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Using a confining, symmetry-preserving regularization of a vector × vector contact interaction, we
compute the spectra of ground-state pseudoscalar and vector ðfḡÞ mesons, scalar and axial-vector ðfgÞ
diquarks, and JP ¼ 1=2þ; 3=2þ ðfghÞ baryons, where f; g; h ∈ fu; d; s; c; bg. The diquark correlations are
essentially dynamical and play a key role in formulating and solving the three-valence-quark baryon
problems. The baryon spectrum obtained from this largely algebraic approach reproduces the 22 known
experimental masses with an accuracy of 2.9(2.4)%. It also possesses the richness of states typical of
constituent-quark models, predicting many heavy-quark baryons not yet observed. This study indicates that
diquark correlations are an important component of all baryons; and owing to the dynamical character of
the diquarks, it is typically the lightest allowed diquark correlation that defines the most important
component of a baryon’s Faddeev amplitude.
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I. INTRODUCTION

There are five flavors of quarks that live long enough to
produce measurable bound states, and contemporary theory
and phenomenological models predict the existence of
bound systems with every allowed color-singlet ðfḡÞ com-
bination for mesons and ðfghÞ combination for baryons,
where f; g; h ∈ fu; d; s; c; bg. In fact, the predicted meson
and baryon spectra are so rich that, even regarding ground
states in the JP channels accessible to constituent quark
models, many bound states are “missing,” i.e., have not been
observed in experiment. (See, e.g., the quark model review
in Ref. [1].) This challenge has been accepted, with an array
of dedicated experiments underway, at facilities worldwide,
which seek to detect the missing states [2–7].
Regarding computations of such spectra, the numerical

simulation of lattice-regularized quantum chromodynamics
(lQCD) provides the most direct connection with the
standard model of particle physics, and many separate
efforts are underway. Some of the successes and challenges
are described, e.g., in Refs. [8,9]. and some recent spectrum
calculations are reported in Refs. [10–14].

TheDyson-Schwinger equations (DSEs) [15], a collection
of coupled integral equations that provide for a symmetry-
preserving treatment of the continuum bound-state problem,
have also been widely employed to compute hadron spectra
and interactions [16–19]. In this connection, the past decade
has seen marked improvements in understanding both (i) the
limitations and capacities of the approach and (ii) the breadth
and quality of the description of hadron properties, including
the spectrum of states [19–31].
Most recently, unified predictions for the spectra of

mesons and baryons in some of the low-lying flavor-
SUðNf ¼ 5Þ multiplets were delivered [32,33] using the
rainbow-ladder (RL) truncation of the bound-state equa-
tions, which is the leading order in a systematic scheme
[34–36]. While the coverage is still not as extensive as that
provided by constituent-quark potential models, whose
applications are canvassed in, e.g., Refs. [37–44], the
systematic RL studies have the advantage of providing
both (i) a unified, symmetry-preserving description of
mesons and baryons and (ii) a traceable connection to
quantum chromodynamics (QCD). In such continuum
studies, the next challenge is to proceed beyond the
leading-order truncation, an effort that is likely to benefit
from the use of high-performance computing.
Herein, on the other hand, we follow a different path and

adopt a largely algebraic approach. Namely, we exploit the
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fact that the mass of any given hadron is an integrated (long-
wavelength) quantity and thus not very sensitive to details of
the system’swave function. This being so, then it ought to be
possible to use a vector × vector contact interaction to
obtain both sound predictions for the ground-state spectrum
of SUðNf ¼ 5Þ mesons and baryons and reliable insights
into aspects of their structure. This has proven true for
SUðNf ¼ 3Þ systems [45–58] and for mesons with one or
more heavy quarks [59–62]. Hence, our goal is to minimally
refine the vector × vector contact interaction and therewith
deliver a unified description of all mesons and baryons in the
ground-statemultiplets ofSUðNf ¼ 5Þ, anticipating that the
framework’s simplicity will enable insights into features of
these systems that are obscured in approaches that rely
heavily on computer resources.
We describe our formulation of the contact interaction in

Sec. II, including a discussion of the regularization pro-
cedure. In addition to the four current-quark masses
(isospin symmetry is assumed), four parameters occur in
using the interaction to compute meson properties, and we
also explain how they are determined. The calculation of
meson properties is detailed in Sec. III.
In computing baryon spectra, we use a quarkþ diquark

approximation to the three-valence-quark problem and
hence require the masses and correlation amplitudes for
each diquark that can play a role. Their calculation is
explained in Sec. IV. The formulation and solution of the
baryon problem is discussed in Sec. V. It includes results for
the spectra of ground-state flavor-SUð5Þ JP ¼ 1=2þ; 3=2þ
baryons and their contact-interaction Faddeev amplitudes,
which are momentum independent.
Section VI presents a summary and also a perspective on

extensions of this study, including new directions.

II. CONTACT INTERACTION

A. Two-body scattering kernel

The key element in analyses of the continuum
bound-state problem for hadrons is the quark-quark scat-
tering kernel. In RL truncation that can be written
(k ¼ p1 − p0

1 ¼ p0
2 − p2) as

Kα1α
0
1
;α2α02

¼ GμνðkÞ½iγμ�α1α01 ½iγν�α2α02 ; ð1aÞ

GμνðkÞ ¼ G̃ðk2ÞTμνðkÞ; ð1bÞ

where k2TμνðkÞ ¼ k2δμν − kμkν. (Our Euclidean metric and
Dirac-matrix conventions are specified in Ref. [50],
Appendix A.) The defining quantity is G̃; and following
two decades of study, much has been learned about its
pointwise behavior using a combination of continuum and
lattice methods in QCD [63–65]. The qualitative conclu-
sion is that owing to the dynamical generation of a gluon
mass scale in QCD [66–75], G̃ saturates at infrared
momenta; hence, one may write

G̃ðk2Þ ¼k2≃0 4παIR
m2

G
: ð2Þ

In QCD, mG ≈ 0.5 GeV, αIR ≈ π [64,65]. We keep this
value of mG in developing the contact interaction for use in
RL truncation, but reduce αIR to a parameter. The latter is
necessary because the integrals that appear in contact-
interaction bound-state equations require ultraviolet regu-
larization, and this spoils the intimate connection between
infrared and ultraviolet scales that is a hallmark of QCD. In
addition, since a contact interaction cannot support relative
momentum between bound-state constituents, we simplify
the tensor structure in Eqs. (1) and define the contact-
interaction RL kernel as follows:

KCI
α1α

0
1
;α2α02

¼ 4παIR
m2

G
½iγμ�α1α01 ½iγμ�α2α02 : ð3Þ

As just remarked, any use of Eq. (3) in a DSE will
require imposition of an ultraviolet regularization scheme,
which should be symmetry preserving; and since the theory
is not renormalizable, the associated mass scales, Λuv, will
be additional physical parameters. It is useful to interpret
any one of these scales as an upper bound on the
momentum domain within which the properties of the
associated system are effectively momentum independent;
e.g., the π meson has a larger radius than the ηb; and hence
one should expect to use 1=Λπ

uv > 1=Ληc
uv. The implications

of this approach will subsequently be elucidated.
We will also introduce an infrared regularization scale,

Λir, when defining those integrals that contribute to the
bound-state problems [76]. Since chiral symmetry is
dynamically broken in our approach, ensuring the absence
of infrared divergences, Λir is not a necessary part of the
contact-interaction’s definition. On the other hand, by
excising momenta less than Λir, one achieves a rudimentary
expression of confinement via elimination of quark pro-
duction thresholds [17,77,78]. A natural choice for this
scale is Λir ∼ ΛQCD, and we set Λir ¼ 0.24 GeV.

B. Interaction scales

In order to fix the parameters in our implementation of
Eq. (3) we focus on the masses and leptonic decay constants
of the following pseudoscalar mesons: π, K, ηc, ηb, whose
valence-quark content is, respectively: ud̄, us̄, cc̄, bb̄.
The simplest DSE relevant to the associated bound-state

problems is the dressed-quark gap equation. In RL trunca-
tion, using Eq. (3), it takes the following form:

S−1f ðpÞ ¼ iγ · pþmf þ
16π

3

αIR
m2

G

Z
d4q
ð2πÞ4 γμSfðqÞγμ; ð4Þ

where mf is the quark’s current mass. The integral is
quadratically divergent; but when it is regularized in a
Poincaré-invariant manner, the solution is
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SfðpÞ−1 ¼ iγ · pþMf; ð5Þ

where Mf is momentum independent and determined by

Mf ¼ mf þMf
4αIR
3πm2

G

�Z
∞

0

dss
1

sþM2
f

�
reg

: ð6Þ

Following Ref. [76], we define the integral by writing

1

sþM2
¼

Z
∞

0

dτe−τðsþM2Þ →
Z

τ2ir

τ2uv

dτe−τðsþM2Þ ð7Þ

¼ e−ðsþM2Þτ2uv − e−ðsþM2Þτ2ir
sþM2

; ð8Þ

where τir;uv ¼ 1=Λir;uv are, respectively, the infrared and
ultraviolet regulators described above. Consequently, the
gap equation becomes

Mf ¼ mf þMf
4αIR
3πm2

G
Ciu0 ðM2

fÞ; ð9Þ

where

Ciu0 ðσÞ ¼
Z

∞

0

dss
Z

τ2ir

τ2uv

dτe−τðsþσÞ

¼ σ½Γð−1; στ2uvÞ − Γð−1; στ2irÞ�; ð10Þ

with Γðα; yÞ being the incomplete gamma function.
Using a contact interaction, the Bethe-Salpeter amplitude

for a pseudoscalar meson constituted from a valence f
quark and valence g antiquark has the following restricted
form [45,52]:

