difference between

the squared masses, b2n ¼ M2
cogðnþ 1; lÞ −M2

cogðn; lÞ, of
neighbouring states can depend on the radial quantum
number n. If for all states with a given l the numbers b2n ¼ b
are equal, then the radial RT reduces to the radial RT,
introduced in Ref. [5]:

Mðn; lÞ2 ¼ M2
g þ bn; ðl fixedÞ; ð18Þ

where Mgðn ¼ 0; lÞ is the mass of the ground state.

III. LINEAR CONFINING POTENTIAL

The simplest way to show the structure of the RTs is to
determine the light meson spectrum in a purely linear CP
and consider other interactions as a perturbation; in this
case the mass Mcog is defined by analytical expressions.
Notice that the linear CP plays a special role in string theory
as well as in the AdS approach [30]. In a linear potential the
mass formula is simplified owing to the relations,

M0ðnlÞ¼4μ0ðnlÞ; σhrinl¼2μ0ðnlÞ¼1=2M0ðnlÞ: ð19Þ

In Table II we give the sizes h
ffiffiffiffiffi
r2

p
inl, the m.e.s hr−1inl, and

the e.v.s M0ðnlÞ, solving Eq. (7) with the linear potential
VCðrÞ with σ ¼ 0.180 GeV2.
Knowing the m.e.s hr−1inl and the e.v.sM0ðnlÞ, we have

observed that in a purely linear CP the m.e.s hr−1inl can be
approximated with an accuracy better than 2% as

hr−1inl ¼ M0ðnlÞAðnlÞ;

AðnlÞ ¼ 0.262ðlþ 2Þ
ðlþ 1Þðlþ nþ 2Þ ; ðl ≠ 0Þ;

hr−1in ¼ M0A0ðnÞ;

A0ðnÞ ¼ 2
0.271
nþ 2

¼ 0.542
nþ 2

; ðl ¼ 0Þ; ð20Þ

TABLE II. The eigenvaluesM0ðnlÞ (in GeV), the m.e.s h
ffiffiffiffiffi
r2

p
inl

(in fm), hr−1inl (in GeV) of Eq. (7) with the linear potential
VcðrÞ ¼ σr, σ ¼ 0.18 GeV2.

State ðnþ 1ÞL M0ðnlÞ h
ffiffiffiffiffi
r2

p
inl hr−1inl

1S 1.339 0.82 0.364
2S 1.998 1.26 0.330
3S 2.498 1.58 0.296
4S 2.915 1.85 0.273

1P 1.792 1.06 0.236
2P 2.315 1.43 0.226
3P 2.750 1.72 0.214
4P 3.129 1.97 0.204

1D 2.155 1.24 0.187
2D 2.601 1.57 0.182
3D 2.990 1.84 0.176
4D 3.337 2.08 0.170

1F 2.465 1.41 0.159
2F 2.861 1.71 0.157
3F 3.215 1.96 0.153
4F 3.538 2.18 0.149
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i.e., they are proportional to M0ðnlÞ. Then, with the use of
the relations (19) and (20) all corrections to McogðnlÞ are
given by analytical expressions.
For further analysis we rewrite the expression ofM0ðnlÞ2

(3) with σ ¼ 0.180 GeV2,

M2
0ðnlÞðinGeV2Þ¼ ð1.440lþ2.262nþ1.696ξðnlÞÞ; ð21Þ

where the numbers ξðnlÞ ¼ 1.0 with an accuracy better
than 2% for all states, with the exception of ξð1SÞ ¼ 1.057
and ξð1PÞ ¼ 1.045. Note that in M2

0ðnlÞ (21) the slopes
βl ¼ 1.44 GeV2, βn ¼ 2.26 GeV2, and the intercept βcog ¼
1.70ξ GeV2 are significantly larger than those, extracted
from experimental data [5,6,11,12], while due to the GE,
the string, and the SE corrections the masses McogðnlÞ and
the parameters of the RT decrease.
Then with the use of Eqs. (19) and (20) the orbital slope

decreases owing to the string correction Eq. (14),

βl ¼ σ

�
8 − 1.048

lðlþ 2Þ
lþ 2þ n

�
for M ¼ M0 þ δstr; ð22Þ

and in the general case it depends on the quantum number l:
βlðn ¼ 0Þ ¼ 1.251 GeV2 for l ¼ 1 and βlðn ¼ 0Þ ¼
1.067 GeV2 for l ¼ 2; for the radial RT with n ¼ 1 the
slope βlðn ¼ 1Þ ¼ 1.299 GeV2 for l ¼ 1 and βlðn ¼ 1Þ ¼
1.138 GeV2 for l ¼ 2; for the daughter RT with n ¼ 2

βlðn ¼ 2Þ ¼ 1.327 GeV2 (l ¼ 1) and βlðn ¼ 2Þ ¼
1.188 GeV2 for l ¼ 2. Thus with the string correction
taken into account the orbital slope remains large and
l-dependent, i.e., the RTs can be considered as approx-
imately linear.

A. The GE correction to the centroid mass

Here we take the GE potential as a perturbation and
later show that exact solutions of the SSE with V0ðrÞ ¼
VCðrÞ þ VGE give a contribution to the mass, which
coincides with the GE correction with high accuracy
(see Sec. VI). Using Eq. (20) the GE correction (11) can
be rewritten as (eeff ¼ 4

3
αeff )

δGE ¼ −
4

3
αeffðnlÞhr−1inl ¼ −eeffM0ðnlÞAðnlÞ; ð23Þ

where in general the effective coupling, αeffðnlÞ ¼ hαVðrÞi
depends on the quantum numbers n and l. However, in high
excitations this dependence becomes weak because of their
large sizes, ≳1.4 fm, and the m.e.s αeffðnlÞ are practically
equal for all states, with the exception of the 1S, 2S, and 1P
ground states, for which the asymptotic freedom (AF)
behavior of the coupling is important (see below). For other
states, the values of αeffðnlÞ appear to be only ∼3% smaller
than the asymptotic coupling αasym. Therefore, for high
excitations one can put αeffðnlÞ ¼ αasym. A typical αasym,

used in relativistic models, lies in the range, 0.55–0.63
[3,4,16]. This value was also derived on a fundamental
level [23,25,26], where the uncertainty depends on the
values of the vector QCD constant ΛVðnf ¼ 3Þ and
the infrared (IR) regulator taken (see Sec. V). With the
Coulomb constant easym ¼ 4

3
αasym ≅ 0.72ð4Þ and using the

factor AðnlÞ (20), one can see that

δGEðnlÞ ¼ −easymM0ðnlÞAðnlÞ; ðl ≠ 0; n ≥ 1Þ; ð24Þ

is proportional to the e.v. M0ðnlÞ. It means that the GE
correction gives a negative contribution to all parameters of
the RT: the slopes βl, βn, and the intercept. Then the mass
MGEðnlÞ with the GE correction taken into account is

