
 

QCD NLO fragmentation functions for c or b̄ quark to Bc or B�
c

meson and their application

Xu-Chang Zheng*

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China;
Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing 100190, China
and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Chao-Hsi Chang†

Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences,
Beijing 100190, China;

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
and CCAST (World Laboratory), Beijing 100190, China

Tai-Fu Feng‡

Department of Physics, Hebei University, Baoding 071002, China
and Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,

Chinese Academy of Sciences, Beijing 100190, China

Xing-Gang Wu§

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China

(Received 8 January 2019; published 6 August 2019)

The fragmentation functions for a c or b̄ quark to a Bc or B�
c meson are derived up to QCD next-to-

leading order. They are further computed numerically and presented precisely in figures. In order to reach a
higher accuracy, we also try to properly use them to estimate Bc and B�

c production at a Z factory (an eþe−

collider running at the energy of the Z-boson pole).
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I. INTRODUCTION

Bc and B�
c are the ground states of the c,b̄ binding system

with spin 0 and 1, respectively. Carrying two different
heavy flavors, they are unique doubly heavy mesons in the
Standard Model. Thus they attract a lot of attentions,
particularly after the Bc meson was first observed [1].
Their components, being of heavy flavor quarks, move
nonrelativistically inside the mesons, so the effective theory
—nonrelativistic quantum chromodynamics (NRQCD) [2]
—is applicable, and the Mandelstam formulation of the
Bethe-Salpeter equation [3] under the instantaneous
approximation also works well.

The production of Bc or B�
c in eþe− collisions at the

Z-boson resonance [i.e., eþe− → Z=γ → BcðB�
cÞ þ X]

under the framework of NRQCD or the Mandelstam
formulation under the instantaneous approximation can
be factorized as follows [4–6]:

dσeþe−→BcþX ¼
X
n

dσ̃eþe−→ðcb̄Þ½n�þXhOBcðnÞi;

dσeþe−→B�
cþX ¼

X
n0
dσ̃eþe−→ðcb̄Þ½n0�þXhOB�

cðn0Þi; ð1Þ

where dσ̃ denotes the cross section for the perturbative
production of the two-quark state ðcb̄Þ½n� [or ðcb̄Þ½n0� ] with
proper quantum numbers n (or n0), which can be calculated
using perturbative QCD (pQCD), and the nonperturbative
matrix element hOBcðnÞi [or hOB�

cðn0Þi] representing the
transition probability from the perturbative two-quark state
ðcb̄Þ½n� [or ðcb̄Þ½n0� ] into the hadronic state (a Bc or B�

c
meson) can be related to the wave function at origin of the
ðcb̄Þ binding system squared in the potential model
framework, and can also be calculated using lattice QCD.
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Since the B�
c meson is similar to the Bc meson [the

difference is that the spin of the diquark ðcb̄Þ inside Bc is
S ¼ 0 but the spin of the diquark ðcb̄Þ inside B�

c is S ¼ 1],
throughout the paper we often use Bc to represent both Bc
and B�

c for simplicity.
However, when the center-of-mass energy of a collision

is larger than the heavy-quark mass and the terms in
Oðm2

Q=sÞ can be neglected, according to the factorization
formulation of pQCD the production can also be calculated
in terms of the fragmentation approach:

dσeþe−→BcþX

dz
¼

X
i

Z
1

z

dy
y
dσ̂eþe−→iþX

dy
ðy; μFÞ

×Di→Bc
ðz=y; μFÞ; ð2Þ

where z≡ 2p · q=q2 is the energy fraction (e.g. herep is the
momentum of Bc, and q is the momentum of eþ and e−

collision), dσ̂eþe−→iþX is the cross section (coefficient
function) for the inclusive production of a parton i
(i ¼ c; b̄, etc.) and can be calculated using pQCD, μF
denotes the factorization scale for the production, and
Di→Bc

is the fragmentation function (FF) from a parton i
to a Bc meson, which is universal and can be extracted
experimentally. The authors of Refs. [7,8] realized that the
production is calculable in terms of QCD factorization as
shown in Eq. (1) and the leading-order (LO) FFs can be
extracted by comparing Eqs. (1) and (2), i.e., the FFs are
theoretical calculable, and they were first extracted in
Refs. [7,8]. The authors of Ref. [9] applied the obtained
FFs to the production to the QCD leading logarithm
approach and made comparisons between their results
and those obtained using the complete LO QCD approach,
which gives us a understanding of the two approaches.
In order to obtain a better theoretical estimation on Bc

production, etc., at aZ factory[10] (an eþe− collider running
at the energy of theZ-bosonpole),wewould like to adopt the
factorization approach (2) but with the FFs from the c or b̄
quark to a Bc meson which are of next-to-leading order
(NLO), because the NLO QCD calculations are generally
more accurate. The NLO FFs cannot be extracted from the
complete NLO calculation of the relevant Bc production as
easily as those for theLOones, althoughBc production at aZ
factory has been studied using the “complete computation
approach” [11]. Therefore we must start with the definition
given in Ref. [12] to derive them up to the NLO of QCD. In
addition, the QCD NLO FFs have many applications, so we
would like to derive them precisely here, although the
derivation is complicated.
Note that in Refs. [13–16] the QCD NLO FFs for a gluon

to heavy quarkonium were derived, but here the FFs from a
quark i to a Bc meson involve two heavy quarks of different
flavors, so they are quite different from the ones for a gluon
to heavy quarkonium.
According to NRQCD, the FFs Di→Bc

(i ¼ c; b̄), which
depict the hadronization and contain nonperturbative
effects, can be factorized as follows:

Di→Bc
ðz; μFÞ ¼

X
n

di→cb̄½n�ðz; μFÞhOBc
n i; ð3Þ

where the first factor di→cb̄½n� denotes a parton i generating a
cb̄ quark pair with matched quantum number n, and being
perturbative it can be calculated using pQCD; the factor
hOBc

n i denotes the “long-distance matrix elements,” and
being nonperturbative they may be related to the wave
functions at the origin in the potential model framework
or computed using lattice QCD. The nonperturbative
factors are reduced to a few long-distance matrix elements
hOBc

n i under the required accuracy.1 With the normalizationR
1
0 dzDi→BcðB�

cÞðzÞ¼1, the LO FFs Di→Bc
(where i¼c;b̄)

were first obtained in Ref. [7]. The LO FFs were extracted
from the LO calculations of the processes Z → Bc þ bþ c̄
and Z → B�

c þ bþ c̄ with the approximation mBc
≪ mZ.

Subsequent calculations [8,19] confirmed the results. The
LO FFs for the production of the P-wave and D-wave
excited states of the Bc were calculated in Refs. [20–22]. So
far there is no NLO calculation for the FFsDi→Bc

(i ¼ c; b̄).
Thus, in the present paper, we devote ourselves to calculat-
ing the QCD NLO corrections to Di→Bc

(and Di→B�
c
).

Since the FFsDi→Bc
ðz; μFÞ (where μF is the factorization

energy) generally contain terms like lnðμF=mQÞ, in order to
properly take into account the possible large-logarithm
terms the FFs Di→Bc

ðz; μFÞ [μF ¼ Oð ffiffiffi
s

p Þ] will be obtained
by solving the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equations [23–25] with the NLO QCD
FFs Di→Bc

ðz; μF0Þ [μF0 ¼ OðmQÞ] being the “initial FFs,”

d
d lnμ2F

Di→Bc
ðz;μFÞ

¼ αsðμFÞ
2π

X
j

Z
1

z

dy
y
Pjiðy;αsðμFÞÞDj→Bc

ðz=y;μFÞ; ð4Þ

where Pjiðy; αsðμFÞÞ are splitting functions for parton i into
parton j,2

PqqðyÞ ¼ CF

�
1þ y2

ð1 − yÞþ
þ 3

2
δð1 − yÞ

�
;

PgqðyÞ ¼ CF
1þ ð1 − yÞ2

y
;

PqgðyÞ ¼ TF½y2 þ ð1 − yÞ2�;

PggðyÞ ¼ 2CA

�
y

ð1 − yÞþ
þ 1 − y

y
þ yð1 − yÞ

�

þ 1

6
δð1 − yÞð11CA − 4nfTFÞ; ð5Þ

1The relevant discussions about the accuracy of applying
NRQCD to the FFs of heavy quarkonia can be found in
Refs. [17,18], and the conclusions also apply to the FFs of the
Bc meson.

2In fact, here they are of LO.
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where CF ¼ 4=3, TF ¼ 1=2, CA ¼ 3 for QCD and Pq̄ q̄ is
equal to Pqq. Note that in order to focus on the conse-
quences of NLO QCD corrections for FFs, we restrict
ourselves to evaluating the evolution of the FFs from μF0 to
μF only to leading-logarithm (LL) accuracy so that here the
“splitting functions” in Eq. (5) are of leading order.
The paper is organized as follows. Following the

Introduction, in Sec. II we present the definition of the
FFs which was given by Collins and Soper [12], and
with this definition we calculate the LO FFs for
i → BcðB�

cÞ þ � � � ði ¼ b̄; cÞ. In Sec. III we describe the
adopted method for calculating the virtual and real correc-
tions to the FFs, and how to carry out the renormalization,
so as to obtain the “initial FF” Di→BcðB�

cÞðz; μF0Þ. Then, we
present the numerical results for the FFs Di→Bc

and Di→B�
c

up to QCD NLO. In Sec. IV we apply the obtained QCD

NLO FFs to the production of eþe− → BcðB�
cÞ þ � � � at a Z

factory and compare the results with those obtained from
the complete QCD NLO calculations. Section V is devoted
to discussions and a conclusion.

II. THE FRAGMENTATION FUNCTIONS

A. The definition of fragmentation functions

The FFs may be defined as the hadron matrix elements of
certain quark-field operators, and the light-cone coordinate
is conventionally adopted. In the light-cone coordinate a
vector in d-dimensional space-time3 is represented as Vμ ¼
ðVþ; V−; VTÞ ¼ ððV0 þ Vd−1Þ= ffiffiffi

2
p

; ðV0 − Vd−1Þ= ffiffiffi
2

p
; VTÞ.

The gauge-invariant definition of the FFs for a quark Q
fragmenting into a hadron H in d ¼ 4 − 2ϵ-dimensional
space-time is [12]

DQ→HðzÞ ¼
zd−3

2π

X
X

Z
dx−e−iP

þx−=z 1

Nc
Trcolor

1

4
TrDirac

�
γþh0jΨð0ÞP̄ exp

�
igs

Z
∞

0

dy−Aþ
a ð0þ; y−; 0TÞtTa

�
jHðPþ; 0TÞ þ Xi

× hHðPþ; 0TÞ þ XjP exp

�
−igs

Z
∞

x−
dy−Aþ

a ð0þ; y−; 0TÞtTa
�
Ψ̄ðxÞj0i

�
; ð6Þ

where Ψ is the quark field and Aμ
a is the gluon field.

P denotes path ordering, ta is the color matrix, z is
the longitudinal momentum fraction z ¼ Pþ=Kþ, and K
is the momentum of the initial quark Q. The FFs
are defined in the reference frame where the hadron H
carries the momentum Pμ ¼ ðPþ; P− ¼ m2

H=2P
þ; 0TÞ. It is

convenient to introduce a light-like vector nμ ¼ ð0; 1; 0TÞ
in the reference frame where the FFs are defined. Then, the
plus component of a momentum p can be written as
pþ ¼ p · n, and z ¼ P · n=K · n.
The definition [12] of the FFs for an antiquark Q̄ into a

hadron H is

DQ̄→HðzÞ ¼
zd−3

Nc × 4 × 2π

X
X

Z
dx−e−iP

þx−=zh0jΨ̄ð0ÞγþP̄ exp

�
−igs

Z
∞

0

dy−Aþ
a ð0þ; y−; 0TÞta

�
jHðPþ; 0TÞ þ Xi

× hHðPþ; 0TÞ þ XjP exp
�
igs

Z
∞

x−
dy−Aþ

a ð0þ; y−; 0TÞta
�
ΨðxÞj0i: ð7Þ

Given the Feynman rules and the definition of the FFs (6)–
(7), the relevant Feynman diagrams can be drawn. The part
to the left of the cut line in the Feynman diagram
corresponds to the right part of the definition, and the part
to the right of the cut corresponds to the left part of the
definition (which is just the complex conjugate of the right
part of the definition). Note that for the FFs of an antiquark
into a hadron we have the following:
(1) The vertex for a gluon line attached to an eikonal

line contributes a factor igsnμtaij, where μ and a are

the Lorentz index and color index of the gluon,
respectively.