Γ0−ðQÞ ¼ γ5

�
iE0− þ

1

2MR
γ ·QF0−

�
; ð11Þ

Here, Q is the bound-state’s total momentum, Q2 ¼ −m2
0− ,

m0− is the meson’s mass, and MR ¼ MfMg=½Mf þMg�,
withMf;g being the relevant dressed-quark masses obtained
from the contact-interaction gap equations, described
above.
The amplitude is determined by the following equation:

Γ0−ðQÞ ¼ −
16π

3

αIR
m2

G

Z
d4t
ð2πÞ4 γμSfðtþQÞΓ0−ðQÞSgðtÞγμ:

ð12Þ

From here, using the symmetry-preserving regularization
scheme introduced in Refs. [45,52], which requires, in the
spirit of dimensional regularization,

0 ¼
Z

1

0

dα½Ciu0 ðωfgðα; Q2ÞÞ þ Ciu1 ðωfgðα; Q2ÞÞ�; ð13Þ

where Ciu1 is given in Eqs. (A1), (A2), and

ωfgðα; Q2Þ ¼ M2
fα̂þ αM2

g þ αα̂Q2; ð14Þ

α̂ ¼ 1 − α, one arrives at the following explicit form of the
Bethe-Salpeter equation (BSE), Eq. (12):

�
E0−ðQÞ
F0−ðQÞ

�
¼ 4αIR

3πm2
G

�
K0−

EE K0−

EF

K0−

FE K0−

FF

��
E0−ðQÞ
F0−ðQÞ

�
; ð15Þ

with the matrix elements fK0−

EE;K
0−

EF;K
0−

FE;K
0−

FFg defined
in Eqs. (A4).
It is important to note that K0−

FE ≠ 0 when chiral
symmetry is dynamically broken; hence, any internally
consistent description of a pseudoscalar meson must retain
the state’s F0−ðQÞ (pseudovector) component. Models of
the Nambu–Jona-Lasinio type that omit this component do
not have any connection with an underlying theory whose
dynamics is based on vector-boson exchange. Therefore,
they cannot serve as a veracious model of QCD in any
energy range.
Equation (15) is an eigenvalue problem that has a

solution when Q2 ¼ −m2
0− , at which point the eigenvector

is the meson’s Bethe-Salpeter amplitude. Working with the
on-shell solution, normalized canonically according to
Eqs. (A5) and (A6), the pseudoscalar meson’s leptonic
decay constant is given by

f0− ¼ Nc

4π2
1

MR
½E0−K0−

FE þ F0−K0−

FF�Q2¼−m2
0−
: ð16Þ

Light-quark systems were analyzed in Refs. [47,52],
with the results listed in Table I. Notably, the fitted value of
ms=ml ¼ 24 is compatible with estimates in QCD [1], even
though our individual current masses are too large by a
factor of ≲2 owing to the contact-interaction’s deficiencies
in connection with ultraviolet quantities. Moreover, the
resultMs=Ml ¼ 1.4 for the dressed-quark masses is typical
of efficacious DSE studies in the light-quark sector [79,80].
Moving to heavy-quark systems, we allow Λ0−

uv to vary
with the meson’s mass and fix the associated coupling by
requiring

αIRðΛ0−
uvÞ½Λ0−

uv �2 ln
Λ0−
uv

Λir
¼ αIRðΛπ

uvÞ½Λπ
uv�2 ln

Λπ
uv

Λir
: ð17Þ

(Similar expedients were adopted in Refs. [59,61].) This
identity serves to limit the number of parameters, so that in
fitting the ηc;b quantities in Table I we had only two
parameters for each case: mc;b, Λ

ηc;b
uv . Regarding the ηb

meson, a lQCD calculation reports fηb ¼ 0.472ð4Þ [81].
However, this is larger than the result for fϒ ¼ 0.459ð22Þ
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[82]; hence, it is contrary to the experimental pattern:
fπ < fρ, fηc < fJ=ψ . We therefore choose to constrain mb,
Ληb
uv via known experimental results [1]:

fηb ¼ fϒ½fηc=fJ=ψ � ¼ 0.41ð2Þ: ð18Þ

It is worth remarking here that our fitted values of mc,
mb −mc are commensurate with QCD estimates and the
computed results forMc;b are aligned with typical values of
the heavy-quark pole masses [1].
Another useful feature of Eq. (17) is that it enables us to

implement an important physical constraint; viz. any
increase in the momentum-space extent of a hadron wave
function must be accompanied by a commensurate
decrease in the effective coupling between the constituents
so as to avoid critical overbinding. Our analysis yields

Λuvðs ¼ m2
0−Þ ¼m0−≥mK

0.83 ln½2.79þ s=ð4.66ΛirÞ2�; ð19Þ

and via Eq. (17), an evolution of the quark-antiquark
coupling that is well approximated by

αIRðsÞ ¼m0−≥mK 0.047αIRðm2
KÞ

ln½1.04þ s=ð21.77ΛirÞ2�
: ð20Þ

The origin of these outcomes is plain: the decay-constant
integral diverges logarithmically with increasing Λuv; and
αIR flows to compensate for analogous behavior in the
Bethe-Salpeter kernel and thereby maintains the given
meson’s mass.

III. MESON SPECTRUM

It is now possible to compute the masses, Bethe-Salpeter
amplitudes, and leptonic decay constants of a wide array of
ground-state pseudoscalar and vector mesons with valence-
quark content ðfḡÞ.
The BSE for such pseudoscalar mesons is given in

Eq. (15), with the associated leptonic decay constant

computed from Eq. (16). Turning to ðfḡÞ vector mesons,
the most general form of the Bethe-Salpeter amplitude
supported by a RL analysis of the contact interaction is

Γ1−
μ ðQÞ ¼ γ⊥μ E1−ðQÞ; ð21Þ

where Q · γ⊥μ ¼ 0. This dimensionless constant, E1−ðQÞ, is
determined by solving the BSE obtained via straightfor-
ward generalization of Eqs. (18)–(20) in Ref. [50]. The
associated leptonic decay constant is computed from

f1−m1− ¼ 3

4π2

Z
1

0

dα½MfMg − αα̂Q2 − ωfgðα; Q2Þ�

× C̄iu1 ðωfgðα; Q2ÞÞE1−ðQÞ; ð22Þ

where C̄iu1 is defined in Appendix A.
Our computed results are gathered in Table II. For

those systems with mass m0− ≥ mK we fix Λuvðm2
0−Þ

and αIRðm2
0−Þ using Eqs. (17) and (20); hence, every

contact-interaction result in the table is a prediction except
those in the four rows with underlined entries. Notably, the

TABLE I. Couplings, ultraviolet cutoffs, and current-quark
masses that provide a good description of pseudoscalar meson
properties, along with the dressed-quark masses and selected
pseudoscalar meson properties they produce, all obtained with
mG ¼ 0.5 GeV, Λir ¼ 0.24 GeV. Empirically, at the level we are
working [1]: mπ ¼ 0.14, fπ ¼ 0.092; mK ¼ 0.50, fK ¼ 0.11;
mηc ¼ 2.98, fηc ¼ 0.24; mηb ¼ 9.40. The value of fηb is dis-
cussed in connection with Eq. (18). (Dimensioned quantities are
in GeV.)

Quark αIR=π Λuv m M m0− f0−

l ¼ u=d 0.36 0.91 0.007 0.37 0.14 0.10
s 0.36 0.91 0.17 0.53 0.50 0.11
c 0.054 1.88 1.24 1.60 2.98 0.24
b 0.012 3.50 4.66 4.83 9.40 0.41

TABLE II. Computed Bethe-Salpeter amplitudes, masses, and
decay constants of pseudoscalar and vector mesons. The under-
lined entries, repeated from Table I, were used to fit the
interaction strength, current-quark masses, and ultraviolet cutoffs.
Empirical masses, where known, are taken from Ref. [1]; mB�

c
is

from Ref. [14]; and for those decay constants not known
experimentally, we typically quote lQCD results [81–86]. For
masses, the mean relative difference between our results and
experiment/lQCD is 5(5)% [omitting the light-quark vector
mesons, this improves to 2.5(1.9)%]; and for the leptonic decay
constants, the mean-absolute-relative-difference between the
entries in columns 4 and 6 is 18(9)%. The text elucidates these
outcomes. (Dimensioned quantities are in GeV.)

Meson, M EM FM mCI
M fCIM me=l

M fe=lM

π 3.59 0.47 0.14 0.10 0.14 0.092
K 3.82 0.56 0.50 0.11 0.50 0.11
ρ 1.53 0.93 0.13 0.78 0.15
K� 1.63 1.03 0.12 0.89 0.16
ϕ 1.74 1.13 0.12 1.02 0.17

D 3.11 0.36 1.92 0.16 1.87 0.15(1)
Ds 3.25 0.49 2.01 0.17 1.97 0.18
D� 1.21 2.14 0.15 2.01 0.17(1)
D�

s 1.23 2.23 0.16 2.11 0.19
ηc 3.28 0.73 2.98 0.24 2.98 0.24
J=ψ 1.21 3.19 0.20 3.10 0.29
B 1.67 0.095 5.41 0.17 5.30 0.14(2)
B� 0.70 5.46 0.16 5.33 0.12
Bs 1.79 0.14 5.50 0.18 5.37 0.16
B�
s 0.71 5.56 0.16 5.42 0.15(1)

Bc 3.38 0.61 6.28 0.27 6.28 0.35
B�
c 1.37 6.38 0.23 6.33 0.30(1)