MGEðnlÞ ¼ M0ðnlÞZðnlÞ; with

ZðnlÞ ¼ ð1 − easymAðnlÞÞ; ðl ≠ 0; n ≥ 1Þ: ð25Þ

but for the nS states

MGEððnþ 1ÞSÞ ¼ M0ððnþ 1ÞSÞZ0ðnÞ;
Z0ðnÞ ¼ ð1 − e0ðnÞA0ðnÞÞ; ð26Þ

where e0ðnÞ ≠ easym and the quantities A0ðnÞ are larger
than AðnlÞ with l ≠ 0. From Eq. (25) one can see that
the parameters of the RTs can depend on the quantum
numbers through the factor AðnlÞ, but in high excitations
this dependence is weak because the term easymAðnlÞ is
small even for a strong GE potential. We choose
the Coulomb constant, easym ¼ 0.76 (or αasym ¼ 0.57)
(see below) and define the average hAðl; fixed nÞi ¼
1
2
ðAðl ¼ 1; nÞ þ Aðl ¼ 2; nÞÞ. Then for n ¼ 0 one finds

easymhAðl; n ¼ 0Þi ¼ 0.084ð16Þ, Zðl; n ¼ 0Þ ¼ 0.916ð16Þ,
and Z2ðl; n ¼ 0Þ ¼ 0.839ð30Þ. For n ¼ 1 with
easymhAðl; n ¼ 1Þi ¼ 0.064ð11Þ, the factor Zðn ¼ 1Þ ¼
0.936ð11Þ, Z2ðn ¼ 1Þ ¼ 0.876ð20Þ is larger; for the daugh-
ter RT with n ¼ 2, hAðn ¼ 2Þi ¼ 0.052ð8Þ, Z2ðn ¼ 2Þ ¼
0.899ð14Þ are obtained. We can conclude that in the linear
CP due to the factor Z2ðnlÞ, defined by the GE correction,
the orbital slope decreases by ∼ð10–16Þ%, but still remains
large, βl ∼ ð1.24–1.30Þ GeV2. Also the intercept decreases,
although its value, 3πσZ2ðnÞ∼ð1.43–1.53ÞÞGeV2, remains
large for all RTs.
The GE corrections give a contribution to the kinetic

energy m.e.s, denoted as μGE, see Eq. (27), which are given
in Table III together with the SE and the string corrections,
and McogðnlÞ. From this table one can see that for the
ground states their masses agree with experiment, while for
the 2S, 2P, and 2D states and higher excitations the masses
McogðnlÞ are larger by (100-200) MeV than the exper-
imental values and the only way to decrease these masses is
to take into account a flattened, or screened, CP. Note
that without the SE and string corrections the masses
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MGEðnlÞ ¼ M0 þ δGE are larger by ∼ð300–400Þ MeV than
the experimental masses McogðexpÞ.
There exists another effect, produced by the GE poten-

tial, which increases the quark kinetic energy and for the
states with l ≠ 0 this m.e. can be approximated (with an
accuracy better than 5%) by

μGEðnlÞ ¼ μ0ðnlÞ þ
1

4
δGEðnlÞ

¼ M0ðnlÞ
4

ð1þ eeffðnlÞAðnlÞÞ: ð27Þ

The kinetic energy μGE is larger than μ0ðnlÞ and has to be
taken into account in the self-energy and the string
corrections, which decrease due to this effect. In some
cases, instead of the approximation (27), one can use
another approximation for μGE,

μGEðnlÞ¼1.11μ0ðnlÞ¼0.275M0ðnlÞ;
μGEðn¼ l¼0Þ¼1.21μ0ðl¼n¼0Þ¼0.3025M0ðl¼n¼0Þ:

ð28Þ

B. The string correction

With the use of the modified kinetic energy μGE (28) the
string correction, proportional to hr−1inl ¼ AðnlÞM0ðnlÞ
(13), can be written as

δstrðnlÞ ¼ −lðlþ 1Þ σhr
−1i

8μ2GE
¼ −lðlþ 1Þ1.623σAðnlÞM−1

0 ;

ð29Þ

i.e., it is proportional to l and contributes only to the orbital
slope βl, decreasing its value. Since the string correction is
not large (δstr ∼ −45 MeV for the 1P state, ∼ − 80 MeV,
∼ − 105 MeV, respectively, for the 1D and 1F ground
states, and smaller for radial excitations (see Table III), it

decreases the orbital slope only by (5–10)%. Nevertheless,
taking into account the string correction improves the
agreement of the theoretical βl with the experimental value
βlðexpÞ ¼ 1.13 GeV2 [11].

C. The self-energy correction

The SE correction (13) is of special importance in light
mesons and with the modified kinetic energy Eq. (27) can
be rewritten as

δSEðnlÞ ¼ −
0.9σ
μGE

¼ −
3.243σ
M0ðnlÞ

; ð30Þ

being proportional to M−1
0 ðnlÞ. Therefore, δSE produces a

negative constant in the squared mass and strongly
decreases the intercept, but does not change the radial
and orbital slopes.
In Table III the centroid mass McogðnlÞ (10), the correc-

tions δGE, δstr, δSE, defined by the Eqs. (24), (29), and (30),
are given together with the averaged kinetic energy μGE (27)
and the experimental values ofMcogðnlÞ, which are known,
if the experimental masses of all members of a multiplet are
measured. In the cases where in the PDG [10] only the mass
of the highest state with J ¼ lþ 1 is given, then an
inequality Mcogðnl; expÞ < MðJ ¼ lþ 1; expÞ takes place.
For illustration we have chosen the vector coupling equal to
a constant, αV ¼ 0.482, or e ¼ 0.643, and neglected the
asymptotic freedom (AF) effect.
In a more realistic case one can take αeffðnlÞ ¼ αðasymÞ,

i.e., eeffðnlÞ ¼ easym, for all states (with exception of the
states 1S, 2S, and 1P); then ZðnlÞ¼1−easymAðnlÞÞ and the
expression of the centroid mass McogðnlÞ is simplified to

McogðnlÞ ¼ M0ðnlÞZðnlÞ − 1.623lðlþ 1Þσ AðnlÞ
M0

−
3.24σ
M0

;

ðl ≠ 0; n ≥ 1Þ: ð31Þ

TABLE III. The centroid mass McogðnlÞ (12), the kinetic energy μGEðnlÞ, the GE correction δGE with e ¼ 0.643
(in GeV), and the corrections δstr, δSE (in GeV) in the purely linear confining potential.

State ðnþ 1ÞL δGE μGE δSE δstr McogðnlÞ Mcog, exp [10]

1S −0.234 0.405 −0.400 0 0.705 0.705(6)
2S −0.212 0.553 −0.293 0 1.493 1.424(25)
3S −0.182 0.672 −0.241 0 2.067 1.875(5)
4S −0.168 0.773 −0.210 0 2.529 Absent

1P −0.152 0.486 −0.333 −0.044 1.263 <1.318
2P −0.146 0.615 −0.263 −0.027 1.879 <1.732ð9Þ
3P −0.138 0.722 −0.224 −0.018 2.369 Absent

1D −0.120 0.569 −0.285 −0.076 1.674 ≈1.69
2D −0.117 0.679 −0.238 −0.052 2.194 ≈1.990
3D −0.113 0.776 −0.209 −0.038 2.630 absent
1F −0.102 0.642 −0.252 −0.102 2.009 ∼1.995ð10Þ
2F −0.101 0.741 −0.219 −0.076 2.465 Absent
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Then the squared mass has a clear structure,

