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A physical model is presented for the nonperturbative parton distributions in the nucleon. This is based
on quantum fluctuations of the nucleon into baryon-meson pairs convoluted with Gaussian momentum
distributions of partons in hadrons. The hadronic fluctuations, here developed in terms of hadronic chiral
perturbation theory, occur with high probability and generate sea quarks as well as dynamical effects also
for valence quarks and gluons. The resulting parton momentum distributions fðx;Q2

0Þ at low momentum
transfers are evolved with conventional Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations from
perturbative QCD to larger scales. This provides parton density functions fðx;Q2Þ for the gluon and
all quark flavors with only five physics-motivated parameters. By tuning these parameters, experimental
data on deep-inelastic structure functions can be reproduced and interpreted. The contribution to sea quarks
from hadronic fluctuations explains the observed asymmetry between ū and d̄ in the proton. The strange-
quark sea is strongly suppressed at low Q2, as observed.
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I. INTRODUCTION

The parton distribution functions (PDFs) of the nucleon
are of great importance. One reason is that they provide
insights into the structure of the proton and neutron as
bound states of quarks and gluons, which is still a largely
unsolved problem due to our limited understanding of
strongly coupled QCD. Another reason is their use for
calculations of cross sections for high-energy collision
processes. These factorize in a hard parton level scattering
process, calculated in perturbation theory, and the flux of
incoming partons given by the PDFs.
This involves the factorization of processes that occur at

momentum-transfer scales of significantly different mag-
nitudes. Of particular importance here is that the PDFs
fðx;Q2Þ have the property that for Q2 > Q2

0 ∼ 1 GeV2 the
dependence on Q2 can be calculated by the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [1–3]
derived from perturbative QCD (pQCD), which is well
established theoretically and experimentally confirmed.
However, the x-dependence needed at the starting scale

Q2
0 is not known from fundamental principles and instead

parametrized to reproduce proton structure function data.
This typically requires x shapes given in terms of five
parameters for each parton flavor, resulting in ∼30 free
parameters to account for valence quarks, gluons and sea
quarks (u, d, g, ū, d̄, s, s̄). There are different collaborations
[4–7] performing such PDF parametrizations with
DGLAP-based Q2 evolution that give good fits of proton
structure data and are excellent tools for cross-section
calculations. However, the basic x dependence at Q2

0

originating from the bound-state proton is here only para-
metrized, but not understood.
To understand the basic shape of the parton momentum

distributions in physical terms, we here develop the
theoretical basis for our earlier proposed model [8–10]
and elaborate on its phenomenologically successful results.
The first basic idea is to use the uncertainty relation in
position and momentum, ΔxΔp ∼ ℏ=2, to give the basic
momentum scale of partons confined in the length scale Δx
given by the hadron diameter D. In the hadron rest frame
it is natural to assume a spherically symmetric Gaussian
momentum distribution with a typical width σ ∼ ℏ=ð2DÞ.
The Gaussian is a convenient mathematical form which
cuts off large momenta that correspond to rare fluctuations.
It may be motivated as resulting from many soft inter-
actions within the hadron that add up to a Gaussian. The
strength of this approach lies in its simplicity and its small
number of parameters.
The second basic idea is that whereas the valence quark

and gluon distributions are essentially given by the basic
description of the bound-state bare nucleon and its quantum
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numbers, the sea quark distributions are given by the
hadronic fluctuations of the nucleon. For example, the
proton quantum state jPi ¼ αbarejPibare þ αPπ0 jPπ0i þ
αnπþjnπþi þ � � � contains not only the bare proton but also
nucleon-pion fluctuations with probability amplitudes αNπ .
The point is that one should consider the dominant
quantum fluctuations in terms of least energy fluctuation
and thereby most long lived [11,12]. It is expected that
pionic fluctuations dominate due to the small mass of the
pion. In turn, its smallness compared to a typical hadronic
scale ∼1 GeV is a consequence of spontaneous chiral
symmetry breaking, which leads to the identification of
pions as Goldstone bosons [13,14]. From these dominant
fluctuations of the proton state, with the presence of πþ but
lack of π−, one expects an asymmetry in the proton sea such
that d̄ > ū [15–25], as is also observed in data [26]. In
addition, an asymmetry in the s̄ − s distributions is
expected because the dominant ΛKþ fluctuation gives a
harder momentum distribution of the heavier Λ, and
thereby of its s quark, compared to the lighter Kþ and
its s̄ [9,10,27–29].
This kind of hadronic fluctuations can in a simple

phenomenological model [8,10] be handled by having
the different baryon-meson (BM) fluctuation probabilities
jαBMj2 as free parameters fitted to data. Here, we instead
follow the theoretically well-founded approach using the
leading-order Lagrangian of three-flavor chiral perturbation
theory [30–33] to describe the proton state as the Fock
expansion

jPi ¼ αbarejPibare þ αPπ0 jPπ0i þ αnπþjnπþi
þ αΔþþπ− jΔþþπ−i þ αΔþπ0 jΔþπ0i
þ αΔ0πþjΔ0πþi þ αΛ0KþjΛ0Kþi þ � � � : ð1Þ

For a detailed account of the chiral symmetry basis for the
baryon-meson Fock components, and subtle renormaliza-
tion issues, we refer to [34–39]. The different terms in
Eq. (1) are theoretically well defined and related to each
other with only three coupling constants that are known
from hadronic processes and weak decays of baryons. In
addition to the probability for the different hadronic
fluctuations, the theoretical formalism gives the hadron
momentum distribution of the fluctuations. Incorporating
the hadronic momentum distributions with the above
parton momentum distributions in a hadron provides an
improved model for the parton momenta of the proton
quantum state.
The PDFs are closely related to the proton structure

functions that are measured in deep-inelastic scattering
(DIS) of leptons on protons. The most precise data are from
electron and muon scattering, where the exchanged virtual
photon has high resolution power and couples to quarks in
the proton. The photon may therefore couple to a quark in

the bare proton or in either the baryon or the meson in a
baryon-meson fluctuation.
Before giving the detailed account of model and results,

we first elaborate on the model’s general concepts and
contrast it with other models. QCD covers various energy
regimes where different methods apply. For the sector of
light quarks, one has two energy scales at the microscopic
level: the quark masses of a couple of MeV, and ΛQCD of a
couple of 100 MeV—above which the running coupling
changes from strong to weak. Related to these microscopic
scales one can on the observable hadronic side identify the
low-energy regime on the order of the Goldstone boson
(pion) masses (about 100 MeV), the medium-energy
regime on the order of the typical hadron masses (about
1 GeV) and the high-energy regime much larger than the
hadron masses. For the first and third of these regimes there
exists systematic tools used to quantify the uncertainty of
theoretical calculations and to improve on this uncertainty.
The tools at our disposal are chiral perturbation theory for
the low-energy regime and perturbative QCD for infrared
safe quantities at high energies. Unfortunately, there are no
systematic tools available at medium energies (except for
lattice QCD [40–43]) to bridge the gap between these low-
and high-energy regimes. Thus, for the medium-energy
regime and for the nonperturbative quantities at high
energies, one has to develop phenomenological models
that preferably link as much as possible to the systematic
approaches.
In our model, we make sure that the hadronic part

matches to chiral perturbation theory at low energies. To
extrapolate the PDFs from the medium-energy regime to
higher energies we use the DGLAP equations of perturba-
tive QCD. The essential new part is the explicit construc-
tion of the phenomenological model at a starting scale in
the medium-energy regime. We assume, first, hadronic
fluctuations play an important role because we operate in
the medium-energy regime. Second, the quarks and gluons
confined in a hadron experience so many soft interactions
that their momentum distributions can be described by
Gaussians. Clearly, these are assumptions as every phe-
nomenological model is based on some assumptions.
Some other models do not have proper matching to the

low-energy regime, in particular using a pseudoscalar
instead of a pseudovector pion-nucleon coupling. The
Goldstone theorem demands that all interactions of the
pions vanish with the pion momenta, which is satisfied with
the pseudovector interaction but not with the pseudoscalar
interaction. Other approaches use sophisticated quark
models to describe the quark-gluon aspects and/or interlink
the hadronic and quark degrees of freedom (d.o.f.), as e.g.,
in pion-quark models. In contrast to that, we clearly
separate the hadronic fluctuations from the quark-gluon
distributions inside of the hadrons, because these are
described by different sets of quantum basis states with
different d.o.f. Wherever proper QCD theory (governed by
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chiral perturbation theory or perturbative QCD) is not
available, we use simplicity as a useful guiding principle
to get insights into the unknown dynamics of strongly
interacting systems. The strength of our model lies in the
clear links to the better known QCD regimes at higher and
lower energies and otherwise in the simplicity of our
model. We want to explore how far we can come with
such a model and which insights can be obtained from it.
In this paper we present the complete model we have

constructed based on these basic ideas. Section II presents
the formalism for DIS on the proton with its hadronic
fluctuations, where some more technical details are pro-
vided in the Appendixes at the end of the paper. In Sec. III
we present our model for the parton distributions in a
probed hadron, i.e., the x-shape at the starting scale Q2