ηb 3.18 0.81 9.40 0.41 9.40 0.41(2)
ϒ 1.50 9.49 0.38 9.46 0.46
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F0− (pseudovector) component of each pseudoscalar meson
is nonzero: on average, it is 15(6)% of the E0− (pseudo-
scalar) piece. Hence, the pseudovector component is
quantitatively important in all cases.
To aid with understanding the comparisons in Table II,

we also depict them in Fig. 1. Considering the upper panel,
it is evident that our treatment of the contact interaction
delivers good estimates for the masses of regular ground-
state flavor-SUð5Þ mesons: aspects of its symmetry-
preserving formulation lead to an overestimate in each
case,1 but the mean relative-difference between theory and
experiment/lQCD is just 5(5)%. [Further to footnote 1,
omitting the light-quark vector mesons, this improves
to 2.5(1.9)%.] Furthermore, the computed masses fit neatly

within a pattern prescribed by equal spacing rules [31–
33,87,88], e.g.,

mK� ¼ ½mϕ þmρ�=2; ð23aÞ

mB�
s
−mB� ¼ mBs

−mB ð23bÞ

¼ mD�
s
−mD� ð23cÞ

¼ mDs
−mD; ð23dÞ

mB�
c
−mB�

s
≈mBc

−mBs
; ð23eÞ

½mϒ −mJ=ψ �=2 ≈ ½mηb −mηc �=2 ð23fÞ

≈mB�
s
−mD�

s
¼ mBs

−mDs
: ð23gÞ

The comparison between our contact-interaction
predictions for meson leptonic decay constants and
experiment/lQCD is depicted in the lower panel of
Fig. 1. Physically, a meson’s leptonic decay constant is
sensitive to ultraviolet physics (the constituents annihilate
at a single point in spacetime). This is expressed in the
QCD expression for the decay constant through the
appearance of a logarithmic ultraviolet divergence, which
is controlled by the dressed-quark wave-function renorm-
alization constant [89,90]. Given these features, it is not
surprising that the cutoff-regularized contact interaction
provides a poorer description of decay constants than it
does of masses. Nevertheless, the picture is tolerable:
general trends are reproduced, and the mean-absolute-
relative difference between the entries in columns 4 and
6 of Table II is 18(9)%.2 Owing to peculiarities of the
contact interaction’s symmetry-preserving formulation
[46], the description is better for pseudoscalar mesons
than for vector mesons. Notwithstanding these observa-
tions, analogues of Eqs. (23) are applicable, e.g.,

fK� ≈ ½fϕ þ fρ�=2; ð24aÞ

fB�
s
− fB� ≈ fD�

s
− fD� ð24bÞ

fBs
− fB ≈ fDs

− fD; ð24cÞ

fB�
c
− fB�

s
≈ fBc

− fBs
; ð24dÞ

½fϒ − fJ=ψ �=2 ≈ ½fηb − fηc �=2 ð24eÞ

≈ fBs
− fDs

: ð24fÞ

FIG. 1. Upper panel: Comparison between contact-interaction
predictions for meson masses and experiment [1]. (mB�

c
is from

Ref. [14].) Lower panel: Contact-interaction predictions for
meson leptonic decay constants and experiment [1], where
known, and lQCD otherwise [81–86]. In both panels, contact-
interaction predictions are depicted as (black) circles and com-
parison values by (green) bars.

1A detailed explanation may be found in Ref. [46], Sec. II, and
Ref. [52], Appendix A. Stated simply, internally consistent
implementation of a symmetry-preserving regularization scheme
for a nonrenormalizable interaction comes at a cost. For vector
mesons, it alters the scattering kernel in a way that ensures the
Ward-Takahashi identity is satisfied, but inflates the mass of the
associated vector meson. The effect diminishes with the ratio of
emergent to explicit mass in the system being considered.

2If Eqs. (17) and (20) are not implemented, the description of
the decay constants is bad. A hint for this is found in a
comparison between the CI-calculated trend for fρ, fK� , fϕ
and experiment. If further improvement were desired, then it
could be achieved by additional tuning of Eq. (17), including
extending its impact to the light-quark sector.
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IV. SPECTRUM OF DIQUARK CORRELATIONS

In solving for the spectrum of flavor-SUð5Þ ground-state
baryons, we use a quark-diquark approximation to the
Faddeev equation.3 It is therefore necessary to know the
masses and amplitudes for all diquark correlations that can
exist in these systems. Fortunately, having solved for the
spectrum of flavor-SUð5Þ mesons, it is straightforward to
compute these diquark quantities because the RL BSE for a
JP diquark is obtained directly from that for a J−P meson
simply by multiplying the meson kernel by a factor of 1=2
[93]. (The flipping of the sign in parity occurs because
parity is opposite for fermions and antifermions.) For
instance, the Bethe-Salpeter equation for a scalar ½fg�
diquark is

ΓC
½fg�ðQÞ ¼ −

1

2

16π

3

αIR
m2

G

×
Z

d4t
ð2πÞ4 γμSfðtþQÞΓC

½fg�ðQÞSgðtÞγμ; ð25Þ

where the correlation amplitude is Γ½fg�ðQÞ and

ΓC
½fg�ðQÞ ≔ Γ½fg�ðQÞC† ð26aÞ

¼ γ5

�
iE½fg�ðQÞ þ 1

2MR
γ ·QF½fg�ðQÞ

�
; ð26bÞ

with C ¼ γ2γ4 being the charge-conjugation matrix. The
canonical normalization conditions are similarly amended,
with the multiplicative factor being 2=3 in this case [see,
e.g., Eqs. (24) and (25) in Ref. [50] ].
Following the approach indicated above and using the

parameters determined in Sec. III, one obtains the diquark
masses and amplitudes listed in Table III.4 Evidently, the
antisymmetric combination of any two quark flavors (scalar
diquark) is always lighter than the symmetric combination
(JP ¼ 1þ axial-vector diquark, denoted ffgg), and the
pattern of masses can be understood in terms of equal
spacing rules, just as was the case for mesons.
It is pertinent to remark here that RL truncation generates

asymptotic diquark states. Such states are not observed and
their appearance is an artifact of the truncation. Higher-
order terms in the quark-quark scattering kernel, whose
analogue in the quark-antiquark channel do not materially

affect the properties of vector and flavor nonsinglet
pseudoscalar mesons, ensure that QCD’s quark-quark
scattering matrix does not exhibit singularities that corre-
spond to asymptotic diquark states [96,97]. Studies with
kernels that exclude diquark bound states nevertheless
support a physical interpretation of the masses, mðfgÞJP ,
obtained using the rainbow-ladder truncation, viz. the
quantity lðfgÞJP ≔ 1=mðfgÞJP may be interpreted as a range

over which the diquark correlation can propagate before
fragmentation.
In Fig. 2 we compare the diquark masses with those of

their partner mesons: the level ordering of diquark corre-
lations is precisely the same as that for mesons and the

TABLE III. Computed masses and amplitudes for the diquark
correlations: ½fg� indicates a JP ¼ 0þ diquark, antisymmetric
under f ↔ g, and ffgg indicates a JP ¼ 1þ diquark, symmetric
under f ↔ g. (Masses listed in GeV.)

Diquark Mass E F

½ud� 0.77 2.74 0.31
½us� 0.93 2.88 0.39
½uc� 2.15 1.97 0.22
½sc� 2.26 1.99 0.29
½ub� 5.51 1.05 0.059
½sb� 5.60 1.05 0.083
½cb� 6.48 1.42 0.25
fuug 1.06 1.31
fusg 1.16 1.36
fssg 1.26 1.43
fucg 2.24 0.89
fscg 2.34 0.87
fccg 3.30 0.69
fubg 5.53 0.51
fsbg 5.62 0.50
fcbg 6.50 0.62
fbbg 9.68 0.48

FIG. 2. Comparison between computed masses of diquark
correlations and their symmetry-related meson counterparts:
diquarks are (black) stars and mesons are (green) bars.

3It is worth reiterating that the diquarks described herein are
fully dynamical and appear in a Faddeev kernel, which requires
their continual breakup and reformation. Consequently, they are
vastly different from the static, pointlike diquarks introduced
originally [91] in an attempt to solve the so-called “missing
resonance” problem [92].

4In the Bethe-Salpeter equation for a given JP diquark
correlation we employ the values of αIR, Λuv associated with
its J−P meson partner, a scheme consistent with RL studies using
realistic interactions [94,95].
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meson mass bounds the partner diquark’s mass from below.
Moreover, in all cases, except the l, s scalar diquarks, the
mass of the diquark’s partner meson is a fair guide to the
diquark’s mass: the mean difference is 0.13(6) GeV.
The light-quark scalar diquark channels are atypical

owing to dynamical chiral symmetry breaking and the
Nambu-Goldstone boson character of the partner pseudo-
scalar mesons. Notably, in a two-color version of QCD, the
scalar diquark is also a Nambu-Goldstone mode [98,99], a
long-known result of Pauli-Gürsey symmetry [100,101]. A
memory of the symmetry persists in the three-color theory
and is evident here in low masses for the l, s scalar
diquarks, even though they are nevertheless split widely
from the true Nambu-Goldstone mesons.
In constructing baryon Faddeev equations, the canoni-

cally normalized diquark Bethe-Salpeter amplitudes are
crucial because they determine the strength of the correlation
within a given baryon.We list them in Table III. Notably, the
leading amplitudes associated with flavor-antisymmetric
correlations are a factor of 2.2(1) larger than their flavor-
symmetric counterparts. This serves to amplify the prefer-
ence for the lighter flavor-antisymmetric correlations in a
given JP ¼ 1=2þ baryon because it is the amplitude squared
that appears in the Faddeev equations. As we shall see, this
preference can be overcome in 1=2þ baryons whose valence
quarks possess very different masses. (The JP ¼ 3=2þ
baryons considered herein possess flavor-exchange sym-
metries that prevent the presence of 0þ ½fg� correlations.)