(2) The eikonal propagator, which carries momentum q
flowing from the operator to the cut side, is
iδij=ðq · nþ iϵÞ.

(3) The cut of final-state eikonal line carrying momen-
tum q contributes 2πδðq · nÞ.

An overall factor of NCS ¼ z1−2ϵ=8πNc from the definition
should also be taken into account. The Feynman rules of
the FFs of a quark into a hadron are the same as those in the
antiquark cases except that the color matrix for the eikonal
line–gluon vertex should be taij instead of −taji. Thus, given
the Feynman diagrams the LO and NLO FFs Di→Bc

and
Di→B�

c
can be derived.

3In this work, we adopt dimensional regularization with d ¼
4 − 2ϵ to regularize UV and IR divergences, and adopt the
reading point prescription [26] to handle γ5 in d dimensions.
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B. LO fragmentation functions

To understand the definition (6)–(7) and to present the
conventions used in this paper, here we derive the LO FFs,
Di→Bc

and Di→B�
c
, where i ¼ c; b̄, although they have been

obtained in the past using other approaches [7,8,19].
In this section and the next one we will show the

derivations of the FFsDb̄→Bc
andDb̄→B�

c
from the definition

(6)–(7). The FFs Dc→Bc
and Dc→B�

c
can be derived in the

same way and the results are the same as those for Db̄→Bc

and Db̄→B�
c
with the replacement mb ↔ mc, so we will not

repeat the derivation for them.
According to the factorization (3), as the first step we

derive the “FFs” Db̄→cb̄½n� with the diquark cb̄ states with

quantum numbers 1S½1�0 and 3S½1�1 , where the superscript ½1�
denotes the color singlet. Then the second step is to derive
the FFs for a heavy quark (b̄ or c) into a Bc or B�

c meson,
where the “free diquark” cb̄ state is replaced by the
NRQCD matrix element (the wave function at the origin),
which depicts QCD nonperturbative effects in the forma-
tion of a Bc or B�

c meson from the relevant diquark state
cb̄½n�. (In this paper we assume that the QCD NLO matrix
element is the same as the QCD LO one.4)
Based on the definition (6)–(7), there are four cut

diagrams (Fig. 1) for the LO FF Db̄→cb̄½n�. The squared
Feynman amplitudes, corresponding to the four diagrams
with a “cut,” can be written as follows:

A1 ¼ tr

�
=n

i
−=p1 − =p2 −mb þ iϵ

ðigsγμtaÞΠ

· Λ1ðigsγμtaÞðp2 −mcÞð−igsγνtbÞΠ̄

· Λ1ð−igsγνtbÞ
−i

−=p1 − =p2 −mb − iϵ

�

·
−i

ðp11 þ p2Þ2 þ iϵ
i

ðp11 þ p2Þ2 − iϵ

����
q¼0

; ð8Þ

A2 ¼ tr

�
=nðigsnμtaÞ

i
ðp11 þ p2Þ · nþ iϵ

Π

· Λ1ðigsγμtaÞðp2 −mcÞð−igsγνtbÞΠ̄

· Λ1ð−igsγνtbÞ
−i

−=p1 − =p2 −mb − iϵ

�

·
−i

ðp11 þ p2Þ2 þ iϵ
i

ðp11 þ p2Þ2 − iϵ

����
q¼0

; ð9Þ

A3 ¼ tr

�
=n

i
−=p1 − =p2 −mb þ iϵ

ðigsγμtaÞΠ

· Λ1ðigsγμtaÞðp2 −mcÞð−igsγνtbÞΠ̄

· Λ1

−i
ðp11 þ p2Þ · n − iϵ

ð−igsnνtbÞ
�

·
−i

ðp11 þ p2Þ2 þ iϵ
i

ðp11 þ p2Þ2 − iϵ

����
q¼0

; ð10Þ

A4 ¼ tr

�
=nðigsnμtaÞ

i
ðp11 þ p2Þ · nþ iϵ

Π

· Λ1ðigsγμtaÞðp2 −mcÞð−igsγνtbÞΠ̄

· Λ1

−i
ðp11 þ p2Þ · n − iϵ

ð−igsnνtbÞ
�

·
−i

ðp11 þ p2Þ2 þ iϵ
i

ðp11 þ p2Þ2 − iϵ

����
q¼0

; ð11Þ

where p11 and p12 are the momenta of the c quark and b̄
quark inside the cb̄ pair, and

p11 ¼
mc

M
p1 þ q; p12 ¼

mb

M
p1 − q; ð12Þ

whereM ≈mb þmc is the mass of the cb̄ pair.Π is the spin
projector: for the spin singlet it is

Π ¼ −
ffiffiffiffiffi
M

p

4mbmc
ðp12 −mbÞγ5ðp11 þmcÞ; ð13Þ

and for the spin triplet it is

Π ¼ −
ffiffiffiffiffi
M

p

4mbmc
ðp12 −mbÞ=ϵðp1Þðp11 þmcÞ: ð14Þ

Π̄ is defined as Π̄ ¼ γ0Π†γ0. The color-singlet projector is

FIG. 1. The LO cut diagrams for the FFs Db̄→cb̄½n�.

4The matrix element appears as an overall factor, so its
correction(s) (if any) can be considered easily.
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Λ1 ¼
1ffiffiffi
3

p 1; ð15Þ

where 1 is the unit matrix of the color SUcð3Þ group. Note
that throughout the paper we work in the Feynman gauge.
Having taken traces, the squared amplitudes correspond-

ing to the LO FFs can be written as follows:

ALO ¼
X4
i¼1

Ai

¼ C2
Fg

4
sK · n

r2cz2ð1 − rbzÞ2M
X4
i¼2

aiM2ði−2Þ

ðs1 −m2
bÞi

; ð16Þ

where rc ¼ mc=M and rb ¼ mb=M. s1 ¼ ðp1 þ p2Þ2 is the
invariant mass of the lowest (LO) final states ðcb̄þ c̄Þ. The
coefficients ai can be found in the Appendix A.
The differential phase space for the LO FFs can be

written as

dϕLO ¼ θðpþ
2 Þ dpþ

2

4πpþ
2

dd−2p2⊥
ð2πÞd−2 2πδðK

þ − pþ
1 − pþ

2 Þ; ð17Þ

where the δ function comes from the cut through the
eikonal line. The integration over pþ

2 can be carried out
precisely due to the δ function. The integrand does not
depend on the angles of p2⊥, so the integration over the
angles of p2⊥ is trivial, and can be carried out too. Thus,
now the differential phase space is reduced to

dϕLO ¼ z−1þϵð1 − zÞ−ϵ
2ð4πÞ1−ϵΓð1 − ϵÞK · n

×

�
s1 −

M2

z
−

m2
c

1 − z

	−ϵ
ds1: ð18Þ

The range of s1 is from ðM2=zþm2
c=ð1 − zÞÞ to ∞. The

LO FFs can be represented as

DLO
b̄→cb̄½n�ðzÞ ¼ NCS

Z
dϕLOALO: ð19Þ

The integration over s1 can be carried out with Eq. (16).
Integrating over s1, we obtain

DLO
b̄→cb̄½n�þ���ðzÞ

¼ C2
Fα

2
sð1 − zÞð4πÞϵΓð1þ ϵÞ

4Ncr2czð1 − rbzÞ4þ2ϵM3þ2ϵ

�
a2 þ a3

ð1þ ϵÞzð1 − zÞ
2ð1 − rbzÞ2

þ a4
ð2þ ϵÞð1þ ϵÞz2ð1 − zÞ2

6ð1 − rbzÞ4
�
: ð20Þ

Setting d ¼ 4, we obtain

DLO
b̄→cb̄½1S½1�

0
�þ���ðzÞ

¼ 8α2szð1 − zÞ2
81r2cð1 − rbzÞ6M3

½6 − 18ð1 − 2rcÞz

þ ð21 − 74rc þ 68r2cÞz2 − 2rbð6 − 19rc þ 18r2cÞz3

þ 3r2bð1 − 2rc þ 2r2cÞz4�
hOcb̄½1S½1�

0
�ð1S½1�0 Þi

2Nc
; ð21Þ

and

DLO
b̄→cb̄½3S½1�

1
�þ���ðzÞ

¼ 8α2szð1 − zÞ2
27r2cð1 − rbzÞ6M3

½2 − 2ð3 − 2rcÞz

þ 3ð3 − 2rc þ 4r2cÞz2 − 2rbð4 − rc þ 2r2cÞz3

þ r2bð3 − 2rc þ 2r2cÞz4�
hOcb̄½3S½1�

1
�ð3S½1�1 Þi

6Nc
; ð22Þ

where the LO FFs for the ðcb̄Þ states have been written in
the factorization form, and at order α0s,

hOcb̄½1S½1�
0
�ð1S½1�0 Þi ¼ 2Nc;

hOcb̄½3S½1�
1
�ð3S½1�1 Þi ¼ 2ðd − 1ÞNc ð23Þ

with the normalization for the NRQCD matrix elements as

that in Ref. [2]. hOcb̄½1S½1�
0
�ð1S½1�0 Þi and hOcb̄½3S½1�

1
�ð3S½1�1 Þi denote

the NRQCD matrix elements for the states ðcb̄Þ.
Thus, the LO FFs for the Bc and B�

c mesons are obtained

by replacing hOcb̄½1S½1�
0
�ð1S½1�0 Þi and hOcb̄½3S½1�

1
�ð3S½1�1 Þi with

hOBcð1S½1�0 Þi and hOB�
cð3S½1�1 Þi, respectively. The NRQCD

matrix elements hOBcð1S½1�0 Þi and hOB�
cð3S½1�1 Þi can be

estimated as follows:

hOBcð1S½1�0 Þi ≈ NcjRSð0Þj2=ð2πÞ;
hOB�

cð3S½1�1 Þi ≈ ðd − 1ÞNcjRSð0Þj2=ð2πÞ; ð24Þ

where RSð0Þ is the radial wave function at the origin for the
Bc (B�

c) meson. Replacing the NRQCD matrix elements in
Eqs. (21) and (22) with the NRQCD matrix elements in
Eq. (24), we obtain

DLO
b̄→Bc

ðzÞ¼2α2szð1−zÞ2jRSð0Þj2
81πr2cð1−rbzÞ6M3

½6−18ð1−2rcÞz

þð21−74rcþ68r2cÞz2−2rbð6−19rcþ18r2cÞz3
þ3r2bð1−2rcþ2r2cÞz4�; ð25Þ

and
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DLO
b̄→B�

c
ðzÞ ¼ 2α2szð1 − zÞ2jRSð0Þj2

27πr2cð1 − rbzÞ6M3
½2 − 2ð3 − 2rcÞz

þ 3ð3 − 2rc þ 4r2cÞz2 − 2rbð4 − rc þ 2r2cÞz3
þ r2bð3 − 2rc þ 2r2cÞz4�: ð26Þ

The LO FFs DLO
b̄→Bc

ðzÞ and DLO
b̄→B�

c
ðzÞ obtained here are

exactly the same as those obtained in Refs. [7,8], although
the authors of Refs. [7,8] derived them in a different way.

III. QCD NLO CORRECTIONS TO THE FFS
FOR A b̄ QUARK TO A Bc OR B�

c MESON

In this section we will derive the NLO FFs as defined by
Eqs. (6) and (7), and divide the derivation of the NLO
corrections into virtual corrections, real corrections, and
renormalization for convenience. Finally, we will compute
them numerically and present them in figures.