0 for
pQCD evolution. Results are then presented in Sec. IV in
terms of obtained parton momentum distributions and their
ability to reproduce data on proton structure functions and
quark sea asymmetries. We give our conclusions in Sec. V.

II. DIS ON A NUCLEON WITH
HADRON FLUCTUATIONS

The cross section for deep-inelastic lepton-nucleon
scattering is theoretically well known as a product of the
leptonic and hadronic tensors, dσ ∝ lμνWμν. The leptonic
tensor is straightforward to calculate and well known for
photon exchange, lμν ¼ tr½p 0

lγ
μplγ

ν�=2, as well as for W or
Z exchange. We consider both electromagnetic and weak
interactions.
The hadronic tensorWμν is a much more complex object

and is of prime interest here. In order to take into account
the proton target with its hadronic fluctuations, as illus-
trated in Fig. 1, we decompose the hadronic tensor to
include the possibilities to probe either the bare proton or
the meson or baryon in a fluctuation as follows

Wμν ¼ Wbare
μν þWH

μν ¼ Wbare
μν þ

X
BM

ðWMB
μν þWBM

μν Þ ð2Þ

where the notationMB and BM denotes probing the meson
and baryon, respectively. The general form of the hadronic
tensor is [44]

Wμν ¼
1

4π

Z
d4ξeiqξhPjJμðξÞJνð0ÞjPi ð3Þ

in terms of the hadronic current JμðξÞ as a function of the
spacetime coordinate ξ. Using light-cone time-ordered
perturbation theory [45] we calculate the here introduced
part corresponding to the hadronic fluctuations giving

WH
μν ¼

1

4π

Z
d4ξeiqξ

X
BM;λ

Z
1

0

dy
y
ffλMBðyÞhMðpþ

M ¼ ypþÞj

× ½JMμ ðξÞ; JMν ð0Þ�jMðpþ
M ¼ ypþÞi

þ fλBMðyÞhBλðpþ
B ¼ ypþÞj

× ½JBμ ðξÞ; JBν ð0Þ�jBλðpþ
B ¼ ypþÞig ð4Þ

where the first term is for DIS probing the meson (M) and
the second term for probing the baryon (B). Expressions
equivalent to (4) can be found in the literature [23].
The integration variable is the fraction y of the proton’s

energy-momentum carried by the meson or baryon.
Following common practice in DIS theory we use light-
cone momenta pþ¼p0þp3 and p−¼p0−p3, and thereby

yi ¼ pþ
i

pþ ði ¼ B;MÞ. This has the advantage of being inde-
pendent of longitudinal boosts, e.g., from the proton rest
frame to the commonly used infinite-momentum frame
(IMF). The light-cone momenta p−

i are given by the
on-shell condition which in the p⊥ ¼ 0 frame become

p−
i ¼ m2

iþk2⊥
pþ
i

; ði ¼ B;MÞ.
In (4) the sum runs over all baryon-meson pairs, with

helicity λ of the baryon.We have included all baryons in both
the octet and decuplet of flavor SU(3), and all the Goldstone
bosons represented by the mesons in the spin-zero octet.
Naturally, the fluctuations with a pion will dominate due to
its exceptionally low mass. Kaons are needed to get the
leading contribution for the strange-quark sea. Table I shows
the relative strengths of different fluctuations due to the
couplings to be discussed further below.
The dynamical behavior depends on the hadronic dis-

tribution functions

fBMðyÞ ¼
X
λ

fλBMðyÞ; ð5Þ

which are probability distributions for the physical proton
to fluctuate to a baryon-meson pair. The baryon carries a
light-cone fraction y and the meson the remaining momen-
tum fraction, i.e., satisfying the relation

fBMðyÞ ¼ fMBð1 − yÞ; ð6Þ

giving flavor and momentum conservation for each par-
ticular hadronic contribution. This ensures that all parton
momentum sum rules come out correctly [46]. The
hadronic distribution functions are explicitly given in

(a) (b) (c)

FIG. 1. Deep-inelastic scattering on (a) the bare proton and on
(b) the meson or (c) the baryon in a baryon-meson quantum
fluctuation of the proton.
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Eqs. (12), (13). Their explicit form depends on the
Lagrangian used for the hadronic fluctuations, to which
we now turn.
The relevant part of the leading-order chiral Lagrangian

describing the interaction of spin-1=2 and spin-3=2 baryons
with spin-0 mesons (as Goldstone bosons) is given by
[30–33]

Lint ¼
D
2
trðB̄γμγ5fuμ; BgÞ þ

F
2
trðB̄γμγ5½uμ; B�Þ

−
hA
mR

ϵadegμνϵρμαβ

2
ffiffiffi
2

p ½ð∂αT̄abc
β Þγ5γρuνbdBce

þ B̄ecuνdbγ5γρ∂αTabc
β �; ð7Þ

where “tr” refers to flavor trace. Here, theBab are the matrix
elements of the matrixB representing the octet baryons. The
decuplet baryons are represented by the totally symmetric
flavor tensor Tμ

abc. Similarly, the spin-0 octet mesons are
represented by a matrix Φ appearing in the Lagrangian
through uμ given by uμ ≡ iu†ð∇μUÞu† ¼ u†μ where u2 ≡
U ¼ expðiΦ=FπÞ. For further details see Appendix A.
From this Lagrangian we derive the nonzero terms when

applied to our cases of a proton fluctuating into a meson
together with an octet or decuplet baryon

LP→BoctM¼
�
−D−Fffiffiffi

2
p

Fπ

n̄γμγ5ð∂μπ
−Þ−DþF

2Fπ
P̄γμγ5ð∂μπ

0Þ

þD−3F
2

ffiffiffi
3

p
Fπ

P̄γμγ5ð∂μηÞ−
D−F
2Fπ

Σ̄0γμγ5ð∂μK−Þ

−
D−Fffiffiffi
2

p
Fπ

Σ̄þγμγ5ð∂μK̄0ÞþDþ3F

2
ffiffiffi
3

p
Fπ

Λ̄γμγ5ð∂μK−Þ
�
P

þH:c: ð8Þ
and

LP→BdecM ¼ hAερμαβ

2mRFπ

� ffiffiffi
1

3

r
ð∂αΣ̄�þ

β Þγ5γρð∂μK̄0Þ

−
ffiffiffi
1

6

r
ð∂αΣ̄�0

β Þγ5γρð∂μK−Þ

þð∂αΔ̄þþ
β Þγ5γρð∂μπ

þÞ−
ffiffiffi
2

3

r
ð∂αΔ̄þ

β Þγ5γρð∂μπ
0Þ

−
ffiffiffi
1

3

r
ð∂αΔ̄0

βÞγ5γρð∂μπ
−Þ
�
PþH:c: ð9Þ

respectively. The effective nature of the hadronic theory—
manifested by the appearance of the derivative couplings of
the form ∼γ5γμ∂μMðzÞ in the Lagrangians—introduces a
slight ambiguity for the meson momentum pM appearing
in the numerators in the application of the light-cone
time-ordered framework. In the literature, there are two
common choices for the meson momentum appearing in
the numerators [20,23],