V. BARYON SPECTRUM

A. Structure of Faddeev amplitudes

We use the Faddeev equation depicted in Fig. 3 to
compute the spectrum of ground-state flavor-SUð5Þ JP ¼
1=2þ; 3=2þ baryons, following the patterns of analysis
described in Ref. [50]. Note, then, that a spin-1=2 baryon
may be represented by a Faddeev amplitude [102]

Ψ ¼ Ψ1 þΨ2 þΨ3; ð27Þ

where the subscript identifies the bystander quark and, e.g.,
Ψ1;2 are obtained fromΨ3 by a cyclic permutation of all the
quark labels. We employ the simplest realistic representa-
tion ofΨ, so that any member of the flavor-SUð5Þmultiplet
that generalizes the SUð3Þ octet of baryons is composed
from a sum of scalar and axial-vector diquark correlations,

Ψ3ðpj; αj;φjÞ ¼ N 0þ
Ψ3

þN 1þ
Ψ3
; ð28Þ

with ðpj;αj;φjÞ the momentum, spin, and flavor labels
of the quarks constituting the bound state, and P ¼
ðp1 þ p2Þ þ p3 ¼ pd þ pq the system’s total momentum.
(N.B. Negative-parity diquark correlations play no material
role in positive-parity ground-state baryons [28,30,31,57].)
Using the flavor-matrices defined in Eqs. (B2), the scalar

diquark piece in Eq. (28) can be written

N 0þ
Ψ3
ðpj;αj;φjÞ ¼

X
½φ1φ2�φ3∈Ψ

�
t½φ1φ2�Γ0þ

½φ1φ2�

�
1

2
p½12�;K

��
φ1φ2

α1α2

× Δ0þ
½φ1φ2�ðKÞ½SΨðl;PÞuΨðPÞ�φ3

α3 ; ð29Þ

where K ¼ p1 þ p2 ≕ pf12g, p½12� ¼ p1 − p2, l ≔
ð−pf12g þ 2p3Þ=3;

Δ0þ
½φ1φ2�ðKÞ ¼ 1

K2 þm2
½φ1φ2�

ð30Þ

is a propagator for the scalar diquark formed from quarks 1
and 2, with m½φ1φ2� being the associated mass scale and

Γ0þ
½φ1φ2� the canonically normalized Bethe-Salpeter ampli-

tude describing the correlation strength between the quarks,
all computed in Sec. IV; S, a 4 × 4 Dirac matrix, describes
the relative quark-diquark momentum correlation within
the baryon; and the spinor satisfies

ðiγ · PþMΨÞuΨðPÞ ¼ 0 ¼ ūΨðPÞðiγ · PþMΨÞ; ð31Þ

with MΨ the baryon mass obtained by solving the Faddeev
equation. The flavor structure of 1=2þ baryons is expressed
in Eqs. (B5).
The axial-vector part of Eq. (28) is

N 1þ
Ψ3
ðpj; αj;φjÞ

¼
X

fφ1φ2gφ3∈Ψ

�
tfφ1φ2gΓ1þ

μfφ1φ2g

�
1

2
p½12�;K

��
φ1φ2

α1α2

× Δfφ1φ2g
1þμν ðKÞ½AΨ

ν ðl;PÞuΨðPÞ�φ3
α3 ; ð32Þ

where

Δfφ1φ2g
1þμν ðKÞ ¼ 1

K2 þm2
fφ1φ2g

�
δμν þ

KμKν

m2
fφ1φ2g

�
ð33Þ

FIG. 3. Poincaré covariant Faddeev equation: a linear integral
equation for the matrix-valued function Ψ, being the Faddeev
amplitude for a baryon of total momentum P ¼ pd þ pq, which
expresses the relative momentum correlation between the
dressed-quarks and -nonpointlike-diquarks within the baryon.
The shaded rectangle demarcates the kernel of the Faddeev
equation: single line, dressed-quark propagator (Sec. II B); Γ,
diquark correlation amplitude (Sec. IV); and double line, diquark
propagator [Eqs. (30) and (33)].
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is a propagator for the axial-vector diquark formed from
quarks 1 and 2 and the other elements in Eq. (32) are
obvious analogues of those in Eq. (29).
Regarding baryons in the flavor-SUð5Þ generalization of

the usual decuplet, one may write

Ψ∧
3 ðpi;αi;φiÞ ¼ D1þ

Ψ∧
3
ðpj; αj;φjÞ; ð34Þ

with

D1þ
Ψ∧

3
ðpj; αj;φjÞ

¼
X

fφ1φ2gφ3∈Ψ∧

�
tfφ1φ2gΓ1þ

μfφ1φ2g

�
1

2
p½12�;K

��
φ1φ2

α1α2

× Δfφ1φ2g
1þμν ðKÞ½DΨ∧

νρ ðl;PÞuΨ∧
ρ ðPÞ�φ3

α3 ; ð35Þ

where uΨ
∧

ρ ðPÞ is a Rarita-Schwinger spinor and, as with
1=2þ baryons, in constructing the Faddeev equations we
focus on that member of each isospin multiplet that has
maximum electric charge, viz. the 20 states in Eqs. (B7).
Figure 3 shows that the Faddeev kernels involve diquark

breakup and reformation via the exchange of a dressed
quark. In order to present the most transparent analysis
possible, we follow Refs. [47,50,57] and introduce a
simplification, viz. in the Faddeev equation for a baryon
of type B, the quark exchanged between the diquarks is
represented as

SfðkÞ →
g2B
Mf

; ð36Þ

where f ¼ l, s, c, b is the quark’s flavor and gB is a
coupling constant. This is a variant of the “static approxi-
mation,” which itself was introduced in Ref. [103]. It has a
marked impact on the Faddeev amplitudes, forcing them to
be momentum independent, just like the diquark Bethe-
Salpeter amplitudes, but calculations reveal that it has little
impact on the computed masses [56]. We treat g2≡1=2þ ,
g4≡3=2þ as parameters, choosing them below so as to obtain
a desired mass for the lightest state in each JP sector.
The general forms of the matrices SΨðl;PÞ, AΨ

ν ðl;PÞ,
and DΨ∧

νρ ðl;PÞ in Eqs. (29), (32), and (35), respectively,
which describe the momentum-space correlations between
the quarks and diquarks in the baryons considered herein,
are described in Refs. [104,105]. However, they simplify
dramatically when Eq. (36) is used:

SΨðPÞ ¼ sΨðPÞID; ð37aÞ

AΨ
μ ðPÞ ¼ aΨ1 ðPÞiγ5γμ þ aΨ2 ðPÞγ5P̂μ; ð37bÞ

DΨ∧
νρ ðl;PÞ ¼ aΨ

∧ðPÞδνρ: ð37cÞ

B. Faddeev equations

Specific examples of the Faddeev equations obtained
from Fig. 3 for the various light-quark systems, along with
their derivations, can be found in Ref. [50]. Therefore,
herein we only include equations for Ξþ

c , Ξ0þ
c , and Ξ�þ

c
because these three are sufficient to reconstruct all remain-
ing Faddeev equations that are required to complete the
spectrum calculations: one need only adjust the quark
flavor labels. The equations are given in Appendix C. It will
be noted from there that we use the regularization scheme
explained in Sec. II B, choosing Λuv to be the scale
associated with the lightest diquark in the system, which
is always the smallest value and hence the dominant
regularizing influence.

C. Computed masses and amplitudes

Equation (36) introduces two parameters: g2 in the JP ¼
1=2þ sector and g4 in the JP ¼ 3=2þ sector. In this
analysis, we fix these quantities by requiring that the
relevant Faddeev equations return the empirical masses
of the nucleon and Δ baryon:

g2 ¼ 1.42; g4 ¼ 1.96: ð38Þ

It should be recalled that in choosing the couplings this
way, various effects of resonant (meson cloud) contribu-
tions to hadron static properties are implicitly included
[106], and we capitalize on this feature herein. However,
some features are also omitted, e.g., baryons computed
using the kernel in Fig. 3 do not have widths, which are an
essential physical consequence of meson-baryon final-state
interactions (MB FSIs). The operating conjecture for RL
truncation is that the impact of MB FSIs on a baryon’s
Breit-Wigner mass is captured by the choice of interaction
scale, even though a width is not generated. This should be
reasonable for states whose width is a small fraction of their
mass. In practice, the conjecture appears to be correct, at
least for the ground-state JP ¼ 1=2þ, 3=2þ systems [33].

1. JP = 1=2+

With every element now specified, it is straightforward to
solve the algebraic Faddeev equations and obtain themasses
and amplitudes for all ground-state flavor-SUð5Þ JP ¼
1=2þ; 3=2þ baryons. Our results for the 1=2þ systems are
listed in Table IV. We use a compact notation, based on the
following observations. For any given JP ¼ 1=2þ baryon,
the spin-flavor structure is described by a three-entry column
vector. The top row (r1) reflects the strength of a scalar
diquark in the baryon’s Faddeev amplitude, the bottom row
indicates that of an axial-vector diquark strength (r3), and the
middle entry (r2) is either scalar or axial vector, depending
on the baryon. Table IV therefore includes a superscript to
mark the row number in the appropriate line of Eqs. (B5).
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Our computed JP ¼ 1=2þ masses are compared with
empirical/lQCD values in Fig. 4. The mean-absolute-
relative difference is 3.1(2.2)%. This compares well
with the fully covariant three-body calculation described
in Ref. [33], for which the analogous difference is
5.2(2.8)%. Of course, that study is more sophisticated: it
did not use a quark-diquark approximation; instead, the
Faddeev equations were solved in a fully consistent RL
truncation. Moreover, the baryon spectra in Ref. [33] are
ab initio predictions, whereas we used a parameter [g2 in
Eqs. (36) and (38)] to readjust the scale of the JP ¼ 1=2þ
spectrum so that the proton mass matches experiment.
Notwithstanding these things, the agreement with Ref. [33]
indicates both that we have implemented a phenomeno-
logically efficacious formulation of the contact interaction
and that equal spacing rules must provide a good first
approximation to our contact-interaction spectrum of
JP ¼ 1=2þ baryons.
Table IV also lists the contact-interaction quark-diquark

Faddeev amplitudes for each baryon, which express struc-
tural characteristics of the associated bound state. The
calculated results owe their values to both the fully
dynamical character of the diquark correlations, predicted
by realistic analyses of the quark-quark scattering problem,

and the nature of the Faddeev kernel, which ensures,
through continual rearrangement, that every valence-quark
participates actively in all diquark correlations to the fullest
extent allowed by kinematics and symmetries. Hence, the
structure should be qualitatively independent of the quark-
quark interaction’s pointwise behavior. This expectation is
supported by studies of the ground-state u, d, s octet and
decuplet systems, in which the contact-interaction ampli-
tudes have proven to be a reliable harbinger of the results
obtained using more sophisticated kernels in Fig. 3 [31].
It is reasonable, therefore, to emphasize the following

structural features of the ground-state flavor-SUð5Þ JP ¼
1=2þ baryons drawn from Table IV.
(a) The lightest allowed diquark correlation typically

defines the most important component of a baryon’s
Faddeev amplitude; e.g., the scalar ½uc� diquark
dominates in the Ξcc and the ½ub� is dominant in
the Ξbb. This remains true even if an axial-vector
diquark is the lightest channel available, e.g., fuug is
dominant in the Σc.

