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In the Bloch-wave approach to estimate the baryon-number-violating scattering cross section in the
standard electroweak theory in the laboratory, we clarify the relation between the single sphaleron barrier
and multiple (near periodic) sphaleron barrier cases. We explain how a realistic consideration modifies/
corrects the idealized Bloch wave and the resonant tunneling approximation. The basic approach is in part
analogous to the well-known triple-α process to form carbon in nucleosynthesis.
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I. INTRODUCTION

The SUð2Þ × Uð1Þ electroweak (EW) theory is very well
established by now. With the SUð2Þ gauge coupling g ≃
0.645 (or αW ¼ g2=4π ≃ 1=30), the W-boson mass mW ¼
gv=2 ≃ 80 GeV (where v ¼ 246 GeV is the Higgs vacuum
expectation value), and the Higgs mass mH ¼ 125 GeV all
measured, the theory (without further extension) has no free
parameters and all dynamics are in principle completely
determined. One important property is the sphaleron
potential barrier height, also known as the sphaleron
mass/energy, Esph ¼ 9.0 TeV [turning off the Uð1Þ cou-
pling raises the mass to 9.1 TeV], which separates vacua
with different values of the Chern-Simons number n [1,2].
Due to the presence of instantons and anomalies, the

baryon number B and lepton number L are not conserved in
EW theory [3,4]. Thus, one would like to search for these
(Bþ L)-violating processes in the laboratory, where the
changes ΔB ¼ ΔL ¼ 3Δn and Δn is the change in n.
Interesting parton (left-handed quarks) scatterings in pro-
ton-proton collisions include Δn ≠ 0 scatterings at quark-
quark energy Eqq ≥ Esph, e.g., a Δn ¼ þ1 quark-quark
scattering,

uL þ uL → e−μ−τ−bbbcccuuuuuþ X; ð1Þ

where X includes particles that conserve electric charge as
well as (B − L). A single (Bþ L)-violating event can

produce three negatively charged leptons plus three b
quarks (a b quark can be replaced by a t quark). Other
interesting possible experimental detections have also been
proposed recently [5–7].
Although it is well known that baryon-number-violating

processes happen in EW theory [1–4], there is a large (∼70
orders of magnitude) discrepancy in the determinations of
the baryon-number-violating scattering cross sections at
E ∼ Esph [8–20], separating the observable from the totally
unobservable predictions in the laboratory. Early estimates
showed that the (Bþ L)-violating scattering cross section
in the laboratory goes like

σðΔn ≠ 0Þ ∝ exp

�
−
4π

αW
FðE=E0Þ

�
∼E→0

10−164; ð2Þ

where E0 ¼
ffiffiffi
6

p
πmW=αW ≃ 18.5 TeV and FðE ¼ 0Þ ¼ 1.

Leading-order corrections show that FðEÞ decreases (σ
increases) as E increases, but the estimate is no longer
reliable for E → Esph. Although it is believed that FðEÞ ≠ 0

for any energy, one cannot rule out the possibility that FðEÞ
becomes small enough at E≳ Esph so that the exponential
factor is no longer suppressive. However, earlier specula-
tions have argued that such (Bþ L)-violating scattering
cross section σðEqq;Δn ≠ 0Þ in the laboratory remains
exponentially small (see Fig. 1); even if one can reach
proton-proton energy of around 50 TeV, with the quark-
quark energy Eqq much higher than the sphaleron barrier
height of 9 TeV, the event rate is still far too small to be
observed [14–16,21,22].
It is useful to take an entirely different approach to

this problem. In the idealized situation, one starts with
the Bloch-wave formulation for the periodic sphaleron
potential [19]. Because of the parton distribution func-
tion, Eqq has an energy spread. For energy Ejj along the
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(Bþ L)-violating direction within a conducting (passing)
band, the (Bþ L)-violating process is unsuppressed. Since
there is no solution for Ejj outside the band, only the
(Bþ L)-conserving process can take place for E in the
Bloch-wave band gap. At E ∼ 0, due to the very narrow
Bloch-wave band width [19],