pðAÞ
M ¼ ðpþ

P − pþ
B ; p

−
P − p−

B; pP⊥ − pB⊥Þ; ð10Þ

pðBÞ
M ¼

�
pþ
P − pþ

B ;
m2

M þ p2
M⊥

pþ
M

; pP⊥ − pB⊥
�
: ð11Þ

We find that these two choices give nearly identical results
concerning the extracted values of our model’s parameters
and hence both choices yield similar conclusions. But even
though choice (10) gives a slightly better shape for the
flavor asymmetry, to be discussed in Sec. IV C, we will use
choice (11) because this choice is in line with the Goldstone
theorem [47] whereas choice (10) is not, as explicitly
shown in Appendix B.
As discussed in Appendix A, the parameter values are as

follows [48]. The pion decay constant Fπ ¼ 92.4 MeV and
the couplingsD ¼ 0.80, F ¼ 0.46 [49] and hA ¼ 2.7� 0.3
with an uncertainty range to include partial decay width data
on Δ → Nπ and Σ� → Λπ as well as the large-NC limit
[50,51] hlarge-NC

A ¼ 3ffiffi
2

p gA ¼ 2.67where gA ¼ F þD ¼ 1.26

is well constrained by the beta decay of the neutron [52].
Using light-cone time-ordered perturbation theory,

the Lagrangians (8), (9) lead to the hadronic distribution
functions

fλBMðyÞ ¼
1

2yð1 − yÞ
Z

d2k⊥
ð2πÞ3

×

����gBMGðy; k2⊥;Λ2Þ Sλðy; k⊥Þ
m2

P −m2ðy; k2⊥Þ
����
2

; ð12Þ

fλMBðyÞ¼
1

2yð1−yÞ
Z

d2k⊥
ð2πÞ3

×

����gBMGð1−y;k2⊥;Λ2Þ Sλð1−y;k⊥Þ
m2

P−m2ð1−y;k2⊥Þ
����
2

ð13Þ

for the baryon and meson, respectively, probed in the
fluctuation. As required, they satisfy fBMðyÞ¼fMBð1−yÞ.
The various hadronic couplings gBM are provided in Table I

TABLE I. The proton to baryon-meson fluctuations, with couplings and their strength relative to the respective largest coupling gmax
BM ,

where gmax
DM ¼ gΔþþπ− and gmax

OM ¼ gnπþ .

BM Δþþπ− Δþπ0 Δ0πþ Σ�þK0 Σ�0Kþ nπþ Pπ0 ΛKþ ΣþK0 Σ0Kþ Pη

gBM hA
2mRFπ

−hAffiffi
6

p
mRFπ

−hA
2
ffiffi
3

p
mRFπ

hA
2
ffiffi
3

p
mRFπ

−hA
2
ffiffi
6

p
mRFπ

−D−Fffiffi
2

p
Fπ

−D−F
2Fπ

Dþ3F
2
ffiffi
3

p
Fπ

−DþFffiffi
2

p
Fπ

−DþF
2Fπ

D−3F
2
ffiffi
3

p
Fπ

j gBMgmax
BM

j2 1 0.67 0.33 0.33 0.17 1 0.5 0.5 0.08 0.04 0.03
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and the vertex functions Sλðy; k⊥Þ are given in Appendix B.
The suppression of the energy fluctuation is seen as the
propagator with the difference of the squared masses of the
proton and the baryon-meson system given by

m2ðy; k2⊥Þ≡m2
B þ k2⊥
y

þm2
M þ k2⊥
1 − y

: ð14Þ

The function Gðy; k2⊥;Λ2
HÞ is a cutoff form factor, which

is used to avoid the integral getting an unphysical diver-
gence. The physics issue to account for is the fact that the
description in terms of hadronic d.o.f. is only valid at
hadronic scales, whereas for higher momentum-transfer
scales parton d.o.f. should be used. To phase out the hadron
formalism it is convenient to introduce a suitably con-
structed form factor.
In practice, it is conceivable to cut on the virtuality of the

fluctuation [20] or on the modulus of the three-momentum
(in a proper reference frame). While the first option sounds
plausible from a point of view of Heisenberg’s uncertainty
relation (or Fermi’s Golden Rule), this quantum-mechanical
aspect is already accounted for by the just mentioned
propagator in Eqs. (12), (13). An additional such cut is
therefore artificial. Instead we choose to cut off the three-
momentum of the hadrons in the fluctuation as seen in the
rest frame of the proton. If relevant at all, high-momenta
fluctuations should be of partonic not hadronic nature.
To conserve the condition fBMðyÞ ¼ fMBð1 − yÞ it is

necessary to use a symmetric combination of the meson/
baryon three-momentum and a natural choice is to use the
average of the squares of the three-momenta of the meson
and baryon. To make this manifestly frame independent we
write its value in the proton rest frame expressed in a
Lorentz-invariant form and take the form factor to be

Gðy; k2⊥;Λ2
HÞ ¼ exp

�
−
A2ðy; k⊥Þ

2Λ2
H

�
ð15Þ

where ΛH is the parameter that regulates the suppression
of larger scales. Because this is related to the switch to
partonic d.o.f., one would expect it to be of the same order
as the starting scale Q0 of the pQCD formalism. The
function A2 in the form factor is given by

A2ðy; k⊥Þ≡ ðp2B þ p2MÞjpþ¼mP

¼ ðp · pBÞ2 þ ðp · pMÞ2
m2

P
−m2

B −m2
M

¼
�
m2

B þ k2⊥
2mPy

�
2

þ
�

m2
M þ k2⊥

2mPð1 − yÞ
�

2

þ k2⊥

−
m2

B þm2
M

2
þm2

P

4
½ð1 − yÞ2 þ y2�; ð16Þ

where light-cone momenta pþ
B ¼ypþ and pþ

M ¼ ð1 − yÞpþ
have been used to obtain the last expression. This form

factor regularizes any potential end-point (y ¼ 0, 1) sin-
gularities. Furthermore, high values of k⊥ are largely
suppressed which renders the integrals in Eqs. (12), (13)
finite and restricts the hadronic fluctuations to the
low-momentum scales where the hadronic language is
applicable.
Using this theoretical formalism we illustrate the

total fluctuation probability for a proton to a BM pair by
calculating

jαBMðΛHÞj2 ¼
Z

1

0

dyfBMðyÞ ð17Þ

for both momentum choices, Eqs. (10), (11), giving the
result shown in Fig. 2. One observes that the probability for
a proton to fluctuate into a baryon-meson state is quite
sizable. Notably, for a cutoff ΛH around 1 GeV, the
contribution from the baryon-decuplet members (mainly
from the Δ’s) is comparable in size to the nucleon-pion
fluctuations.
Due to the hadronic fluctuations, the PDFs for the proton

are given by a convolution of the hadronic distributions,
Eqs. (12), (13), and the PDFs for the hadron being probed.
Thus, the PDF for a parton i in the proton can be written in
the form [20,23,53]

fi=PðxÞ¼ fbarei=P ðxÞ

þ
X

H∈B;M

Z
dydzδðx−yzÞfbarei=H ðzÞfH=PðyÞ; ð18Þ

taking into account the contributions from the bare proton
and the BM fluctuations. In our approach, the PDF for the
“bare” part in any of these contributions (bare proton,
baryon or meson in a fluctuation) is obtained from a
Gaussian as mentioned in the Introduction and to be

FIG. 2. The baryon-meson fluctuation probability as a function
of the cutoff parameter ΛH for two different choices of meson
momentum. The solid [dashed] curves refer to choice (11) [(10)].
The two upper curves (blue) are the sum of all the octet-baryon–
meson probabilities. The two lower curves (red) are the sum of all
the decuplet-baryon-meson probabilities.
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discussed in Sec. III. These bare distributions contain
constituent quarks and gluons, but no sea quarks.
In this work we include all the admissible octet-baryon-

meson and decuplet-baryon-meson pairs in the fluctuations,
i.e., the jNπi, jΔπi, jΛKi, jΣKi, and jΣ�Ki fluctuations. The
jPηi contribution can be neglected due to mass suppression
and its very small coupling to the proton state, see Table I.
The nucleon-pion and the Delta-pion fluctuations give the
largest contributions, while the jΛKi, jΣKi and jΣ�Ki
fluctuations act as small corrections. However, because
neither jNπi nor jΔπi contribute to the strange sea, other
fluctuations like jΛKi while being small are the leading
hadronic contributions to the strange sea. It is found that the
jΛKi fluctuation is most important, while the jΣKi and
jΣ�Ki fluctuations are suppressed due to a small coupling
and the larger masses involved respectively, see Table I.
Once the starting distributions have been obtained from

the convolution model at a particular starting scale Q2
0, the

PDFs are obtained for higherQ2 by DGLAP evolution. The
DGLAP evolution is performed at next-to-leading order
(NLO) using the QCDNUM package [54].