(b) Dominance of the lightest diquark correlation can be
overcome in flavor channels for which the spin-flavor
structure of the bound state and the quark-exchange
character of the kernel in Fig. 3 lead dynamically to a

TABLE IV. Computed mass and Faddeev amplitude for each ground-state flavor-SUð5Þ JP ¼ 3=2þ baryon: the last column highlights
the baryon’s dominant spin-flavor correlation. Empirical mass values are taken from Ref. [1]; where they are absent, lQCD results are
listed [10,14] and indicated by “�.” The mean-absolute-relative difference between our mass predictions and experiment/lQCD is
3.1 (2.2)%. The parenthesized label beside a baryon’s name indicates the equation that specifies the associated Faddeev amplitude’s
spin-flavor vector. The subscript on the axial-vector entry specifies the Dirac structure in Eq. (37b). (Mass in GeV.)

Baryon Me=l MCI sr1 sr2 ar21 ar22 ar31 ar32 Dom. corr.

p (B5a) 0.94 0.94 0.89 −0.35 −0.14 0.25 0.098 ½ud�u
Λ (B5b) 1.12 1.06 0.67 0.59 −0.42 −0.16 ½ud�s
Σ (B5c) 1.19 1.20 0.87 −0.42 0.004 0.25 0.071 ½us�u
Ξ (B5d) 1.32 1.24 0.90 −0.29 −0.028 0.31 0.11 ½us�s
Λc (B5e) 2.29 2.50 0.21 0.86 −0.35 −0.32 ½uc�d − ½dc�u
Σc (B5f) 2.45 2.53 0.48 −0.21 0.84 0.090 0.064 fuugc
Ξc (B5g) 2.47 2.66 0.22 0.84 −0.36 −0.34 ½uc�s − ½sc�u
Ξ0
c (B5h) 2.58 2.68 0.50 −0.22 0.83 0.093 0.061 fusgc

Ωc (B5i) 2.70 2.83 0.51 −0.22 0.82 0.097 0.058 fssgc
Λb (B5j) 5.62 5.74 0.13 0.93 −0.31 −0.13 ½ub�d − ½db�u
Σb (B5k) 5.81 5.85 0.30 −0.12 0.94 0.041 0.087 fuugb
Ξb (B5l) 5.79 5.88 0.13 0.93 −0.31 −0.13 ½ub�s − ½sb�u
Ξ0
b (B5m) 5.94 5.99 0.33 −0.12 0.93 0.045 0.099 fusgb

Ωb (B5n) 6.05 6.12 0.37 −0.12 0.91 0.049 0.12 fssgb
Ξcc (B5o) 3.62 3.72 0.90 −0.32 0.26 0.097 0.057 ½uc�c
Ξcb (B5p) 6.94� 7.10 0.12 −0.73 0.62 −0.27 ½cb�u
Ξ0
cb (B5q) 6.97� 7.03 0.90 0.13 0.24 −0.33 0.012 ½uc�bþ ½ub�c

Ξbb (B5r) 10.14� 10.37 0.87 −0.33 0.35 0.043 0.057 ½ub�b
Ωcc (B5s) 3.74� 3.90 0.88 −0.33 0.30 0.15 0.074 ½sc�c
Ωcb (B5t) 7.00� 7.22 0.068 −0.79 0.49 −0.37 ½cb�s
Ω0

cb (B5u) 7.03� 7.15 0.85 −0.32 −0.099 0.18 0.35 ½sc�bþ ½sb�c
Ωbb (B5v) 10.27� 10.48 0.85 −0.36 0.37 0.065 0.085 ½sb�b
Ωccb (B5w) 8.01� 8.19 0.39 −0.18 0.90 0.070 0.071 fccgb
Ωcbb (B5x) 11.20� 11.37 0.81 −0.38 0.39 0.16 0.14 ½cb�b
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preference for mixed-flavor correlations; e.g., since
the ½us�c combination in the Ξc cannot reproduce
itself, its strength may be fed into the ½uc�s − ½sc�u
correlation. (See Appendix C 1.) The eventual out-
come depends on the mass scales of the kernel
participants and how they affect rearrangement
processes in the Faddeev kernel; e.g., compare Ξb
with Ξcb.

These findings add to the argument against treatments of
the three-body problem which assume that baryons can be
described as effectively two body in nature, e.g., as being
built from a constituent quark and static/frozen constituent
diquark. We verify that diquark correlations in QCD are
essentially dynamical, and their breakup and reformation
play a crucial role in defining baryon structure. This is true
for light-quark baryons, for which lQCD confirms that the
spectrum possesses a richness that cannot be explained by a
two-body model [107]. Furthermore, the consequences
extend to baryons involving one or more heavy quarks,
challenging both (i) the treatment of singly heavy
baryons (qq0Q, q; q0 ∈ fu; d; sg, Q ∈ fc; bg) as two-body
light-diquarkþ heavy-quark (qq0 þQ) bound states (see,
e.g., Refs [108,109]) and (ii) analyses of doubly heavy
baryons (qQQ0) that assume such systems can be consid-
ered as two-body light-quark+heavy-diquark bound states,
qþQQ0 (e.g., Refs. [110–112]). These observations also
have implications for few-body studies of the tetra- and
pentaquark problems.

2. JP = 3=2+

Our results for ground-state flavor-SUð5Þ JP ¼ 3=2þ
baryons are listed in Table V. In this case, the allowed
spin-flavor combinations are simple. Hence, we use only
three columns to represent the Faddeev amplitude: rows
with only one amplitude-entry describe baryons constituted
from three valence quarks of identical flavor, in which case
the value is always unity; and rows with two such entries
possess at least one unmatched valence-quark amongst
the three.

The computed JP ¼ 3=2þ masses are compared with
empirical/lQCD values in Fig. 5: the mean-absolute-
relative difference is 1.8(1.0)%. Once again, this compares
well with the fully covariant three-body calculation
described in Ref. [33], for which the analogous difference
is 2.6(1.6)%. Of course, here we used a parameter [g4 in
Eqs. (36) and (38)] to readjust the scale of the JP ¼ 3=2þ
spectrum so that theΔ-baryons’s mass matches experiment.

FIG. 4. Comparison between computed masses of ground-state flavor-SUð5Þ JP ¼ 1=2þ baryons and either experiment (first 15) [1]
or lQCD (last 9) [10,14]: our results—(black) circles; and reference values—(green) bars.

TABLE V. Computed mass and Faddeev amplitude for each
ground-state flavor-SUð5Þ JP ¼ 3=2þ baryon: the last column
highlights the baryon’s dominant spin-flavor correlation. Empirical
mass values are taken from Ref. [1]; where they are absent, lQCD
results are listed [10,14] and indicated by “�.” The mean-absolute-
relative difference between our mass predictions and experiment/
lQCD is 1.8(1.0)%. The parenthesized label beside a baryon’s
name indicates the equation that specifies the associated Faddeev
amplitude’s spin-flavor vector. (Mass in GeV.)

Baryon Me=l MCI fff Other Dom. corr.

Δ (B7a) 1.23 1.23 1 fuugu
Σ� (B7b) 1.38 1.37 0.60 0.80 fusgu
Ξ� (B7c) 1.53 1.49 0.85 0.52 fusgs
Ω (B7d) 1.67 1.62 1 fssgs
Σ�
c (B7e) 2.52 2.56 0.64 0.77 fucgu

Ξ�
c (B7f) 2.66 2.70 0.63 0.77 fucgsþ fscgu

Ω�
c (B7g) 2.77 2.85 0.62 0.79 fscgs

Σ�
b (B7h) 5.83 5.84 0.71 0.71 fuugb ≈ fubgu

Ξ�
b (B7i) 5.95 5.98 0.67 0.74 fubgsþ fsbgu

Ω�
b (B7j) 6.09� 6.11 0.63 0.78 fsbgs

Ξ�
cc (B7k) 3.69� 3.75 0.98 0.20 fucgc

Ξ�
cb (B7l) 6.99� 7.07 0.21 0.98 fucgbþ fubgc

Ξ�
bb (B7m) 10.18� 10.34 1.00 0.078 fubgb

Ω�
cc (B7n) 3.82� 3.94 0.96 0.28 fscgc

Ω�
cb (B7o) 7.06� 7.21 0.31 0.95 fscgbþ fsbgc

Ω�
bb (B7p) 10.27� 10.47 0.99 0.12 fsbgb

Ω�
ccc (B7q) 4.80� 5.00 1 fccgc

Ω�
ccb (B7r) 8.04� 8.19 0.65 0.76 fcbgc

Ω�
cbb (B7s) 11.23� 11.38 0.96 0.28 fcbgb

Ω�
bbb (B7t) 14.37� 14.57 1 fbbgb
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Nevertheless, as before, the agreement with Ref. [33]
highlights both the utility of our formulation of the
contact interaction and the validity of equal spacing rules
as a first approximation to the spectrum of JP ¼ 3=2þ
baryons.
Table V also lists the contact-interaction quark-diquark

Faddeev amplitudes for each baryon, which express struc-
tural characteristics of the associated bound state. As in
Sec. V C 1, the calculated results owe their values to both
the fully dynamical character of the diquark correlations
and the nature of the Faddeev kernel, which together ensure
a continual shuffling of each dressed quark into and out of
diquark correlations. The structure of this kernel for JP ¼
3=2þ baryons is exemplified by that sketched for the Ξ�

c in
Appendix C 3. Its form makes clear that in all cases
involving more than one quark flavor, the diquark combi-
nation with maximal flavor shuffling is favored because it is
fed by twice as many exchange processes as the less-mixed
correlation. The Σ�

b is the only case in which this outcome is
avoided as a consequence of the enormous mass splitting
between the u and b quarks, which dramatically suppresses
the kernel contribution

ufbug ⟶
b exchange fubgu; ð39Þ

thereby producing a roughly symmetric, antidiagonal
kernel and hence a solution with near equality between
the two possible diquark combinations.