σðΔn ≠ 0Þ ∝ band width
band gapþ band width

∼ 10−179: ð3Þ

Up to the (different) prefactors, Eq. (3) qualitatively
reproduces the exponential suppression (2) from a totally
different viewpoint. The advantage of this viewpoint is the
reliability of the extrapolation to higher energies. In this
approach, we find that σðΔn ≠ 0Þ is no longer exponen-
tially suppressed at E ∼ Esph, so there is a chance that a
(Bþ L)-violating event may be observed at the Large
Hadron Collider (LHC). The discrepancy is illustrated
in Fig. 1.
Reference [20] briefly compared these two very different

estimates of the (Bþ L)-violating scattering cross section.
Here, we shall provide some background and clarifying
discussions on the Bloch-wave analysis [19]. However, the
idealized Bloch-wave picture also has its own corrections/
modifications, including the following:
(1) The presence of baryon-number-conserving direc-

tions, which allows for a leaking of energy (or
“decay”) from the (Bþ L)-violating direction, in-
dicated by a drop in Ejj which is a transition from a
higher energy band to a lower energy band, where
Ejj is the energy along the (Bþ L)-violating direc-
tion while Eqq (≥ Ejj) includes energies along the
(Bþ L)-conserving direction.

(2) The existence of fermion masses effectively tilts the
periodic sphaleron potential, as illustrated in Fig. 2.

This tilt of the potential also assures us that its
translational symmetry is global instead of “local.”

In the absence of both the “decay” and tilt of the periodic
potential, which is the idealized Bloch-wave case, Δn is
unbounded. In the presence of tilt but no “decay,” Δn ¼ 0,
since the incoming wave would eventually hit the totally
inaccessible region (as shown in Fig. 2) and be totally
reflected. In the realistic situation where both decay and tilt
are present, we argue that Δn is finite and small, probably
dominated by Δn ¼ �1.
To have an unsuppressed (Bþ L)-violating event rate, we

need energy along the periodic sphaleron potential direction
Ejj ∼ Esph, which means that the quark-quark energy Eqq≳
Esph. At a proton-proton energy Epp ¼ 14 TeV, the parton
distribution suppression is ∼10−6. Together with the phase-
space suppression [ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ejj=Eqq
p Þ2 ∼ 10−4–10−3 [20] ],

this leads to an overall suppression of ∼10−10. A crude
estimate suggests that there may be 103 observable (Bþ L)-
violating events during the HE-LHC run. (The suppression
is a few orders of magnitudeworse atEpp ¼ 13 TeV.) Such
a suppression will be substantially alleviated if the LHC can
increase Epp by just a few TeV above 14 TeV.
The rest of this paper is organized as follows. Section II

reviews the issue of the rate of the (Bþ L)-violating
process. Section III reviews the basic physics, with an
emphasis on the periodic potential that we address here. In
the Appendix A we show the existence of continuous (in
energy) Bloch-wave bands. Here, we emphasize that the
EW theory has Bloch-wave bands but no θ vacuum, in
contrast to QCD which has the θ vacuum but no Bloch-
wave bands. Section IV gives a general description of

FIG. 2. The upper graph shows the idealized quantum-
mechanical periodic sphaleron potential as a function of the
Chern-Simons variable. The barrier height is Esph. It has Bloch
waves as solutions. The lower graph shows the actual sphaleron
potential relevant in the presence of fermions, where the tilt is
exaggerated for illustrative purposes. The shaded area implies
that the inaccessible region will be encountered by the wave
function at some point. In the actual case, this happens around the
450th period for incoming energies close to the sphaleron energy.

FIG. 1. Schematic estimate of the function FðE=E0Þ. The dot-
dashed curve follows the expansion up toOððE=E0Þ2Þ [8–11,23].
The dotted curve [18] reaches 1=2 as E → ∞. The dashed curve
is for the idealized Bloch-wave analysis [19]. The solid curve is
the best estimate of this paper.
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resonant tunneling with decay. Section V discusses the
single barrier with decay model, which already captures
many of the key features. This is followed by discussions
for the double barrier case in Sec. VI and the triple barrier
case in Sec. VII, where the tilt is included. These cases
allow us to see the general features of a tilted periodic
potential with decay, as discussed in Sec. VIII. Section IX
gives a brief discussion. Appendix B gives a brief review of
the famous triple-α process, a prime example of resonant
enhancement through tunneling and decay. Appendix C
reviews the sphaleron process, in particular the shape of the
sphaleron in Minkowski spacetime.

