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Electroproduction form factors describing the γ�p → Δþð1232Þ, Δþð1600Þ transitions are computed
using a fully dynamical diquark-quark approximation to the Poincaré-covariant three-body bound-state
problem in relativistic quantum field theory. In this approach, the Δð1600Þ is an analogue of the Roper
resonance in the nucleon sector, appearing as the simplest radial excitation of the Δð1232Þ. Precise
measurements of the γ�p → Δþð1232Þ transition already exist on 0 ≤ Q2 ≲ 8 GeV2, and the calculated
results compare favorably with the data outside the meson-cloud domain. The predictions for the γ�p →
Δþð1600Þmagnetic dipole and electric quadrupole transition form factors are consistent with the empirical
values at the real photon point, and extend to Q2 ≈ 6m2

p, enabling a meaningful direct comparison with
experiment once analysis of existing data is completed. In both cases, the electric quadrupole form factor is
particularly sensitive to deformation of the Δ-baryons. Interestingly, while the γ�p → Δþð1232Þ transition
form factors are larger in magnitude than those for γ�p → Δþð1600Þ in some neighborhood of the real
photon point, this ordering is reversed on Q2 ≳ 2m2

p, suggesting that the γ�p → Δþð1600Þ transition is
more localized in configuration space.

DOI: 10.1103/PhysRevD.100.034001

I. INTRODUCTION

The Δð1232Þ family of baryons was the first of the
resonances discovered in πN reactions [1–3]. With positive
parity, isospin I ¼ 3

2
, total spin J ¼ 3

2
, and no net strangeness

[4], theΔþ;0 members of this quadruplet have conventionally
been viewed as the lightest isospin- and spin-flip excitations
of the proton and neutron, respectively. Hence, since protons
and neutrons (nucleons, N) are the basic elements of all
nuclei, developing a detailed understanding of theΔ-baryons
is of fundamental importance. Without this, hadron physics
remains at a level akin to atomic physics based only on
knowledge of the hydrogen atom’s ground state.
Given that pions are a complex probe, there are advan-

tages in exploiting the relative simplicity of virtual photons

in order to chart Δ-resonance structure. Elastic form factors
are empirically inaccessible because the Δð1232Þ-baryon
lifetime is too small: τΔ ∼ 10−26τn, where τn is the lifetime
of a free neutron [4]. On the other hand, by exploiting
intense, energetic electron beams at the Thomas Jefferson
National Accelerator Facility, γ�p → Δþ data are now
available for 0 ≤ Q2 ≲ 8 GeV2 [5–7]. These data have
stimulated much theoretical analysis and speculation about,
inter alia, the relevance of perturbative QCD (pQCD) to
processes involving moderate momentum transfers [6–14];
hadron shape deformation [10–18]; and the role that
resonance electroproduction experiments can play in
exposing nonperturbative aspects of QCD, such as the
nature of confinement and dynamical chiral symmetry
breaking (DCSB) [7,19–21].
Just above the Δ-baryon level lies the nucleon’s first

positive-parity excitation, i.e., the Roper resonance, labeled
Nð1440Þ1=2þ. Discovered in 1963 [22–26], its character-
istics were long the source of puzzlement because, e.g.,
constituent-quark potential models typically (and errone-
ously) produce a spectrum in which this excitation lies above
the first negative-parity state Nð1535Þ1=2− [27–29]. This
has now changed following: acquisition and analysis
of high-precision proton-target exclusive electroproduction
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data with single- and double-pion final states, on a large
energy domain and with momentum transfers out to
Q2 ≈ 5 GeV2; development of a dynamical reaction theory
capable of simultaneously describing all partial waves
extracted from available, reliable data; and formulation
and application of a Poincaré covariant approach to the
continuum bound-state problem in relativistic quantum field
theory. Today, it is widely accepted that the Roper is, at heart,
the first radial excitation of the nucleon, consisting of a well-
defined dressed-quark core that is augmented by a meson
cloud, which both reduces the Roper’s core mass by
approximately 20% and contributes materially to the electro-
production form factors at low-Q2 [30,31].
A similar pattern of energy levels is found in the

spectrum of Δ-baryons. Namely, contradicting quark-
model predictions [27–29], the first positive-parity excita-
tion, Δð1600Þ3=2þ, lies below the negative parity
Δð1700Þ3=2−, with the splitting being approximately the
same as that in the nucleon sector. This being the case
and given the Roper-resonance example, it is likely that
elucidating the nature of the Δð1600Þ3=2þ-baryon will
require both (i) data on its electroproduction form factors
which extends well beyond the meson-cloud domain and
(ii) predictions for these form factors to compare with that
data. The data exist [32,33] and can be analyzed with this
aim understood. Herein, therefore, we provide the theo-
retical predictions.
Our treatment of the nucleon, Δð1232Þ- and Δð1600Þ-

baryons, and the associated γN → Δ transitions is based
on Refs. [13,34]. Capitalizing on this tight connection,
herein we only sketch the elements of our calculation.
(Isospin symmetry is assumed throughout.) Moreover, with
nothing changed, our study delivers a unification of the
N → Δð1232Þ and N → Δð1600Þ transitions.
Section II explains the quark-diquark approximation to

the baryon problem in the context of a Poincaré-covariant
Faddeev equation and discusses the solutions obtained for
the Δð1232Þ-baryon and its first positive-parity excitation.
The γ�p → Δ transition current and associated form factors
are described in Sec. III. Section IV reports results for
the γ�p → Δð1232Þ transition, providing comparisons with
data and other analyses. The γ�p → Δð1600Þ transition
form factors are discussed in Sec. V; Sec. VI describes their
diquark and scatterer dissections; and Sec. VII provides a
summary and offers perspectives.