VI. SUMMARY AND OUTLOOK

We employed a confining, symmetry-preserving treat-
ment of a vector × vector contact interaction to calculate
spectra of ground-state pseudoscalar and vector ðfḡÞ
mesons, scalar and axial-vector ðfgÞ diquarks, and JP ¼
1=2þ; 3=2þ ðfghÞ baryons, where f; g; h ∈ fu; d; s; c; bg.
A physically motivated refinement of earlier formulations,
based on feedback between pseudoscalar-meson masses,
m0− , and leptonic decay constants, leading to a logarithmic
evolution of the interaction strength with m0− , was

necessary to extend the applicability of the contact inter-
action to systems involving heavy quarks (Sec. II B). The
calculated meson spectrum agrees well with experiment
(Sec. III): the mean-relative difference for 15 states is
5(5)%; and for these same states, the leptonic decay
constants are reproduced with an accuracy of 18(9)%.
Diquark masses and correlation strengths are required as

input to our baryon Faddeev equations, and a straight-
forward relationship between quark-quark and quark-
antiquark scattering means that these quantities are readily
obtained via a single, simple modification of the meson
Bethe-Salpeter equations. It follows that for every J−P

multiplet of degenerate mesons there is an associated JP

diquark multiplet (with, perhaps, just one member). The
level ordering of the JP diquark correlations matches that of
the J−P meson partners, with the meson masses bounding
the partner diquark masses from below (Sec. IV): ignoring
diquarks partnered with Nambu-Goldstone modes, the
splitting is 0.13(6) GeV.
In proceeding to solve the baryon Faddeev equations, we

used a static approximation to the quark exchange kernel.
This produces Faddeev amplitudes that are momentum
independent and thereby ensures a level of consistency
with the two-body bound-state amplitudes generated by
the contact interaction. Our implementation of the static
approximation introduced two parameters. Choosing them
to ensure that the masses of the lightest JP ¼ 1=2þ, 3=2þ
baryons agreed with experiment, we arrived at predictions
for the masses of 42 ground-state flavor-SUð5Þ JP ¼
1=2þ; 3=2þ baryons which compare well with measure-
ments (22 states known) or lQCD results (20 states): the
mean-absolute-relative difference is 2.5(1.1)% (Figs. 4
and 5).
The framework employed herein is distinguished by its

simplicity, with analyses and calculations being largely
algebraic. It is also marked by its effectiveness. There are
six parameters: four used to define the interaction and its
scale dependence through analysis of π, K, ηc, ηb proper-
ties; and two introduced to boost attraction in the baryon
Faddeev equations. Thus defined, the contact interaction

FIG. 5. Comparison between computed masses of ground-state flavor-SUð5Þ JP ¼ 3=2þ baryons and either experiment (first 9) [1] or
lQCD (last 11) [10,14]: our results—(black) circles; and reference values—(green) bars.
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delivers predictions for 72 distinct quantities; and when one
compares with independent determinations, the mean-
absolute-relative difference is 6(8)%.
Such quantitative success suggests that serious consid-

eration should be given to the qualitative conclusions
supported by our analysis. Of primary significance is the
demonstration that diquark correlations play an important
role in all baryons studied. Crucially, these diquark corre-
lations are not frozen degrees of freedom within a baryon.
Instead, they are dynamically composite, an aspect which
entails that it is the lightest allowed diquark correlation
which typically defines the most important component of a
baryon’s Faddeev amplitude. This remains true even if the
(bad) axial-vector diquark is the lightest channel available.
The dominance of the lightest correlation can be over-
whelmed only if the baryon’s spin-flavor structure is such
that the dynamical diquark breakup and reformation
processes driven by the Faddeev kernel lead to a preference
for mixed-flavor correlations.
It is straightforward to generalize our analysis to negative-

parity baryon ground states, and we anticipate that the picture
drawn from there would be qualitatively sound [30,57].
An extension to the first positive-parity excitations of the
baryons considered herein is also possible, but one is forced
into contrivance when trying to describe baryons with
zeros in their Faddeev amplitudes using an interaction that
favors momentum-independent solutions [19,25,30,57].
Additionally, given that novel gluon-quark/gluon-antiquark
correlations might play a part in explaining hybrid mesons
[113], a new and worthwhile direction would be to adapt the
framework described herein to the challenge of understanding
tetra- and pentaquark states, in which dynamical diquark
correlations may also be expected to play a material role.
In all cases, too, it is sensible to check conclusions

reached using the contact interaction against those obtained
with realistic momentum-dependent kernels for the three-
valence-body bound-state problem. As already noted, this
task has been undertaken for many flavor-SUð3Þ baryons
using the quark-diquark approximation [30,31], although
the diquark-content predictions have not been fully tested.
Such analyses should be completed and also extended to
flavor SUð5Þ.
Direct solutions of the three-body problem, eschewing

the quark-diquark approximation and using a well-
constrained rainbow-ladder kernel, have been employed
to produce the spectrum of ground-state flavor-SUð5Þ
ðfghÞ baryons, their first positive-parity excitations and
parity partners [33]. The solutions could profitably be used
to explore for signals indicating the appearance of diquark
correlations. It is also reasonable to pursue extensions of
these direct studies with kernels improved by incorporating
nonperturbative effects of dynamical chiral symmetry
breaking, which are potentially important to the emergence
of strong diquark correlations. Such efforts are likely to
benefit from the use of high-performance computing.
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APPENDIX A: COLLECTED FORMULAS

Equation (9) is the first of a number of integrals
appearing in our analysis whose regularized values are
expressed in terms of incomplete gamma functions. We
gather the expressions here (n ¼ 0, 1, 2):

Ciun ðσÞ ¼ σC̄iun ðσÞ; ðA1Þ

with

C̄iu0 ðσÞ ¼ Γð−1; στ2irÞ − Γð−1; στ2uvÞ; ðA2aÞ

C̄iu1 ðσÞ ¼ −
d
dσ

Ciu0 ðσÞ ¼ Γð0; στ2irÞ − Γð0; στ2uvÞ; ðA2bÞ

C̄iu2 ðσÞ ¼ σ
d2

dσ2
Ciu0 ðσÞ ¼ Γð1; στ2irÞ − Γð1; στ2uvÞ; ðA2cÞ

or, more simply still,

C̄iun ðσÞ ¼ Γðn − 1; στ2irÞ − Γðn − 1; στ2uvÞ: ðA3Þ

These expressions are used, e.g., to express the Bethe-
Salpeter kernel for pseudoscalar mesons in Eq. (15):
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K0−

EE ¼
Z

1

0

dαfCiu0 ðωfgðα; Q2ÞÞ

þ ½MfMg − αα̂Q2 − ωfgðα; Q2Þ�
× C̄iu1 ðωfgðα; Q2ÞÞg; ðA4aÞ

K0−

EF ¼ Q2

2Mfg

Z
1

0

dα½α̂Mf þ αMg�

× C̄iu1 ðωfgðα; Q2ÞÞ; ðA4bÞ

K0−

FE ¼ 2M2
fg

Q2
K0−

EF; ðA4cÞ

K0−

FF ¼ −
1

2

Z
1

0

dα½MfMg þ α̂M2
f þ αM2

g�

× C̄iu1 ðωfgðα; Q2ÞÞ: ðA4dÞ

It is worth reiterating here that Eq. (15) is an eigenvalue
problem that has a solution for Q2 ¼ −m2

0−, at which point
the eigenvector is the meson’s Bethe-Salpeter amplitude.
In the computation of observables one must employ the
canonically normalized amplitude, viz. the amplitude
rescaled such that

1 ¼ d
dQ2

Π0−ðZ;QÞ
���
Z¼Q

; ðA5Þ

where

Π0−ðZ;QÞ ¼ 6trD

Z
d4t
ð2πÞ4 Γ0−ð−ZÞ

× SfðtþQÞΓ0−ðZÞSgðtÞ: ðA6Þ

APPENDIX B: ELEMENTS IN THE
FADDEEV EQUATIONS

It is useful to define a collection of flavor matrices to
assist with explicating the structure of the diquark pieces in
Eq. (28). To do so, we realize the fundamental representa-
tion of flavor-SUð5Þ as follows:

u ¼

2
6666664

1

0

0

0

0

3
7777775
; d ¼

2
6666664

0

1

0

0

0

3
7777775
; s ¼

2
6666664

0

0

1

0

0

3
7777775
;

c ¼

2
6666664

0

0

0

1

0

3
7777775
; b ¼

2
6666664

0

0

0

0

1

3
7777775
; ðB1Þ

These states can be combined into diquark correlations
using the following 5 × 5 matrices, where here we dis-
tinguish between u and d quarks:

t1¼½ud� ¼

2
6666664

0 1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
;

t2¼½us� ¼

2
6666664

0 0 1 0 0

0 0 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
;

t3¼½uc� ¼

2
6666664

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

−1 0 0 0 0

0 0 0 0 0

3
7777775
; ðB2aÞ

with t4¼½ub�, t5¼½ds�, t6¼½dc�, t7¼½db�, t8¼½sc�, t9¼½sb�, t10¼½cb�
obvious by analogy; and

t11¼fuug ¼

2
6666664

ffiffiffi
2

p
0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
;

t12¼fudg ¼

2
6666664

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
;

t13¼fusg ¼

2
6666664

0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
7777775
; ðB3aÞ

with t14¼fucg, t15¼fubg, t16¼fddg, t17¼fdsg, t18¼fdcg, t19¼fdbg,
t20¼fssg, t21¼fscg, t22¼fsbg, t23¼fccg, t24¼fcbg, t25¼fbbg also
clear by analogy.
Now with the dressed-quark propagators collected into a

diagonal flavor matrix,
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SðpÞ ¼