M2
cogðnlÞ ¼ M2

0Z
2ðnlÞ − 3.246σlðlþ 1ÞAðnlÞZðnlÞ

− 6.48σZðnlÞ þ δ2SE þ small terms: ð32Þ

From Eq. (32) several conclusions can be drawn. One can
see that the corresponding RT is nonlinear through the
terms AðnlÞ and ZðnlÞ, however, taking the averaged Ā ¼
hAðnÞi for a given l, the radial RTs can be considered as
approximately linear.
In the radial slope the GE correction (l is fixed) is defined

by ZðlÞ2,

βnðfixed lÞ ¼ 4πσZ2ðlÞ ¼ 4πσð1 − eeffĀðlÞÞ2; ð33Þ

and the value βnðlÞ ¼ ð1.96–2.06Þ GeV2 remains large for
any l, being∼70% larger than the experimental radial slope,
βn ∼ 1.2ð1Þ GeV2 (l ≠ 0) [5–7], even if the strong GE
potential is used. Just owing to the large radial slope the
large masses McogðnlÞ, given in Table III, are obtained.
In that table we give McogðnlÞ, calculated with

eeff ¼ 0.643, which is smaller than easym, and in this case
Mcogð2SÞ is ∼70 MeV larger than Mðρð2SÞ; Mcogð2PÞ is
larger by ∼150 MeV than Mðað1320ÞÞ, and Mcogð2DÞ is
larger than ρ3ð1990Þ by ∼200 MeV. These masses would
be only ∼30 MeV smaller, if the larger eeff ¼ easym ¼ 0.76
was used.
The orbital slope decreases owing to both the GE and the

string corrections and with ZðnlÞ ¼ 1 − easymAðnlÞ,

βl ¼ σ

�
8Z2ðnlÞ − 0.851

lþ 2

lþ 2þ n
ZðnlÞ

�
; ð34Þ

where for large l and n ¼ 0, 1 the contribution from δ2str,
which was neglected in Eq. (34), may be not small.
For the leading Regge trajectory (LRT) with n ¼ 0 the

orbital slope with ĀðlÞ ¼ 0.084ð16Þ and easym ¼ 0.76, is
βlðn ¼ 0Þ ¼ 5.933σ ¼ 1.07ð3Þ GeV2, which is in good
agreement with the experimental value βlðexpÞ ¼
1.13ð1Þ GeV2 [7,11]. However, in a daughter RT, e.g.,
with n ¼ 2 [ĀðlÞ ¼ 0.052ð21Þ, easymĀðlÞ ¼ 0.044ð16Þ] the
orbital slope βlðn ¼ 2Þ ¼ 6.77σ ¼ 1.22 GeV2 is 14%
larger than βlðn ¼ 0Þ and this RT is not parallel to the LRT.
From Eq. (32) one can see that the contributions to the

intercept come from the GE and self-energy corrections.
For the LRT the intercept βcogðn ¼ 0Þ ¼ 0.50ð1Þ GeV2

was already determined from the experimental value
of Mðρð1SÞ, while in the orbital RT with (n ¼ 1)
(Āðn ¼ 1Þ ¼ 0.058ð14Þ, eA ¼ 0.044ð11Þ, Zðn ¼ 1Þ ¼
0.956) a cancellation of two terms occurs,

βcog ¼ σð3π0.9562 − 6.195Þ ¼ 2.42ð18Þσ ¼ 0.44ð3Þ GeV2;

ð35Þ

and the calculated intercept agrees with the experimental
intercept, βcogðexpÞ ¼ 0.50ð1Þ GeV2, within the accuracy
of the calculations.
Thus we conclude that in the purely linear CP

with all corrections taken into account and large
Coulomb constant, e ∼ ð0.64–0.76Þ, the masses of the
ground states agree with experiment, while the masses
of first excitations exceed the experimental values by
∼ð100–150Þ MeV.

IV. THE LEADING REGGE TRAJECTORY

The leading RT describes the ground states with S ¼ 1,
where the 1S, 1P, and 1D states have relatively small sizes
(see Table II), so for them the use of the linear CP can be
justified. In the ðJ;M2Þ-plane, (J ¼ lþ 1), the LRT can be
written as M2ðJ; n ¼ 0Þ ¼ ð1.13J − 0.53Þ GeV2, or in
the ðl;M2Þ-plane it can be rewritten similar to that for
M2

cogðnlÞ (16),

M2ðJ ¼ Sþ 1; n ¼ 0Þ ¼ βllþ β0J; with

βJ0 ¼ M2ðρð1SÞÞ ¼ 0.60 GeV2; ð36Þ

where the intercept β0J is larger than the intercept βcog ¼
Mcogð1SÞ2 ¼ 0.705ð6Þ2 GeV2 ¼ 0.50ð1ÞGeV2 (17).
To determine the intercept of the LRT it is not sufficient

to take into account the self-energy correction, otherwise in
a purely linear CP (with M0ð1SÞ ¼ 1.339 GeV and
μ0ð1SÞ ¼ M0

4
¼ 0.335 MeV) one would obtain the mass

Mcogð1S; linÞ ¼ M0ð1SÞ − 3.6σ
M0ð1SÞ ¼ 0.826 GeV

(σ ¼ 0.180 GeV2), which is even larger than the exper-
imental mass of the ρð1SÞ meson. As was shown in
previous section, owing to the GE potential, the kinetic
energy increases from the value μ0ð1SÞ ¼ 0.335 GeV to
μGEð1SÞ ¼ ð0.395 ÷ 0.415Þ GeV¼ 0.405ð10Þ GeV, where
the uncertainty depends on the uncertainty in the QCD
vector constant ΛVðnf ¼ 3Þ taken (see Table IV and
Sec. VI), and the value of μGE ¼ 0.405ð10Þ GeV is
obtained from the exact solutions of the SSE (7).
With μGEð1SÞ ¼ 0.405ð10Þ GeV the self-energy

correction, δSEð1SÞ ¼ −0.400ð10Þ GeV, decreases, being
∼100 MeV smaller than that for μ0ð1SÞ.
In the LRT the effective constants αeffð1SÞ ¼ hαVðrÞi1S

are not equal for all states, since the AF effect decreases αeff
for the 1S and 1P states by ∼ð10–15Þ%, while for the states
with l ¼ 2, 3 their couplings are practically equal to the
asymptotic coupling αasym.
It is of interest to notice that the coupling αeffð1SÞ can be

extracted from experiment, if one uses the “experimental”
value of the centroid mass,Mcogð1S; expÞ ¼ 0.705ð6Þ GeV
(17). Taking μGE¼0.405ð10ÞGeV, δSEð1SÞ ¼ 0.400 GeV,
and the mass Mcogð1SÞ given by
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Mcogð1SÞ ¼ M0ð1SÞ þ δSEð1SÞ þ δGEð1SÞ
¼ ð1.339 − 0.400ð10Þ − e0ð1SÞhr−1i1SÞ GeV
¼ 0.705ð6Þ GeV; ð37Þ

one determines the effective constant e0ð1SÞ ¼ 0.643ð41Þ
(here hr−1i1S ¼ 0.364 GeV), or the effective coupling,
αeffð1SÞ ¼ 0.482ð31Þ, with a theoretical error ∼6%. Note
that the lower limit of αeffð1SÞ ¼ 0.45, which appears to be
significantly larger than αV ¼ 0.30, used in our paper
before [15]. At the same time the upper limit of this
coupling, equal to 0.51, is smaller than αasym ¼ 0.57ð3Þ,
elasym ¼ 0.76, used in high excitations, confirming the
influence of the AF effect.
For the ground 1S state from Eq. (20) one has

A0ðn ¼ 0Þ ¼ 0.272 and with the fitted value e0ð1SÞ ¼
0.643ð41Þ (δGEð1SÞ ¼ −0.234ð15Þ GeV), one obtains the
factor e0ð1SÞA0ðn ¼ 0Þ ¼ 0.175ð11Þ, or