II. BARYON WAVE FUNCTIONS

In relativistic quantum field theory, baryon structure
is described by a Faddeev amplitude, obtained from a
Poincaré-covariant Faddeev equation, which sums all
possible quantum field theoretical exchanges and inter-
actions that can take place between the three dressed quarks
that characterize its valence-quark content. A dynamical
prediction of Faddeev equation studies that employ realistic
quark-quark interactions [35–38] is the appearance of

nonpointlike quarkþ quark (diquark) correlations within
baryons, whose characteristics are determined by DCSB
[39–41]. Consequently, the baryon bound-state problem is
transformed into solving the linear, homogeneous matrix
equation in Fig. 1 [42–46]. Its key elements are the dressed-
quark and -diquark propagators, and the diquark Bethe-
Salpeter amplitudes.
Evidence supporting the presence of diquark correlations

in baryons is accumulating, e.g., Refs. [11,13,14,21,34,
47–57]. It should be emphasized that these correlations
are fully dynamical and appear in a Faddeev kernel
which requires their continual breakup and reformation.
Consequently, they are vastly different from the static,
pointlike diquarks introduced originally [58] in an attempt
to solve the so-called “missing resonance” problem [5].
In fact, consistent with numerical simulations of lattice-
regularized QCD [59], the spectrum of states produced by
the Faddeev equation in Fig. 1 possesses a richness that
cannot be explained by a two-body model.
To define the Faddeev equation in Fig. 1, we employ

the elements specified in Refs. [13,34], which provide a
successful description of the spectrum and structure of octet
and decuplet baryons and their positive-parity excitations,
and are part of a body of work that unifies a large array of
hadron properties [31,60–62]. A key to these successes is
DCSB, which produces a dressed-quark mass scale [36]:
MD ≃ 0.4 GeV, whose value underlies the natural size for
mass-dimensioned quantities in the light-quark sector of the
Standard Model.
With the inputs drawn from Refs. [13,34] (including

light-quark scalar and axial-vector diquark masses m0þ ¼
0.79 GeV and m1þ ¼ 0.89 GeV, respectively) one can
readily construct the relevant Faddeev equation kernels
and use ARPACK software [63] to obtain the mass and
Faddeev amplitude of the ðI; JPÞ ¼ ð1=2; 1=2þÞ ground
state (proton) and the two lightest ðI; JPÞ ¼ ð3=2; 3=2þÞ
states, which we identify with the Δð1232Þ- and Δð1600Þ-
baryons. The masses are (in GeV)

mp mΔð1232Þ mΔð1600Þ
1.19 1.35 1.79

: ð1Þ

FIG. 1. Faddeev equation: a linear integral equation for the
matrix-valued function Ψ, being the Faddeev amplitude for a
baryon of total momentum P ¼ pq þ pd, which expresses the
relative momentum correlation between the dressed quarks and
nonpointlike diquarks within the baryon. The shaded rectangle
demarcates the kernel of the Faddeev equation: single line,
dressed-quark propagator; Γ, diquark correlation amplitude;
and double line, diquark propagator.
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These values correspond to the locations of the lowest-
magnitude poles in the three-quark scattering problems in
the given channels.
The residues associated with these poles are the

Poincaré-covariant wave functions, χðl2;l · P;P2Þ, where
l is the quark-diquark relative momentum. For every
baryon considered herein, eight scalar functions are
required to completely describe the system, each associated
with a particular Dirac-matrix structure. For instance,
the (amputated) Faddeev amplitude of any ðI; JPÞ ¼
ð3=2; 3=2þÞ baryon can be written in the following form:

ψΔðpi; αi; σiÞ ¼
X
d∈Δ

½Γd
1þμðk;KÞ�α1α2σ1σ2

× Δ1þd
μν ðKÞ½φΔd

νρ ðl;PÞuρðPÞ�α3σ3 ; ð2Þ

where ðpi; σi; αiÞ are the momentum, spin, and isospin
labels of the quarks constituting the bound state; P ¼
p1 þ p2 þ p3 ¼ pd þ pq is the total momentum of the
baryon; k ¼ ðp1 − p2Þ=2, K ¼ p1 þ p2 ¼ pd, l ¼
ð−K þ 2p3Þ=3; d counts the diquarks participating in
the baryon1; Γd

1þμ and Δ
1þd
μν are, respectively, the associated

correlation amplitude and propagator; uρðPÞ is a Rarita-
Schwinger spinor (Ref. [13], Appendix B); and

φΔd
νρ ðl;PÞ ¼

X8
k¼1

adΔkðl2;l · PÞDk
νρðl;PÞ; ð3aÞ

Dk
νρ ¼ Skδνρ; k ¼ 1; 2; ð3bÞ

Dk
νρ ¼ iγ5Ak−2

ν l⊥
ρ ; k ¼ 3;…; 8; ð3cÞ

with

S1¼ID; S2¼ iγ · l̂− l̂ · P̂ID;

A1
ν¼ γ ·l⊥P̂ν; A2

ν¼−iP̂νID; A3
ν¼ γ · l̂⊥l̂⊥

ν ;

A4
ν¼ il̂⊥

ν ID; A5
ν¼ γ⊥ν −A3

ν; A6
ν¼ iγ⊥ν γ · l̂⊥−A4

ν; ð4Þ

l̂2 ¼ 1, P̂2 ¼ −1, l⊥ ¼ l̂ν þ l̂ · P̂P̂ν, γ⊥ ¼ γν þ γ · P̂P̂ν.
The (unamputated) Faddeev wave function, χðl2;l ·P;P2Þ,
can be computed from the amplitude specified by Eqs. (2)
and (3) simply by attaching the appropriate dressed-quark
and diquark propagators. It may also be decomposed in
the form of Eqs. (3). Naturally, the scalar functions are
different, and we label them ãdΔk.
In order to visualize the wave function solutions of the

