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We study the long-distance contribution to Bs → μþμ− decay, which is generated by the two-photon
intermediate state via the Bs → γ�γ� → μþμ− transition. It is found that the dispersive two-photon
amplitude can interfere with the dominant short-distance amplitude, which gives rise to new theoretical
uncertainty in the branching ratio of Bs → μþμ−. Our analysis shows that, by taking into account present
experimental constraints, this uncertainty could be up to the same order of magnitude as some theoretical
uncertainties of BðBs → μþμ−Þ given in the past literature. Future precise studies of the double radiative
Bs → γγ decay, both experimentally and theoretically, may help to reduce the uncertainty. This novel effect
has never been examined in Bs → μþμ− decay.
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I. INTRODUCTION

Rare leptonic B-meson decays Bq → lþl− with q ¼ d,
s and l ¼ e, μ, τ, which are helicity suppressed in the
standard model (SM), could offer powerful tools to probe
new physics scenarios beyond the SM. Up to now, only the
dimuon decay Bs → μþμ− has been observed, and the first
experimental evidence of this transition was reported by the
LHCb collaboration in 2012 [1]. Further observations with
better signal significance were performed in Refs. [2,3].
The most recent time-integrated branching ratio measure-
ment by the LHCb experiment in 2017 [4] gives

BðBs → μþμ−Þ ¼ ð3.0� 0.6þ0.3
−0.2Þ × 10−9; ð1Þ

and the current world average by the Particle Data Group
[5] is

BðBs → μþμ−Þ ¼ ð2.7þ0.6
−0.5Þ × 10−9: ð2Þ

These measurements are in agreement with present SM
predictions given in Refs. [6,7]. With higher experimental
statistics, reduction of the experimental uncertainty will be
expected in the future. It is thus important to increase the
theoretical accuracy of the decay rate of Bs → μþμ−, which
would eventually provide a precision test in flavor physics.

Theoretically, it is thought that the SM contributions
to the Bq → lþl− decay can be described by an effective
theory after integrating the heavy particles including the top
quark, the Higgs boson, and weak gauge bosons W and Z.
The effective weak Lagrangian relevant for the considered
process, involving a single operator, reads [8]

Leff ¼ NC10Q10 þ � � � ; ð3Þ

where Q10 ¼ ðq̄LγμbLÞðl̄γμγ5lÞ and C10 is the Wilson
coefficient. N is the normalization constant, containing
some parameters such as the Fermi constant GF and the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
etc., which will be shown explicitly below. The ellipses
denote the subleading weak interaction terms. It is seen that
the decay is characterized by a purely leptonic final state,
its nonperturbative strong interaction effects are therefore
confined to the matrix element

h0jq̄γμγ5bjB̄qðpÞi ¼ ifBq
pμ: ð4Þ

Here the hadronic parameter fBq
is the Bq decay constant,

which can be computed in the framework of lattice QCD
[9] with errors at a few percent level. Thus the rare Bq →
lþl− decay could be theoretically quite clean, which is
indeed well suited for precision flavor physics.
In the SM, BðBq → lþl−Þ is proportional to the

square of theWilson coefficient C10 which can be computed
within perturbation theory. The leading order contribution
to C10 has been calculated for the first time by the authors
of Ref. [10], and the next-to-leading order (NLO) QCD
corrections have been given in Refs. [11–14]. Theoretical
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accuracy can be further improved by including the higher
order corrections [15]. Recently, the NLO electroweak
(EW) corrections and QCD corrections up to the next-
to-next-to-leading order (NNLO) have been computed in
Refs. [16] and [17], respectively. Interestingly, these two
new calculations of the NLO EW and NNLO QCD
corrections to C10 were combined in the analysis of Bq →
lþl− [6], and the SM prediction for the muonic decay has
been given by

BðBs → μþμ−ÞSM ¼ ð3.65� 0.23Þ × 10−9: ð5Þ

As discussed in Ref. [6], the dominant uncertainties of
the theoretical prediction (5) are due to some parameters
appearing in the calculation of the branching ratio: 4% from
the decay constant fBs