II. THE ISSUE

Although the Bloch-wave approach [19] captures a key
feature of the (Bþ L)-violating scattering process, two
ingredients are not fully accounted for:

(i) The quantum field theory problem reduces to a
multidimensional quantum-mechanical (QM) prob-
lem, while the Bloch-wave approach focuses on the
(Bþ L)-violating direction only. We have to include
the (Bþ L)-conserving directions. Energy lost to the
(Bþ L)-conserving directions is treated as some
form of decay here.

(ii) The quark and lepton masses effectively raise the
energy of the final ground state with respect to the
initial ground state (see Fig. 2). This leads to a
correction to the Bloch-wave solution that has to be
taken into account.

Including these two effects, we find in this paper that
FðEÞ reaches a minimum at E ≃ Esph, as shown in Fig. 1,
and tends to stay there or even grow as E continues to
increase. Although we cannot determine the minimum
value of FðEÞ, it is probably very small in our analysis,
FðEÞ ≳ 0. The “not-so-suppressed” exponential factor due
to a very small FðE=Esph ≃ 1Þmay be ignored or be hidden
in our Bloch-wave analysis. This should be compared to
the earlier estimate given in Ref. [19] before the inclusion
of the above two corrections, which estimated that
FðE=E0Þ → 0 when E reaches Esph, as shown in Fig. 1.
We know that n can be identified with the Chern-

Pontryagin index [3]. It is straightforward to treat the
Chern-Simons variable μðtÞ=π as a function of Minkowski
time [24]. Although the choice of μðtÞ is gauge dependent,
it is gauge invariant at μ=π ∈ Z=2 and can be identified
with the topological Chern-Simons or Hopf index at
n ¼ μ=π ∈ Z. Reference [19] chose the coordinate
x ¼ μ=mW to mimic a spatial coordinate to obtain the
one-dimensional time-independent Schrödinger equation:�

−
1

2m
∂2

∂x2 þ V0ðxÞ
�
ΨðxÞ ¼ EΨðxÞ; ð4Þ

where the potential V0ðxÞ [1] and the mass m [19] are, in
the absence of the Uð1Þ,

V0ðxÞ ≃ 4.75 TeVð1.31 sin2ðmWxÞ þ 0.60 sin4ðmWxÞÞ;

Esph ¼ max½VðxÞ� ¼ V

�
π

2mW

�
¼ 9.11 TeV;

m ¼ 17.1 TeV; ð5Þ

where the potential V0ðμÞ≡ V0ðxÞ is periodic, and we note
that a rescaling of x rescales m without changing the
physics. Since μ is gauge dependent when 2μ=π ∉ Z, the
choice of extending 2μ=π to noninteger values is a matter of
convenience. [The choice μ=π − sinð2μÞ=2π is often used
in the literature.] Choosing a different variable to inter-
polate between half-integers of μ=π will require a corre-
sponding modification of V0ðμÞ between the extrema as
well as a modification of the mass m, which can become x
dependent [24].
For the above periodic sphaleron potential V0ðxÞ, there is

a priori no limit to Δx ¼ πΔn=mW , since the Bloch-wave
passing bands run over all values of x. Naively, this
suggests that a single scattering seems capable of producing
a large Δn, even for Δn → ∞. However, the presence of
fermions (with their zero modes) changes the picture in a
fundamental way [3,4]. Here we first consider Δn ≥ 0. In
our analysis, the ground state with nB baryons is different
from a ground state with nB þ 3Δn baryons, so the
sphaleron potential is no longer periodic, but rather is
tilted upwards as Δn increases. Reference [20] estimated
that the potential VðxÞ in Eq. (4) should take this into
account, i.e.,

V0ðxÞ → VðxÞ ¼ V0ðxÞ þ cx ð6Þ

for x > 0, where c ≃ 20mW=π GeV in the absence of
Cabibbo-Kobayashi-Maskawa (CKM) mixing and c ≃
3mW=π GeV in the presence of CKMmixing, as illustrated
in Fig. 2. In this case, an incoming QM right-moving wave
will be totally reflected, even if the wave function can
penetrate multiple sphaleron barriers, so it seems that the
(Bþ L)-violating process will not take place, since nothing
stays at nonzero Δn. As a result, instead of Δn → ∞, we
seem to end up with Δn ¼ 0.
In the actual situation, the quantum field theory problem