Z0ð1SÞ ¼ 1 − e0A0ðn ¼ 0Þ ¼ 0.825ð16Þ; ð38Þ

i.e., the factor Z2
0ð1SÞ decreases the squared mass (37) by

∼32% and provides the correct value of the intercept,
βcogð1SÞ ¼ βcogðexpÞ ¼ 0.50ð1Þ GeV2. In the ground
states with l ≠ 0 the GE correction (24), proportional to
M0ðl; n ¼ 0Þ,

δGEð1lÞ¼−0.262elðn¼ 0ÞM0ð1lÞ
lþ1

; ðl≠ 0;n¼ 0Þ; ð39Þ

in general contains different values of elðn ¼ 0Þ and
Zðl; n ¼ 0Þ

Zðl; n ¼ 0Þ ¼ 1 − 0.262
elðn ¼ 0Þ
lþ 1

; ðl ≠ 0Þ: ð40Þ

Then the centroid mass can be rewritten as,

Mcogð1lÞ¼M0ð1lÞZðl;0Þ−
3.243σ
M0ð1lÞ

−σl
0.427
M0

; ðl≠ 0Þ:

ð41Þ

If the approximate relation μGE ¼ 1.11μ0, following
from Eqs. (27) and (28), is used, then the squared mass
M2

cogð1lÞ is

M2
cogð1lÞ ¼ M2

0Z
2ðl; 0Þ − 0.851σlZðl; 0Þ − 6.486σZðl; 0Þ

þ δ2SE þ small terms; ð42Þ

Here, in the orbital slope the constants elðn ¼ 0Þ are
different for the 1P and the ground states with l ≥ 2, for
which the asymptotic value, elðl; n ¼ 0Þ ¼ elasym can be
used, while due to the AF effect the coupling αeffð1PÞ has a
value close to that for the 1S state. Here we take
elðl ¼ 1; n ¼ 0Þ ¼ e0 ¼ 0.643ð41Þ and elðl ≥ 2; n ¼ 0Þ ¼
easym ¼ 0.76. Then with Aðl ¼ 1; n ¼ 0Þ ¼ 0.131,
Aðl¼2;n¼0Þ¼0.0873 and the average, helAðl; n ¼ 0Þi ¼
0.075ð5Þ, and Zðn ¼ 0Þ ¼ 0.925ð5Þ from the Eq. (42) the
orbital slope is

βlðn ¼ 0Þ ¼ σðð8Z2ðn ¼ 0Þ − 0.851Zðn ¼ 0ÞÞ
¼ 6.06ð7Þσ ¼ 1.09ð1Þ GeV2; ð43Þ

which agrees almost precisely with experimental slope,
βl ¼ 1.13ð1Þ [7].
Also with the chosen constants elð1PÞ ¼ 0.643ð41Þ and

Zð1PÞ¼0.916ð5Þ the intercept, βcogð1PÞ¼σð3πZðn¼0Þ2−
6.484Zðn¼0ÞÞþδ2SE¼2.58ð5Þσ¼0.46ð1ÞGeV2, is obtained
in good agreement with the experimental number,
βcog ¼ 0.50ð1Þ, where a contribution from the squared
correction δ2SE ¼ 0.11 GeV2 is ∼25%.
In Table III for simplicity we give the centroid masses

with equal Coulomb constant, el ¼ e0 ¼ 0.643, and the
masses Mcogð1PÞ ¼ 1263 MeV, Mcogð1DÞ ¼ 1674 MeV,
Mcogð1FÞ ¼ 2009 MeV (without fine-structure splitting)
turn out to be in good agreement with the experimental
masses of a2ð1320Þ, ρ3ð1690Þ, and a4ð2040Þ (its mass,
MðexpÞ ¼ 1995þ10

−8 MeV) [10]). This agreement indicates
that in the ground states with l ≥ 2 the fine-structure
splittings are not large. Notice that the magnitudes of
the string corrections, which are equal to −48 MeV,
−81 MeV, and −142 MeV, for l ¼ 1, 2, 3, respectively,
grow for increasing l.

TABLE IV. The averaged values of the orbital and the radial slopes, and the intercept (in GeV2) of the Regge
trajectories for the linear CP VCðrÞ (σ ¼ 0.18 GeV2) and different gluon-exchange terms VGE.

Potential Corrections
Linear CP Linear CPþ weak VGE Linear CPþ strong VGE

0 δSE ≠ 0, δSE ≠ 0

αðeffÞ 0 0.30 0. 57
hβlðn ¼ 2Þi 1.440 1.225(1) 1.13(2)
hβlðn ¼ 1Þi 1.440 1.17(4) 1.13(3)
hβlðn ¼ 0Þi, l ≠ 0 1.440 1.12(3) 1.09(2)
hβni (l ≠ 0) 2.262 2.14(2) 1.97 (5)
hβcogi, (n ¼ 2) 1.696 0.47(1) 0.46(2)
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In conclusion in Table IV we give the parameters of the
RTs for different types of the potential V0ðrÞ: for the purely
linear CP, the linear CPþ weakVGE, and for the linear
CPþ strong VGE.
Thus, our analysis of the RTs, when the CP is linear at all

distances and the SE, the string and the GE contributions
are taken as a perturbations, has allowed to get analytical
expressions for the masses and the parameters of the RTs,
which have several characteristic features:
(1) The radial slope, βn ≅ 2.0 GeV2 (l ¼ 1, 2, 3),

remains larger than βnðexpÞ ¼ 1.2ð1Þ GeV2 by
∼60%, irrespective of the strength of the GE
potential used, and the cases with αeff ¼ 0.30 and
αeff ¼ 0.57 were compared.

(2) On the contrary, the orbital slope of the LRT
βlðn ¼ 0Þ ¼ 1.09ð1Þ GeV2 agrees with the exper-
imental value, if the strong vector coupling αV ∼
0.53ð4Þ is taken. This choice of the coupling is
preferable, since for small coupling, αV ¼ 0.30, the
orbital slope βlðn ¼ 0Þ ∼ 1.20ð2Þ GeV2, and the
mass of ρð1SÞ is larger than in experiment.

(3) In the linear CP the orbital slope of the daughter RTs
(n ≥ 1) is (10–15)% larger than βlðn ¼ 0Þ≈
βlðexpÞ ¼ 1.13ð1Þ GeV2, even if the strong GE
potential is used. Precisely for that reason the qq̄
interaction has to be modified at large distances.

(4) The largest effect from the GE potential refers to the
masses of the nS states, which increases the radial
slope of the ρðnSÞ-trajectory (see Sec. VI).