Faddeev equations, it is convenient to work with univariate

Chebyshev projections of the scalar functions used to
express them. Furthermore, as with mesons [64,65], one
usually focuses on the zeroth functional moment of the
given function (u ¼ l · P=

ffiffiffiffiffiffiffiffiffiffi
l2P2

p
),

ãðl2;P2Þ ¼ 2

π

Z
1

−1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
ãðl2; u;P2Þ; ð5Þ

because it is typically dominant in realistic solutions and
hence expresses the largest amount of information.
The order-zero Chebyshev projections of the Faddeev

wave function for the proton are plotted in Ref. [55], Fig. 4;
and our calculation reproduces those results. Herein, there-
fore, in Fig. 2 we depict the projections for the ground-state
Δ-baryon and its first positive-parity excitation. In all cases,
we plot that combination of functions which has a well-
defined value of quark-diquark orbital angular momentum
in the baryon’s rest frame. A key observation here is that,
for the ground state, each projection is of a unique sign
(positive or negative). On the other hand, with the excep-
tion of two D-wave components (−ã0;16 þ ã0;18 ), all excited-
state projections possess a single zero. As noted elsewhere
[55,56,66,67], this pattern of behavior indicates that the
positive-parity excitation may be interpreted as the simplest
radial excitation of its ground-state partner.
Figure 2 also shows that the Δ-baryon ground-state and

positive-parity excitation are primarily S-wave in character:
the magnitudes of the curves in the top row are greater than
those in the other rows. Naturally, we replicate the results
of Ref. [34], viz. the ground-state mass is almost insensitive
to non-S-wave components; and in the first positive-parity
excitation, P-wave components generate a little repulsion,
some attraction is provided by D-waves, and F-waves
have no measurable impact. Evidently, too, some S-wave
strength is shifted into P- and D-wave contributions within
the positive-parity excitation [34,53,67]. Notwithstanding
their smaller magnitudes, we will see that the higher partial
waves have noticeable effects on electroproduction form
factors.
Let us return to the masses in Eq. (1). Empirical values of

these pole locations are [4] (in GeV): 0.939, 1.21 − i0.05,
1.51 − i0.14. (The physical Δ-baryons are unstable, and
hence the associated pole has an imaginary part.) At first
glance, these values appear unrelated to those in Eq. (1).
However, deeper consideration reveals [68,69] that the
kernel in Fig. 1 has an intrinsic weakness: resonant
contributions, viz. meson-baryon final-state interactions
(MB FSIs), are omitted. It is such effects which are
resummed in dynamical coupled channel models, generat-
ing the widths and thereby transforming bare baryons into
the observed states [70,71]. Our Faddeev equation should
therefore be understood as producing the dressed-quark
core of the bound state, not the completely dressed object.
Clothing the nucleon’s dressed-quark core by including

resonant contributions to the kernel produces a physical

1In Δþ-baryons, the sum ranges over isovector-pseudovector
fuug, fudg correlations; and in Δ0-baryons, fudg and fddg.
Assuming isospin symmetry, as we do throughout, the correlation
amplitudes and propagators are identical for all these diquarks.
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nucleon whose mass is≈0.2 GeV lower than that of the core
[72,73]. Similarly, MBFSIs reduce the Δð1232Þ-baryon’s
core mass by≈0.16 GeV [74–76] and the Roper resonance’s
core mass by 0.3 GeV [76]. Evidently, such reductions shift
the mass of a given baryon’s dressed-quark core into
alignment with the measured Breit-Wigner mass of the

associated physical states. Moreover, this pattern is seen
to prevail broadly, extending to baryons in the multiplets of
flavor SUð5Þ [77,78].
Our approach thus delivers the dressed-quark-core con-

tribution to a given observable and that this should
subsequently be corrected by incorporating MB FSIs.
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FIG. 2. Faddeev wave functions of Δþ baryons, zeroth Chebyshev-moment projections, Eq. (5): left panels—ground state; and right
panels—first positive-parity excitation. Superscripts: “0” labels the pseudovector (I ¼ 1, Iz ¼ 0) fudg-diquark; and “1” labels the
pseudovector (I ¼ 1, Iz ¼ 1) fuug-diquark. In the isospin-symmetry limit, the associated solution functions satisfy a0k ¼

ffiffiffi
2

p
a1k,

k ¼ 1;…; 8. S-wave: top row. Legend. “A” → ã01 þ ð−ã06 þ ã08Þ=3; and “B” → ã11 þ ð−ã16 þ ã18Þ=3. P-wave: middle row. Legend. “A”
→ ã04; “B” → ã14; “C” → ð2ã02 − ã05 − 2ã07Þ=3; “D” → ð2ã12 − ã15 − 2ã17Þ=3; “E” → ã02 − ðã05 − ã07Þ=5; and “F” → ã12 − ðã15 − ã17Þ=5. D-
wave: bottom row. Legend. “A” → ã03; “B” → ã13; “C” → −ðã06 þ 2ã08Þ=3; “D” → −ðã16 þ 2ã18Þ=3; “E” → −ã06 þ ã08; and “F”
→ −ã16 þ ã18. F-wave components are negligible for all decuplet baryons [34].
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These features have long been appreciated and exploited
in developing a successful body of work on the baryon
spectrum and elastic and transition form factors, e.g.,
Refs. [13,34]; and we capitalize on such experience herein.