translates to a multidimensional QM problem, including
both (Bþ L)-violating and (Bþ L)-conserving directions.
Energies diverted from the (Bþ L)-violating direction to
the (Bþ L)-conserving directions will be treated as decay
in the (Bþ L)-violating direction. We argue in this paper
that, after taking into account the effect of decay and
fermion masses,Δn should be of the order of a few. A more
accurate estimate probably requires a detailed study of the
gauge dynamics. In summary, for energies close to the
sphaleron energy, the incoming wave can decay after
penetrating a few sphaleron barriers, so only part of the
wave is reflected, and we expect that the (Bþ L)-violating
processes will take place. If we start from the state with
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baryon number B, and reach the Bþ 3Δn state for Δn > 0,
the decay simply means that some energy goes to the
baryon-number-conserving directions. This may be crudely
approximated by the transition from one Bloch wave to a
lower Bloch wave. For Δn < 0, the wave ends up in a
region with B baryons and 3jΔnj antibaryons. The anni-
hilation of 3jΔnj baryon-antibaryon pairs provides another
decay channel. Energetically, a process like

uL þ uL → eþμþτþb̄ b̄ b̄ c̄ c̄ c̄ ūþX ð7Þ

may be more likely than the above Δn ¼ þ1 process
in Eq. (1).

III. REVIEW

Bloch waves are solutions to Eqs. (4) and (5) (see
below for the reason why continuous Bloch-wave
bands exist). There are 148 such conducting bands below
the sphaleron energy Esph ¼ 9.11 TeV [19]. The lowest
one is at 0.3421 TeV with an exponentially small width
(Γ ∼ 10−180 TeV), while the one just below Esph is at
9.081 TeV with width Γ ≃ 7.2 GeV. The one just above
Esph is at 9.113 TeV with width Γ ≃ 15.6 GeV. This is
evaluated in the absence of fermions.
In the presence of left-handed fermions, the periodic

potential is no longer exactly periodic and the Bloch-wave
direction we are interested in is different than the usual jθi
vacuum direction. At the classical level, there exist nL ¼ 12
(i ¼ 1; 2;…; nL) globally conserved Uð1Þ currents for the
(left-handed) quark and lepton electroweak doublets,

JðiÞμ ¼ Ψ̄ðiÞ
L γμΨðiÞ

L ; ð8Þ

corresponding to the conservation of fermion number.
However, this conservation is broken by the presence of
an anomaly [25,26],

∂μJðiÞμ ¼
g2

16π2
Tr½FμνF̃μν� ¼ ∂μKμ; ð9Þ

where F̃μν is the dual of Fμν and there exists a (gauge-
dependent) current Kμ. In the presence of instanton
solutions in Euclidean spacetime [27],

N ¼ g2

16π2

Z
d4xTr½FμνF̃μν�; ð10Þ

where the topological indexN takes only integer values. An
instanton with value N leads to the tunneling process
jni → jnþ Ni.
One can construct a (gauge-dependent) conserved cur-

rent J̄i;μ and the corresponding conserved charge Qi,

∂μJ̄i;μ ¼ ∂μðKμ − Ji;μÞ ¼ 0;

Qi ¼
Z

d3xJ̄i;0 ¼ QG −Qi
F; ð11Þ

which is the winding number QG of the gauge field minus
the normalized ith fermion doublet number Qi

F. So a state

may be described by nL þ 1 values, jni ¼ jnG; nðiÞF i, with
QGjni ¼ nGjni and Qi

Fjni ¼ nðiÞF jni. Let us start with a
vacuum state j0i ¼ j0; 0;…; 0i; then, a tunneling transition
preserving all Qi means

j0i≡ j0; 0i → jnG; nFi ¼ jN ¼ B; 3Bþ 3Li;

which has net baryon number (i.e., baryon minus anti-
baryon number) B and net lepton number L, and

nF ¼ nð1ÞF ¼ nð2ÞF ¼ … ¼ nðnLÞF . It is important to empha-
size that the jnG; nF ≠ 0i states are obviously not vacua,
but these classical ground states are almost degenerate with
the vacuum states for very soft massless fermions and for
not too big nF. More generally, a (Bþ L)-violating process
with Δn ≠ 0 refers to such a Q-conserving transition:

jnG; nðiÞF i → jnG þ Δn; nðiÞF þ Δni:

The μ direction in the Schrödinger equation of Eq. (4) refers
to this Qi-conserving direction, as shown in Fig. 3.
A Bloch-wave state takes the form (for integer