V. THE GLUON-EXCHANGE POTENTIAL
AT LARGE DISTANCES

Here we use the conventional qq̄ potential V0ðrÞ as a
simple sum, Eq. (8). This representation is confirmed by the
Casimir scaling effect, observed in lattice QCD [31] and
derived in the field correlator method [32]. Meanwhile, this
choice as the sum of two terms does not imply that each
term, the CP and the GE potentials, is described by the
simple expression as in Eqs. (9) and (11) at all distances.
Moreover, in lattice QCD the linear behavior of the CP is
proved to be valid only in the region r≲ 1.2 fm, while for
r > 1.2 fm, the flattening, or screening, of the CP is seen,
but the details of VGE are not studied yet and the flattened
CP was only introduced phenomenologically in several
models [15,33,34].
Also the expression of the GE potential (11), taken from

perturbative QCD, in a strict sense is valid only up to the
momentum q2 ≳ 1.5 GeV2 in momentum space, or down
to very small distances, r < 0.1 fm in coordinate space
[35,36]. Therefore, to use VGEðrÞ in coordinate space in the
whole region, one must first regularize the vector coupling
αVðq2Þ in momentum space and then regularize αVðrÞ by
using in Eq. (47) (see below) the regularized αVðq2Þ. Notice
that the asymptotic values of αV are equal in momentum

and coordinate space [36]. It seemingly supports the
idea that the OGE and confining interactions are not
independent.
Here we follow the detailed analysis from Ref. [27],

which reveals at least three important effects, which can
modify VCðrÞ and VGE owing to background fields.
(1) The gauge invariance of the gluon exchange in the

confining background requires the propagating
gluon to be inside the confining film (the surface,
filled by the background fields), connecting the q
and q̄ trajectories. The resulting area of the film
should obey the Wilson minimal-area law [27].

(2) The propagating gluon can create gg (gluon-gluon)
loops in the confining film only in the higher OðαsÞ
orders, which introduces a new mass parameter
MB [37], expressed via the string tension, and its
value, M2

B ¼ 2πσ, defined with 10% accuracy,
enters in the evolution equation together with q2,
making the coupling dependent on the variable
(q2 þM2

B) [16,37].
(3) If the confining string is long, it can create light qq̄

holes in the confining film, thus decreasing the
surface of the Wilson loop (i.e., the film surface).
A finite density of these holes gives rise to the
flattening of the confining potential at large r and
due to the flattening effect the masses of high
excitations decrease, since their effective string
tension is smaller for large r than that in the region
r < 1.2 fm [15,16].

The points 2 and 3 were discussed in the literature, while
the properties of the GE interaction needs some comments
and the behavior of VGE at large distances, called the color
Coulomb screening effect, was studied first in Ref. [38] and
recently in Ref. [27].
In the simplest treatment [38] a deformation of the

confining film, owing to propagating the quark and the
antiquark trajectories, was not optimal and due to the
transformation of a gluon into a one-gluon glue lump [23],
the screening of the GE interaction, VOGE ¼ − 4αv

3r fscr, was
shown to exist already at distances ∼0.6 fm. Notice that
such a strong screening is not seen in bottomonium, where
χbð2PÞ and ϒð3SÞ have sizes ∼0.6 fm and 0.7 fm [25,39].
In a more accurate treatment [27] one has to maintain full

gauge invariance of the OGE interaction, and in addition
take into account the Wilson criterium of the minimal area
law of the resulting film surface, which contains both OGE
and confinement. Denoting the time distances between
consecutive gluon-exchanges as L, at large L, one can
consider this system as a hybrid excitation of the qq̄ system

of size L. Then, the mass of a transverse excitation ismscr ≅ffiffiffiffi
12

p
L [40]. On the other hand, the average value of L enters
into the action’s (the total Lagrangian) exponent as
expð−VOGELÞ ∼Oð1Þ, or L−1 ≈ 4αV

3r . As a result one obtains
an estimate of the screening mass (if αV ≅ 0.50) [27],
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mscr ≈
ffiffiffiffiffi
12

p 4αV
3reff

≲ 0.40 GeV ðreff ≳ 1 fmÞ: ð44Þ

Note that this estimate refers to large distances, r≳ 1 fm,
where the deformation of the surface, due to the gluon
exchange, is significant, while the screening (and defor-
mation) is suppressed for the smaller L.
We may conclude that the flattening of the CP and the

screening of VGE start at approximately the same distances,
r > ð1.0–1.2Þ fm, but their nature is different. The flat-
tening effect appears due to creation of light qq̄ holes,
which, decreasing the film surface (or the Wilson loop),
also decreases the string tension at large distances.
The screening of the GE potential occurs because the

movement of the gluon is restricted inside the film surface
and gives rise to a deformation of the film, so that due to
confinement a kind of “gluon mass,” mscr ∼ 0.4 GeV,
appears. Thus the analysis of Ref. [27] does not support
the idea that the screening of the CP and the GE potential
have the same origin and the same screening function can
be used for both potentials as suggested in Ref. [33]. For
that reason, here the GE potential without screening is
taken, while in previous studies the small αV ¼ 0.30 (a kind
of screening) was used [15] and the GE potential with
exponential screening function expð−δrÞ (δ ¼ 0.20 GeV)
was taken in Ref. [16].
We also assume that the light mesons can be described

by the universal GE potential (11) with the same parameters
as in heavy quarkonia and heavy-light mesons [25,39],
where the value of the vector coupling αVðnfÞ is deter-
mined by the QCD vector constant ΛVðnfÞ, which is
defined through the QCD constant ΛMSðnfÞ [41]:

ΛVðnfÞ ¼ ΛMSðnfÞ exp
�
−

a1
2β0

�
; ð45Þ

where β0 ¼ 11 − 2
3
nf, a1 ¼ 31

3
− 10

9
nf. For nf ¼ 3 it gives

ΛVðnf ¼ 3Þ ¼ 1.4753ΛMSðnf ¼ 3Þ: ð46Þ

In pQCD the QCD constant ΛMSðnf ¼ 3Þ ¼
0.339ð10Þ GeV is now known from the analysis of
αsðnfÞ, where the coupling αsðMZÞ ¼ 0.1184ð7Þwas taken
as input and the matching procedure at the b-quark mass
(nf ¼ 5) and the c-quark mass (nf ¼ 4) was performed
[24]. Then the value ΛMSðnf ¼ 3Þ ¼ 339ð10Þ MeV is
obtained, which is significantly larger than that used in
the past [3]. With the use of the relation (46) the value,
λVðnf ¼ 3Þ ¼ 500ð15Þ MeV follows and this large number
has a small uncertainty. However, since the value
ΛMSðnf ¼ 3Þ depends on the b- an c-quark masses, taken
at the matching points, we expect that the uncertainty may
be larger and this statement is confirmed in the analysis
of the bottomonium spectrum [25], where a smaller
ΛVðnf ¼ 3Þ ¼ 480ð20Þ MeV was shown to provide the

best description of the bottomonium spectrum, if the IR
regulatorMB ¼ 1.15 GeV is used. Here in our study of the
light meson spectra the preferable value of Λðnf ¼ 3Þ,
which does not contradict the description of the bottomo-
nium spectrum, is ΛVðnf ¼ 3Þ ¼ 460� 20 MeV.
In coordinate space the strong vector coupling

αVðrÞðnf ¼ 3Þ is expressed via the vector coupling
αVðq2Þ in the momentum space [16,25],

αVðrÞ ¼
2

π

Z∞

0

dq
sinðqrÞ

q
αVðq2Þ; ð47Þ

which is taken in the two-loop approximation,

αVðq2Þ ¼
4π

9t

�
1 −

64

81

ln t
t

�
; ð48Þ

with t ¼ ln½ðq2 þM2
BÞ=Λ2

V�. The parameters ΛV and MB
are taken from Ref. [16],

ΛVðnf¼3Þ¼0.465GeV; MB¼1.15GeV;