III. GENERIC MODEL FOR PARTON
DISTRIBUTIONS IN A HADRON

For any bare hadron we are considering the parton
momentum distributions for its valence quarks/antiquarks
and a gluon component. This applies for both the above
considered bare proton as well as for the baryons and
mesons in a hadronic fluctuation. We therefore now
consider DIS on such a generic hadron. The DIS formalism
was developed and is conventionally interpreted in the IMF
where the hadron has a large momentum such that parton
masses and transverse momenta are kinematically negli-
gible. The essential momentum axis is defined through the
measurement given by the probe, e.g., a virtual photon. The
formalism is [55] also applicable in the target hadron rest
frame and does not prefer any special reference system,
with IMF as a limiting case. Our model for PDFs of the
bound hadron state has a basic physics motivation origi-
nating in the hadron rest frame, but because we define the
parton’s energy-momentum fraction x ¼ kþ=pþ

H using
light-cone momenta (kþ for the parton and pþ

H for the
hadron) this key variable is independent of longitudinal
boosts. Thereby our model should be applicable in any
frame of interest for DIS.
In the rest frame of such a generic bare hadron there is

no preferred direction. Therefore the spherical symmetry
motivates the assumption that the parton’s momentum
distributions in kx, ky and kz are the same. Assuming a
Gaussian momentum distribution for these components
provides a convenient mathematical form which suppresses
large momenta that should correspond to rare momentum
fluctuations. Because a Gaussian results mathematically
from adding many small contributions, it can be argued to
be applicable here to represent the added effect of many soft

momentum exchanges within the bound-state hadron in the
absence of a proper description derived from QCD. The
four-momentum distribution for a parton of type i and mass
mi is therefore assumed to be given by [8,10]

Fi=HðkÞ ¼ Ni=Hðσi; miÞ

× exp

�
−
ðk0 −miÞ2 þ k2x þ k2y þ k2z

2σ2i

�
ð19Þ

where N is a normalization factor.
The width σ of this Gaussian is expected to be physically

given by the uncertainty relationΔxΔp ∼ ℏ=2 that enforces
increasing momentum fluctuations for a particle confined
in a smaller spatial range. Thus, for a hadron of size D
(diameter) one expects σ ∼ ℏ=ð2DÞ and therefore being
typically of order 0.1 GeV.
For the parton masses of the bare hadrons, we take the

gluons to be massless, and mq as the current quark masses
(neglecting isospin breaking). Because the resulting PDFs
are not sensitive to the exact values of mq, we do not
consider them as free parameters to be fitted. Instead, we fix
them as mu ¼ md ≈ 2 MeV and ms ≈ 100 MeV [52], but
note that variations by several MeV do not noticeably
change the PDFs. The light quarks are, therefore, effec-
tively massless. The larger strange quark mass pushes the
strange quark distribution to larger x-values.
The PDF for a parton i ¼ q, q̄, g of massmi in the hadron

H is then given by

fbarei=H ðxÞ ¼
Z 0 d4k

ð2πÞ4 δ
�
kþ

pþ
H
− x

�
Fi=HðkÞ ð20Þ

where x ¼ kþ=pþ
H is the discussed light-cone energy-

momentum fraction of a parton in the hadron. The prime
on the integral sign in (20) indicates the kinematical
constraints that the quark four-momentum k must obey.
We demand that the scattered parton must be on-shell or
have a timelike virtuality (causing final-state QCD radia-
tion) limited by the mass of the hadronic system, i.e.,
m2

i < j2 ¼ ðkþ qÞ2 < ðpH þ qÞ2. Likewise, the hadron
remnant must have a four-vector r2 ¼ ðpH − kÞ2 > 0,
cf. Fig. 1(a).
From a conceptual point of view it is interesting to note

that the constraints involving the photon momentum q
bring in the influence of the quantum mechanical meas-
urement process on the distribution. Thus the originally
spherically symmetric function (19) is reshaped into a
distribution that contains the directional information
originating from the virtual photon that probes the
hadron.
As one consequence of these kinematical constraints, the

light-cone energy-momentum fraction x is automatically
restricted to its physical range 0 < x < 1. The constraint
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that the remnant should have timelike momentum,
ðpH − kÞ2 > 0, has a related interesting consequence. In
the hadron rest frame this constraint translates to

k2⊥ < xð1 − xÞm2
H − ð1 − xÞk2: ð21Þ

Obviously this inequality is then true for any frame that
leaves k⊥ untouched, i.e., any frame between the hadron
rest frame and the infinite-momentum frame. On account
of (21), the integral measure k⊥dk⊥, which is a part of d4k
in (20), vanishes for x → 1. Thus, in this limit the PDF
smoothly vanishes. To summarize, the kinematical con-
straints ensure that fbarei=H ðxÞ is only nonvanishing for

0 < x < 1 and that limx→1fbarei=H ðxÞ ¼ 0.
The normalizations Nq=Hðσq; mqÞ are fixed by the flavor

sum rules, i.e., the integrals giving the correct numbers of
different valence quark flavors. Ng=Hðσg; 0Þ is fixed by the
momentum sum rule, i.e., to get the sum of x-weighted
integrals to be unity.
Thus, the only free parameters are the Gaussian widths

σg, σ1, σ2, where the indices refer to the widths of the
distributions for the gluon and for the quark flavors repre-
sented by one quark (

R
1
0 dxf

bare
q=HðxÞ ¼ 1) or two quarks

(
R
1
0 dxf

bare
q=HðxÞ ¼ 2) in the probed hadron. For instance, σ2

(σ1) applies for u (d) in the proton. Distributions of quarks
appearing triply in a baryon, such as the u distribution in the
Δþþ baryon, could be given a different Gaussian width σ3.
However, the final distributions are not very sensitive to σ3.
For simplicity we choose to determine such distributions
by making use of isospin symmetry relations such as
fbareu=ΔþþðxÞ ¼ 2fbareu=ΔþðxÞ − fbared=ΔþðxÞ.
With this model we have chosen a minimalistic

approach with the same Gaussian distributions for all
partons, having a width that only depends on the number
of same-flavor quarks, but not on the particular hadron
considered. Of course, one could introduce more complex-
ity requiring more parameters, but we find it more
interesting to see what insights this minimal physics-
motivated model can give.
The above parametrization automatically conserves iso-

spin [e.g., fbareu=PðxÞ ¼ fbared=n ðxÞ and similarly for the other
hadrons]. With the above widths for all possible hadrons,
the distributions only depend on mass effects via the
mentioned kinematical constraints.
It should be noted that these PDFs can be analytically

evaluated in terms of error functions [10], but in practice
it is more convenient to evaluate them numerically.
As discussed, these bare distributions will only contain
valence quarks and gluons, whereas the sea distributions
will be entirely generated by hadronic fluctuations. All the
resulting PDFs are at the low hadronic scale to be used as
starting distributions at Q2

0 for DGLAP evolution to large
scales Q2.