πμ ∈ Z)

jki ¼
X
μ

eikμ=πjnG þ μ=π; nðiÞF þ μ=πi; ð12Þ

where μ ¼ xmW is the spatial QM coordinate in the
Schrödinger equation, which has continuous Bloch-wave
bands. (See Appendix A for further explanation.) Clearly,
jki is very different from the standard QCD θ vacuum,

FIG. 3. States in the ðμ − 3πBÞ-conserving direction. Tunneling
in the EW theory is along the diagonal direction while the jμi’s in
the QCD jθi are along the horizontal direction.
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jθi ¼
X
μ

eiθμ=πjnG þ μ=π; nðiÞF ¼ 0i: ð13Þ

Note that QCD has a θ vacuum but no Bloch-wave
bands, while EW theory has Bloch-wave bands but no θ
vacuum [20,28]. We can see this clearly in the one-
dimensional QM setup. For a periodic potential, the wave
function is given by ΨðxÞ ¼ eikxukðxÞ, where ukðxþ π=
mWÞ ¼ ukðxÞ is periodic. Bloch-wave band solutions
appear for ranges of k, as illustrated in Fig. 4. For QCD,
each jni is a gauge-transformed version of jn ¼ 0i, so they
are physically identical; that is, ΨðxÞ itself must be
periodic, or k ¼ 2mW, so only k ¼ 2nmW in a Bloch-wave
band is allowed. This happens for SS and AA edges of the
Bloch-wave bands, as shown in Fig. 4. Pictorially, the QCD
periodic potential is like that of a rigid pendulum in the
presence of an external (e.g., gravitational) field, where
2xmW measures the angle and a rotation of 2π implies
ΨðxÞ ¼ Ψðxþ π=mWÞ. Here the energy levels have no
width, so a transition between them is absent in this
approximation.
If instead of a periodic potential one considers a potential

with N identical barriers, then each continuous band is
replaced by a set of N − 1 discrete energies, still separated
by gaps. For N ¼ 2, each band is reduced to a single energy
level, revealing the resonant tunneling phenomenon. For a
single (N ¼ 1) barrier, the tunneling suppression on the rate
goes like e−4π=α. This is exponentially suppressed even in
QCD, where αQCDðmZÞ ≃ 0.12, so the tunneling time scale
would be orders of magnitude longer than a typical QCD
scattering process. It is the resonant tunneling effect that
enables the tunneling through barriers unsuppressed, which
leads to the jθi vacuum required by cluster decomposition.
Also note that there are (Bþ L)-conserving directions yi

where no barrier penetration is involved. However, as is
clear from Eqs. (12) and (13), they are orthogonal to the

barrier penetration direction x and do not appear in the
construction of either jki or jθi.

IV. RESONANT TUNNELING WITH DECAY

In the one-dimensional QM problem setup in Eqs. (4),
(5), and (6), we know that an incoming wave from the left
will penetrate a number of sphaleron barriers, but then will
hit a barrier higher than the incoming energy and be
reflected back, as shown in Fig. 2. The reflection coefficient
turns out to be unity, so this seems to imply that no (Bþ L)-
violating process happens, as alluded to in Ref. [28]. This
may be true for the lowest Bloch-wave function, but not for
the higher Bloch-wave functions that we are interested in,
especially ones that are close to or above the sphaleron
height, which can decay [by losing energy to the (Bþ L)-
conserving directions] to the lower Bloch-wave functions.
This decay plays a similar role as tunneling through another
barrier, which would allow the presence of resonance
enhancement. It is amazing that this resonant tunneling
plus decay phenomenon was employed long ago in the
famous triple-α transition to form carbon in nucleosynthe-
sis in stars in the early Universe.
A particle coming from the left with energy E below the

barrier heights will tunnel through the barriers. Here the
incoming energy E is energy along the (Bþ L)-violating
direction. In the WKB approximation, the connection
matrix for amplitudes on the two sides of the ith potential
barrier is

Mi ¼
�

cosh Ŝi i sinh Ŝi
−i sinh Ŝi cosh Ŝi

�
; ð14Þ

and particles propagate over the subsequent classically
allowed region with connection matrix Φi,

Φi ¼
�
e−iLi 0

0 eiLi

�
; ð15Þ

where

Ŝi ¼
Z

bi

ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðVðxÞ − EÞ

p
dxþ ln 2; ð16Þ

and

Li ¼
Z

aiþ1

bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE − VðxÞÞ

p
dx: ð17Þ

ai and bi are the turning points. The general formula for
going through m barriers is