αasym¼αVðr→∞Þ¼0.571;
4

3
αasym¼0.761: ð49Þ

where for ΛVðnf ¼ 3Þ ¼ 0.465 GeV the frozen (asymp-
totic) coupling αasym ¼ 0.571, or easym ¼ 0.761, and just
this value was used in our analysis of the RTs in
Secs. III and IV. From Eq. (47) it can be derived that
the asymptotic values of αVðq2Þ and αVðrÞ coincide
and the behavior of αVðrÞ for two values of the constant,
ΛVðnf ¼ 3Þ ¼ 0.465 GeV and 0.50 GeV, respectively,
with MB ¼ 1.15 GeV, is shown in Fig. 1.
As seen from Fig. 1, the AF effect is important only for

the 1S, 1P, and 2S states, whose sizes are ≲1.1 fm, and the
following effective couplings hαVÞðrÞr−1inl ¼ αeffhr−1inl
are defined:

FIG. 1. The GE potential in r-space, for two values of
ΛVðnf ¼ 3Þ: solid curve ΛV ¼ 0.465 GeV, dashed curve
ΛV ¼ 0.500 GeV.
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αeffð1SÞ ¼ 0.48; e0ð1SÞ ¼ 0.64;

αeffð1PÞ ¼ 0.495; elð1PÞ ¼ 0.66;

αeffð2SÞ ¼ 0.49 ðn ≥ 1Þ; e0ð2SÞ ¼ 0.65;

αeff ¼ 0.75ð1Þ ðl ≥ 2; n ≥ 1Þ: ð50Þ

As shown in Sec. III, the use of the effective coupling
allows to present the physical picture in a clear way and for
excited states provides the values of δGEðnlÞ, given in
Table III, with accuracy ∼ð10–15Þ MeV.

VI. THE FLATTENED POTENTIAL VfðrÞ
In the flattened CP VfðrÞ the string tension depends on r,

VfðrÞ ¼ σfðrÞr; σfðrÞ ¼ σð1 − γfðrÞÞ; ð51Þ

where σðrÞ is defined by three parameters: first, the
characteristic distance R0 ∼ ð1.2–1.4Þ fm, where the flat-
tening effect starts and string breaking becomes possible;
its value is taken from the lattice calculations [22]. The
second parameter, γ, determines the derivative of VfðrÞ and
the asymptotic value of the string tension,

σfðr → ∞Þ ¼ σð1 − γÞ: ð52Þ

The variation of the parameter γ in the range (0.30–0.50)
has confirmed the result of Ref. [16] that γ ¼ ð0.40–0.45Þ
provides the best description of the spectrum (see Fig. 2,
where the flattened CP is shown for γ ¼ 0.40).
The third parameter, the constant B, enters the function

fðrÞ,

fðrÞ ¼ expð ffiffiffi
σ

p ðr − R0ÞÞ
Bþ expð ffiffiffi

σ
p ðr − R0ÞÞ

: ð53Þ

where fðr ¼ R0Þ ¼ ðBþ 1Þ−1 at the point r ¼ R0 shows
how fast the increasing function fðrÞ is approaching its

asymptotic value, fasym ¼ 1.0, at large distances,
r ∼ 3.0 fm. In other aspects fðrÞ can be rather arbitrary.
In our analysis all parameters were varied in wide

ranges: γ ¼ 0.35–0.50, B ¼ 15–25, R0 ¼ ð5–8Þ GeV−1 ¼
ð1.0–1.6Þ fm, for which σfðasymÞ ¼ ð0.090–0.11Þ GeV2.
The best description of the spectrum is reached for the
parameter values

γ ¼ 0.40; B ¼ 20;

R0 ¼ 6.0 GeV−1; σ ¼ 0.182 GeV2: ð54Þ

From the physical point of view it is important that at large
distances the chosen potential, VfðrÞ → σf asymr becomes
again linear with small σf asym and therefore causes a quark
and antiquark to be confined in a meson. This property of
the flattened CP VfðrÞ differs from that of a screened CP
VscrðrÞ, used in many papers [33,34,42],

VscrðrÞ ¼ λrFscr; Fscr ¼
1 − expð−δrÞ

δr
;

λ ¼ 0.21 GeV2; δ ¼ 0.0979 GeV; ð55Þ

which has a linear behavior with large string tension λ ¼
0.21 GeV2 at r < 0.5 fm and a screening effect that starts
already at r ∼ 0.5 fm. At large distances Vscr is approach-
ing a constant, VscrðasymÞ ¼ λ

δ ¼ 2.145 GeV and therefore
the quark and antiquark inside a meson are not confined.
The behavior of VscrðrÞ is compared with VfðrÞ in Fig. 2.
Notice that the screening function Fscr cannot be used
in the GE potential, since it produces the interaction

VGEðscrÞ ¼ − e
δ
1−expð−δrÞ

r2 , in which the main term, propor-
tional to r−2 with very large Coulomb constant e

δ ∼ 5.0,
produces an unstable (unlimited) spectrum and cannot
be used.
In Eq. (54) the string tension σ ¼ 0.182 GeV2 is chosen

to keep for the 1S state the averaged string tension,
hσfð1SÞi ¼ 0.180 GeV2, as in the purely linear CP.
From our point of view the phenomenological potential
Vf represents the physical picture rather well, but it has a
negative feature, namely, the nonmonotonic behavior near
the point r ¼ R0, and to obtain a smooth behavior of some
matrix elements, a numerical regularization is needed.
With the flattened potential the spectrum significantly

changes, as compared to the linear CP. First, the sizesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2ðnlÞi

p
of the excited states increase and can reach

∼2 fm even for the 2D and 3S states (see Table V),
although the sizes of the low states (1S, 1P) remain not
large, in particular, the r.m.s of the ρð1SÞ meson,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2ð1SÞi

p
¼ 0.71 fm (if the GE potential is present), is

in good agreement with predictions in other approaches
[43] and for these states the linear CP can be used.
Secondly, due to the flattening effect the e.v.s M0fðnlÞ
can be approximated like that in Eq. (21) and for the set of

FIG. 2. The confining potential VfðrÞ in GeV in r-space, r in
GeV−1 is shown with the parameters from Eq. (54), solid line, and
the potential VscrðrÞ of Li and Chao, defined by Eq. (55),
dashed line.
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parameters Eq. (54) and γ ¼ 0.35, 0.40, 0.45 the squared
masses M2

0fðnlÞ with n ≥ 1 can be presented as,

M2
0fðnlÞðin GeV2Þ
¼ 0.86ð5Þlþ 1.24ð10Þnþ 2.51ð10Þ; ðγ ¼ 0.45Þ;
¼ 0.95ð5Þlþ 1.25ð13Þnþ 2.64ð10Þ; ðγ ¼ 0.40Þ;
¼ 1.04ð8Þlþ 1.35ð8Þnþ 2.65ð6Þ; ðγ ¼ 0.35Þ: ð56Þ

In all these cases n ≥ 1 and the ground states (n ¼ 0) are
not included, since their masses are determined by the
linear CP. In Eq. (56) one can see that the orbital and radial
slopes differ by ∼35% for all three values of γ, and the
orbital slope βl and the radial slope βn increase with
decreasing γ; also the values of both slopes are significantly
smaller than βl ¼ 1.44 GeV2 and βn ¼ 1.70 GeV2 in the
linear potential. This effect mostly occurs, because in the
higher excitations the averaged hσðnlÞi is ∼ð20–30Þ%
smaller than the string tension σ ¼ 0.18 GeV2. It is of
interest to notice that in the case with γ ¼ 0.40 calculated
here, βl and βn turn out to be very close to the values
obtained in the analysis of the experimental data in
Refs. [11,12].
An unexpected result refers to the intercept, which in