2
666664

SuðpÞ 0 0 0 0

0 SdðpÞ 0 0 0

0 0 SsðpÞ 0 0

0 0 0 ScðpÞ 0

0 0 0 0 SbðpÞ

3
777775
; ðB4Þ

then, e.g., the 0þ ½ub� diquark is represented by the flavor-
matrix t4¼½ub� and its contribution to a Bethe-Salpeter or
Faddeev kernel is obtained through the matrix product
Sðp1Þt4STðp2Þ, where ð·ÞT indicates a matrix transpose. It
follows that the baryons considered herein have the spin-
flavor structures listed below.5

1. 1=2+ Spin-flavor combinations

In the isospin-symmetry limit, using the quark-diquark
approximation, the Faddeev equation in Fig. 3 supports the
following 24 distinct flavor-SUð5Þ combinations for 1=2þ
baryons.

up ¼

2
64

½ud�u
fuugd
fudgu

3
75 ↔

2
64
s1

a11

a12

3
75; ðB5aÞ

uΛ ¼ 1p
2

2
64

p
2½ud�s

½us�d − ½ds�u
fusgd − fdsgu

3
75 ↔

2
64
s1

s½2;5�

a½13;17�

3
75; ðB5bÞ

uΣþ ¼

2
64

½us�u
fuugs
fusgu

3
75 ↔

2
64
s2

a11

a13

3
75; ðB5cÞ

uΞ0 ¼

2
64

½us�s
fusgs
fssgu

3
75 ↔

2
64
s2

a13

a20

3
75; ðB5dÞ

uΛþ
c
¼ 1ffiffiffi

2
p

2
64

ffiffiffi
2

p ½ud�c
½uc�d − ½dc�u
fucgd − fdcgu

3
75 ↔

2
64
s1

s½3;6�

a½14;18�

3
75; ðB5eÞ

uΣþþ
c

¼

2
64

½uc�u
fuugc
fucgu

3
75 ↔

2
64
s3

a11

a14

3
75; ðB5fÞ

uΞþ
c
¼ 1ffiffiffi

2
p

2
64

ffiffiffi
2

p ½us�c
½uc�s − ½sc�u
fucgs − fscgu

3
75 ↔

2
64
s2

s½3;8�

a½14;21�

3
75; ðB5gÞ

uΞ0þ
c
¼ 1ffiffiffi

2
p

2
64

½uc�sþ ½sc�uffiffiffi
2

p fusgc
fucgsþ fscgu

3
75 ↔

2
64
sf3;8g

a13

af14;21g

3
75; ðB5hÞ

uΩ0
c
¼

2
64

½sc�s
fssgc
fscgs

3
75;↔

2
64
s8

a20

a21

3
75; ðB5iÞ

uΛ0
b
¼ 1ffiffiffi

2
p

2
64

ffiffiffi
2

p ½ud�b
½ub�d − ½db�u
fubgd − fdbgu

3
75 ↔

2
64
s1

s½4;7�

a½15;19�

3
75; ðB5jÞ

uΣþ
b
¼

2
64

½ub�u
fuugb
fubgu

3
75 ↔

2
64
s4

a11

a15

3
75; ðB5kÞ

uΞ0
b
¼ 1ffiffiffi

2
p

2
64

ffiffiffi
2

p ½us�b
½ub�s − ½sb�u
fubgs − fsbgu

3
75 ↔

2
64
s2

s½4;9�

a½15;22�

3
75; ðB5lÞ

uΞ00
b
¼ 1ffiffiffi

2
p

2
64

½ub�sþ ½sb�uffiffiffi
2

p fusgb
fubgsþ fsbgu

3
75 ↔

2
64
sf4;9g

a13

af15;22g

3
75; ðB5mÞ

uΩ−
b
¼

2
64

½sb�s
fssgb
fsbgs

3
75 ↔

2
64
s9

a20

a22

3
75; ðB5nÞ

uΞþþ
cc

¼

2
64

½uc�c
fucgc
fccgu

3
75 ↔

2
64
s3

a14

a23

3
75; ðB5oÞ

uΞþ
cb
¼ 1ffiffiffi

2
p

2
64

½uc�b − ½ub�cffiffiffi
2

p ½cb�u
fucgb − fubgc

3
75 ↔

2
64
s½3;4�

s10

a½14;15�

3
75; ðB5pÞ

uΞ0þ
cb
¼ 1ffiffiffi

2
p

2
64

½uc�bþ ½ub�c
fucgbþ fubgcffiffiffi

2
p fcbgu

3
75 ↔

2
64
sf3;4g

af14;15g

a24

3
75; ðB5qÞ

uΞ0
bb
¼

2
64

½ub�b
fubgb
fbbgu

3
75 ↔

2
64
s4

a15

a25

3
75; ðB5rÞ

5We capitalize on isospin symmetry; i.e., all diquarks and
baryons in an isospin multiplet are degenerate and, hence, solve
only for the baryon within a given isospin multiplet whose flavor
structure is simplest.
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uΩþ
cc
¼

2
64

½sc�c
fscgc
fccgs

3
75 ↔

2
64
s8

a21

a23

3
75; ðB5sÞ

uΩ0
cb
¼ 1ffiffiffi

2
p

2
64

½sc�b − ½sb�cffiffiffi
2

p ½cb�s
fscgb − fsbgc

3
75 ↔

2
64
s½8;9�

s10

a½21;22�

3
75; ðB5tÞ

uΩ00
cb
¼ 1ffiffiffi

2
p

2
64

½sc�bþ ½sb�c
fscgbþ fsbgcffiffiffi

2
p fcbgs

3
75 ↔

2
64
sf8;9g

af21;22g

a24

3
75; ðB5uÞ

uΩ−
bb
¼

2
64

½sb�b
fsbgb
fbbgs

3
75 ↔

2
64
s9

a22

a25

3
75; ðB5vÞ

uΩþ
ccb

¼

2
64

½cb�c
fccgb
fcbgc

3
75 ↔

2
64
s10

a23

a24

3
75; ðB5wÞ

uΩ0
cbb

¼

2
64

½cb�b
fcbgb
fbbgc

3
75 ↔

2
64
s10

a24

a25

3
75: ðB5xÞ

Section IV reveals that the antisymmetric combination
of any two quark flavors is always lighter than the
symmetric combination. Consequently, in the absence of
additional contributions to the Faddeev kernel, one should
expect

MΛ0 < MΣ0 ; ðB6aÞ

MΞc
< MΞ0

c
; ðB6bÞ

MΞb
< MΞ0

b
: ðB6cÞ

Moreover, the level ordering pattern should reverse for
ðMΞcb

;MΞ0
cb
Þ and ðMΩcb

;MΩ0
cb
Þ because the 0þ ½cb� diquark

correlation is ≈1 GeV more massive than the ½l; b�, ½s; b�
diquarks, it is forbidden in the Ξ0;Ω0 states, and a heavy-
quark must be exchanged to populate the lighter diquark
sector from the ½cb�.

2. 3=2+ Spin-flavor combinations

In the isospin-symmetry limit, using the quark-diquark
approximation, the Faddeev equation in Fig. 3 supports the
following 20 distinct flavor-SUð5Þ combinations for 3=2þ
baryons:

uΔ ¼ ½ fuugu � ↔ ½ a11 �; ðB7aÞ

uΣ� ¼
� fuugs
fusgu

�
↔

�
a11

a13

�
; ðB7bÞ

uΞ� ¼
� fusgs
fssgu

�
↔

�
a13

a20

�
; ðB7cÞ

uΩ ¼
�
fssgs

�
↔

�
a20

�
; ðB7dÞ

uΣ�þþ
c

¼
� fuugc
fucgu

�
↔

�
a11

a14

�
; ðB7eÞ

uΞ�þ
c

¼ 1ffiffiffi
2

p
� ffiffiffi

2
p fusgc

fucgsþ fscgu

�
↔

�
a13

af14;21g

�
; ðB7fÞ

uΩ�0
c
¼

� fssgc
fscgs

�
↔

�
a20

a21

�
; ðB7gÞ

uΣ�þ
b

¼
� fuugb
fubgu

�
↔

�
a11

a15

�
; ðB7hÞ

uΞ�0
b
¼ 1ffiffiffi

2
p

� ffiffiffi
2

p fusgb
fubgsþ fsbgu

�
↔

�
a13

af15;22g

�
; ðB7iÞ

uΩ�−
b
¼

� fssgb
fsbgs

�
↔

�
a20

a22

�
; ðB7jÞ

uΞ�þþ
cc

¼
� fucgc
fccgu

�
↔

�
a15

a25

�
; ðB7kÞ

uΞ�þ
cb

¼ 1ffiffiffi
2

p
� fucgbþ fubgcffiffiffi

2
p fcbgu

�
↔

�
af14;15g

a24

�
; ðB7lÞ

uΞ�0
bb
¼

� fubgb
fbbgu

�
↔

�
a14

a23

�
; ðB7mÞ

uΩ�þ
cc

¼
� fscgc
fccgs

�
↔

�
a21

a23

�
; ðB7nÞ

uΩ�0
cb
¼ 1ffiffiffi

2
p

� fscgbþ fsbgcffiffiffi
2

p fcbgs

�
↔

�
af21;22g

a24

�
; ðB7oÞ

uΩ�−
bb
¼

� fsbgb
fbbgs

�
↔

�
a22

a25

�
; ðB7pÞ

uΩ�þþ
ccc

¼
�
fccgc

�
↔

�
a23

�
; ðB7qÞ
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uΩ�þ
ccb

¼
� fccgb
fcbgc

�
↔

�
a23

a24

�
; ðB7rÞ

uΩ�0
cbb

¼
� fcbgb
fbbgc

�
↔

�
a24

a25

�
; ðB7sÞ

uΩ�−
bbb

¼
�
fbbgb

�
↔

�
a25

�
: ðB7tÞ

Evidently, only JP ¼ 1þ appear in these flavor-SUð5Þ
generalizations of the baryon decuplet.