IV. MODEL RESULTS BASED
ON DATA COMPARISON

A. The few adjustable parameters

The model introduced above has few parameters which
are expected to lie in a limited range in order for the model
to make sense.
The description of hadronic fluctuations is controlled by

three coupling strengths with values already fixed by data
from various hadronic processes. As discussed in connec-
tion with Table I above, the coupling gA ¼ F þD ¼ 1.26
is constrained to the 1% level from the beta decay of the
neutron [52] whereas D ¼ 0.80 and F ¼ 0.46 may vary
independently by ∼� 5% as long as their sum is fixed [49].
Because it is their sum that appears in the most probable
fluctuations, a variation in D and F has a negligible effect
on the results. For the decuplet coupling we take
hA ¼ 2.7� 0.3. Because hA=mR, with mR the resonance
mass (basically mΔ), appears as the effective coupling in
the decuplet Lagrangian (9), we vary the ratio

1.737 GeV−1 < hA=mΔ < 2.435 GeV−1 ð22Þ

to see the resulting sensitivity on this uncertainty (see
Appendix A for details).
The only newly introduced parameter in the hadron

fluctuation model is the regulator for the high-momentum
suppression, ΛH. This parameter is constrained to have a
value large enough to allow hadronic fluctuations of some
baryon-meson configurations, i.e., energy fluctuations of at
least a few hundred MeV. On the other hand, it must be
small enough to ensure a separation between the hadronic
and partonic d.o.f. Thus, a reasonable expectation is a value
in the range 0.5 GeV≲ ΛH ≲ 1 GeV.
Based on the model it is expected that the σ parameters

have values on the order of 0.1 GeV and the Q0 a value on
the order of 1 GeV. The former is given, as discussed above,
by the inverse size of hadrons and the latter by the
factorization scale of nonperturbative bound hadron state
dynamics from the pQCD description at higher momentum
scales. For the evolution of parton density functions at
Q2 > Q2

0 we use the NLO DGLAP equations with the
running coupling αsðQ2Þ, with αsðm2

ZÞ ¼ 0.1190 in agree-
ment with the measured value [52]. In addition, we expect
that Q0 ∼ ΛH. However, because Q0 and ΛH are defined
in two different formalisms, the partonic and hadronic
respectively, and there is no theoretically well-defined link
between these two descriptions, one cannot a priori take
them as being the same parameter. Still, as will be seen
below they do come out to have the same value within their
uncertainties.

B. Comparison with proton structure function data

The values of the just discussed parameters are obtained
from inclusive deep-inelastic lepton-proton scattering
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giving the proton structure functions F2 and xF3.
Figures 3–4 show μP data from NMC [56] and BCDMS
[57], neutrino data from CDHSW, NuTeV and CHORUS
[58–60] and eP data from H1 [61] in comparison to our
model results. Our objective is not to obtain the best
possible fit in terms of lowest χ2 in a global fit of all
relevant data and thereby compete with conventional PDF

parametrizations of the different xfiðx;Q2
0Þ having some 30

free parameters. Instead, our aim is to gain understanding
through our physically motivated model with only 5
parameters of physical significance and with expected
values in order for the model to make sense. We have
therefore not made a global fit to all data, but rather
investigated the importance of our few parameters for
different observables. The parameters σ1, σ2, ΛH, and
Q0 can be nailed down using F2 and xF3 data. Q0 and
σg are given by the small-x F2 data: With Q0 given, it is
always possible to fit data by varying σg. We find that the
following parameter values give the best overall result

σ1 ¼ 0.11 GeV; σ2 ¼ 0.22 GeV; σg ¼ 0.028 GeV;

ΛH ¼ 0.87 GeV; Q0 ¼ 0.88 GeV: ð23Þ

Notice that the fit results in ΛH and Q0 being practically
the same, confirming our expectation that this scale
constitutes the transition from hadron to parton d.o.f. in
the model. Moreover, the Gaussian widths are found to be
of the expected magnitude ∼0.1 GeV. The gluon distribu-
tion is particularly soft, which may seem surprising.
However, the above argument based on the uncertainty
relation gives σ ∼ ℏ=ð2DÞ ¼ 56 MeV for the proton charge
radius 0.875 fm [52]. In view of the symmetry properties of
two-particle wave functions of indistinguishable states it
should not be surprising that the momentum distribution for
quark flavors that appear singly in the hadron differ from
the one for quark flavors that appear pairwise.
Considering the fact that the model has effectively only

four parameters, which are also constrained by the physics
assumptions of the model, it is remarkable that such a large
amount of structure function data can be reasonably well
described. Admittedly, there are some kinematical regions
of some experimental data sets where deviations do occur,
but the general behavior is reproduced and substantial
ðx;Q2Þ ranges are well fitted. The large Q2 range covered
by the HERA data in Fig. 4 is quite well described as given
by the DGLAP equations and can be further improved by
switching to next-to-next-to-leading order DGLAP evolu-
tion. Because we are also interested in polarized parton
distributions [62] where splitting functions are only known
to NLO precision, we choose to use NLO evolution for
both the polarized and the unpolarized distributions.
It is therefore of interest to look into some details on the

x-shapes of individual parton densities as they emerge from
the model including both the hadronic fluctuations and the
probed hadron’s generic parton density description, but
without any pQCD evolution. This is shown in the top
panel of Fig. 5, where the overall shape of the valence quark
distributions is quite similar to conventional PDF para-
metrizations. The fact that the distributions go smoothly to
zero, xfiðxÞ → 0, for x → 1 is not due to a choice of a
particular form of the PDFs, such as including a factor

(a)

(b)

(c)

FIG. 3. Model predictions for proton structure functions (a) F2,
(b) xF3, and (c) Fν

2 as function of Q2 for different x bins
compared to data on fixed target μP scattering from the New
Muon Collaboration (NMC) [56] and BCDMS [57], and from
neutrino-scattering experiments CDHS [58], NuTeV [59], and
CHORUS [60].
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ð1 − xÞa as in most parametrizations of PDFs. Instead this
behavior is due to the kinematical constraints on the DIS
process, as explained above in connection with Eq. (20).
This is particularly important for a proper model of the
valence quark distributions. Further characteristic features
are that the gluon distribution is quite large for smaller x
and the sea quarks are suppressed but not at all negligible.
So there is a nontrivial contribution of nonperturbatively
generated sea quarks in the bound-state proton. Examining
the sea quark distributions one notes the different distri-
butions for ū and d̄, on the one hand, and for s and s̄, on the
other. This is the basis for asymmetries in the light sea and
strange sea, as will be further discussed below.
The effect on the PDFs from pQCD evolution using the

DGLAP equations is shown in the middle and lower panels
of Fig. 5. Due to the logQ2-dependent evolution there is a
quick increase from Q2

0 so that already at Q2 ¼ 1.3 GeV2

the perturbatively generated sea quarks and gluons domi-
nate at small x over the originally nonperturbative sea.
The PDFs obtained at the starting scale Q2

0 are evaluated
numerically. However, for illustrative purposes the starting
distributions for a parton i can be parametrized in the
convenient form xfiðxÞ ¼ axbð1 − xÞc. The fitted coeffi-
cients for the various distributions are given in Table II.

FIG. 4. The proton structure function F2 as a function of x for various Q2-bins. Our model curve compared to data from the H1 eP
collider experiment [61].