Eq. (56) is very large, ≅ 2.6 GeV2, being even larger than
in the linear CP. It means that in the flattened CP the GE
and the SE corrections remain very important, while the
string corrections are rather small. These corrections are
defined by the same general formulas Eqs. (13), (14), if
there the kinetic energy μðnlÞ and σ are replaced by the
m.e.s hμfi and hσfi, respectively. However, the relations
(19) and (20) for the m.e.s hr−1i and μfðnlÞ are not valid

anymore and they have to be calculated in every case
separately. In Table V we compare the r.m.s. in the linear
CP with that in the flattened CP (FCP) and FCPþ GE
potential, and show that in the FCP, with or without the GE
term, the sizes of the states with n ≥ 2 strongly increase.
An interesting feature of VfðrÞ refers to the averaged

m.e.s hr−1ðnlÞi (see Table V) and to hσfðnlÞi (see
Table VI), which for excitations with n > 1 coincide within
5% accuracy (if l ≥ 2). Also, in the flattened CP the kinetic
energies μfðnlÞ, as a function of n, grow slowly and
have about 100–200 MeV smaller values than μ0ðnlÞ
in the linear CP. Due to this feature the self-energy
correction, proportional to μ−1f , remains large, about
−ð240–300Þ MeV, and very important for high excitations.
Also, in the presence of the GE potential the kinetic energy
increases slowly, by ∼ð5–10Þ%, (see Table VII) and in
some cases the difference between them can be neglected.
In the flattened CP the m.e.s hr−1inl are small and

practically equal (for high excitations), and therefore they
cannot be expressed via the factors AðnlÞ (20) and ZðnlÞ
(25). Moreover, these m.e.s are not proportional to the e.v.s
M0fðnlÞ and this fact changes the physical picture. To
calculate the GE correction the general form δGEðnlÞ ¼
−eeffhr−1inl has to be used, and in the string and the SE
corrections the averaged string tensions, which are different
in the states with different l (and fixed n), have to be taken.
Since the GE correction is small, the orbital and the radial
slopes of the M2

gðnlÞ-trajectory, where Mg ¼ M0f þ δGE,
practically do not change (see their values in Eq. (56) for
γ ¼ 0.40):

M2
gðnlÞðin GeV2Þ ¼ 0.94ð4Þlþ 1.24ð9Þnþ 2.17ð7Þ:

ðl ≠ 0; γ ¼ 0.40; n ≥ 1Þ: ð57Þ

TABLE V. The r.m.s.(in fm) and hr−1ðnlÞi (in GeV) of light
mesons (mq ¼ 0) for the linear potential (LP) (σ ¼ 0.18 GeV2)
and the flattened confining potential (FCP) with the parameters
Eq. (54), and for the FCPþ GE potential with the parameters
from Eq. (49).

State r.m.s (LP) r.m.s. FCP r.m.s. FCPþ GE hr−1i (FCP)
1S 0.82 0.86 0.71 0.357
2S 1.47 1.53 1.30 0.288
3S 1.65 2.42 2.12 0.204
4S 1.78 2.67 2.61 0.193
5S 2.08 2.94 2.79 0.189

1P 1.06 1.13 1.00 0.226
2P 1.43 1.95 1.69 0.176
3P 1.72 2.64 2.53 0.147
4P 1.97 2.78 2.69 0.146

1D 1.24 1.41 1.28 0.172
2D 1.56 2.42 2.18 0.134
3D 1.83 2.70 2.67 0.130
4D 2.06 2.94 2.83 0.127

1F 1.41 1.77 1.59 0.134
2F 1.70 2.73 2.61 0.115

TABLE VI. The averaged hσfinl (in GeV2) for the flattened CP
with the parameters Eq. (54).

n=l 0 1 2 3

1 0.173 0.167 0.155 0.150
2 0.162 0.165 0.150 0.148
3 0.150 0.158 0.148 0.146

TABLE VII. The kinetic energies μgðnlÞ (in MeV) for the
potential V0fðrÞ ¼ VfðrÞ þ VGEðrÞ
n=l 0 1 2 3

0 400 491 539 564
1 460 480 525 580
2 520 482 536 594
3 550 500 560 620
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Thus, in the flattened CPþ GE potential the parameters of
the M2

gðnlÞ-trajectory appear to be only (1–3)% smaller
than those in the purely flattened CP.
In Tables VIII and IX besides the GE corrections,

we give also the e.v.s M0ðnlÞ of Eq. (7) with the linear
CP and the mass shifts, produced by the flattening
effect: ΔfðnlÞ ¼ M0ðnlÞ −M0fðnlÞ, which are large,
∼ − ð300–350Þ MeV. As seen from Eq. (57), the masses
MgðnlÞ, defined without the self-energy correction, are still
∼ð300–400Þ MeV larger than their experimental values in
Table IX and we come to the conclusion that the use of the
flattened CP and the GE correction cannot provide the
correct intercept, because the self-energy correction plays a
dominant role to decrease its value.
In Table VIII the masses Mðn3S1Þ of the n3S1 states [for

the set of the parameters (54)] together with the mass shifts
due to the flattening effect, ΔfðnlÞ ¼ M0fðnlÞ −M0ðnlÞ,
and all corrections, including the hyperfine correction δhf ,
are given. The masses of the n3S1 states agree with the
experimental values, with exception of the mass of ρð4SÞ,
whose value is not well established yet [10]; notice, that the
calculated mass, Mðρð4SÞÞ ¼ 2214 MeV, is in agreement
with the BABAR data [44]. Taking the masses from
Table VIII, the slope βnðl ¼ 0Þ of the ρðn3S1Þ trajectory,

βnðl ¼ 0Þ ¼ 1.43ð11Þ GeV2; ð58Þ

is obtained, which because of a large uncertainty can be
considered to be approximately linear. Nevertheless,
this radial slope is in good agreement with the experi-
mental βnðl ¼ 0; expÞ ¼ 1.47ð4ÞGeV2, if the following
experimental masses: ρð1SÞ ¼ 775ð3Þ MeV, ρð2SÞ ¼
1465ð25Þ MeV, ρð3SÞ ¼ 1890ð20Þ MeV, and ρð4SÞ ¼
2254 ð22ÞMeV [10], are used.
The masses of the orbital excitationsMgðnlÞ are given in

Table IX, where one can see that in the high excitations
(l ≠ 0, n ≥ 2) the shifts due to flattening, Δf ∼ −300 MeV,
are very large, while the GE corrections, ∼ − 90 MeV, are
relatively small. However, without the SE corrections, the
masses,MgðnlÞ¼M0ðnlÞþΔfðnlÞþδGEðnlÞ, (l≥1, n ≥ 1)
exceed by ∼ð300–400Þ MeV the experimental values.