, 4.3% from CKM matrix elements,
and 1.6% from the top quark mass; while the nonparametric
uncertainties, which are due to the omission of higher order
QCD and electroweak corrections, as well as higher
dimensional operators in the weak effective lagrangian,
have been significantly reduced to be at the level of around
1.5%, thanks to two new results on the NLO EW [16] and
NNLO QCD [17] computations. Further reduction of
the larger parametric uncertainties of BðBs → μþμ−Þ will
depend on the future improvement of the lattice determi-
nation of fBs

and measurement of SM parameters.
Very recently, it has been pointed out by the authors of

Ref. [7] that there exists a power-enhanced NLO electro-
magnetic correction to the Bq → lþl− decay, which,
neglected in Ref. [6], is due to the virtual photon exchanged
between the final-state leptons and the light spectator
antiquark q̄ in the Bq meson. These authors have found
that the power enhancement is directly related to the
interplay of hard-collinear and collinear scales in the
framework of soft-collinear effective theory [18–20], and
the impact of this effect on the branching ratio of Bs →
μþμ− is about 1%, of the same order of the nonparametric
theoretical uncertainty in Eq. (5). After taking into account
this new correction, the SM prediction can be updated to [7]

BðBs → μþμ−ÞSM ¼ ð3.57� 0.17Þ × 10−9: ð6Þ

In this paper, we report on an investigation of another
new correction to this muonic decay, which will be
generated by the two-photon intermediate state via the
long-distance Bs → γ�γ� → μþμ− transition, as depicted in
Fig. 1. The amplitude of this transition could be decom-
posed into the absorptive part given by the on-shell two-
photon exchange, and the dispersive part contributed by the
off-shell photons. The former part will be fixed once the
amplitude of the double radiative Bs → γγ decay is deter-
mined while the latter part, sensitive to the hadronic Bsγ

�γ�
form factor, cannot be computed using the model-
independent approach. The similar study has been done
in the neutral kaon decay KL → μþμ−, and it is found that

the absorptive part by the two-photon cut provides the
dominant contribution to its total decay rate [21–28]. In our
case, it will be not surprising that calculation of Fig. 1
yields a small contribution to the branching ratio of Bs →
μþμ− since it is believed that, comparing Eq. (1) with
Eqs. (5) and (6), the short-distance amplitude given by
Eq. (3) should play the dominant role in the leptonic B-
meson decays. However, the small dispersive two-photon
amplitude could interfere with the short-distance contribu-
tion, which might lead to some interesting effects on
BðBs → μþμ−Þ. It is of importance to estimate the possible
theoretical uncertainty of the decay rate due to these
corrections. This is the main purpose of the present paper.

II. Bs → γ�γ� → μ+ μ− AND ITS IMPACT
ON B(Bs → μ+ μ− )

The general decay amplitude for Bs → γγ can be para-
metrized as

AðBs→ γγÞ¼GFffiffiffi
2

p fBs
hγγjA−FμνF̃μνþAþFμνFμνj0i; ð7Þ

where Fμν is the photon field strength tensor, and F̃μν ¼
1=2εμναβFαβ is its dual. The subscripts � on A� denote the
CP properties of the corresponding two-photon final states.
We then obtain for the decay rate

ΓðBs → γγÞ ¼ G2
Fm

3
Bs
f2Bs

32π
ðjA−j2 þ jAþj2Þ: ð8Þ

Experimentally, this process has been not observed yet,
and the present upper limit given by the Belle collaboration
[29] is

BðBs → γγÞ < 3.1 × 10−6 ð9Þ

at the 90% confidence level. We thus haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jA−j2 þ jAþj2

p
< 3.4 × 10−4. If the quantities A� are of

the same order of magnitude, one has

jA−j ∼ jAþj < 2.4 × 10−4: ð10Þ

FIG. 1. The diagram that gives the transition Bs → γ�γ� →
μþμ− with the wave line denoting the (virtual) photon, and the
solid circle denotes some hadronic form factors.