Mtotal ¼
�Ym−1

i¼1

MiΦi

�
Mm: ð18Þ

FIG. 4. Comparison between EW theory and QCD [20,28]. The
edges of the Bloch pass bands are labeled by ðSðAÞSðAÞÞ, where
the first letter denotes symmetric (S, even) or antisymmetric
(A, odd) with respect to the bottom of the potential and the second
denotes that with respect to the top of the potential [19]. EW
theory has Bloch-wave bands but no jθi vacuum, while QCD has
the jθi vacuum but no Bloch-wave bands.
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In the absence of decay, unitarity requires that the deter-
minant j detMij ¼ 1.
For the periodic sphaleron potential V0ðxÞ, where all Mi

and Φi are identical and m → ∞, the solution is the Bloch
waves, which are passing bands with continuously allowed
energies within each band and adjacent passing bands are
separated by (disallowed) gaps. For finite m, each pass
band contains a discrete set of allowed energies, which
becomes a “dense discretuum” for large but finite m. Here,
to get an idea of the likely value of jΔnj, we shall
implement the decay as well as the tilting of the potential
VðxÞ in the cases with one, two, and three barriers.
To describe a decaying state, usually we can add a

negative imaginary part to the eigenenergy, which gives
Ψðx; tÞ ¼ ϕðxÞ exp ½−iðE − iγ=2Þt=ℏ�. Because we are cal-
culating amplitudes of initial states from connection matrix
multiplying final states, this is actually the time-reversal
process. Since the time-reversal operator is antiunitary,
T̂Ψðx; tÞ ¼ ϕ�ðxÞ exp ½−iðEþ iγ=2Þt=ℏ�, the probability is
jT̂Ψðx; tÞj2 ¼ jϕðxÞj2 exp ðγt=ℏÞ, as expected for decaying
behavior in the time-reversal process. As a result, we
describe decaying behavior here by letting the eigenenergy
acquire a positive imaginary part,

Li →
1

ℏ

Z
aiþ1

bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

�
E − VðxÞ þ i

γ

2

�s
dx: ð19Þ

This is approximately L ¼ lþ iΔ, where l represents the
real part of the integral. Usually, γ ≪ E, so we can obtain
an approximate expression for Δ,

Δi ≈
γ

4ℏ

Z
aiþ1

0

bi 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

E − VðxÞ

s
dx; ð20Þ

where bi0 and aiþ1
0 are the new limits of the integral of the

imaginary part, which are determined by

E − Vðbi0Þ ¼ E − Vðaiþ1
0Þ ¼ γ

2
: ð21Þ

The reason that we use these limits for the integral of the
imaginary part is that the WKB method fails near the
turning point, where the contribution to Δi is very
small compared to that from the middle region, where
E − VðxÞ ≫ γ

2
. With the help of a general formula, we can

discuss some specific cases.

V. SINGLE-BARRIER CASE

It is amazing that this simplest case (one tunneling
channel and one decay channel) was actually applied to
solve a major puzzle in nucleosynthesis. Before the 1950s,
cosmologists and astrophysicists could not find a way to
produce the carbon nucleus and beyond, either primordially
or in stars. Then, Salpeter proposed [29] and Hoyle
reinforced [30] the idea that the carbon nucleus could be

formed if it has an excited state at a particular energy, as
shown in Fig. 5, which was subsequently discovered at
precisely the energy predicted. (A brief review is included
in Appendix B). Let us go over this case as a step towards
explaining the (Bþ L)-violating process.
As shown in Fig. 6, we consider that the second barrier is

simply an infinite wall. In the absence of decay, the
reflection amplitude is given by

R ¼ tþ e2iL

1þ te2iL
→ jRj2 ¼ 1; t≡ tanh Ŝ; ð22Þ

which means that the particle is totally reflected. Nothing
ends in region B. Suppose that the particle can decay to a
lower energy level in region B, say, the ground state. In the
triple-α case, carbon-12 decays via the transition from the
excited carbon-12 to a lower (or the ground) state and emits
photons, while the decay in the sphaleron case is the
transition from a higher band to a lower band via a loss of
energy to the (Bþ L)-conserving direction.

FIG. 5. Energy levels of different nuclei. The dashed line is the
position of the fusion window for a nuclear reaction between 4He
and 8Be. The shaded area represents the width of the fusion
window, which includes the Hoyle state.