FIG. 5. The resulting PDFs xfiðxÞ of the proton at the starting
scale Q2

0¼0.77GeV2 and at Q2¼1.3GeV2 and Q2 ¼ 10 GeV2.
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C. The d̄ − ū asymmetry

From a pQCD point of view, the momentum distribution
of the d̄ and ū sea in the proton should be similar because
mu, md ≪ ΛQCD, Q0. This is, however, not the case as seen
in data from e.g., [26] where a clear asymmetry is seen
(cf. Fig. 6). Such an asymmetry arises naturally from
hadronic fluctuations of the proton where the nonpertur-
bative sea distributions are dominantly generated by the
pions [15–23]. The energy-wise lowest fluctuations are Pπ0
and nπþ, where the former does not contribute to the d̄ − ū
asymmetry because the π0 is symmetric in d̄d and ūu.
Taking only these nucleonic fluctuations into account gives
already decent agreement with data on the difference
xd̄ − xū as shown by the dotted curve in Fig. 6 (upper
panel). However, these nucleonic fluctuations are not
sufficient to explain the ratio d̄ðxÞ=ūðxÞ as shown by the
dotted curve in the lower panel of Fig. 6.
The results become better when also including fluctua-

tions with other baryons. In particular the jΔþþπ−i state,
having the largest decuplet coupling (see Table I) and
having ū in the π−, contributes significantly to bring the
curves down to the data points. The full octet and decuplet
contribution is shown in Fig. 6 where the band represents a
variation in the decuplet coupling hA=mΔ, with the largest
(smallest) value in Eq. (22) corresponding to the solid
(dashed) curve. As seen in the figure an n% variation in the
coupling results in an n% variation in the difference
xd̄ − xū for small x≲ 0.15. The variation has a slightly
smaller impact on the ratio d̄=ū, but the variation is essentially
of the same order of magnitude as that of xd̄ − xū.

D. The strange sea of the proton

Due to the possibility of the proton to fluctuate into
jΛKþi, jΣKi and jΣ�Ki states a nonperturbative strange
sea will arise, as shown in Fig. 5. It is suppressed relative to
the light-quark sea partly due to the kinematical suppres-
sion of these fluctuations with higher-mass hadrons, but
also due to the smaller hadronic couplings shown in Table I.
Moreover, the x-distributions of s and s̄ are not the same,
but s has a harder momentum distribution than s̄ [9,27–29].
This is a kinematic effect arising from the fact that the s
quark is in the baryon, which due to its higher mass, gets a

harder y-spectrum in the hadronic fluctuation than the
lighter meson containing the s̄. The dominance of kaons in
the low-x region and similarly the dominance of strange
baryons in the higher-x region is clearly seen in the ratio
ðs − s̄Þ=ðsþ s̄Þ in Fig. 7. Here one can also see how the
additional symmetric ss̄ from g → ss̄ in pQCD reduces this
ratio with increasing Q2. Because pQCD fills up the low-x
region to a higher degree, the kaon effect is more depleted
than the “baryon peak”, which is, however, shifted to
lower x. The symmetric ss̄ sea from the logQ2 DGLAP
evolution builds up quickly and dominates at small x

FIG. 6. The light-quark sea asymmetry in terms of the differ-
ence xd̄ðxÞ − xūðxÞ (upper panel) and the ratio d̄ðxÞ=ūðxÞ (lower
panel). Data from Fermilab E866/NuSea Collaboration [26]
compared to our model result. The dotted curve takes into
account only nucleon-pion (Nπ) fluctuations. The shaded band
accounts for all fluctuations, with Δπ being most important
among the decuplet contributions. The shaded band is obtained
by a variation in the decuplet coupling hA=mΔ where the solid
(dashed) curve refers to the largest (smallest) value of the
decuplet coupling in Eq. (22).

FIG. 7. The ratio ðs − s̄Þ=ðsþ s̄Þ as a function of x evaluated
for different values of Q2.

TABLE II. Parametrization xfiðxÞ ¼ axbð1 − xÞc at Q2
0.

Distribution a b c

xs̄ 0.81 1.4 14
xs 6.7 2.2 16
xd̄ 0.97 0.69 7.9
xd 11 1.1 5.8
xū 0.54 0.71 8.6
xu 5.5 0.84 2.4
xg 5700 1.6 47
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already for Q2 ¼ 1.3 GeV2, as shown in the middle panel
of Fig. 7. Thus, the asymmetry is only expected to be
visible at quite low Q2 and therefore hard to observe
experimentally.
The extraction of the strange sea from data is not

at all trivial because it requires some additional observable
to signal that an s or s̄ has been probed. In Fig. 8 our
model is compared to data on the total strange sea
ðxsðxÞ þ xs̄ðxÞÞ=2. The CCFR data [63] are obtained from
neutrino-nucleon scattering producing a charm quark
decaying semileptonically giving an opposite sign dimuon
signature, i.e., νμþN→μ−þcþX where c→sþμþþνμ or
ν̄μ þ N → μþ þ c̄þ X where c̄ → s̄þ μ− þ ν̄μ. The
charged-current subprocess Wþs → c or W−s̄ → c̄ is here
the essential point. Other sources of charm production,
such as Wþg → cs̄ or W−g → c̄s, or other sources of
dimuon production from other decays must be taken into
account to extract a proper measure of the strange sea,
as discussed in [63]. The result shows that although the
shape difference between the xsðxÞ and xs̄ðxÞ distributions
is consistent with zero, it has large uncertainties. CCFR
assumed xsðxÞ ¼ xs̄ðxÞ for extracting the data points
shown in Fig. 8.
The more recent result of HERMES [64] is obtained

from data on the multiplicities of charged kaons in semi-
inclusive deep-inelastic electron-proton scattering. This
requires a detailed and nontrivial analysis of the fragmen-
tation function into kaons to extract the contribution from
initial-state strange quarks in the basic DIS process γs → s
or γs̄ → s̄. As seen in Fig. 8 the CCFR and HERMES
results differ substantially and do not provide a clear result
on the strange sea. Our model result agrees reasonably well
with the HERMES result, but compared to CCFR it has a
too small strange sea at low Q2. Because the strange-quark
sea is not yet well determined, we contribute with some
further investigations.

The strange-quark content of the proton can be charac-
terized by the momentum fraction carried by the strange
sea relative to the light-quark sea or the nonstrange quark
content [63]

κ ¼
R
1
0 dx½xsðx;Q2Þ þ xs̄ðx;Q2Þ�R
1
0 dx½xūðx;Q2Þ þ xd̄ðx;Q2Þ� ;

η ¼
R
1
0 dx½xsðx;Q2Þ þ xs̄ðx;Q2Þ�R
1
0 dx½xuðx;Q2Þ þ xdðx;Q2Þ� ; ð24Þ

where κ ¼ 1 would mean a flavor SU(3) symmetric sea.
These ratios are shown in Fig. 9 versus Q2, where the
qualitative behavior is understandable within our model. At
Q2

0 there is, as discussed, only a small nonperturbative
strange-quark sea from hadron fluctuations. With increas-
ing Q2 the perturbative logQ2 evolution first builds up the
ss̄ sea quickly and then flattens off at larger scales (note the
logarithmic Q2 scale in the figure).
The proton sea is, however, not flavor SU(3) symmetric

as indicated by the value of κ and quantified by the strange-
sea suppression factor

rsðx;Q2Þ ¼ sðx;Q2Þ þ s̄ðx;Q2Þ
2d̄ðx;Q2Þ : ð25Þ

Our results for this quantity are shown in Fig. 10
together with ATLAS data [65,66]. As seen for Q2 slightly
larger than the starting value for the QCD evolutionQ2

0, the
suppression factor is constant and near unity for x≲ 0.01.

FIG. 8. The strange-quark sea, ðxsþ xs̄Þ=2, as a function of x
for different values of Q2, with our model results compared to
data from [63,64]. The CCFR analysis assumes xsðxÞ ¼ xs̄ðxÞ.