DAO-NENG GAO PHYS. REV. D 100, 033007 (2019)

033007-2



If jA−j ≫ jAþj, we get

jA−j < 3.4 × 10−4: ð11Þ

On the theoretical side, the double radiative Bs decay
has been studied extensively in the SM, in which the
quark-level short-distance contributions with/without QCD
corrections were calculated in Refs. [30–35], and the long-
distance contributions from the hadronic intermediate states
were estimated in Refs. [36–38]. The branching ratio of this
mode was predicted, still with some large uncertainty, to be
in the range of 10−7–10−6, below the current experimental
upper limit in Eq. (9).
Note that, from Fig. 1, the CP-even Aþ part amplitude in

Eq. (7) will lead to the scalar l̄l term while the CP-odd A−
part will give rise to the l̄γ5l structure for the leptonic
decay. Therefore, we shall be not concerned about the Aþ
part because it only generates a tiny contribution, which
does not interfere with the dominant pseudoscalar short-
distance amplitude given by Eq. (3). This is also the reason
that we will not consider the jA−j ≪ jAþj case in the
present study. Actually, theoretical calculations seems to
support that they are of the same magnitude, for examples,
as shown in Ref. [34] for the short-distance contribution,
and in Ref. [38] for the long-distance contribution.
Nevertheless, in our following numerical analysis, we still
discuss the case of jA−j ≫ jAþj in order to show the
possible largest uncertainties from the dispersive two-
photon transition might be reached.
Now it is straightforward to derive the amplitude of

Bs → μþμ− contributed by the two-photon intermediate
state, focusing only on the A− part, which reads

iAγγ ¼
4GFfBs

mμffiffiffi
2

p αem
4π

ūðq−Þγ5vðqþÞ · I · A− ð12Þ

with

I ¼ 2i
π2m2

Bs

Z
d4k

k2p2 − ðk · pÞ2
k2ðp − kÞ2ðl2 −m2

μÞ
fðk2; ðp − kÞ2Þ:

ð13Þ

Here p2 ¼ m2
Bs
, l ¼ k − qþ, and q2þ ¼ q2− ¼ m2

μ. The
function fðk2; ðp − kÞ2Þ is introduced to parametrize the
hadronic Bsγ

�γ� form factor and normalized as fð0; 0Þ ¼ 1.
Considering this part contribution to the decay rate only,
we have

BðBs → γ�γ� → μþμ−Þ
BðBs → γγÞ ¼ 2α2emrμβμ

π2
jA−j2

jA−j2 þ jAþj2
jI j2;

ð14Þ

where rμ ¼ m2
μ=m2

Bs
and βμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4rμ

p
. As mentioned

above, the absorptive part of the amplitude (12) for the on-
shell two-photon intermediate state can be determined
uniquely. In this case, the imaginary part of the integral
I is fixed as

ImI ¼ π

2βμ
log

1 − βμ
1þ βμ

¼ −12.35 ð15Þ

by using the experimental values of mμ and mBs
[5].

Consequently, one has

BðBs → γ�γ� → μþμ−Þabs
BðBs → γγÞ ¼ 6.8 × 10−7

jA−j2
jA−j2 þ jAþj2

:

ð16Þ

From the present upper limit shown in Eq. (9), we then
obtain

BðBs → γ�γ� → μþμ−Þabs < 2.1 × 10−12; ð17Þ

which is very small and below 0.1% of the dominant short-
distance contribution given in Eq. (5) or Eq. (6). This is
very different from the KL case in which the absorptive part
of KL → γγ → μþμ− almost saturates the experimental rate
of KL → μþμ− [28]. However, this does not mean that the
effects induced from Fig. 1 should be completely negligible
since its dispersive part amplitude, although it may be also
small, can interfere with the dominant short-distance
amplitude, which would give rise to the significant impact
on the decay rate of Bs → μþμ−.
By contrast with the absorptive part amplitude, to

evaluate the dispersive two-photon contribution it is
insufficient to know the on-shell Bs → γγ amplitude.
Unfortunately, the off-shell form factor fðk2; ðp − kÞ2Þ,
which is related to the long-distance hadronic physics,
cannot be computed in a model-independent way. This
situation will not change before we are able to calculate
reliably the long-distance amplitude from QCD. On the
other hand, it is easy to see that the integral I in Eq. (13)
will be logarithmically divergent when we turn off the
form factor. Therefore, at present we have to employ the
phenomenological parametrization for the form factor to
soften the ultraviolet divergence of the transition, in order
to estimate the contribution of the dispersive two-photon
amplitude. Due to Bose symmetry, the form factor function
fðk21; k22Þ should be symmetric under the interchange
k1 ↔ k2. As a simple realization to satisfy these require-
ments, one may take