A. The virtual NLO corrections

The virtual NLO corrections to the FFs Db̄→cb̄½n� come
from the “cut diagrams” with one loop on either side of the
cut. Four typical cut diagrams for the virtual corrections are
shown in Fig. 2.
There are Coulomb divergences in the conventional

matching procedure. These Coulomb divergences may
be regularized by a small relative velocity v between the
b̄ quark and c quark inside the produced cb̄ pair. The
Coulomb divergences also appear in the virtual corrections

to the NRQCD matrix elements hOcb̄½1S½1�
0
�ð1S½1�0 Þi and

hOcb̄½3S½1�
1
�ð3S½1�1 Þi, while the NRQCD short-distance coeffi-

cients are free from Coulomb divergences. However, in
dimensional regularization, we can avoid the divergence
and extract the NRQCD short-distance coefficients by
using the so-called region method [27]. In this method,

one can calculate the contributions from the hard region
directly by expanding the relative momentum q of the cb̄
pair before performing the loop integration, and under the
lowest nonrelativistic approximation one just needs to take
q ¼ 0 before the loop integration. Thus the Coulomb
divergences, which come from the potential region, do
not appear in the calculations of the FFs for the free cb̄
states and the NRQCD matrix elements. With this

method, the NRQCD matrix elements hOcb̄½1S½1�
0
�ð1S½1�0 Þi

and hOcb̄½3S½1�
1
�ð3S½1�1 Þi at NLO are the same as the LO ones.

The squared amplitudes of the virtual corrections can be
read off from the virtual-correction cut diagrams with the
Feynman rules in Sec. II. The Dirac traces are carried out
using the MATHEMATICA packages FEYNCALC [28,29]
and FEYNCALCFORMLINK [30]. Then, $Apart [31] and
FIRE [32] are adopted to do the partial fraction and
integration-by-parts (IBP) reduction. After the IBP reduc-
tion, all one-loop integrals in the amplitudes are reduced to
master integrals. The master integrals include the common
scalar one-loop integrals (A0, B0, and C0 functions) and the
scalar one-loop integrals with one eikonal propagator. The
A0, B0, and C0 functions are calculated numerically using
LOOPTOOLS [33]. The scalar one-loop integrals with one
eikonal propagator can be calculated using the method
introduced in the Appendix of Ref. [13].
The differential phase space for the virtual corrections is

the same as that for the LO FFs. The virtual corrections to
the FFs can be expressed as

Dvirtual
b̄→cb̄½n�ðzÞ ¼ NCS

Z
dϕLOAvirtual; ð27Þ

whereAvirtual denotes the squared amplitudes for the virtual
corrections.

B. The real NLO corrections

The real corrections to the FFs Db̄→cb̄½n� come from the
fragmentation processes in which an additional gluon is
emitted in comparison with the corresponding LO ones. We
denote the momenta of the initial and final particles as
b̄ðKÞ → cb̄½n�ðp1Þ þ c̄ðp2Þ þ gðp3Þ. The cut diagrams can
be obtained from the LO cut diagrams in Fig. 1 by adding a
gluon line crossing the cut and connecting two of the lines
on each side of the cut. Four typical cut diagrams for the
real corrections are shown in Fig. 3.
The differential phase space for the real corrections to the

FFs can be written as

dϕreal ¼ 2πδðKþ − pþ
1 − pþ

2 − pþ
3 Þ

×
Y
i¼2;3

θðpþ
i Þ dpþ

i

4πpþ
i

dd−2pi⊥
ð2πÞd−2 : ð28Þ

The real corrections to the FFs can be written as
FIG. 2. Four sample cut diagrams for the virtual corrections to
the FFs Db̄→cb̄½n�.
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Dreal
b̄→cb̄½n�ðzÞ ¼ NCS

Z
dϕrealAreal; ð29Þ

where Areal denotes the squared amplitudes for the real
corrections.
There are UVand IR divergences in the real corrections.

These divergences come from the phase-space integration

over the momentum of the final gluon p3, and yield UVand
IR poles in ϵ in dimensional regularization. However, it is
impractical to do the phase-space integration for Areal
analytically. We follow the strategy used in Ref. [13] to
calculate the real corrections to the FF Dg→ηQ, in order to
extract the UV and IR poles. Namely, we construct the
subtraction terms AS which have the same singularities as
Areal in the phase space, but the subtraction terms are
simpler than Areal, and can be analytically integrated out
over the phase space. Then the real corrections can be
expressed as

Dreal
b̄→cb̄½n�ðzÞ ¼ NCS

Z
dϕrealðAreal −ASÞ

þ NCS

Z
dϕrealAS: ð30Þ

Therefore, the first term on the right-hand side of Eq. (30) is
finite and can be calculated directly in four-dimensional
space-time.
The UV divergences in the real corrections arise from the

integrations over the phase-space region p3⊥ → ∞. The IR
divergences arise from the regions pþ

3 → 0 and p3 → 0.
The squared amplitudes for the real corrections can be
expressed as

Areal ¼
b1ðs1; zÞ

ð1 − yÞðs −m2
bÞ

þ b2ðs1; zÞ
ð1 − yÞðs2 −m2

bÞ
þ b3ðs1; zÞ
ð1 − yÞs3

þ c1ðs1; z; yÞ
s −m2

b

þ c2ðs1; z; yÞp1 · p3

ðs −m2
bÞ2

þ c3ðs1; z; yÞ
s2 −m2

b

þ c4ðs1; z; yÞp2 · p3

ðs2 −m2
bÞ2

þ c5ðs1; z; yÞ
s3

þ c6ðs1; z; yÞp1 · p3

s23
þ d1ðs1; zÞð1 − uÞðs1 −m2

bÞ
ut1ðs −m2

bÞ

þ d2ðs1; zÞrcð1 − uÞðs1 −m2
bÞ

ut1s3
þ d3ðs1; zÞrcð1 − uÞðs1 −m2

bÞ2
ut1s3ðs −m2

bÞ
þ d4ðs1; zÞrcðs1 −m2

bÞ2
ut2ðs −m2

bÞs3
þ d5ðs1; zÞðs1 −m2

bÞ
ut2ðs −m2

bÞ

þ d6ðs1; zÞrcðs1 −m2
bÞ

ut2s3
þ gðs1; zÞrcðs1 −m2

bÞ2
uðs −m2

bÞs3
þ hðs1; zÞ

t22
þAfinite

real ; ð31Þ

where the Lorentz-invariant parameters are defined as
follows:

y ¼ ðp1 þ p2Þ · n
ðp1 þ p2 þ p3Þ · n

; u ¼ p3 · n
ðp2 þ p3Þ · n

;

s ¼ ðp1 þ p2 þ p3Þ2; s2 ¼ ðp12 þ p3Þ2;
s3 ¼ ðp11 þ p2 þ p3Þ2; t1 ¼ 2p1 · p3;

t2 ¼ 2p2 · p3: ð32Þ

Since we only consider the production of color-singlet
S-wave cb̄ states, the 1=t21 terms cancel in Areal [11].

The coefficients bi, ci, di, g, and h can be obtained from the
squared real-correction amplitudes and the results are
very lengthy, so we do not present them here. The integrals
of the bi (i ¼ 1, 2, 3) terms are UV and IR divergent,
and yield double poles 1

ϵUV
1
ϵIR

or 1
ϵ2IR
. The integrals of the ci

terms are UV divergent, and yield a UV pole 1
ϵUV

. The
integrals of the di terms are IR divergent, and yield a
double pole 1

ϵ2IR
. The integrals of the g and h terms are IR

divergent, and yield an IR pole 1
ϵIR
. The term Afinite

real

represents the remaining terms in Areal which do not
contribute divergences.

FIG. 3. Four sample cut diagrams for the real corrections to the
FFs Db̄→cb̄½n�.
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Now the subtraction terms can be constructed as follows:

AS ¼
b1ðs1; zÞ

ð1 − yÞðs −m2
bÞ

þ b2ðs1; zÞ
ð1 − yÞðs2 −m2

bÞ
þ b3ðs1; zÞ
ð1 − yÞs3

þ c1ðs1; z; yÞ
s

þ c2ðs1; z; yÞ
s2

�
p1 · p3 −

z
2y

�
1 −

2

y

	
s1 −

1 − y
2y

ðs1 þ ð1 − r2cÞM2Þ
�
þ c3ðs1; z; yÞ

s2

þ c4ðs1; z; yÞ
s22

�
p2 · p3 þ

ðy − zÞM2

z

�
rb
2
þ 1 − y

z

	
−
1 − y
2z

ðs1 − ð1þ r2cÞM2Þ
�
þ c5ðs1; z; yÞ

s3

þ c6ðs1; z; yÞ
s23

�
p1 · p3 þ

rczð1 − rbzÞ − ð1 − yÞðy − zÞ
2ðy − rbzÞ2

ðs1 −m2
bÞ
�
þ d1ðs̃; zÞð1 − uÞðs̃ −m2

bÞ
ut1ðs̃ −m2

b þ t1=zÞ

þ d2ðs̃; zÞð1 − uÞðs̃ −m2
bÞ

ut1½s̃ −m2
b þ ð1 − rbzÞt1=ðrczÞ�

þ d3ðs̃; zÞð1 − uÞðs̃ −m2
bÞ2

ut1ðs̃ −m2
b þ t1=zÞ½s̃ −m2

b þ ð1 − rbzÞt1=ðrczÞ�

þ d4ðs̃; zÞðs̃ −m2
bÞ2

ut2½s̃ −m2
b þ t2=ð1 − zÞ�½s̃ −m2

b þ ð1 − rbzÞt2=ðrcð1 − zÞÞ� þ
d5ðs̃; zÞðs̃ −m2

bÞ
ut2ðs̃ −m2

b þ t2=ð1 − zÞÞ

þ d6ðs̃; zÞðs̃ −m2
bÞ

ut2½s̃ −m2
b þ ð1 − rbzÞt2=ðrcð1 − zÞÞ� þ

gðs̃; zÞðs̃ −m2
bÞ2

u½s̃ −m2
b þ t2=ð1 − zÞ�½s̃ −m2

b þ ð1 − rbzÞt2=ðrcð1 − zÞÞ�

þ hðs̃; zÞ
t22

; ð33Þ

where s̃ is defined as

s̃ ¼ ðp1 þ p̃Þ2; ð34Þ

where

p̃μ ¼ pμ
2 þ pμ

3 −
p2 · p3

ðp2 þ p3Þ · n
nμ: ð35Þ

One can check that the integration of ðAreal −ASÞ over the
phase space is finite in four space-time dimensions.
In order to analytically extract the UV and IR poles in ϵ

in the real corrections, it is better to choose proper phase-
space parametrizations for the terms in AS. Various phase-
space parametrizations can be found in Appendix B.
To integrate the subtraction terms that contain s, we use

the parametrization in Eq. (B10) for the differential phase
space. The expression of the differential phase space in
Eq. (B10) can be decomposed as

NCSdϕreal ¼ NLOðp1; p2ÞdϕLOðp1; p2Þdϕð3Þðp1; p2; p3Þ;
ð36Þ

where the prefactor NLOðp1; p2Þ is defined as

NLOðp1; p2Þ ¼
ðz=yÞ1−2ϵ
8πNc

; ð37Þ

and dϕLOðp1; p2Þ is defined as

dϕLOðp1; p2Þ ¼
z−1þϵðy − zÞ−ϵ

2ð4πÞ1−ϵΓð1 − ϵÞK · n

×

�
s1 −

y
z
M2 −

y
y − z

m2
c

	
−ϵ
ds1: ð38Þ

dϕLOðp1; p2Þ represents the differential phase space for a b̄
quark with longitudinal momentum yK · n to fragment into
a BcðB�

cÞmeson with longitudinal momentum zK · n at LO.
NLOðp1; p2Þ and dϕLOðp1; p2Þ reduce to NLO and dϕLO,
respectively, if y ¼ 1. Then dϕð3Þðp1; p2; p3Þ can be
expressed as

dϕð3Þðp1; p2; p3Þ

¼ 1

4ð2πÞ3−2ϵ ðs − s1=yÞ−ϵ½yð1 − yÞ�−ϵds dy dΩ3⊥: ð39Þ

The range of y is from z to 1, the range of s1 is from
½M2=ðz=yÞ þ ym2

c=ðy − zÞ� to∞, and the range of s is from
s1=y to ∞.
Thus, with Eqs. (36)–(39) we can obtain

NCS

Z
dϕreal

c1ðs1; z; yÞ
s

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

Z
1

z
dyð1 − yÞ−ϵ

Z
NdϕLOðp1; p2Þ

× c1ðs1; z; yÞs−ϵ1 ; ð40Þ
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where NdϕLOðp1; p2Þ≡ NLOðp1; p2ÞdϕLOðp1; p2Þ. The
remaining integral in this equation does not generate poles
in ϵ.
We can also obtain

NCS

Z
dϕreal

b1ðs1; zÞ
ð1 − yÞðs −m2

bÞ

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

Z
1

z
dyð1 − yÞ−1−ϵ

Z
NdϕLOðp1; p2Þ

× b1ðs1; zÞðs1 − ym2
bÞ−ϵ: ð41Þ

The integration over y will diverge if ϵ ¼ 0 in the limit
y → 1, and contribute an IR pole. In order to extract this IR
pole, we use the plus prescription, where

ð1−yÞ−1þaϵ¼ δð1−yÞ
aϵ

þ
X∞
n¼0

ðaϵÞn
n!