III. TRANSITION CURRENT

Electromagnetic N → Δ transitions are described by
three form factors [79]: magnetic dipole, G�

M; electric
quadrupole, G�

E; and Coulomb (longitudinal) quadrupole,
G�

C. They arise through consideration of the transition
current:

JμλðK;QÞ ¼ ΛþðPfÞRλαðPfÞiγ5ΓαμðK;QÞΛþðPiÞ; ð6Þ

where Pi and Pf are, respectively, the incoming nucleon
and outgoing Δ momenta, P2

i ¼ −m2
N and P2

f ¼ −m2
Δ;

Qμ ¼ ðPf − PiÞμ is the incoming photon momentum,
K ¼ ðPi þ PfÞ=2; and ΛþðPiÞ and ΛþðPfÞ are, respec-
tively, positive-energy projection operators for the nucleon
and Δ, with the Rarita-Schwinger tensor projector
RλαðPfÞ arising in the latter connection. (See Ref. [13],
Appendix B.)
In order to succinctly express ΓαμðK;QÞ, we define

Ǩ⊥
μ ¼ T Q

μνǨν ¼ ðδμν − Q̌μQ̌νÞǨν; ð7Þ

with Ǩ2 ¼ 1 ¼ Q̌2, in which case

ΓαμðK;QÞ ¼ k

�
λm
2λþ

ðG�
M −G�

EÞγ5εαμγδǨγQ̌δ

− G�
ET

Q
αγT K

γμ −
iς
λm

G�
CQ̌αǨ

⊥
μ

�
; ð8Þ

where k ¼ ffiffiffiffiffiffiffiffiffiffiffið3=2Þp ð1þmΔ=mNÞ, ς ¼ Q2=½2ΣΔN �, λ� ¼
ςþ t�=½2ΣΔN � with t� ¼ ðmΔ �mNÞ2, λm ¼ ffiffiffiffiffiffiffiffiffiffi

λþλ−
p

,
ΣΔN ¼ m2

Δ þm2
N , ΔΔN ¼ m2

Δ −m2
N .

With a concrete expression for the current in hand, one
may obtain the form factors using any three sensibly chosen
projection operations, e.g., with [10]

t1 ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ςð1þ 2dÞp
d − ς

T K
μνǨ

⊥
λ trγ5Jμλγν; ð9aÞ

t2 ¼ n
λþ
λm

T K
μλtrγ5Jμλ; ð9bÞ

t3 ¼ 3n
λþ
λm

ð1þ 2dÞ
d − ς

Ǩ⊥
μ Ǩ

⊥
λ trγ5Jμλ; ð9cÞ

where d ¼ ΔΔN=½2ΣΔN �, n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4d2

p
=½4ikλm�, and

then

G�
M ¼ 3½t2 þ t1�; G�

E ¼ t2 − t1; G�
C ¼ t3: ð10Þ

The following ratios are often considered in connection
with γ�N → Δ transitions:

REM¼−
G�

E

G�
M
; RSM¼−

jQ⃗j
2mΔ

G�
C

G�
M
¼−

ΣΔNλm
2mΔ2

G�
C

G�
M
: ð11Þ

Since they are identically zero in SUð6Þ-symmetric con-
stituent-quark models, they can be read as measures of
deformation in one or both of the hadrons involved.
Following Refs. [13,80], the transition current in Eq. (6)

can be explicated as follows:

Jμ;αðPf; PiÞ ¼
X6
n¼1

Z
d4p
ð2πÞ4

d4k
ð2πÞ4

× Ψ̄αð−p;PfÞJnμðp;Pf; k; PiÞΨðk;PiÞ;
ð12Þ

where Ψα, and Ψ are, respectively, the Δ and nucleon
Faddeev amplitudes described in Sec. II and the sum ranges
over the six diagrams depicted and detailed in Ref. [13],
Appendix C. Each term in Eq. (12) can be evaluated using
standard algebraic and numerical techniques, and results
for the form factors obtained subsequently via the projec-
tions in Eqs. (9) and combinations in Eqs. (10).
In these calculations, the proton and Δþ-baryon Faddeev

amplitudes must be canonically normalized. This is
achieved by computing the elastic electric form factor in
each case and rescaling the amplitude such that the
associated Q2 ¼ 0 value (electric charge) is unity [13].
Given this necessity, we computed the low-Q2 behavior of
all elastic form factors for each baryon and report the
associated static properties of their dressed-quark cores in
Table I. These results lead to the following observations:

rΔð1600ÞE ≈ 1.4rΔð1232ÞE ; rΔð1600ÞM1 ≈ 0.95rΔð1232ÞM1 ; ð13Þ

which may sensibly be compared with rRoperE ≈ 1.8rp and

rRoperM ≈ 1.6rpM [66]; and the octupole moments of the

TABLE I. Static properties computed from the Δþð1232Þ and
Δþð1600Þ elastic form factors. An empirical value of GM1ð0Þ is
available for the Δþð1232Þ [4]: 3.6þ1.3

−1.7 � 2.0� 4. Point-particle
values for J ¼ 3=2 states are GM1ð0Þ ¼ 3, GE2ð0Þ ¼ −3,
GM3ð0Þ ¼ −1 [81]. rE is the root-mean-square radius computed
from the baryon’s E0 (Coulomb monopole) form factor, and all
radii are listed in units of the quark-core proton charge radius,
rp ¼ 0.61 fm.

Baryon rE GM1ð0Þ rM1 GE2ð0Þ rE2 GM3ð0Þ rM3

Δþð1232Þ 1.23 2.86 1.10 −6.67 1.20 −3.00 0.48
Δþð1600Þ 1.68 1.50 1.05 −3.00 0.79 0.80 0.64
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Δð1232Þ andΔð1600Þ have opposite signs, an outcome that
signals the impact of differences in the distribution and
strength of higher partial waves in the respective wave
functions (see Fig. 2 herein and the discussion of Fig. 7 in
Ref. [13]). In addition, we find that the Δð1600Þ elastic
electric form factor possesses a zero, at Q2 ≈ 1.8m2

p. For
theΔð1232Þ, this zero lies atQ2 ≈ 2.7m2

p [13]. Notably, the
ordering and locations are consistent with the electric radii
reported in Table I.