fðk21; k22Þ ¼
1

2

�
M2

M2 − k21
þ M2

M2 − k22

�
ð18Þ

or
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fðk21; k22Þ ¼
M4

ðM2 − k21ÞðM2 − k22Þ
: ð19Þ

Here M is thought of as the relevant cutoff, and we keep
M > mBs

to avoid changing the absorptive part amplitude.
Using these realizations, the long-distance two-photon
contribution to Bs → μþμ− is finite and can be computed
in terms of M. The calculation is very standard. Explicitly,
for the form factor (18), we have

ReI ¼ 1

βμ

�
Li2

�
βμ − 1

βμ þ 1

�
þ π2

12
þ 1

4
log2

1 − βμ
1þ βμ

�

−
7

2
− 3g1ðMÞ þ 1

2
g2ðMÞ; ð20Þ

where the dilogarithm function Li2ðxÞ¼−
R
x
0 dtlogð1−tÞ=t,

and

g1ðMÞ ¼
Z

1

0

dx
Z

1−x

0

dy log ½rμð1 − x − yÞ2 − xyþ rMx�;

ð21Þ

g2ðMÞ¼
Z

1

0

dx
Z

1−x

0

dy
ð1−4rμÞð1−x−yÞ2

rμð1−x−yÞ2−xyþrMx
ð22Þ

with rM ¼ M2=m2
Bs
.

Obviously, the functions g1ðMÞ and g2ðMÞ can be
integrated numerically for the fixed value of M. In order
to evaluate the long-distance contribution to this muonic B
decay, it is reasonable to set mBs

< M < 2mBs
. Direct

calculation thus shows that ReI is in the range of 13.4–17.3,
not strongly dependent of the cutoff M, as displayed in
Fig. 2. Similar analysis can be done using the form factor
of Eq. (19), and ReI will be from 15.3 to 20.8 for the
same range ofM. This is actually not very surprising since,
after turning off the form factor, the integral I in Eq. (13)

contains only logarithmic divergence, which is in general
not very sensitive to the cutoff. It is natural to expect that
the dispersive part contribution is comparable in order of
magnitude to the absorptive part. Comparing with Eq. (15),
this is indeed the case in our calculation. Meanwhile, from
Eq. (14), it is seen that both the dispersive and absorptive
parts will give tiny contributions to Bs → μþμ− if we do not
consider the interference with the dominant short-distance
amplitude. In what follows wewill estimate the interference
effect by adopting

ReI ¼ 13.4 − 20.8: ð23Þ

The short-distance B̄s → μþμ− decay amplitude can be
expressed as [7]

iA ¼ mμfBs
NC10ūðq−Þγ5vðqþÞ ð24Þ

with

N ¼ VtbV�
ts
4GFffiffiffi

2
p αem

4π
: ð25Þ

This gives the decay rate for Bs → μþμ− as

m3
Bs
f2Bs

8π
jN j2rμβμjC10j2: ð26Þ

To include the dispersive long-distance two-photon con-
tribution of Eq. (12), one can make the substitution

C10 → C10 þ
A− · ReI
V�
tbVts

: ð27Þ

The current experimental constraint on A− has been
shown in Eqs. (10) and (11). Using the same numerical
inputs for C10 and jV�

tbVtsj as in Ref. [7], together with our
estimate of ReI, we find that the dispersive long-distance
two-photon transition may give rise to the theoretical
uncertainty of the branching ratio of Bs → μþμ− decay,
which could be up to

5.3% ∼ 8.2% for jA−j < 3.4 × 10−4; ð28Þ

or

3.7% ∼ 5.8% for jA−j < 2.4 × 10−4: ð29Þ

This indicates that quite large uncertainty might be
induced from the long-distance contribution, comparable
with the uncertainties from fBs

and CKM matrix elements.
However, it is very likely that these results are overesti-
mated since at present A− is constrained only by the upper
limit of BðBs → γγÞ, and its true value should be smaller