�
lnnð1−yÞ
1−y

	
þ
: ð42Þ

Inserting Eq. (42) into Eq. (41), we obtain

NCS

Z
dϕreal

b1ðs1; zÞ
ð1 − yÞðs −m2

bÞ

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

�
−
1

ϵ
NCS

Z
dϕLOb1ðs1; zÞðs1 −m2

bÞ−ϵ

þ
Z

1

z
dy

�
1

ð1 − yÞþ
− ϵ

�
lnð1 − yÞ
1 − y

	
þ

�

×
Z

NdϕLOðp1; p2Þb1ðs1; zÞðs1 − ym2
bÞ−ϵ

�

þOðϵÞ; ð43Þ

where dϕLO is the LO differential phase space given
by Eq. (18).
The integration of the terms with the coefficient

c2ðs1; z; yÞ over Ω3⊥ is not trivial. We first calculate the
integration of the vector pμ

3 overΩ3⊥. According to Lorentz
invariance, this integral can be expressed as

Z
pμ
3dΩ3⊥ ¼ Anμ þ Bðp1 þ p2Þμ: ð44Þ

We can determine the coefficients A and B by contracting
both sides of Eq. (44) with nμ [and contracting with
ðp1 þ p2Þμ]. Then we obtain

A ¼ Ω⊥
2yK · n

�
s −

2 − y
y

s1

	
; ð45Þ

B ¼ 1 − y
y

Ω⊥; ð46Þ

where Ω⊥ is the total transverse solid angle and
Ω⊥ ¼ 2π1−ϵ=Γð1 − ϵÞ.

Inserting Eqs. (45)–(46) into Eq. (44) and contracting
both sides of Eq. (44) with p1μ, we obtain

Z
dΩ3⊥

�
p1 · p3 −

z
2y

�
1 −

2

y

	
s1

−
1 − y
2y

ðs1 þ ð1 − r2cÞM2Þ
�
¼ zs

2y
Ω⊥: ð47Þ

Carrying out the integration over s, we obtain

NCS

Z
dϕreal

c2ðs1; z; yÞ
s2

×

�
p1 · p3 −

z
2y

�
1 −

2

y

	
s1 −

1 − y
2y

ðs1 þ ð1 − r2cÞM2Þ
�

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

Z
1

z
dyð1 − yÞ−ϵ

Z
NdϕLOðp1; p2Þ

× c2ðs1; z; yÞðz=2yÞs−ϵ1 : ð48Þ

The method used to extract the poles from the sub-
traction terms involving s integration can also be used to
extract the poles from the integrations over s2 and s3 of the
subtraction terms.
For the s2 integration, we adopt the parametrization in

Eq. (B13). The expression in Eq. (B13) can also be
decomposed to the form (36), but the expression for
dϕð3Þðp1; p2; p3Þ becomes

dϕð3Þðp1;p2;p3Þ¼
1

4ð2πÞ3−2ϵ ðrbzÞ
−1þϵy1−2ϵð1−yÞ−ϵ

×

�
s2−

1−yþ rbz
rbz

m2
b

	
−ϵ
dyds2dΩ3⊥:

ð49Þ

The ranges of y and s1 are the same as above. The range of
s2 is from ð1 − yþ rbzÞm2

b=rbz to ∞. Then we can readily
obtain

NCS

Z
dϕreal

c3ðs1;z;yÞ
s2

¼Γð1þ ϵÞðm2
bÞ−ϵ

ϵð4πÞ2−ϵ
Z

1

z
dy½ð1−yÞð1−yþ rbzÞ�−ϵ

�
y
rbz

	
1−2ϵ

×
Z

NdϕLOðp1;p2Þc3ðs1;z;yÞ; ð50Þ
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NCS

Z
dϕreal

b2ðs1;zÞ
ð1−yÞðs2−m2

bÞ

¼Γð1þ ϵÞðm2
bÞ−ϵ

ϵð4πÞ2−ϵ ðrbzÞ−1þ2ϵ

�
−
1

2ϵ
NCS

Z
dϕLOb2ðs1;zÞ

þ
Z

1

z
dyy1−2ϵ

�
1

ð1−yÞþ
−2ϵ

�
lnð1−yÞ
1−y

	
þ

�

×
Z

NdϕLOðp1;p2Þb2ðs1;zÞ
�
þOðϵÞ; ð51Þ

and

NCS

Z
dϕreal

c4ðs1;z;yÞ
s22

�
p2 ·p3þ

ðy− zÞM2

z

�
rb
2
þ1−y

z

	

−
1−y
2z

ðs1− ð1þ r2cÞM2Þ
�

¼Γð1þ ϵÞðm2
bÞ−ϵ

ϵð4πÞ2−ϵ
Z

1

z
dy½ð1−yÞð1−yþ rbzÞ�−ϵ

�
y
rbz

	
1−2ϵ

×
y−z
2rbz

Z
NdϕLOðp1;p2Þc4ðs1;z;yÞ: ð52Þ

For the subtraction terms involving s3, the parametriza-
tion in Eq. (B16) is adopted and the expression for
dϕð3Þðp1; p2; p3Þ in the form of Eq. (36) is

dϕð3Þðp1;p2;p3Þ

¼ 1

4ð2πÞ3−2ϵ ðy− rbzÞ−1þϵy1−2ϵð1−yÞ−ϵ

×

�
s3−

rcð1− rbzÞðs1−m2
bÞ

y−rbz

	−ϵ
dyds3dΩ3⊥: ð53Þ

The ranges of y and s1 are the same as above. The range of
s3 is from rcð1 − rbzÞðs1 −m2

bÞ=ðy − rbzÞ to ∞. Then we
obtain

NCS

Z
dϕreal

c5ðs1; z; yÞ
s3

¼ Γð1þ ϵÞ½rcð1− rbzÞ�−ϵ
ϵð4πÞ2−ϵ

Z
1

z
dyð1− yÞ−ϵ

�
y

y− rbz

	
1−2ϵ

×
Z

NdϕLOðp1;p2Þc5ðs1; z; yÞðs1 −m2
bÞ−ϵ; ð54Þ

NCS

Z
dϕreal

b3ðs1; zÞ
ð1 − yÞs3

¼ Γð1þ ϵÞ½rcð1 − rbzÞ�−ϵ
ϵð4πÞ2−ϵ

�
−
1

ϵ
NCS

Z
dϕLO

× b3ðs1; zÞðs1 −m2
bÞ−ϵð1 − rbzÞ−1þ2ϵ

þ
Z

1

z
dy

�
y

y − rbz

	
1−2ϵ

�
1

ð1 − yÞþ
− ϵ

�
lnð1 − yÞ
1 − y

	
þ

�

×
Z

NdϕLOðp1; p2Þb3ðs1; zÞðs1 −m2
bÞ−ϵ

�
þOðϵÞ;

ð55Þ
and

NCS

Z
dϕreal

c6ðs1; z; yÞ
s23

×

�
p1 ·p3 þ

rczð1− rbzÞ− ð1− yÞðy− zÞ
2ðy− rbzÞ2

ðs1 −m2
bÞ
�

¼ Γð1þ ϵÞ½rcð1− rbzÞ�−ϵ
ϵð4πÞ2−ϵ

Z
1

z
dyð1− yÞ−ϵ

�
y

y− rbz

	
1−2ϵ

×
z

2ðy− rbzÞ
Z

NdϕLOðp1; p2Þc6ðs1; z; yÞðs1 −m2
bÞ−ϵ:

ð56Þ

To integrate the subtraction terms that contain t1, we
adopt the parametrization in Eq. (B23) for the differential
phase space. The expression of the differential phase space
in Eq. (B23) can be written as

NCSdϕreal ¼ NLOðp1; p̃ÞdϕLOðp1; p̃Þdϕ̃ð3Þðp1; p2; p3Þ;
ð57Þ

where the prefactor NLOðp1; p̃Þ is defined as

NLOðp1; p̃Þ ¼
z1−2ϵ

8πNc
; ð58Þ

and dϕLOðp1; p̃Þ is defined as

dϕLOðp1; p̃Þ ¼
z−1þϵð1 − zÞ−ϵ

2ð4πÞ1−ϵΓð1 − ϵÞK · n

×

�
s̃ −

M2

z
−

m2
c

1 − z

	
−ϵ
ds̃: ð59Þ

Then the expression of dϕ̃ð3Þðp1; p2; p3Þ can be written as

dϕ̃ð3Þðp1;p2;p3Þ ¼
ð1=z− 1Þ1−ϵ
4ð2πÞ3−2ϵ

u−ϵ

1− u

�
t1 −

ð1− zÞM2u
z

�
−ϵ

× dudt1 dΩ3⊥: ð60Þ
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The range of s̃ is from ½M2=zþm2
c=ð1 − zÞ� to ∞, the range of u is from 0 to 1, and the range of t1 is from ð1=z − 1ÞM2u

to ∞.
After integrating over Ω3⊥, t1, and u, we obtain

NCS

Z
dϕreal

d1ðs̃; zÞð1− uÞðs̃−m2
bÞ

ut1ðs̃−m2
b þ t1=zÞ

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

�
1− z
z

	
1−ϵ Z

NdϕLOðp1; p̃Þd1ðs̃; zÞ

×

�
−

1

2ϵ

�ð1− zÞM2

z

�−ϵ
þ 1

ϵ
½zðs̃−m2

bÞ�−ϵ − ϵLi2

�
−
ð1− zÞM2

z2ðs̃−m2
bÞ
��

þOðϵÞ; ð61Þ

NCS

Z
dϕreal

d2ðs̃; zÞð1 − uÞðs̃ −m2
bÞ

ut1ðs̃ −m2
b þ ð1 − rbzÞt1=ðrczÞÞ

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

�
1 − z
z

	
1−ϵ Z

NdϕLOðp1; p̃Þd2ðs̃; zÞ

×

�
−

1

2ϵ

�ð1 − zÞM2

z

�−ϵ
þ 1

ϵ

�
rcz

1 − rbz
ðs̃ −m2

bÞ
�
−ϵ

− ϵLi2

�
−
ð1 − zÞð1 − rbzÞM2

rcz2ðs̃ −m2
bÞ

��
þOðϵÞ; ð62Þ

and

NCS

Z
dϕreal

d3ðs̃; zÞð1 − uÞðs̃ −m2
bÞ2

ut1ðs̃ −m2
b þ t1

zÞðs̃ −m2
b þ ð1−rbzÞt1

rcz
Þ

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

�
1 − z
z

	
1−ϵ Z

NdϕLOðp1; p̃Þd3ðs̃; zÞ

×

�
−

1

2ϵ

�ð1 − zÞM2

z

�−ϵ
−
1

ϵ

rc
rbð1 − zÞ ½zðs̃ −m2

bÞ�−ϵ
�
1 −

�
rc

1 − rbz

	
−1−ϵ

�

þ ϵ

rbð1 − zÞ
�
rcLi2

�
−
ð1 − zÞM2

z2ðs̃ −m2
bÞ
	
− ð1 − rbzÞLi2

�
−
ð1 − zÞð1 − rbzÞM2

rcz2ðs̃ −m2
bÞ

	��
þOðϵÞ: ð63Þ

For the subtraction terms that contain t2, the parametrization in Eq. (B24) is adopted and the expression for
dϕ̃ð3Þðp1; p2; p3Þ in the form of Eq. (57) is

dϕ̃ð3Þðp1; p2; p3Þ ¼
1

4ð2πÞ3−2ϵ u
−ϵ½ð1 − uÞt2 −m2

cu�−ϵdu dt2 dΩ3⊥: ð64Þ

The ranges of s̃ and u are the same as above. The range of t2 is from um2
c=ð1 − uÞ to ∞. Then we obtain