VII. THE UNIVERSAL REGGE TRAJECTORIES

In the previous section it was shown that in the flattened
potential plus the GE correction, the masses MgðnlÞ are
larger than the experimental values by (300–400) MeV, and
other corrections have to be taken into account. The string
corrections δstr, defined by the Eq. (14), depend on the
m.e.s hr−1inl, while the expressions, Eqs. (19) and (20), are
not valid anymore and here the exact values of hr−1inl from
Table V (and the kinetic energy μgðnlÞ from Table VII) are
used. The values of the string correction,

δstrðnlÞ ¼ −lðlþ 1ÞhσðnlÞi hr
−1inl

8μ2gðnlÞ
: ð59Þ

are given in Table X. In high excitations they are small,
∼ − ð30–50Þ MeV. On the contrary, the SE corrections
remain large even in high excitations, where also the
centroid masses McogðnlÞ are given. From this table one
can also see that the centroid masses agree with the
experimental masses, although the fine-structure splittings
were not taken into account.
Then using the squared masses, the RT trajectory in the

(M2
cog, nl) plane (l ≠ 0) can be built,

M2
cogðn; lÞðin GeV2Þ ¼ 1.03ð9Þlþ 1.15ð9Þnþ 0.65ð15Þ;

ð60Þ

where the orbital and the radial slopes have rather close
values and even coincide within the theoretical errors.

TABLE VIII. The eigenvalues M0ðnSÞ (in MeV) of Eq. (7) with the linear potential, the shifts ΔfðnSÞ ¼ M0fðnSÞ −M0ðnSÞ, the
corrections δSE, δGE, δhf , and the masses Mðn3S1Þ.
State M0ðnSÞ ΔfðnSÞ δSEðnSÞ δGEðnSÞ δhfðnSÞ Mðn3S1Þ MðexpÞ [10]
13S1 1339 0 −405 −225 66 775 ρð775Þ, M ¼ 775.5ð3Þ
23S1 1998 −55 −338 −190 40 1455 ρð1465Þ, M ¼ 1465ð25Þ
33S1 2498 −198 −291 −143 26 1892 ρð1900Þ, M ¼ 1880ð30Þ
43S1 2915 −346 −244 −131 20 2214 ρð2150Þ, M ¼ 2254ð22Þ

TABLE IX. The eigenvalues M0ðnlÞ of Eq. (5) with linear CP,
the mass shifts ΔfðnlÞ, the GE corrections δGEðnlÞ (in MeV) and
Mgðn; lÞ ¼ M0 þ Δf þ δGE.

State M0ðnlÞ ΔfðnlÞ δGEðnlÞ MgðnlÞ Exp. [10]

1P 1792 0 −140 1652 a2ð1320Þ
2P 2315 −102 −144 2069 a2ð1700Þ
3P 2750 −278 −123 2349 Absent
4P 3129 −398 −114 2617 Absent

1D 2155 0 −124 2031 ρ3ð1700Þ
2D 2601 −173 −113 2315 ρð1990Þ
3D 2990 −342 −96 2552 Absent
4D 3337 −448 −94 2795 Absent

1F 2465 0 −97 2368 a4ð2040Þ
2F 2861 −256 −86 2519 Absent
3F 3215 −394 −84 2737 Absent
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However, the central value of the orbital slope of this RT
(60) is ∼10% smaller than that of the leading RT (43) and
this difference illustrates the accuracy of our calculations
using the flattened potential. In Table XI we compare the
masses of the high excitations with l ≠ 0, described by the
RT (60), and those given in Table X. One can see that in
most cases the agreement is better than 30 MeV.
We have chosen here the phenomenological flattened CP

(51), but one cannot exclude that the true (“ideal”) flattened
CP is different, in particular, because in our case the
matching of the linear and the flattened CP is not smooth.
Therefore, equal values of the radial and orbital slopes are
not excluded either. However, in our analysis the calculated
RT can be called approximately universal.
It is important to stress that in the flattened CP plus the

GE potential with the strong coupling, αasym ¼ 0.57, the
masses of the high excitations are too large and only due to
the self-energy correction correct values of the masses are
obtained. Our analysis also has shown that in the flattened
CP the role of the GE interaction is less important and
therefore one cannot draw a definite conclusion whether at
large distances a strong screening of the GE potential
exists, or not. This statement is supported by our result that
the RT for the flattened CP with γ ¼ 0.40 (56) and the RT
(57), where in the masses the GE correction is taken into
account, have practically equal βl ¼ 0.95ð5Þ GeV2 and
radial slope, βn ∼ 1.25ð14Þ GeV2.
To draw the conclusion whether the GE potential is

screened or not, it is more perspicuous to study not very
high excitations of light mesons, but to concentrate at lower
resonances with l ¼ 0, 1, whose sizes are not very large,
∼1 fm, and where the GE correction is more important.
Also the information about the GE interaction at large
distances can be extracted from the study of high excita-
tions (with n ≥ 2) in charmonium, or the bottomonium
resonances above the BB̄ threshold. Notice that in

charmonium the flattening effect is smaller than in light
mesons [39], but the GE correction is larger.

VIII. CONCLUSIONS

The spectrum of light mesons was studied with the use of
the RSH with the flattened confining potential (FCP),
taking into account the gluon-exchange (GE), the self-
energy (SE), and the string corrections. We have confirmed
that the flattening effect, existing due to the creation of light
qq̄-pairs, produces large mass shifts, which can reach
∼ − 300 MeV for the 3P and 3D excitations, and the best
set of the flattened potential parameters was determined.
Our calculations show that agreement with the experimen-
tal values of the masses can be reached, if all corrections are
taken into account, but only the self-energy correction
provides the linearity of the RT.
A special accent was placed on the role of the GE

potential by performing calculations with the universal GE
potential without screening, like the one that is used in
heavy quarkonia. Our analysis has shown that for a weak
GE potential (with strong screening) it is not possible to
describe the leading RT(n ¼ 0), while the masses of high
excitations weakly depend on the GE corrections. If the
strong universal GE potential, as in heavy quarkonia, is
taken, then the light meson masses with l ≠ 0 are described
by the RT, where the values of the orbital slope, βl ¼
1.03ð9Þ GeV2 and the radial slope, βn ¼ 1.15ð12Þ GeV2

are close, thus this RT can be considered as approximately
universal and the predicted masses agree with the existing
experimental data.
However, in any case the n3S1 -trajectory does not

belong to this RT, since their masses are strongly affected
by the GE interaction and the spin-spin interaction,
providing a large slope of the radial ρðn3S1Þ trajectory,
βn ≈ 1.43 GeV2.

TABLE X. The centroid massesMcogðnlÞ¼MgðnlÞþδSEþδstr
(in MeV), calculated with the parameters, Eq. (49), and γ ¼ 0.40.

State MgðnlÞ μgðnlÞ δSE δstr McogðnlÞ Exp. [10]

1P 1652 491 −330 −40 1282 a2ð1320Þ
2P 2069 480 −310 −33 1726 a2ð1700Þ
3P 2349 482 −291 −30 2028 Absent
4P 2617 500 −268 −25 2324 Absent

1D 2031 539 −292 −77 1662 ρ3ð1690Þ
2D 2315 525 −262 −60 1993 ρ3ð1990Þ
3D 2552 536 −257 −51 2244 Absent

1F 2368 564 −270 −107 1991 a4ð2040Þ
2F 2519 580 −231 −80 2208 Absent
3F 2737 594 −221 −74 2442 Absent

TABLE XI. Comparison of the masses Mcog (in MeV) from
Table X and those defined in the RT given in Eq. (60).

State McogðnlÞ MðnlÞ Eq. (60) Exp.

1P 1282 1315 a2ð1320Þ
2P 1726 1697 a2ð1700Þ
3P 2028 2007 Absent
4P 2324 2276 Absent

1D 1662 1661 ρ3ð1690Þ
2D 1993 1977 ρ3ð1990Þ
3D 2244 2249 Absent

1F 1991 1977 a4ð2000Þ
2F 2244 2249 Absent
3F 2442 2467 Absent
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