6 7 8 9 10

14

15

16

17

M GeV

R
e

I

FIG. 2. ReI as a function ofM using the form factor of Eq. (18).
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once we can fix the branching ratio. Furthermore, in
the present work, we are actually concerned about A−
contributed by the long-distance Bs → γγ transition.
Unfortunately, experimental observations cannot separate
the long-distance and short-distance contributions, only
measure their sum. On the other hand, theoretical predic-
tions of BðBs → γγÞ are about 10−7–10−6, still with large
uncertainty, and it was argued in Refs. [34,38] that the long-
distance contribution to BðBs → γγÞ would be suppressed,
which will not exceed a few times 10−7. Therefore, now it is
unlikely to extract the exact long-distance information on
this decay, which is needed in our numerical calculation.
Considering the current situation of Bs → γγ decay, here
we shall take BðBs → γγÞLD ¼ 1 × 10−6 and 1 × 10−7 (LD
denoting long distance), respectively, as examples to
illustrate the numerical analysis. Thus the uncertainties
in BðBs → μþμ−Þ could be

3.0% ∼ 4.6% for jA−j ≫ jAþj; ð30Þ

2.1% ∼ 3.3% for jA−j ∼ jAþj ð31Þ

if BðBs → γγÞLD ¼ 10−6, and

0.9% ∼ 1.5% for jA−j ≫ jAþj; ð32Þ

0.7% ∼ 1.0% for jA−j ∼ jAþj ð33Þ

if BðBs → γγÞLD ¼ 10−7. These results are still comparable
with some theoretical uncertainties discussed in Refs. [6,7].
Hopefully, future precise measurement and/or theoretical
study of the double radiative Bs decay could help to fix the
value of A− or impose more strict constraints on it, which
may improve our predictions.

III. DISCUSSION AND SUMMARY

Rare Bs → μþμ− decay has been observed experimen-
tally. Theoretically, the decay rate is dominated by the
short-distance contribution in the SM, which has been
calculated very precisely. Thus this muonic decay would
provide a very interesting window both to test the SM and
to search for new physics. Here we should emphasize that
the main purpose of the present paper is to examinewhether
the long-distance contribution via Bs → γ�γ� → μþμ−
transition could lead to any significant impact on this
decay or not, instead of pursuing a model-independent way

to calculate this long-distance contribution, since the latter
is a very difficult, even impossible, task now. Our study,
with some model-dependent assumptions, indicates that it
can give rise to new theoretical uncertainty in the branching
ratio of Bs → μþμ−. This seems not good news because this
uncertainty might obscure the new physics signal if the
signal is not large.
As mentioned in the Introduction, a power-enhanced

NLO electromagnetic correction to Bq → lþl− decay
has been found in Ref. [7]. It is seen that, from the second
and third diagrams of Fig. 1 in Ref. [7], the two-photon
intermediate state also plays some roles. However, those
results cannot easily be compared with ours since their
diagrams are basically at the quark level while our
calculation has been done mostly at the hadronic level.
Comparing Fig. 1 in our paper with their two-photon
diagrams, one may note that the absorptive part amplitudes,
given by the on-shell two-photon exchange, could have
some overlaps in these two calculations. This is however
no matter since the two-photon contribution alone is very
small, we are actually concerned about the dispersive part
amplitude and its interference with the short-distance one.
In our approach to compute the dispersive two-photon
amplitude, the hadronic Bsγ

�γ� form factor plays a vital
role, and currently we have to adopt some models to
formulate it. One cannot expect that these long-distance
effects have been included in Ref. [7].
To summarize, we have investigated the dispersive

contribution of the two-photon intermediate state to the
decay Bs → μþμ−. The present analysis shows that current
experimental data allow the relative large theoretical
uncertainty, which arises, in BðBs → μþμ−Þ, from the
interference between the long-distance dispersive two-
photon amplitude and the dominant short-distance ampli-
tude. The future precise experimental and theoretical
studies of the double radiative Bs decay may help to reduce
the uncertainty and thus improve our prediction. This novel
effect could impact on the branching ratio of Bs → μþμ−
decay, which would be essential in interpreting future
experimental finds in terms of the SM or new physics
scenarios beyond the SM.
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