NCS

Z
dϕreal

d4ðs̃; zÞðs̃ −m2
bÞ2

ut2ðs̃ −m2
b þ t2

1−zÞðs̃ −m2
b þ ð1−rbzÞt2

rcð1−zÞ Þ

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

Z
NdϕLOðp1; p̃Þd4ðs̃; zÞ

�
−

1

2ϵ
ðm2

cÞ−ϵ −
1

ϵ

rc
rbð1 − zÞ ½ð1 − zÞðs̃ −m2

bÞ�−ϵ
�
1 −

�
rc

1 − rbz

	
−1−ϵ

�

þ ϵ

rbð1 − zÞ
�
rcLi2

�
1 −

m2
c

ð1 − zÞðs̃ −m2
bÞ
	
− ð1 − rbzÞLi2

�
1 −

ð1 − rbzÞm2
c

rcð1 − zÞðs̃ −m2
bÞ
	��

þOðϵÞ; ð65Þ
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NCS

Z
dϕreal

d5ðs̃; zÞðs̃ −m2
bÞ

ut2ðs̃ −m2
b þ t2=ð1 − zÞÞ

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

Z
NdϕLOðp1; p̃Þd5ðs̃; zÞ

×

�
−

1

2ϵ
ðm2

cÞ−ϵ þ
1

ϵ
½ð1 − zÞðs̃ −m2

bÞ�−ϵ

− ϵLi2

�
1 −

m2
c

ð1 − zÞðs̃ −m2
bÞ
��

þOðϵÞ; ð66Þ

NCS

Z
dϕreal

d6ðs̃; zÞðs̃ −m2
bÞ

ut2½s̃ −m2
b þ ð1 − rbzÞt2=ðrcð1 − zÞÞ�

¼ Γð1þ ϵÞ
ϵð4πÞ2−ϵ

Z
NdϕLOðp1; p̃Þd6ðs̃; zÞ

×

�
−

1

2ϵ
ðm2

cÞ−ϵ þ
1

ϵ

�
rcð1 − zÞðs̃ −m2

bÞ
1 − rbz

�−ϵ

− ϵLi2

�
1 −

ð1 − rbzÞm2
c

rcð1 − zÞðs̃ −m2
bÞ
��

þOðϵÞ; ð67Þ

NCS

Z
dϕreal

gðs̃; zÞðs̃ −m2
bÞ2

uðs̃ −m2
b þ t2

1−zÞðs̃ −m2
b þ ð1−rbzÞt2

rcð1−zÞ Þ

¼ Γð1þ ϵÞrc
ϵð4πÞ2−ϵrb

Z
NdϕLOðp1; p̃Þgðs̃; zÞðs̃ −m2

bÞ

×

�
−
1

ϵ
½ð1 − zÞðs̃ −m2

bÞ�−ϵ
��

rc
1 − rbz

	
−ϵ

− 1

�

þ ϵ

�
−Li2

�
1 −

m2
c

ð1 − zÞðs̃ −m2
bÞ
	

þ Li2

�
1 −

ð1 − rbzÞm2
c

rcð1 − zÞðs̃ −m2
bÞ
	��

þOðϵÞ; ð68Þ

and

NCS

Z
dϕreal

hðs̃;zÞ
t22

¼−
Γð1þ ϵÞ
ð4πÞ2−ϵ

ðm2
cÞ−1−ϵ

2ϵð1−2ϵÞ
Z

NdϕLOðp1; p̃Þhðs̃;zÞ: ð69Þ

Since the remaining integrals in these expressions do not
generate poles in ϵ, we can expand these expressions in
powers of ϵ before performing the integration.

C. The renormalization

There are UV divergences remaining after summing the
contributions from virtual and real corrections, while they
are removed by renormalization. We adopt the counter-
term approach to carry out the renormalization, where
the FFs are calculated with the renormalized coupling

constant gs, the renormalized quark mass m, the field Ψr,
5

and the renormalized gluon field Aμ
r . The renormalized

quantities are related to their corresponding bare quan-
tities as

g0s ¼ Zggs; m0 ¼ Zmm;

Ψ0 ¼
ffiffiffiffiffi
Z2

p
Ψr; Aμ

0 ¼
ffiffiffiffiffi
Z3

p
Aμ
r ; ð70Þ

where Zi ¼ 1þ δZi with i ¼ g, m, 2, 3 are renormaliza-
tion constants. The quantities δZi are fixed by the precise
definitions of the renormalized quantities. The renormal-
ized quark field, quark mass, and gluon field are defined in
the on-mass-shell scheme (OS), whereas the renormalized
strong coupling constant gs is defined in the modified-
minimal-subtraction scheme (MS). The expressions of the
corresponding renormalization constants in this scheme
are obtained as follows:

δZOS
2 ¼ −CF

αsðμRÞ
4π

�
1

ϵUV
þ 2

ϵIR
− 3γE þ 3 ln

4πμ2R
m2

þ 4

�
;

δZOS
m ¼ −3CF

αsðμRÞ
4π

�
1

ϵUV
− γE þ ln

4πμ2R
m2

þ 4

3

�
;

δZOS
3 ¼ αsðμRÞ

4π

�
ðβ00 − 2CAÞ

�
1

ϵUV
−

1

ϵIR

	

−
4

3
TF

�
1

ϵUV
− γE þ ln

4πμ2R
m2

c

	

−
4

3
TF

�
1

ϵUV
− γE þ ln

4πμ2R
m2

b

	�
;

δZMS
g ¼ −

β0
2

αsðμRÞ
4π

�
1

ϵUV
− γE þ lnð4πÞ

�
; ð71Þ

where μR is the renormalization scale, β0 ¼ 11
3
CA − 4

3
TFnf

is the one-loop coefficient of the β function in QCD, nf is
the number of active quark flavors, β00 ¼ 11

3
CA − 4

3
TFnlf,

and nlf ¼ 3 is the number of the light-quark flavors.
Then the contribution from these counterterms can be

expressed as

Dcounter
b̄→cb̄½n�ðzÞ ¼ NCS

Z
dϕLOAcounter; ð72Þ

where Acounter denotes the squared amplitudes for the
counterterms from the renormalization of the quark field,
the gluon field, the quark mass, and the strong coupling.
Obviously the NLO FFs defined as in Ref. [12] by

operator products require renormalization [34]. We carry
out the operator renormalization in the MS scheme.

5Here the massm and fieldΨr may be the mass and field of a b
quark or c quark.
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The expression for the counterterms of the operator
products in this scheme is

Doperator
b̄→cb̄½n�ðzÞ ¼ −

αsðμRÞ
2π

�
1

ϵUV
− γE þ lnð4πÞ þ ln

μ2R
μ2F

�

×
Z

1

z

dy
y
Pb̄ b̄ðyÞDLO

b̄→cb̄½n�ðz=yÞ; ð73Þ

where μF is the factorization scale for the FFs and
DLO

b̄→cb̄½n�ðzÞ denotes the LO FFs in d-dimensional

space-time.

D. The numerical results

Canceling the pole terms in ϵ, the NLO FFs can be
obtained by summing the finite parts from virtual and real
corrections and counterterms:

DNLO
b̄→cb̄½n�ðz; μF; μRÞ
¼ DLO

b̄→cb̄½n�ðz; μRÞ þDvirtual
b̄→cb̄½n�ðz; μRÞ þDreal

b̄→cb̄½n�ðz; μRÞ
þDcounter

b̄→cb̄½n�ðz; μRÞ þDoperator
b̄→cb̄½n�ðz; μF; μRÞ; ð74Þ

where the terms on the right-hand side of the equation are
defined in Eqs. (19), (27), (29), (30), (72), and (73), and the
renormalization and factorization scales are written explic-
itly here. The FFs DNLO

b̄→BcðB�
cÞðz; μF; μRÞ can be obtained by

multiplying the matrix element hOBcðB�
cÞðnÞi=hOcb̄½n�ðnÞi ≈

jRSð0Þj2=4π by DNLO
b̄→cb̄½n�ðz; μF; μRÞ, where n ¼ 1S0 or 3S1

accordingly. In the numerical calculations, the integrations
over phase space are performed numerically with the help
of the program VEGAS [35].
The necessary input masses in the numerical calculations

are taken as follows:

mb ¼ 4.9 GeV; mc ¼ 1.5 GeV;

mZ ¼ 91.1876 GeV: ð75Þ

The value of jRSð0Þj2 may be extracted from the exper-
imental widths of the Bc pure leptonic decays, potential
model calculations and lattice QCD calculations etc.,
whereas now there is no very accurate value of jRSð0Þj2.
In fact, due to the fact that for the FFs jRSð0Þj2 is an overall
factor,
the numerical results obtained in this paper with a given
value of jRSð0Þj2 can be easily updated with a more
accurate value. Thus, as an approximation, in numerical
calculations we just take the value from the potential-model
calculations [36]:

jRSð0Þj2 ¼ 1.64 GeV3: ð76Þ
For strong coupling constant, we adopt the two-loop
formula

αsðμÞ ¼
4π

β0 lnðμ2=Λ2
QCDÞ

�
1 −

β1 ln lnðμ2=Λ2
QCDÞ

β20 lnðμ2=Λ2
QCDÞ

�
; ð77Þ

where β1 ¼ 34
3
C2
A − 4CFTFnf − 20

3
CATFnf is the two-loop

coefficient of the β function in QCD. According to

αsðmZÞ ¼ 0.1185 [37], we obtain Λnf¼5

QCD ¼ 0.233 GeV

and Λnf¼4

QCD ¼0.337GeV. Then we have αsð2mcÞ ¼
0.259, αsðmb þ 2mcÞ ¼ 0.190, αsð2mbÞ¼0.180, and
αsð2mb þmcÞ ¼ 0.174.
The LO FFs DLO

b̄→Bc
ðz; μF0; μRÞ, DLO

b̄→B�
c
ðz; μF0; μRÞ and

the NLO FFs DNLO
b̄→Bc

ðz; μF0; μRÞ, DNLO
b̄→B�

c
ðz; μF0; μRÞ (the

latter is that in Eq. (74)) are presented in Figs. 4 and 5,
respectively. In order to keep the logarithm terms
lnðμR=mQÞ and lnðμF0=mQÞ (mQ, Q ¼ c, b) in higher-
order corrections from “becoming” large and to have better
accuracy, here we set the renormalization scale μR and
factorization scales μF0 toOðmQÞ, i.e., we set μR and μF0 to
2mc and mb þ 2mc (the minimum invariant mass of the
initial off-shell b̄ quark), respectively. For comparison, in
Figs. 4 and 5 the results for μR ¼ μF0 ¼ mb þ 2mc are also
presented.
From Figs. 4 and 5, one can see that the QCD NLO

corrections to the FFs of the b̄ quark are quite large, with a
renormalization scale μR ¼ 2mc or μR ¼ mb þ 2mc. The
maximum points of the FFs are shifted to smaller values of
z when the NLO corrections are involved. Moreover, the
QCD NLO FFs are scheme and scale dependent, and the
FFs in this paper are defined in the MS scheme.
There are two useful quantities which can be easily

computed from the numerical results for the FFs: the
fragmentation probability P and the average value of z,
hzi. They are defined as follows:
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FIG. 4. The initial FF Db̄→Bc
ðz; μF0; μRÞ as a function of z with

μF0 ¼ mb þ 2mc, μR ¼ 2mc, or μR ¼ mb þ 2mc up to LO and
NLO accuracy.
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P ¼
Z

1

0

dzDðzÞ; hzi ¼
R
1
0 dz zDðzÞR
1
0 dzDðzÞ ; ð78Þ

where DðzÞ denotes an FF at a given energy scale. The
numerical results for the obtained FFs are presented in
Tables I and II. From the two tables, one can see that the
NLO corrections to the fragmentation probabilities are
sizable with the two choices of the renormalization scale.
However, due to the QCD NLO corrections the average
values hzi change by only a small amount.
The FFs of a c quark to the meson Bc or B�

c can be
derived out by applying the method presented in Secs. II
and III precisely. Whereas, the contributions to the FFs
from the cut diagrams without a heavy-quark loop on either
side of the cut can be obtained by the alternation of mb and

mc. The NLO QCD FFs of a c quark into Bc and B�
c mesons

are presented in Figs. 6 and 7 with two possible renorm-
alization scales, μR ¼ 2mb and μR ¼ 2mb þmc, and the
factorization scale is set μF0 ¼ 2mb þmc, which is the
minimum invariant mass of the initial off-shell c quark.
From Figs. 6 and 7, one can see that the NLO QCD

corrections to the FFs of Bc and B�
c mesons are also

sizable with the renormalization scales μR ¼ 2mb or
μR ¼ 2mb þmc, and the difference between the FFs at
the two renormalization scales is quite small. This is
because these two scales are quite close to each other.
The fragmentation probabilities and average values of z

for c-quark fragmentation are presented in Tables III
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FIG. 5. The initial FF Db̄→B�
c
ðz; μF0; μRÞ as a function of z with

μF0 ¼ mb þ 2mc, μR ¼ 2mc, or μR ¼ mb þ 2mc up to LO and
NLO accuracy.