IV. CALCULATED FORM FACTORS: Δð1232Þ
Our computed γ�p → Δþð1232Þ transition form factors

are depicted in Fig. 3. They are accurately interpolated
using a simple functional form [82],

G�
F ðxÞ ¼

aF0 þ aF1 x

1þ bF1 xþ bF2 x
2
e−c

F
1
x; ð14Þ

with the coefficients given in Table II. (These forms should
not be used for large-x extrapolation.) We emphasize that
our formulation emulates Ref. [13] in all details and the
Δð1232Þ results reported herein match those described in
that earlier study. Hence, they serve as both a validation of
the results in Ref. [13] and a benchmark against which our
calculated γ�p → Δþð1600Þ transition form factors may be
compared.
Considering Fig. 3, it is evident both that G�

M, the
magnetic dipole form factor, dominates this transition
and our result agrees with modern data on Q2 ≳ 0.5m2

p.
As explained elsewhere [74,82], incorporation of MB FSIs
is crucial to ensure agreement on Q2 ≲ 0.5m2

p; e.g., such
effects increase the result by a factor of ≈1.5 at Q2 ¼ 0.
This “meson-cloud domain” is indicated by shading in
the top panel of Fig. 3. Its size typically depends on the
baryon(s) being considered, e.g., extending to Q2 ≈ 2m2

p

for nucleon elastic form factors [69,84] and Roper electro-
production [31].
The γ�p → Δþð1232Þ electric and Coulomb quadrupole

form factors are small but nonzero, highlighting that the
dressed-quark cores of the baryons involved are deformed,
viz. not purely S-wave in their rest frames. Although this is
obvious from the inspection of their Poincaré-covariant
wave functions (Ref. [55], Fig. 4, and Fig. 2 above), G�

E;C

are a measurable manifestation of the distortion’s magni-
tude. (As will subsequently become apparent, it is defor-
mation of the Δ-baryons which is most important.)
Each panel in Fig. 3 contains three curves: the solid

(black) curve is our complete prediction; the long-dashed
(blue) curve is obtained when only those components of
the Δð1232Þ wave function are retained which correspond
to S-waves in the rest frame; and the dashed (blue) curve is
obtained when both the proton and Δð1232Þ are reduced to
S-wave states. Notably, the role played by higher partial
waves in the wave functions increases with momentum

FIG. 3. Top panel: Magnetic dipole γ�p → Δþð1232Þ transi-
tion form factor compared with contemporary data [83]. The
conventions of Ref. [79] are employed. Middle panel: Electric
quadrupole transition form factor. Bottom panel: Coulomb
quadrupole transition form factor. In all panels: solid (black)
curve, complete result; long-dashed (blue) curve, result obtained
when only those components of the Δð1232Þ wave function are
retained which correspond to S-waves in the rest frame; and
dashed (blue) curve, obtained when both the proton and Δð1232Þ
are reduced to S-wave states.

TABLE II. Interpolation coefficients for each of our computed
γ�p → Δ transition form factors, Eq. (14). Blank entries indicate
“0”.

F aF0 aF1 bF1 bF2 cF0
Δð1232Þ M 1.93 4.15 3.92 3.85 0.55

E 0.041 −0.010 4.62 0.68 0.55
C 0.30 0.030 1.58 0.35 0.55

Δð1600Þ M 0.32 0.22 0.08
E −0.022 −0.10 0.15 0.45
C 0.14 0.23 0.07
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transfer (something also observed in meson form factors
[85]), here generating destructive interference; agreement
with data on G�

M is impossible without the higher partial
waves; and the effect of these components is very large
in G�

E, unsurprisingly, because it is a difference of two
positive-definite functions. [The complete result for G�

E
exhibits a zero at x ≈ 4, which is absent in the S-wave-only
result(s).]
In Fig. 4, to further elucidate the observable impacts of

higher partial waves in the Poincaré-covariant wave func-
tions, we depict the ratios REM and RSM defined in Eq. (11).
The long-dashed and dashed curves in the upper panel are
each multiplied by 0.5 so that they fit comfortably within
the frame. The need for such multiplication highlights the
substantial impact of higher partial waves on REM. Such
marked sensitivity of REM has been observed elsewhere
[10,13,14], but the difference between our prediction for
the response and that in Ref. [10] shows REM to be
particularly susceptible to model details.
It is here worth reiterating a conclusion from Ref. [14],

viz. in the γ�p → Δþð1232Þ transition, G�
E is dominated by

terms involving a scalar diquark in the proton and a

pseudovector diquark in the Δþð1232Þ, with photon-
diquark interactions controlling the transition away from
x ¼ 0. It follows that, within the dressed-quark core, the
electric quadrupole transition proceeds primarily by a
photon transforming the 0þ-diquark in the proton into a
1þ-diquark (δJ ¼ 1) in the Δþð1232Þ, with the overlap
of quark-diquark components in the rest-frame Faddeev
wave functions of the proton and Δþð1232Þ that differ by
one unit of angular momentum. This explains why the shift
induced by adding P- and D-waves in the Δð1232Þ is
especially large.
Given, too, that axial-vector diquark contributions inter-

fere constructively with MB FSIs [72,73], then these
features also indicate that G�

E should be most sensitive
to meson cloud contributions [13].