FIG. 9. The ratios κ (upper panel) and η (lower panel) in
Eq. (24) for the strange-quark content of the proton as calculated
in our model. The data points at Q2 ¼ 22.2 GeV2 are from the
CCFR Collaboration [63].
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For low x this is in agreement with the ePWZ-fit of [65].
For larger x our model gives rsð0.023; 1.9 GeV2Þ ≈ 0.62,
which is consistent within uncertainties of experi-
mental observations: rsð0.023; 1.9 GeV2Þ ¼ 0.56� 0.04
[67], rsð0.023; 1.9 GeV2Þ ¼ 1.00þ0.25

−0.28 [65] and rsð0.023;
1.9 GeV2Þ ¼ 0.96þ0.26

−0.30 [66]. As seen in Fig. 10, rs → 1 as
x → 0, this supports the hypothesis that the quark sea at low
x is flavor symmetric.
For completeness we show in Fig. 11 (top panel) the

dependence of the strange-sea ratios κ and η on the hadron
fluctuation regulator ΛH. Whereas κ strongly depends on
ΛH, η is almost independent of ΛH. This can be understood
from the plot in the lower panel of the same figure which
compares the nonstrange fluctuation probability Pns (e.g.,
for jNπi and jΔπi) and the probability Ps that the proton
fluctuates into a hadron pair that does contain strangeness.
Not only is Ps ≪ Pns, but also its slope is much smaller
implying that for increasing ΛH the rate of population

growth is much larger for those fluctuations that contain ū
and d̄ quarks, than those containing s and s̄ quarks
(ΔPs=ΔΛH ≈ 5%GeV−1 and ΔPns=ΔΛH ≈ 90%GeV−1

between 0.5 GeV ≤ ΛH ≤ 1.0 GeV). Hence κ depends
much more strongly on ΛH than does η due to appearance
of ū and d̄ distributions in its definition. As shown in
the lower panel of Fig. 11, at the regulator value of
ΛH ¼ 0.87 GeV, roughly 1% of the fluctuations contain
strangeness. This can be compared to the result obtained
in Ref. [10], where the strangeness fluctuations had to
constitute 5% in order to reproduce the then available
CCFR data.
If it turns out to be a need for a larger nonperturbative

strange-quark sea than in our present model, this might be
remedied by a minor modification of the model. One option
could be a flavor-dependent momentum cutoff ΛH, but to
keep our model as simple as possible we refrained from
introducing more parameters. An alternative explanation
might come from the importance of additional d.o.f. not
considered so far. In the strangeness S ¼ −1 sector there
are four baryonic states below the antikaon-nucleon thresh-
old: Λ, Σ, Σ�ð1385Þ and Λ�ð1405Þ. The first three have
been taken into account in our approach as the strangeness
counterparts of the nucleon and the Δð1232Þ considered in
the pion-baryon fluctuations. But we have not included the
Λ�ð1405Þ in our framework. On the one hand, we found
that the comparatively heavy KΣ�ð1385Þ fluctuation is
much less important than the lighter KΛ. This suggests
that also KΛ�ð1405Þ is negligible. On the other hand, the
negative-parity Λ�ð1405Þ couples with an s wave to
nucleon-antikaon while all our interactions are of p-wave
nature. This can enhance the importance of the Λ�ð1405Þ.
The ultimate reason why we have not explored its influence
in the present work is the absence of unambiguous
experimental information about the coupling strength
between a nucleon and KΛ�ð1405Þ. This is related to
the long-standing question about the nature of the
Λ�ð1405Þ. Being lighter than all nonstrange baryons with
negative parity, it has been speculated since a long time
[68] that the Λ�ð1405Þ is merely an antikaon-nucleon
bound state instead of a three-quark state; see, for instance
[69] for further discussion and references. This would point
to a relatively large coupling strength. Yet in view of these
theoretical uncertainties we have not pursued a detailed
analysis of the KΛ�ð1405Þ fluctuation as long as there is no
clear need for an enhancement of the strange sea.

E. Pion PDF

With our model parameters fixed by DIS data, it is
possible to find the distributions for other hadrons. The
pion PDFs can be obtained by the method given in Sec. III.
Here we do not take into account hadronic fluctuations for
the following reasons. From the point of view of many-
body theory the first contributions that one would consider
are hadronic two-body fluctuations. However, due to parity

FIG. 10. The strange-sea suppression factor rs ¼ ðsþ s̄Þ=ð2d̄Þ
as a function of x evaluated for different values of Q2. Data from
the ATLAS Collaboration [65,66].

FIG. 11. Upper panel: The ratios κ and η, evaluated at
Q2 ¼ 22.2 GeV2, as function of the hadron fluctuation regulator
ΛH . The middle curve is the ratio κ=η. Lower panel: The
probability for all the hadronic fluctuations containing strange-
ness (dashed curve) and not containing any strangeness (solid
curve), as a function of ΛH . The ratio of these probabilities is also
shown (dot-dashed curve). Notice the two different scales on the
vertical axes.
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conservation the pion cannot fluctuate into a pair of pions.
Two-body states with a pion and a mesonic resonance are
already quite far away from the pion mass shell. This
applies even more to nucleon-antinucleon fluctuations.
Next one might consider three-body fluctuations, in par-
ticular three pions. But for the nucleon we have not taken
into account three-body states like two pions and a nucleon.
There one might even run into a double-counting problem
because theΔ is essentially an elastic resonance in the pion-
nucleon channel, i.e., pion-Δ fluctuations contain a sig-
nificant part of the three-body fluctuations into two pions
and a nucleon. These reservations apply also to the pion. In
addition, the three-pion fluctuations are suppressed at low
energies due to the chiral dynamics of the pions. In technical
terms, the derivative couplings of the Goldstone bosons
lead to a suppression of the two-loop diagrams [14] that
correspond to the three-pion fluctuations. For all these
reasons we will neglect hadronic effects for the pion.
Because experimental data are limited to the pion valence

region,we choose to focus on this region. The comparison of
our model with parametrizations from other groups [70,71]
is shown in Fig. 12. Obviously, we obtain a quite good
agreement, which gives further credits to our generic model
for the parton distributions in a hadron. It would be
interesting to compare our predictions for other mesons
with data. However, because our primary interest lies in the
nucleon we leave this comparison for a dedicated study.

V. CONCLUSIONS

This study has demonstrated that the momentum dis-
tribution of partons in the proton, and thereby the observed
proton structure functions, can be understood in terms of
basic physical processes. We thereby obtain new knowl-
edge regarding the poorly understood nonperturbative
dynamics of the bound-state proton. Using the well-
established pQCD DGLAP equations for the Q2

dependence above the scale Q2
0, our model developed here

addresses the basic shape in the distribution of the energy-
momentum fraction x carried by different parton species
at Q2

0. Thus, the model treats the physics at the transition
from bound-state hadron d.o.f. to the internal parton d.o.f. It
does so by convoluting hadronic quantum fluctuations with
partonic fluctuations. To describe the former we use the
leading-order Lagrangian of chiral perturbation theory, the
low-energy effective theory that respects the symmetries of
QCD as the underlying theory. The partonic fluctuations
arise quantum mechanically due to confinement within the
small size of a hadron, as given by the uncertainty relation
in position and momentum.
Interestingly the fit that gives best agreement with the

structure functions F2 and xF3 data yields a value where
the hadronic language ends and QCD evolution begins to
be ΛH ¼ Q0 ¼ 0.87 GeV.
Thus, having a model with effectively only four dimen-

sionful parameters with physically meaningful values, it is
highly nontrivial that we obtain a very satisfying reproduc-
tion of a large amount of data. Themodel’s assumption on the
origin of nonperturbative sea quarks at the scale Q2

0 being
only given by the hadronic fluctuations, works well to
describe data when also including the perturbatively gen-
erated sea quarks by the DGLAP evolution at higher Q2.
Thus, there is no need to complicate the model with some
additional, unknown source of a nonperturbative quark sea.
In particular we find that the nπþ and the Δπ fluctuations
generate the flavor asymmetryxd̄ − xū > 0 in the proton sea,
to a large extent consistent with experimental data. This
shows that themodel captures the essential physics observed.
Regarding the strange-quark sea of the proton, arising

from proton fluctuations into strange hadrons, we find that
it is substantially suppressed due to the larger masses of
strange hadrons. An asymmetry in terms of different x
distribution for s and s̄, with sðxÞ being harder, is found.
However, this effect is reduced at larger Q2 due to the
development of the symmetric ss̄ sea from g → ss̄ in
pQCD. The remaining asymmetry at observed Q2 is too
small to be seen in present data. Further details of the
nonperturbative strange sea of our model are given to
promote future studies, including the potentially interesting
inclusion of the Λ�ð1405Þ in the hadronic fluctuations.
We have here considered PDFs of the proton and the

pion where most experimental information is available for
testing our model. The model is, however, quite general and
can give the parton momentum distributions in any hadron.
Based on the phenomenological success of the model

and its theoretical basis, spin d.o.f. and the proton spin
puzzle are studied in another paper [62].
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APPENDIX A: THE RELEVANT LAGRANGIANS