TABLE I. The fragmentation probability and average value of z
for Db̄→Bc

ðz; μF0 ¼ mb þ 2mc; μRÞ with two typical renormali-
zation scales.

μR P × 104 (LO) P × 104 (NLO) hzi (LO) hzi (NLO)
2mc 3.82 3.14 0.68 0.70
mb þ 2mc 2.05 2.73 0.68 0.69

TABLE II. The fragmentation probability and average value of
z for Db̄→B�

c
ðz; μF0 ¼ mb þ 2mc; μRÞ with two typical renorm-

alization scales.

μR P × 104 (LO) P × 104 (NLO) hzi (LO) hzi (NLO)
2mc 5.36 2.91 0.73 0.77
mb þ 2mc 2.89 3.25 0.73 0.74
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FIG. 6. The initial FF Dc→Bc
ðz; μF0 ¼ 2mb þmc; μRÞ as a

function of z with two typical renormalization scales
(μR ¼ 2mb or μR ¼ 2mb þmc) up to LO and NLO accuracy.
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FIG. 7. The initial FF Dc→B�
c
ðz; μF0 ¼ 2mb þmc; μRÞ as a

function of z with two typical renormalization scales
(μR ¼ 2mb or μR ¼ 2mb þmc) up to LO and NLO accuracy.
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and IV. One can see that the fragmentation probability of
c → Bcðc → B�

cÞ is smaller than that of b̄ → Bcðb̄ → BcÞ
by about 2 orders of magnitude.
The FFs at a large factorization scale such as μF ≫ mQ

can be obtained by solving the DGLAP evolution equations
from the FFs at a smaller μF0 (∼mQ). Note that for
convenience in this paper we call the FFs at a smaller
factorization scale the “initial FFs.”
Here to solve DGLAP evolution equations the approxi-

mation method introduced in Ref. [38] is adopted, and as
stated in the Introduction, the evolution of FFs from a low
energy scale to a high energy scale is restricted to the LL
QCD level, namely, only the LO splitting function Pij
(i; j ¼ g, q, where g is a gluon and the quarks q ¼ b, c) in
Eq. (5) is considered.
Although for solving the DGLAP equations, the QCD

NLO FFs at comparatively low energy scale of b̄ and c
quarks to the mesons Bc or B�

c provide main parts of the
necessary ‘initial FFs’, due to the mixing of the gluon’s and
flavor-singlet quarks’ FFs, the FF of a gluon at the low
energy scale also is a necessary part of the initial condition,
so we need to calculate out the FF of a gluon at the
comparatively low energy scale μF ¼ 2mb þ 2mc, where
is the threshold of the Bc or B�

c production by a gluon. Now
the “initial FFs” of b̄ and c quarks as well as a gluon to the
meson Bc or B�

c all at the low energy scale
μF0 ¼ 2mb þ 2mc, which as ‘initial condition’ are needed
for solving the DGLAP equations, are shown in Figs. 8 and
9, where the FFs of b̄ and c quarks to the meson Bc or B�

c at
this energy scale are obtained by solving the DGLAP
equations from μF0 ¼ μR ¼ mb þ 2mc (for b → BcðB�

cÞ)
or μF0 ¼ μR ¼ 2mb þmc (for c → BcðB�

cÞ). In order to
show the FF curves in one figure, in Figs. 8 and 9, the gluon
and c-quark FFs are artificially multiplied by a factor of 30.
From Figs. 8 and 9, one can see that the FFs for g → BcðB�

cÞ
and c → BcðB�

cÞ are about 2 orders of magnitude smaller
than the FF for b̄ → BcðB�

cÞ.

For the following application in the next section, with the
initial FFs at μF ¼ 2mb þ 2mc which are obtained by
means of this work on the QCD NLO FFs, we calculate
out the FFs at the energy scale μF ¼ mZ by solving
DGLAP evolution equations Eq. (4); and the results are
shown in Figs. 10 and 11. For the same reason as in Figs. 8
and 9, we artificially multiply the gluon and c quark FFs by
a factor of 30. From Figs. 10 and 11, one can see that the
FFs are changed due to the evolution. The average values of
z for the b̄-quark and c-quark fragmentation are shifted to
smaller values. For the b̄-quark fragmentation,

TABLE III. The fragmentation probability and average value of
z for Dc→Bc

ðz; μF0 ¼ 2mb þmc; μRÞ with two typical renormal-
ization scales.

μR P × 106 (LO) P × 106 (NLO) hzi (LO) hzi (NLO)
2mb 4.95 8.07 0.51 0.51
2mb þmc 4.63 7.72 0.51 0.51

TABLE IV. The fragmentation probability and average value of
z for Dc→B�

c
ðz; μF0 ¼ 2mb þmc; μRÞ with two typical renormal-

ization scales.

μR P × 106 (LO) P × 106 (NLO) hzi (LO) hzi (NLO)
2mb 4.28 5.75 0.55 0.54
2mb þmc 4.00 5.57 0.55 0.54
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FIG. 8. The FFs Db̄→Bc
ðz; μFÞ, Dc→Bc

ðz; μFÞ, and Dg→Bc
ðz; μFÞ

as functions of z with μF ¼ 2mb þ 2mc. In order to show these
results in one figure, Dc→Bc

ðz; μFÞ and Dg→Bc
ðz; μFÞ are artifi-

cially multiplied by a factor of 30.
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FIG. 9. The FFs Db̄→B�
c
ðz; μFÞ,Dc→B�

c
ðz; μFÞ, and Dg→B�

c
ðz; μFÞ

as functions of z with μF ¼ 2mb þ 2mc. In order to show these
results in one figure, Dc→B�

c
ðz; μFÞ and Dg→B�

c
ðz; μFÞ are artifi-

cially multiplied by a factor of 30.
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hziðBc; μF ¼ mZÞ ¼ 0.58;

hziðB�
c; μF ¼ mZÞ ¼ 0.62: ð79Þ

For the c-quark fragmentation,

hziðBc; μF ¼ mZÞ ¼ 0.46;

hziðB�
c; μF ¼ mZÞ ¼ 0.49: ð80Þ

The fragmentation probabilities for the gluon fragmen-
tation are increased compared to the gluon fragmentation at

μF ¼ 2mb þ 2mc. However, the fragmentation probabil-
ities for g → BcðB�

cÞ are small compared to the fragmenta-
tion probabilities for b̄ → BcðB�

cÞ.

IV. APPLICATION TO BcðB�
cÞ PRODUCTION

AT A Z FACTORY

The production of Bc and B�
c mesons at a Z factory is the

simplest case where only the fragmentation from b̄ and c
quarks should be considered, and the fragmentation from
light quarks and gluons (being high-order processes) can be
ignored. Moreover, this production is a typical process for
doubly heavy flavored hadron production at a Z factory,
which can be a good reference for doubly heavy hadron
production at a Z factory. Thus, to try to have a higher
accuracy for the fragmentation approach in computing the
production of the Bc and B�

c at a Z factory, we would like to
apply the FFs, which are accurate up to the QCD NLO at a
low factorization energy scale μF0 and evolved with the
DGLAP equations to the proper and higher energy scale
(here it is μF ¼ mZ), to computing the production of the Bc
and B�

c at a Z factory, and to compare the results with those
obtained by the approaches of complete LO and NLO
QCD.
With the pQCD factorization (2), the differential cross

sections of Bc and B�
c production at a Z factory can be

calculated straightforwardly. The expressions for the coef-
ficient functions dσ̂eþe−→iþX=dy (i ¼ b̄; c) in the limit
mQ → 0 can be found in Refs. [39,40].
For the numerical calculations, the additional and rel-

evant input parameters are taken as follows:

α¼1=128; sin2θW ¼0.231; ΓZ¼2.4952GeV; ð81Þ

where α ¼ αðmZÞ is the electromagnetic coupling constant
renormalized at mZ.
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c
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artificially multiplied by a factor of 30.
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FIG. 12. The differential cross section dσ=dz for the production
of the Bc meson as a function of z.
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The differential cross sections dσ=dz for the production
of Bc and B�

c mesons at the Z pole are presented in Figs. 12
and 13, where the contributions from γ exchange and γ − Z
interference are neglected due to the fact that they are much
smaller in comparison to the contributions from Z
exchange at the Z pole [11]. In Figs. 12 and 13, “LO”
and “NLO” denote the results of the complete LO and NLO
calculations, respectively, “Frag” denotes the results of the
fragmentation approach and the leading logarithms (LLs)
being resummed through DGLAP evolution equations. Later
on we call the approach as “Frag”. For the results of the
complete LO and NLO approaches, the renormalization is
set at μR ¼ mb þ 2mc.

6

It is interesting to compare the total cross sections for
the production of Bc and B�

c mesons obtained using the
fragmentation approach with those from the complete LO
and NLO calculations. The obtained total cross sections are
presented in Table V. We believe that the fragmentation
approach provides better results for the values of the total
cross sections of Bc and B�

c production at the Z pole.

V. DISCUSSIONS AND CONCLUSION

In this paper, by means of the general operator definition
of the FFs, we have derived the FFs for a b̄ or c quark
fragmenting to Bc and B�

c mesons in LO and NLO QCD,
and the numerical results with reasonable input parameters
are presented in figures.
In the derivation of the NLO “real corrections” to the

FFs, the difficulty in extracting the singularities is

overcome by the fact that certain proper subtraction terms
are constructed, which contain the exact same singularities
(1=ϵ) as those in the real corrections under dimensional
regularization, but they can be computed almost analyti-
cally [see Eqs. (30), (31), and (33)]. Then, with the
constructed auxiliary terms for subtractions, the singular
and finite contributions from the real corrections can be
computed separately and the finite contributions can be
calculated numerically. Note that here the integrations of
the subtraction terms over the phase space are carried out
under suitable parametrizations, which are very similar to
those introduced in Ref. [13], and the expressions for the
subtraction terms and the phase-space parametrizations
may be useful in calculating the real QCD NLO corrections
for other FFs.
It is known that the choices for the factorization scale

μF and the renormalization scale μR are very important
in QCD calculations. For NLO corrections of FFs, one
may set them equal to each other or different from each
other according to convenience. As a typical case, here
we set the “(initial) factorization scale” to μF0 ¼ mb þ
2mc for the QCD NLO “initial FFs,” and the results
show that the NLO corrections are significant with two
possible choices of the renormalization scale. Moreover,
for an important application specifically discussed in
this paper, to gain a higher accuracy FFs with the
factorization μF ¼ mZ were used. We obtained FFs by
solving the DGLAP evolution equation, starting with the
“initial QCD NLO FFs” at a low energy scale
μF ¼ 2mb þ 2mc. Since the solution of the DGLAP
evolution equation shows certain shifts of the average
value of the energy fraction z in a small region, we hope
that future experiments can test this effect(s).
Finally, the production of Bc and B�

c mesons at a Z
factory is the simplest case where only the fragmentation
from a b̄ or c quark should be considered, and this
production is a typical process for doubly heavy hadron
production at a Z factory, which can be used as a reference
to estimate doubly heavy hadron production at a Z factory.
Thus we applied the FFs at the energy scale μF ¼ mZ,
which were obtained by evolving the QCD NLO ones at a
low energy scale μF0 and shown in Figs. 10 and 11, to
computing the production of Bc and B�

c mesons at a Z
factory, and we suspect that the results presented in Figs. 12
are 13 are comparatively accurate. For comparison, the
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FIG. 13. The differential cross section dσ=dz for the production
of the B�

c meson as a function of z.