V. CALCULATED FORM FACTORS: Δð1600Þ
Predictions for the γ�p → Δþð1600Þ transition form

factors are displayed in Fig. 5. Interpolations are provided
by the simple functional form in Eq. (14), with the
coefficients given in Table II. (Again, these forms should
not be used for large-x extrapolation.) Empirical results
are here only available at the real-photon point:
G�

MðQ2 ¼ 0Þ, G�
EðQ2 ¼ 0Þ. Evidently, the quark model

results—shaded grey band [91], dot-dashed (brown)
curve [92], and dot-dot-dashed (orange) curve [93]—
are very sensitive to the wave functions employed for the
initial and final states. Furthermore, inclusion of relativ-
istic effects has a sizable impact on transitions to positive-
parity excited states [91].
Our prediction is the solid (black) curve in each panel of

Fig. 5. In this instance, every transition form factor is of a
unique sign on the domain displayed. Notably, the mis-
matches with the empirical results for G�

MðQ2 ¼ 0Þ and
G�

EðQ2 ¼ 0Þ are commensurate in relative sizes with those
in theΔð1232Þ case, suggesting that MB FSIs are of similar
importance in both channels.
As remarked above, axial-vector diquark contribu-

tions interfere constructively with MB FSIs; hence,
regarding form factors, one can mimic some effects
of a meson cloud by modifying the axial-vector diquark
content of the participating hadrons. Accordingly, to
illustrate the potential impact of MB FSIs, we computed
the transition form factors using an enhanced axial-
vector diquark content in the proton. This was achieved
by setting m1þ ¼ m0þ ¼ 0.85 GeV, values with which
the proton’s mass is practically unchanged. The pro-
cedure produced the dotted (green) curves in Fig. 5;
better aligning the x ≃ 0 results with experiment and
suggesting thereby that MB FSIs will improve our
predictions.
The short-dashed (blue) curve in Fig. 5 is the result

obtained when only rest-frame S-wave components are
retained in the wave functions of the proton and Δð1600Þ-
baryon; the long-dashed (blue) curve is that computed with

FIG. 4. γ�p → Δþð1232Þ transition, quadrupole ratios in
Eq. (11): upper panel, REM; and lower panel, RSM. In all panels:
solid (black) curve, complete result; long-dashed (blue) curve,
result obtained when only those components of the Δð1232Þ
wave function are retained which correspond to S-waves in the
rest frame; and dashed (blue) curve, obtained when both the
proton and Δð1232Þ are reduced to S-wave states. The data in
both panels are drawn from Refs. [83,86–90].
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a complete proton wave function and a S-wave-projected
Δð1600Þ. Once again, the higher partial waves have a
visible impact on all form factors, with G�

E being most
affected: the higher waves produce a change in sign. This
reemphasizes one of the conclusions from the quark
model studies, viz. data on the γ�p → Δþð1600Þ tran-
sition form factors will be sensitive to the structure of
the Δþð1600Þ.

A direct comparison between the γ�p → Δþð1232Þ and
γ�p → Δþð1600Þ transition form factors is presented in
Fig. 6. In all cases, the Δð1232Þ form factors are larger in
magnitude at small x. However, with increasing x, there is
always a point at which the ordering is reversed: x ≈ 2 for
G�

M; x ≈ 0.5 for G�
E; and x ≈ 1 for G�

C. These observations
indicate that the dressed-quark-core component of the
γ�p → Δþð1600Þ transition is more localized in configu-
ration space, i.e., more pointlike, than that of the γ�p →
Δþð1232Þ transition. In fact, using the dominant transition
form factor, G�

M, as a guide, the Δþð1600Þ transition radius
is ≈1=3 that of the Δþð1232Þ.
Considering γ�p → Δþð1232Þ, helicity conservation

arguments within pQCD have been used to make the
following predictions for the ratios in Eq. (11) [8]:

REM ¼Q2→∞
1; RSM ¼Q2→∞

constant; ð15Þ

up to ln2Q2 corrections [94]. These predictions disagree
markedly with the outcomes produced by SUð6Þ-based
quark models: REM ≡ 0≡ RSM; and they are inconsistent
with available data [5,6]. Notwithstanding such contra-
dictions, Eqs. (15) are indubitably correct, but evidence for
an approach to these limits will probably not become
apparent until x≳ 20 [12].
Our predictions for the ratios in Eqs. (11) associated

with the γ�p → Δþð1600Þ transition are depicted in
Fig. 7. The reasoning in Ref. [8] should equally apply
to this case; hence, Eqs. (15) will become evident at
some (very) large value of x. At accessible scales,
however, as we have repeatedly highlighted, dynamical
features of the bound-state wave functions control the
x-dependence of these ratios. Examining Fig. 7, one
sees that REM for the Δð1600Þ transition is far larger
in magnitude than the analogous result for the Δð1232Þ
final state (and opposite in sign). This is an observable
manifestation of the enhanced D-wave strength in the

FIG. 5. Top panel: Magnetic dipole γ�p → Δþð1600Þ transi-
tion form factor; middle: electric quadrupole; and bottom:
Coulomb quadrupole. Data from Ref. [4] and the conventions
of Ref. [79] are employed. All panels: solid (black) curve,
complete result; long-dashed (blue) curve, result obtained when
Δð1600Þ is reduced to S-wave state; dashed (blue) curve, both the
proton and Δð1600Þ are reduced to S-wave states; dotted (green)
curve, obtained by enhancing proton’s axial-vector diquark
content; shaded (grey) band, light-front relativistic Hamiltonian
dynamics (LFRHD) [91]; dot-dashed (brown) curve, light-front
relativistic quark model (LFRQM) with unmixed wave functions
[92]; and dot-dot-dashed (orange) curve, LFRQM with configu-
ration mixing [93].