For the metric we use g ¼ diagðþ1;−1;−1;−1Þ and
ϵ0123 ¼ þ1. The relevant part of the leading-order chiral
Lagrangian describing the interaction of Goldstone bosons
with nucleons and spin-3=2 baryons is given by [30–33]

Lint ¼
D
2
trðB̄γμγ5fuμ;BgÞþ

F
2
trðB̄γμγ5½uμ;B�Þ

þ 1

2
ffiffiffi
2

p hAϵadegμνðT̄μ
abcu

ν
bdBceþ B̄ecuνdbT

μ
abcÞ: ðA1Þ

Relativistic Rarita-Schwinger fields exhibit some problem-
atic features related to how to handle its spin-1=2 compo-
nents. Apart from exchanging spin-3=2 resonances, the
Lagrangian (A1) induces an additional unphysical contact
interaction. This can be cured by subscribing to the
Pascalutsa prescription, which in our case means making
the substitution [31,32]

Tμ → −
1

mR
ϵνμαβγ5γν∂αTβ; ðA2Þ

where mR refers to the resonance mass (mR ¼ mΔ; mΣ�).
Note that this substitution induces an explicit flavor break-
ing but these effects are beyond leading order.
In (A1) Bab is the entry in the ath row, bth column of the

matrix representing the octet baryons

B ¼

0
BBB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ P

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCCA: ðA3Þ

The Goldstone bosons are contained in

Φ ¼

0
BBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCCA ðA4Þ

and uμ is essentially given by

uμ≡ iu†ð∂μUÞu†¼u†μ whereu2≡U¼expðiΦ=FπÞ: ðA5Þ

Finally, the decuplet is represented by a totally symmetric
flavor tensor

T111¼Δþþ; T112¼ 1ffiffiffi
3

p Δþ; T122¼ 1ffiffiffi
3

p Δ0; T222¼Δ−;

T113¼ 1ffiffiffi
3

p Σ�þ; T123¼ 1ffiffiffi
6

p Σ�0; T223¼ 1ffiffiffi
3

p Σ�−;

T133¼ 1ffiffiffi
3

p Ξ�0; T233¼ 1ffiffiffi
3

p Ξ�−; T333¼Ω: ðA6Þ

The couplings we use [48] are Fπ ¼ 92.4 MeV; D ¼
0.80; F ¼ 0.46 [49] and hA can be determined from the
partial decay width Σ� → Λπ or from Δ → Nπ to be

hΣ
�→Λπ

A ¼ 2.4 and hΔ→Nπ
A ¼ 2.88: ðA7Þ

In the large-NC limit [50,51], one also gets (NC ¼ number
of colors)

hlarge-NC
A ¼ 3ffiffiffi

2
p gA ¼ 2.67; ðA8Þ

where gA ¼ F þD ¼ 1.26. We will explore the range

h�A ¼ 2.7� 0.3: ðA9Þ

Notice that after the substitution (A2) it is the ratio hA=mR
that appears with each decuplet-baryon-meson term
[cf. Eq. (7)]. That is, on the probability level one has
schematically

PðΛHÞ ∼ g2OMToctðΛHÞ þ
�
hA
mΔ

�
2

TΔðΛHÞ

þ
�
hA
mΣ�

�
2

TΣ� ðΛHÞ þ � � � ðA10Þ

so that one could vary hA by ∼10% for each of the separate
decuplet terms keeping the masses as shown but numeri-
cally it makes not much of a difference to instead usemR ¼
mΔ for both terms and vary the ratio between its smallest
and largest values 1.737 GeV−1 < hA=mΔ < 2.435 GeV−1

coming from [cf. (A9)]

h−A
mΣ�

¼ 1.737 GeV−1 <
hA
mΔ

<
hþA
mΔ

¼ 2.435 GeV−1: ðA11Þ

The effect of this variation is shown in Fig. 6 and its
effects on the probabilities are studied in Ref. [72].

APPENDIX B: THE VERTEX FUNCTIONS

The functions Sλðy; k⊥Þ are the amplitudes for a par-
ticular hadronic fluctuation of a proton with positive
helicity and we calculate them using (on-shell) light-front
spinors and the Lagrangian of Eq. (7). These amplitudes
were calculated for a wide variety of hadronic fluctuations
in [20]. Our results are basically the same with minor
differences due to a different choice of Lagrangian. Apart

EKSTEDT, GHADERI, INGELMAN, and LEUPOLD PHYS. REV. D 100, 034003 (2019)

034003-14



from different normalizations, our results for the functions
Sλðy; k⊥Þ agree with those found in [53]. We now present
the vertex functions for both choices of the meson’s
“derivative momentum.”
For meson momentum choice (10) the amplitudes are

Sþ1
2ðy; k⊥Þ ¼ −

ðmB þmPÞðymP −mBÞffiffiffi
y

p ;

S−
1
2ðy; k⊥Þ ¼ −

ðmB þmPÞk⊥eiϕffiffiffi
y

p ; ðB1Þ

where the transverse momentum k⊥ ¼ jk⊥j ¼ jðk1; k2Þj
and ϕ ∈ ½0; 2π½ is the angle in the polar form of the object
k1 þ ik2 ¼ k⊥eiϕ. For meson momentum choice (11) the
amplitudes are

Sþ1
2ðy; k⊥Þ ¼ −

k2⊥ þm2
My − ð1 − yÞ2mBmP

ð1 − yÞ ffiffiffi
y

p ;

S−
1
2ðy; k⊥Þ ¼ −

ðmB þmPÞk⊥eiϕffiffiffi
y

p : ðB2Þ

For the case of a fluctuation into a spin-3=2 baryon and a
spinless meson we find that the different helicity configu-
rations yield the following amplitudes. For meson momen-
tum choice (10) the amplitudes are

Sþ3
2ðy; k⊥Þ ¼

ie−iϕmBðmB þ ymPÞffiffiffiffiffi
2y

p
y

k⊥;

Sþ1
2ðy; k⊥Þ ¼

−iffiffiffiffiffi
6y

p
y
½k2⊥ð2mB þ ymPÞ

þ ðymP þmBÞ2ðymP −mBÞ�;

S−
1
2ðy; k⊥Þ ¼

ieiϕffiffiffiffiffi
6y

p
y
½k2⊥ þ ðmB þ ymPÞðymP − 2mBÞ�k⊥;

S−
3
2ðy; k⊥Þ ¼ i

e2iϕmBffiffiffiffiffi
2y

p
y
k2⊥: ðB3Þ

For meson momentum choice (11) the amplitudes are

Sþ3
2ðy; k⊥Þ ¼

ie−iϕmBðmB þ ymPÞffiffiffiffiffi
2y

p
y

k⊥;

Sþ1
2ðy; k⊥Þ ¼ i

k2⊥ðmPy −mBðy − 2ÞÞ − ðm2
Bðy − 1Þ2 −m2

My
2ÞðmB þmPyÞffiffiffi

6
p ðy − 1Þy3=2 ;

S−
1
2ðy; k⊥Þ ¼ −i

k⊥eiϕ½k2⊥ þ ðy − 1ÞmBðymP − ðy − 2ÞmBÞ þm2
My

2�ffiffiffi
6

p ðy − 1Þy3=2 ;

S−
3
2ðy; k⊥Þ ¼ i

e2iϕmBffiffiffiffiffi
2y

p
y
k2⊥: ðB4Þ

Notice that as k⊥ goes to zero only the spin-conserving amplitudes Sþ1
2ðy; k⊥Þ remain in (B1)–(B4), as expected.

We also note that in the chiral limit mM → 0 with y → 1 and k⊥ → 0 the amplitudes corresponding to momentum
choice (11) vanish, in line with the Goldstone theorem [47].
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