APPENDIX C: SELECTED
FADDEEV EQUATIONS

1. Ξ+
c Baryon

With the c quark as a label, there are two SUð3Þ
subgroups of a mixed-symmetric-20 representation of
flavor SUð4Þ: one is antisymmetric under the interchange
of the lighter quarks (antitriplet), and the other is symmetric
(sextet). Both the antitriplet and sextet flavor combinations
can be realized in the JP ¼ 1=2þ sector: the Ξþ

c is the
antitriplet member, antisymmetric under u ↔ s, as
expressed via Eq. (B5g). Using this knowledge, one can
employ a procedure similar to that used for the Λ baryon in
Ref. [50], and proceed from Fig. 3 to the following
algebraic equation:

uΞþ
c
¼ KΞþ

c
uΞþ

c
; ðC1Þ

where uΞþ
c
is given in Eq. (B5g) and

KΞþ
c
¼

2
6664

0
K3

2
þK8

2ffiffi
2

p − K14
2
þK21

2ffiffi
2

p

K2
3
þK2

8ffiffi
2

p − K8
3
þK3

8

2
− K21

3
þK14

8

2

− K2
14
þK2

21ffiffi
2

p − K8
14
þK3

21

2
− K21

14
þK14

21

2

3
7775 ðC2Þ

with, e.g.,

K3
2 ¼ −4

Z
d4q
ð2πÞ4 Γ3ðlÞSTu Γ̄2ð−kÞSsðqÞΔ3ðlÞ; ðC3aÞ

K2
3 ¼ −4

Z
d4q
ð2πÞ4 Γ2ðlÞSTuΓ̄3ð−kÞScðqÞΔ2ðlÞ: ðC3bÞ

The other elements of KΞþ
c

have similar structures,
determined by the Faddeev kernel in Fig. 3, where each
amplitude and propagator is connected with a particular
diquark or quark according to the definitions in
Appendix B: e.g., Γ2 is the correlation amplitude for the
½us� diquark; Γ3 is the amplitude for the ½uc� diquark, with
Δ3 the associated propagator; and Su;s are propagators for
the quarks with flavor f ¼ u, s.

It is important to observe that ½KΞþ
c
�11 ≡ 0. Hence, the

½us�c component of the Ξþ
c spin-flavor wave function is not

“self-supporting.” Instead, it must be “fed” by other
combinations. This is a general consequence of Fig. 3;
i.e., the outcome is not specific to the contact interaction.
Taking account of Eq. (37b), viz. axial-vector diquarks

have two Dirac structures, Eq. (C2) expands to a 4 × 4
matrix because, e.g.,

K14
2 ¼ ðK14

2∶1;K
14
2∶2Þ: ðC4Þ

Now using the regularization procedure described in
Sec. II B, all elements in the kernel matrix can be computed
explicitly. Defining

cfΞc
¼ g2Ξc

4π2Mf
; σf;iΞc

¼ σðα;M2
f; m

2
i ; m

2
Ξc
Þ; ðC5Þ

where gΞc
¼ g2 in Eq. (38),

σðα;M2
f; m

2
i ;M

2
Ξc
Þ

¼ ð1 − αÞM2
f þ αm2

i − αð1 − αÞM2
Ξc
; ðC6Þ

with f being a quark flavor label and i a diquark
enumeration label, so that mi is the mass of the associated
correlation, then the first row is

K3
2 ¼

cuΞc

4MR2
MR3

Z
1

0

dαC̄1ðσs;3Ξc
Þ

× ½2E2MR2
− F2MΞc

ð1 − αÞ�
× ½2E3MR3

− F3MΞc
ð1 − αÞ�

× ½Ms þ αMΞc
�; ðC7aÞ

K8
2 ¼

csΞc

4MR2
MR8

Z
1

0

dαC̄1ðσu;8Ξc
Þ

× ½2E2MR2
− F2MΞc

ð1 − αÞ�
× ½2E8MR8

− F8MΞc
ð1 − αÞ�

× ½Mu þ αMΞc
�; ðC7bÞ

K14
2∶1 ¼

cuΞc
E14

2MR2
m2

14

Z
1

0

dαC̄1ðσs;14Ξc
Þ½2E2MR2

ð3Msm2
14

þMΞc
½m2

14 þ 2M2
Ξc
ð1 − αÞ2�αÞ

− F2MΞc
ð1 − αÞ½Msðm2

14

þ 2M2
Ξc
ð1 − αÞ2Þ þ 3m2

14MΞc
α��; ðC7cÞ

K14
2∶2 ¼

cuΞc
E14

2MR2
m2

14

Z
1

0

dαC̄1ðσs;14Ξc
Þ½2E2MR2

þ F2MΞc
ð1 − αÞ�

× ½m2
14 −M2

Ξc
ð1 − αÞ2�½Ms − αMΞc

�; ðC7dÞ
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K21
2∶1 ¼

csΞc
E21

2MR2
m2

21

Z
1

0

dαC̄1ðσu;21Ξc
Þ½2E2MR2

ð3Mum2
21

þMΞc
½m2

21 þ 2M2
Ξc
ð1 − αÞ2�αÞ

− F2MΞc
ð1 − αÞ½Muðm2

21

þ 2M2
Ξc
ð1 − αÞ2Þ þ 3m2

21MΞc
α��; ðC7eÞ

K21
2∶2 ¼

cuΞc
E14

2MR2
m2

14

Z
1

0

dαC̄1ðσs;14Ξc
Þ½2E2MR2

þ F2MΞc
ð1 − αÞ�

× ½m2
14 −M2

Ξc
ð1 − αÞ2�½Ms − αMΞc

�; ðC7fÞ

where, e.g.,MR2
¼ MuMs=ðMu þMsÞ, because “2” labels

the ½us� diquark, and E2 and F2 are the ½us�-diquark
amplitudes in Table III, Row 2. All other symbols are
understood analogously.
The other elements of KΞþ

c
are all defined by expres-

sions such as Eqs. (C3), and the straightforward application
of our regularization procedure completes the array with
expressions such as Eqs. (C7).

2. Ξ0 +
c Baryon

Ξ0þ
c is the sextet partner of the Ξþ

c in the mixed-
symmetric 20, i.e., the Ξ0þ

c spin-flavor wave function is
symmetric under u ↔ s, viz. Eq. (B7f). In this case, Fig. 3
yields the following equation:

uΞ0þ
c
¼ KΞ0þ

c
uΞ0þ

c
; ðC8Þ

where uΞ0þ
c
is given in Eq. (B5h) and

KΞ0þ
c
¼

2
6664

K8
3
þK3

8

2
− K13

3
þK13

8ffiffi
2

p K21
3
þK14

8

2

− K3
13
þK8

13ffiffi
2

p 0
K14

13
þK21

13ffiffi
2

p

K8
14
þK3

21

2

K13
14
þK13

21ffiffi
2

p K21
14
þK14

21

2

3
7775: ðC9Þ

Explicit forms for the entries in KΞ0þ
c
are readily obtained

using the procedures indicated above, and they have forms
similar to those in Eqs. (C7).
Here, since ½KΞ0þ

c
�22 ≡ 0, the fusgc component of the

Ξ0þ
c spin-flavor wave function is not “self-supporting.”

On the other hand, it is the lightest possible diquark
component of the bound state, and all feeder processes
involve a light-quark exchange. Since the opposite is
true for the other two correlations, viz. ½uc�sþ ½sc�u,
fucgsþ fscgu, then fusgc can dominate in the Ξ0þ

c .
The contrast between this outcome for the Ξ0þ

c and that
described above for the Ξþ

c may be attributed to the
different u ↔ s symmetries of the systems, which can
change constructive into destructive interference.

3. Ξ�
c Baryon

Ξ�
c is a member of the symmetric-20 representation of

flavor SUð4Þ, in consequence of which its spin-flavor wave
function must be symmetric under u ↔ s, viz. Eq. (B7f). In
this case, Fig. 3 yields an algebraic equation of the
following form:

uΞ�þ
c

¼ KΞ�þ
c
uΞ�þ

c
; ðC10Þ

where

KΞ�þ
c

¼

2
64 0

K14
13
þK21

13ffiffi
2

p

K13
14
þK13

21ffiffi
2

p K21
14
þK14

21

2

3
75: ðC11Þ

As usual, explicit expressions for the entries in K can be
obtained using the procedures indicated above, and they
have forms similar to those in Eqs. (C7).
Evidently, ½K�11 ≡ 0 for the Ξ�þ

c . Consequently, it is
again the fusgc component of the Ξ�þ

c spin-flavor wave
function that is not self-supporting. Instead, fusgc feeds
the compound fucgsþ fscgu correlation, which also
supports itself and is therefore dominant.
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