FIG. 6. Comparison between transition form factors via the
following ratios: solid curve, 1

3
G�

M1232=G
�
M1600; long-dashed

curve, G�
E1232=G

�
E1600; short-dashed curve, G�

C1232=G
�
C1600.
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Δð1600Þ relative to that in the Δð1232Þ, which is
apparent in Fig. 2.

VI. FORM FACTOR DISSECTIONS: Δð1600Þ
In connection with Eq. (12), we noted that the vertex

sufficient to express the interaction of a photon with a baryon
generated by the Faddeev equation in Fig. 1 is a sum of six
terms, with the photon separately probing the quarks and
diquarks in various ways. Hence, diverse features of quark
dressing and the quark-quark correlations all play a role in
determining the form factors. To elaborate, electroproduction
form factors involving the nucleon and its excitations may be
dissected in two separate ways, each of which can be
considered as a sum of three distinct terms [14]:

DD ¼ diquark dissection
[DD1] scalar diquark, ½ud�, in both the initial- and final-
state baryons,

[DD2] pseudovector diquark in both the initial and final
states (Δþ: fuug or fudg), and

[DD3] a different diquark in the initial and final states.
DS ¼ scatterer dissection

[DS1] photon strikes a bystander dressed quark, with the
accompanying diquark untouched (Diagram 1 in
Ref. [13], Fig. C.1);

[DS2] photon interacts with a diquark, elastically or
causing a transition scalar ↔ pseudovector while
the accompanying bystander quark is unaffected
(Diagrams 2 and 4 in Ref. [13], Fig. C.1); and

[DS3] photon strikes a dressed-quark in-flight, as one
diquark breaks up and another is formed (Diagram 3
in Ref. [13], Fig. C.1), or appears in one of the two
associated “seagull” terms (Diagrams 5 and 6).

The anatomy of a given transition is revealed by merging
the information provided by DD and DS. With a
Δ-baryon in the final state, DD1 does not contribute
because the I ¼ 0 diquark plays no role in an I ¼ 3=2
baryon.
The structure of G�

M in the γ�p → Δð1600Þ transition is
revealed in the upper row of Fig. 8. The left panel shows
that DD2 is far stronger than DD3, and the right panel
reveals that DS1 is overwhelmingly dominant, viz. the
largest contribution to G�

M is provided by diagrams in
which a photon scatters from the bystander quark, flipping
its spin, in the presence of an idle pseudovector diquark.
This is similar to the nature of G�

M in the γ�p → Δð1232Þ
transition [14], although the 0þ-to-1þ diquark transition
component is a much smaller fraction for the Δð1600Þ final
state. One should also recall Fig. 6, which depicts the
x-dependence of the relative magnitudes of G�

M for the two
final states.
The electric quadrupole transition form factor, G�

E, for
the Δð1600Þ final state is dissected in the middle row of
Fig. 8. The left panel shows that DD2 and DD3 are of
comparable size, and the right panel that DS1 is dominant,
with DS2 and DS3 approximately canceling. Hence, the
transition is dominated by diagrams in which the photon
scatters from the bystander quark, leaving its spin
unchanged, with the strength of the transition resulting
from the overlap between what may be said to be quark-
diquark components in the rest-frame Faddeev wave
functions of the proton and Δþð1600Þ that differ by two
units of angular momentum. This is markedly different
from G�

E in the Δð1232Þ transition, described in connection
with Fig. 5.
The anatomy of G�

C is revealed in the bottom row of
Fig. 8. Evidently, the behavior is largely determined by
DD2 and DS1 processes, i.e., the transition strength and
x-dependence measure the overlap between S- and D-wave
quark-diquark angular momentum components in the rest-
frame proton and Δþð1600Þ Faddeev wave functions. The
marked impact of the proton’s D-wave component on the
full result is highlighted by the lower panel of Fig. 7. Much
the same observations are true in the γ�p → Δð1232Þ
transition [14].

FIG. 7. Top panel: REM. Solid (black) curve, our prediction
for the γ�p → Δþð1600Þ transition; long-dashed (blue) curve,
result obtained when Δð1600Þ is reduced to S-wave state;
dashed (blue) curve, obtained when both the proton and
Δð1600Þ are reduced to S-wave states; dotted (blue) curve,
this ratio for γ�p → Δþð1232Þ transition. Bottom panel: RSM.
Legend as in the upper panel.
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VII. SUMMARY AND PERSPECTIVES

We computed γ�p → Δþð1232Þ, Δþð1600Þ transition
form factors using a quark-diquark approximation to the
Poincaré-covariant three-body bound-state problem in rela-
tivistic quantum field theory, unifying their treatment with
that of nucleon elastic form factors [13] and γ�N → R
transitions [57,66]. Crucially, the diquark correlations are
nonpointlike and fully dynamical, and the Faddeev kernel
ensures that every valence-quark participates actively in
all diquark correlations to the fullest extent allowed by
kinematics and symmetries. Moreover, each dressed-quark
is characterized by a nonperturbatively generated running
mass function, expressing a signature consequence of
dynamical chiral symmetry breaking in the Standard
Model [95,96]. The Δð1600Þ-baryon generated by this
approach is the simplest radial excitation of the Δð1232Þ
(Sec. II, Fig. 2); viz. it is analogous to the Roper resonance
in the nucleon sector [31].