TABLE V. The total cross sections (in pb) for the production of
Bc and B�

c mesons at the Z pole. Here, “LO” and “NLO” denote
the results from the complete LO and NLO calculations, while
“Frag” denotes the results from the fragmentation approach.

States LO NLO Frag

Bc 1.76 2.53 2.51
B�
c 2.46 3.07 2.98

6In order to maintain compatibility with the results of the
fragmentation calculations, for the complete NLO calculations
we adopt the renormalization scale μR ¼ mb þ 2mc, although the
complete NLO results in our previous paper [11] are those with
the renormalization at μR ¼ 2mb.
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results from the fully complete LO and NLO calculations
were also presented in these figures.
In summary, we derived the QCD NLO FFs of b̄ and c

quarks to Bc and B�
c mesons, and the physical picture for

the production of Bc and B�
c mesons to QCD leading

logarithm (LL) order at a Z factory was described as
follows: the b̄ and c quarks are produced at high energy
(

ffiffiffi
s

p ¼ mZ), then the produced b̄ and c quarks are evolved
to the lower invariant mass (OðmQÞ) by emitting real and
virtual collinear gluons and quarks (that are summed by the
LO DGLP equations), at last they fragment into the meson
Bc or B�

c, that is described by the QCD NLO FFs. Therefore
one may reasonably understand why the physics picture
summarized here has more solid QCD foundation and
works better in estimating the Bc and B�

c production at a Z
factory.
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APPENDIX A: THE EXPRESSIONS
FOR THE COEFFICIENTS ai IN THE

LO SQUARED AMPLITUDES

For the production of the cb̄½1S½1�0 � state, the expressions
for the coefficients ai in Eq. (16) are

a2 ¼ z2ð1− zÞ½−ðdrb þ 2rc − 4Þzþ d− 2�2;
a3 ¼ −4z2ð1− rbzÞfðdrb þ 2rc − 3Þrbz2

− ½2dr2b þ 4ð2þ rbÞrc − 5�z− 2drc þ dþ 2ðrc − rbÞg;
a4 ¼ −16rbrcz2ð1− rbzÞ2: ðA1Þ

For the production of the cb̄½3S½1�1 � state,

a2 ¼ z2ð1− zÞfð1− rbzÞ2d3− ð1− rbzÞ½ð9rc− 13Þzþ 9�d2
þ 4½zð7rcððrc− 3Þzþ 2Þþ 3ð5z− 7ÞÞþ 7�d
− 4z½7rcððrc− 4Þzþ 2Þþ 22z− 28�− 28g;

a3 ¼−4z2ð1− rbzÞfz½−2ðd− 5Þðd−2Þr2c
þ 4ððd− 8Þdþ 13Þrcþð15−2dÞd�
− rbz2½dð−drb − 7rcþ 8Þþ 14rc− 15�
−dðd− 7Þð2rc− 1Þ− 20rc− 29zþ 14g;

a4 ¼−16rbrcðd− 1Þz2ð1− rbzÞ2: ðA2Þ

APPENDIX B: PHASE SPACE FOR THE
REAL CORRECTIONS

The differential phase space for the real corrections to the
FFs is

dϕreal ¼
dd−1p2

ð2πÞd−12p0
2

dd−1p3

ð2πÞd−12p0
3

× 2πδðK · n − ðp1 þ p2 þ p3Þ · nÞ: ðB1Þ

The different parametrizations are required in order to
extract the poles in ϵ in the real corrections. We adopt
similar parametrizations as those used in Ref. [13]. In
Ref. [13], the authors derived the phase space for two
massless partons the in final state. In our case, there is one
massive parton and one massless parton in the final state, so
we derive the formulas for this case.
The differential phase space for a single parton with

momentum p and mass m can be expressed as

dd−1p
ð2πÞd−12p0

¼ jpj2−2ϵj sin θj1−2ϵ
2p0ð2πÞ3−2ϵ djpjdθdΩ⊥; ðB2Þ

where θ denotes the polar angle and dΩ⊥ denotes the
differential transverse solid angle. The total transverse solid
angle Ω⊥ ¼ R

dΩ⊥ ¼ 2π1−ϵ=Γð1 − ϵÞ.
It is useful to introduce a light-like momentum k, and

define the variable

λ ¼ 2k · p=k · n: ðB3Þ

Then, the differential phase space for a single parton can be
expressed as

dd−1p
ð2πÞd−12p0

¼ ðλp · n −m2Þ−ϵ
4ð2πÞ3−2ϵ dλ dðp · nÞdΩ⊥: ðB4Þ

Here, dΩ⊥ is Lorentz invariant due to the fact that the
differential phase space, λ, and p · n are Lorentz invariant.
This expression can be easily derived from Eq. (B2) in a
Lorentz frame where the spatial parts of the light-like
vectors n and k are back to back. The differential phase
space for a massless parton can be easily obtained from
Eq. (B4) by setting m ¼ 0.
We can apply the parametrization (B4) to the differential

phase spaces for p2 and p3 in Eq. (B1). Two light-like
vectors k2 and k3 corresponding to the parametrizations of
p2 and p3 are introduced. The integral over p2 · n can be
carried out through the δ function, and the integral overΩ2⊥
is trivial. Then we obtain the expression

ZHENG, CHANG, FENG, and WU PHYS. REV. D 100, 034004 (2019)

034004-18



dϕreal ¼
2−2ϵ½ð1 − zÞK · n�1−2ϵ
ð4πÞ4−3ϵΓð1 − ϵÞ ½uð1 − uÞ�−ϵλ−ϵ2 λ−ϵ3

×

�
1 −

m2
c

λ2ð1 − uÞð1 − zÞK · n

�−ϵ
du dλ2 dλ3 dΩ3⊥;

ðB5Þ

where

λ2 ¼ 2k2 · p2=k2 · n; λ3 ¼ 2k3 · p3=k3 · n: ðB6Þ

We have converted the integral variable p3 · n to u by using
the definition of u in Eq. (32). If we setmc ¼ 0 in Eq. (B5),
we obtain an expression that is the same as Eq. (A.6)
in Ref. [13].
We need to choose proper light-like vectors k2 and k3 in

order to extract the poles in ϵ. For the subtraction terms that
contain s, we choose

kμ2 ¼ pμ
1 −

M2

2p1 · n
nμ;

kμ3 ¼ ðp1 þ p2Þμ −
s1

2ðp1 þ p2Þ · n
nμ; ðB7Þ

then

λ2 ¼
1

zK · n

�
s1 −m2

c −
1 − uþ uz

z
M2

	
; ðB8Þ

and

λ3 ¼
1

ð1 − uþ uzÞK · n

�
s −

s1
1 − uþ uz

	
: ðB9Þ

Changing variables in Eq. (B5) from u, λ2, and λ3 to y, s1,
and s, we obtain

dϕreal ¼
2−2ϵz−1þϵ

ð4πÞ4−3ϵΓð1− ϵÞK ·n
y−1þϵð1−yÞ−ϵðy−zÞ−ϵ

× ðs−s1=yÞ−ϵ½s1−m2
c−M2=ðz=yÞ�−ϵ

×

�
1−

zm2
c

ðy− zÞðs1−m2
c−yM2=zÞ

�−ϵ
dydsds1dΩ3⊥:

ðB10Þ

For the subtraction terms that contain s2, we choose

kμ2 ¼ pμ
1 −

M2

2p1 · n
nμ; kμ3 ¼ pμ

12 −
m2

b

2p12 · n
nμ: ðB11Þ

Then,

λ2 ¼
1

zK · n

�
s1 −m2

c −
1 − uþ uz

z
M2

	
;

λ3 ¼
1

rbzK · n

�
s2 −

rbzþ uð1 − zÞ
rbz

m2
b

	
: ðB12Þ

After changing variables in Eq. (B5) from u, λ2, and λ3 to y,
s1, and s2, we obtain

dϕreal ¼
2−2ϵðrbz2Þ−1þϵ

ð4πÞ4−3ϵΓð1− ϵÞK ·n
ð1− yÞ−ϵðy− zÞ−ϵ

×

�
s2−

1− yþ rbz
rbz

m2
b

	
−ϵ
½s1−m2

c −M2=ðz=yÞ�−ϵ

×

�
1−

zm2
c

ðy− zÞðs1 −m2
c − yM2=zÞ

�−ϵ
dyds1 ds2 dΩ3⊥:

ðB13Þ

For the subtraction terms that contain s3, we choose

kμ2 ¼ pμ
1 −

M2

2p1 · n
nμ;

kμ3 ¼ ðp11 þ p2Þμ −
ðp11 þ p2Þ2

2ðp11 þ p2Þ · n
nμ: ðB14Þ

Then,

λ2 ¼
1

zK · n

�
s1 −m2

c −
1 − uþ uz

z
M2

	
;

λ3 ¼
1

ðy − rbzÞK · n

�
s3 −

rcð1 − rbzÞðs1 −m2
bÞ

y − rbz

�
: ðB15Þ

After changing variables in Eq. (B5) from u, λ2, and λ3 to y,
s1, and s3, we obtain

dϕreal¼
2−2ϵz−1þϵ

ð4πÞ4−3ϵΓð1−ϵÞK ·n
ð1−yÞ−ϵðy−zÞ−ϵ

×ðy−rbzÞ−1þϵ

�
s3−

rcð1−rbzÞðs1−m2
bÞ

y−rbz

�
−ϵ

× ½s1−m2
c−M2=ðz=yÞ�−ϵ

×

�
1−

zm2
c

ðy−zÞðs1−m2
c−yM2=zÞ

�−ϵ
dyds1ds3dΩ3⊥:

ðB16Þ

To derive the differential phase space for the subtraction
terms that contain t1 or t2, we multiply Eq. (B1) by

Z
∞

0

dt2

Z
ddp̃δd

�
p̃ − p2 − p3 þ

t2
2ðp2 þ p3Þ · n

	

× δðt2 − 2p2 · p3Þ; ðB17Þ
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which is equal to 1 and does not change the phase space.
After integrating over p2, the differential phase space can
be expressed as

dϕreal ¼
dd−1p̃

ð2πÞd−12p̃0

dd−1p3

ð2πÞd−12p0
3

p̃ · n
ðp̃ − p3Þ · n

× 2πδðK · n − ðp1 þ p̃Þ · nÞ: ðB18Þ

Using the parametrization (B4) on the differential phase
spaces for p̃ and p3 in Eq. (B18), we obtain the expression

dϕreal ¼
2−2ϵ½ð1 − zÞK · n�1−2ϵ
ð4πÞ4−3ϵΓð1 − ϵÞ

u−ϵ

1 − u
λ̃−ϵλ−ϵ3

×

�
1 −

m2
c

λ̃ð1 − zÞK · n

�−ϵ
du dλ̃ dλ3 dΩ3⊥; ðB19Þ

where

λ̃ ¼ 2k̃ · p̃=k̃ · n; λ3 ¼ 2k3 · p3=k3 · n: ðB20Þ

For the subtraction terms that contain t1, we choose the
light-like vectors k̃ and k3 as follows:

k̃μ ¼ pμ
1 −

M2

2p1 · n
nμ; kμ3 ¼ k̃μ; ðB21Þ

then

λ̃ ¼ 1

zK · n
ðs̃ −m2

c −M2=zÞ;