Regarding the γ�p → Δþð1232Þ transition, precise mea-
surements already exist on 0 ≤ Q2 ≲ 8 GeV2 [5,6]; and
on Q2 ≳ 0.5m2

p, i.e., outside the meson cloud domain for
this process, our calculated magnetic dipole and Coulomb
quadrupole form factors agree well with these data (Sec. IV,
Figs. 3 and 4). Consistent with the data, too, we find that the
electric quadrupole form factor is very small in magnitude;
hence, it is particularly sensitive to the diquark content and
quark-diquark angular-momentum structure of the baryons
involved, and also to MB FSIs on a larger domain than the
other form factors.
Our predictions for the γ�p → Δþð1600Þ magnetic

dipole and electric quadrupole transition form factors are
consistent with the empirical values at the real photon
point, but we expect inclusion of meson-baryon final-state
interactions to improve the agreement on Q2 ≃ 0 (Sec. V,
Fig. 5). On the other hand, the predictions extend to
Q2 ≈ 6m2

p, i.e., beyond the meson-cloud domain; hence,

FIG. 8. γ�p → Δþð1600Þ transition form factors. Left panels: Diquark breakdown: DD2 (dot-dashed green curve), pseudovector
diquark in both initial and final states; DD3 (dotted blue curve), scalar diquark in incoming baryon, pseudovector diquark in outgoing
baryon. Right panels: Scatterer breakdown: DS1 (red dashed curve), photon strikes an uncorrelated dressed quark; DS2 (dot-dashed
green curve), photon strikes a diquark; andDS3 (dotted blue curve), diquark breakup contributions, including photon striking exchanged
dressed-quark.
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a meaningful direct comparison with existing data [32,33]
will be possible once the analysis is completed.
It is interesting to observe that while all γ�p →

Δþð1232Þ transition form factors are larger in magnitude
than those for γ�p → Δþð1600Þ in some neighborhood
of Q2 ¼ 0, this ordering is reversed on Q2 ≳ 2m2

p (Sec. V,
Fig. 6). One can thus argue that the γ�p → Δþð1600Þ
transition is more localized in configuration space.
It is also notable that RSM is qualitatively similar for both

transitions considered herein; but REM is markedly differ-
ent, being of opposite sign on Q2 ≲ 4m2

p and uniformly
larger in magnitude for the Δð1600Þ (Sec. V, Fig. 7). These
observations again highlight the sensitivity of the electric
quadrupole form factor to the degree of deformation of
the Δ-baryons. Diquark and scatterer dissections of the
transition form factors were useful in developing an under-
standing of the key reaction mechanisms for each electro-
production form factor (Sec. VI).
There are numerous worthwhile extensions of our

analysis; e.g., calculation of the γ�p → Nð1535Þ1=2−
transition form factors is already underway. Here the final
state is the nucleon’s parity partner, which holds a special
place in QCD owing to the manifest role of DCSB in
generating the mass splitting between this state and the
nucleon. The Nð1535Þ1=2− wave function is qualitatively
different from that of the near-lying Roper resonance [55]:
the pointwise behavior of each component is simpler, but
there are more components because pseudoscalar and
vector diquark correlations are also present in this neg-
ative-parity bound state. Consequently, analyses of γ�p →
Nð1535Þ1=2− explore novel aspects of baryon structure.
For instance, as γ�p → Δ transitions are sensitive to the
relative strength of scalar and axial-vector diquarks within
the proton (Sec. VI), then one should expect γ�p →
Nð1535Þ1=2− to reveal the relative strength of positive
and negative parity diquarks in the Nð1535Þ1=2− because
negative-parity diquarks are negligible in the proton. It
should be possible to test related predictions on the domain
Q2 ≳ 2m2

p because data already exist on 0 ≤ Q2 ≲ 6m2
p

[5,6]. Moreover, given the relative ease of separating low-
lying states of opposite parity, lattice-regularized QCDmay
also be able to contribute [97].
An analogue of γ�p → Nð1535Þ1=2− is γ�p →

Δð1700Þ3=2−, in which the final state is the Δ-baryon’s
parity partner. Comparison between the electroproduction
form factors for this process and those calculated herein
would provide additional insights into the role played by
DCSB in hadron structure.
Computation of γ�p → Nð1710Þ1=2þ electroproduction

form factors is also valuable because the structure of the
Nð1710Þ1=2þ is unclear. In quark models, the profile of its
wave function is sensitive to the formulation. For instance,
it can be Roper-like, with two peaks skewed relative to

those in the kindred Roper wave function [98,99], in which
case it may be a candidate for the system which is
predominantly quark-plus-radially excited diquark; or it
can have three peaks, located on the same trajectory as
the two in the related Roper wave function [16,100], viz.
the second radial excitation of the quark-plus-diquark
system. A third possibility, realized in some dynamical
coupled channels calculations [76], sees the Roper and
Nð1710Þ1=2þ as both derived from the same quark core
state. Given that Nð1710Þ1=2þ electroproduction data
exist on Q2 ≲ 4m2

p [101] and that each helicity amplitude
appears to be of a unique sign, unlike those for the Roper
[83,102,103], it is worth testing these possibilities by
exploring the solution space of the Poincaré-covariant
Faddeev equation and using the results to compute the
transition form factors.
As a final class of examples, we note that a complement

to the analyses highlighted above is offered by studies of
electroproduction form factors for low-lying baryons with
“mixed” spin-isospin structure, viz. ðI; JÞ ¼ ð1=2; 3=2�Þ;
ð3=2; 1=2�Þ. For such systems, the normal level ordering
has negative-parity states lighter than positive-parity states:
DCSB must still generate the (large) splitting from the
ground-state baryon, but the connection with parity is
reversed. Data on the Nð1520Þ3=2− electrocouplings are
available to Q2 ≲ 4m2

p [83,102–104]. Based upon this,
some coupled-channels studies indicate that MB FSIs are
(almost) negligible for the A1=2 helicity amplitude [7,75],
the calculation of which might therefore serve as a good test
of the dressed-quark-core approach exploited herein.
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