λ3 ¼
1

zK · n
½t1 − ð1=z − 1ÞM2u�: ðB22Þ

After changing variables in Eq. (B19) from λ̃ and λ3 to s̃
and t1, we obtain

dϕreal ¼
2−2ϵz−2þ2ϵð1− zÞ1−2ϵ
ð4πÞ4−3ϵΓð1− ϵÞK · n

u−ϵ

1− u

× ½t1 − ð1=z− 1ÞM2u�−ϵ½s̃−m2
c −M2=z�−ϵ

×

�
1−

zm2
c

ð1− zÞðs̃−m2
c −M2=zÞ

�−ϵ
duds̃dt1 dΩ3⊥:

ðB23Þ
For the subtraction terms that contain t2, we choose the

light-like vectors k̃ and k3 as follows:

k̃μ ¼ pμ
1 −

M2

2p1 · n
nμ; kμ3 ¼ p̃μ −

m2
c

2p̃ · n
nμ:

Then

λ̃ ¼ 1

zK · n
ðs̃ −m2

c −M2=zÞ;

λ3 ¼
1

ð1 − zÞK · n
½ð1 − uÞt2 −m2

cu�:

After changing variables from λ̃ and λ3 to s̃ and t, we obtain

dϕreal ¼
2−2ϵz−1þϵð1− zÞ−ϵ

ð4πÞ4−3ϵΓð1− ϵÞK · n
u−ϵ

× ½ð1− uÞt2 −m2
cu�−ϵ½s̃−m2

c −M2=z�−ϵ

×

�
1−

zm2
c

ð1− zÞðs̃−m2
c −M2=zÞ

�−ϵ
duds̃dt2 dΩ3⊥:

ðB24Þ

[1] F. Abe et al. (CDF Collaboration), Observation of the
Bc Meson in pp̄ Collisions at

ffiffiffi
s

p ¼ 1.8 TeV, Phys. Rev.
Lett. 81, 2432 (1998); Observation of Bc mesons in pp̄
collisions at

ffiffiffi
s

p ¼ 1.8 TeV, Phys. Rev. D 58, 112004
(1998).

[2] G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD
analysis of inclusive annihilation and production of heavy
quarkonium, Phys. Rev. D 51, 1125 (1995); Erratum, Phys.
Rev. D55, 5853(E) (1997).

[3] S. Mandelstam, Dynamical variables in the Bethe-Salpeter
formalism, Proc. R. Soc. 233, 248 (1955).

[4] X.-C. Zheng, C.-H. Chang, and Z. Pan, Production of
doubly heavy-flavored hadrons at eþe colliders, Phys.
Rev. D 93, 034019 (2016).

[5] N. Brambilla et al., Heavy quarkonium: Progress, puzzles,
and opportunities, Eur. Phys. J. C 71, 1534 (2011) and
references therein.

[6] N. Brambilla et al., Heavy quarkonium physics, arXiv:hep-
ph/0412158.

[7] C.-H. Chang and Y.-Q. Chen, The production of Bc or B̄c

associated with two heavy quark jets in Z0 boson decay,
Phys. Rev. D 46, 3845 (1992); Erratum, Phys. Rev. D 50,
6013(E) (1994).

[8] E. Braaten, K. Cheung, and T. C. Yuan, QCD fragmentation
functions for Bc or B�

c production, Phys. Rev. D 48, R5049
(1993).

[9] C.-H. Chang, Y.-Q. Chen, and R. Oakes, Comparative study
of the production ofBcmesons, Phys.Rev.D54, 4344 (1996).

[10] J.-P. Ma and C. H. Chang, On Z-Factory physics (in
Chinese), Sci. Chin.-Phys. Mech. Astron. 53, 1947 (2010).

[11] X.-C. Zheng, C.-H. Chang, T.-F. Feng, and Z. Pan,
corrections to BcðB�

cÞ production around the Z pole at an
eþe− collider, Sci. Chin.-Phys. Mech. Astron. 61, 031012
(2018).

ZHENG, CHANG, FENG, and WU PHYS. REV. D 100, 034004 (2019)

034004-20

https://doi.org/10.1103/PhysRevLett.81.2432
https://doi.org/10.1103/PhysRevLett.81.2432
https://doi.org/10.1103/PhysRevD.58.112004
https://doi.org/10.1103/PhysRevD.58.112004
https://doi.org/10.1103/PhysRevD.51.1125
https://doi.org/10.1103/PhysRevD.55.5853
https://doi.org/10.1103/PhysRevD.55.5853
https://doi.org/10.1098/rspa.1955.0261
https://doi.org/10.1103/PhysRevD.93.034019
https://doi.org/10.1103/PhysRevD.93.034019
https://doi.org/10.1140/epjc/s10052-010-1534-9
http://arXiv.org/abs/hep-ph/0412158
http://arXiv.org/abs/hep-ph/0412158
https://doi.org/10.1103/PhysRevD.46.3845
https://doi.org/10.1103/PhysRevD.50.6013
https://doi.org/10.1103/PhysRevD.50.6013
https://doi.org/10.1103/PhysRevD.48.R5049
https://doi.org/10.1103/PhysRevD.48.R5049
https://doi.org/10.1103/PhysRevD.54.4344
https://doi.org/10.1007/s11433-017-9121-3
https://doi.org/10.1007/s11433-017-9121-3


[12] J. C. Collins and D. E. Soper, Parton distribution and decay
functions, Nucl. Phys. B194, 445 (1982).

[13] P. Artoisenet and E. Braaten, Gluon fragmentation into
quarkonium at next-to-leading order, J. High Energy Phys.
04 (2015) 121.

[14] P. Artoisenet and E. Braaten, Gluon fragmentation into
quarkonium at next-to-leading order using FKS subtraction,
J. High Energy Phys. 01 (2019) 227.

[15] F. Feng and Y. Jia, Next-to-leading-order QCD corrections
to gluon fragmentation into 1Sð1;8Þ0 quarkonia, arXiv:
1810.04138.

[16] P. Zhang, C.-Y. Wang, X. Liu, Y.-Q. Ma, C. Meng, and
K.-T. Chao, Semi-analytical calculation of gluon fragmen-
tation into 1S½1;8�0 quarkonia at next-to-leading order, J. High
Energy Phys. 04 (2019) 116.

[17] E. Braaten, S. Fleming, and T. C. Yuan, Production of heavy
quarkonium in high-energy colliders, Annu. Rev. Nucl. Part.
Sci. 46, 197 (1996).

[18] G. C. Nayak, J. W. Qiu, and G. Sterman, Fragmentation,
nonrelativistic and NNLO factorization analysis in heavy
quarkonium production, Phys. Rev. D 72, 114012 (2005).

[19] J.-P. Ma, Calculating fragmentation functions from defini-
tions, Phys. Lett. B 332, 398 (1994).

[20] Y.-Q. Chen, Perturbative QCD predictions for the fragmen-
tation functions of the P-wave mesons with two heavy
quarks, Phys. Rev. D 48, 5181 (1993).

[21] T. C. Yuan, Perturbative QCD fragmentation functions for
production of P-wave charm and beauty mesons, Phys. Rev.
D 50, 5664 (1994).

[22] K. Cheung and T. C. Yuan, Heavy quark fragmentation
functions for D-wave quarkonium and charmed beauty
mesons, Phys. Rev. D 53, 3591 (1996).

[23] Y. L. Dokshitzer, Calculation of the structure functions
for deep Inelastic scattering and eþe− annihilation by pertur-
bation theory in quantum chromodynamics, Zh. Eksp. Teor.
Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46, 641 (1977)].

[24] V. N. Gribov and L. N. Lipatov, Deep inelastic ep scattering
in perturbation theory, Yad. Fiz. 15, 781 (1972) [Sov. J.
Nucl. Phys. 15, 438 (1972)].

[25] G. Altarelli and G. Parisi, Asymptotic freedom in parton
language, Nucl. Phys. B126, 298 (1977).

[26] J. G. Korner, D. Kreimer, and K. Schilcher, A Practicable
γ5-scheme in dimensional regularization, Z. Phys. C 54, 503
(1992).

[27] M. Beneke and V. A. Smirnov, Asymptotic expansion of
Feynman integrals near threshold, Nucl. Phys. B522, 321
(1998).

[28] R. Mertig, M. Bohm, and A. Denner, Feyn Calc—computer-
algebraic calculation of Feynman amplitudes, Comput.
Phys. Commun. 64, 345 (1991).

[29] V. Shtabovenko, R. Mertig, and F. Orellana, New develop-
ments in FeynCalc 9.0, Comput. Phys. Commun. 207, 432
(2016).

[30] F. Feng and R. Mertig, FormLink/FeynCalcFormLink:
Embedding FORM in Mathematica and FeynCalc, arXiv:
1212.3522.

[31] F. Feng, $Apart: A generalized mathematica apart function,
Comput. Phys. Commun. 183, 2158 (2012).

[32] A. V. Smirnov, Algorithm FIRE—Feynman integral reduc-
tion, J. High Energy Phys. 10 (2008) 107.

[33] T. Hahn and M. Perez-Victoria, Automatized one loop
calculations in four-dimensions and D-dimensions, Comput.
Phys. Commun. 118, 153 (1999).

[34] A. H. Mueller, Cut vertices and their renormalization: A
generalization of the Wilson expansion, Phys. Rev. D 18,
3705 (1978).

[35] G. P. Lepage, A new algorithm for adaptive multidimen-
sional integration, J. Comput. Phys. 27, 192 (1978).

[36] E. J. Eichten and C. Quigg, Mesons with beauty and charm:
Spectroscopy, Phys. Rev. D 49, 5845 (1994) and references
therein.

[37] C. Patrignani et al. (Particle Data Group), Review of particle
physics, Chin. Phys. C 40, 100001 (2016).

[38] R. D. Field, Applications of Perturbative QCD (Addison-
Wesley, Reading, Massachusetts, 1989).

[39] R. Baier and K. Fey, Finite corrections to quark fragmenta-
tion functions in perturbative QCD, Z. Phys. C 2, 339
(1979).

[40] G. Altarelli, R. K. Ellis, G. Martinelli, and S. Y. Pi, Proc-
esses involving fragmentation functions beyond the leading
order in QCD, Nucl. Phys. B160, 301 (1979).

QCD NLO FRAGMENTATION FUNCTIONS FOR c OR … PHYS. REV. D 100, 034004 (2019)

034004-21

https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1007/JHEP04(2015)121
https://doi.org/10.1007/JHEP04(2015)121
https://doi.org/10.1007/JHEP01(2019)227
http://arXiv.org/abs/1810.04138
http://arXiv.org/abs/1810.04138
https://doi.org/10.1007/JHEP04(2019)116
https://doi.org/10.1007/JHEP04(2019)116
https://doi.org/10.1146/annurev.nucl.46.1.197
https://doi.org/10.1146/annurev.nucl.46.1.197
https://doi.org/10.1103/PhysRevD.72.114012
https://doi.org/10.1016/0370-2693(94)91271-8
https://doi.org/10.1103/PhysRevD.48.5181
https://doi.org/10.1103/PhysRevD.50.5664
https://doi.org/10.1103/PhysRevD.50.5664
https://doi.org/10.1103/PhysRevD.53.3591
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1007/BF01559471
https://doi.org/10.1007/BF01559471
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1016/S0550-3213(98)00138-2
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
http://arXiv.org/abs/1212.3522
http://arXiv.org/abs/1212.3522
https://doi.org/10.1016/j.cpc.2012.03.025
https://doi.org/10.1088/1126-6708/2008/10/107
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1016/S0010-4655(98)00173-8
https://doi.org/10.1103/PhysRevD.18.3705
https://doi.org/10.1103/PhysRevD.18.3705
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1103/PhysRevD.49.5845
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1007/BF01545897
https://doi.org/10.1007/BF01545897
https://doi.org/10.1016/0550-3213(79)90062-2