FIG. 6. Shaded region is classically inaccessible.

YU-CHENG QIU and S.-H. HENRY TYE PHYS. REV. D 100, 033006 (2019)

033006-6



According to the discussion in the last section, we let
L ¼ lþ iΔ and define β≡ e−2Δ as the decaying parameter
in region B, which gives

jR̃j2 ¼
ðβt þ t

βÞ þ 2 cosð2lÞ
ðtβ þ 1

tβÞ þ 2 cosð2lÞ : ð23Þ

The probability of staying in region B is now given by

jGj2 ≡ 1 − jR̃j2 ¼
ð1β − βÞð1t − tÞ

1
tβ þ tβ þ 2 cosð2lÞ : ð24Þ

If β ¼ 1, which means there is no decay, jGj2 ¼ 0 since the
reflection probability jRðβ ¼ 1Þj2 ¼ 1, irrespective of the
incoming energy. For β < 1, the probability of staying in
region B shows a resonance pattern for jGj2 as a function of
the incoming energy, as plotted in Fig. 7. For certain choices
of the parameters ðt; βÞ, the probability jGj2 can reach 1 at
resonance energies.We focus on a specific resonance energy
level E1. We expand jGj2 around this level,

jGj2 ≃ ðβ2 − 1Þðt2 − 1Þ
ðtβ − 1Þ2 þ 4tβ½ð ∂l∂EÞjE¼E1

�2ðE − E1Þ2
: ð25Þ

Furthermore, we can let

Γa ¼
1

2
ffiffiffiffiffiffiffiffi
tβω

p ð1 − tβ þ jt − βjÞ;

Γb ¼
1

2
ffiffiffiffiffiffiffiffi
tβω

p ð1 − tβ − jt − βjÞ;

Γ ¼ Γa þ Γb;

where ω ¼ ½ð ∂l∂EÞjE¼E1
�2. The probability jGj2 is now a

function of the incoming energy

jGðEÞj2 ¼ ΓaΓb

ðΓ=2Þ2 þ ðE − E1Þ2
; ð26Þ

which is the Breit-Wigner formula. Here Γ is the total width
of a certain level and Γa;b are the two different channels: one
decays to the ground state in region B and the other decays
back to the initial state.
The total reflection amplitude consists of two parts in

this case. One is a direct reflection after hitting the barrier
from the left with amplitude r, and the other is a tunneling
back out to the left (region A) from region B, with
amplitude D−. The unitary relation is

jR̃j2 þ jGj2 ¼ jrþD−j2 þ jDgj2 ¼ 1: ð27Þ

The two channels of resonance decay in region B could be
interpreted as one via tunneling with amplitudeD−, and the
other with decay to lower energy levels with probabil-
ity jDgj2.

VI. DOUBLE-BARRIER CASE

Next, we would like to consider the two-barrier case, as
shown in Fig. 8. As usual, the direct tunneling amplitude T
from the left (region A) to the right (region C) is doubly
exponentially suppressed unless the energy is close to a
resonance in region B. In this case, a resonant state in
region B can decay in three ways:

(i) Decay to a lower energy state in region B with
amplitude Dg.

(ii) Tunnel back with amplitude D−, contributing to the
reflection amplitude R.

(iii) Tunnel forward to the right with amplitude T .
With an incoming wave from the left, unitarity demands

jRj2 þ jGj2 þ jT j2 ¼ jrþD−j2 þ jDgj2 þ jT j2 ¼ 1;

ð28Þ

with the assumption that there exists a number of decay
channels of the particular resonance jGj2 ¼ P

jjDgjj2. By
hitting the resonance, jT j2 and jGj2 can be unsuppressed.
If we consider a wave packet going through a double-

barrier potential with a certain energy near the resonance in
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FIG. 7. The probability jGj2 of ending up in region B in Fig. 6
as a function of the incoming energy E at different values of the
parameter β with a fixed t ¼ 0.8. A peak appears as E hits one of
the resonance energies besides the ground state.

FIG. 8. Resonant tunneling through a double-barrier potential.
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region B, the transmission from region A to region C can
be interpreted as a decay to another state, which can
precisely reproduce the exponential decay law of an
unstable state. The total transmission probability is
γ=ΔE, where γ stands for the decay width of the state in
region A and ΔE is the energy spread of this wave packet.
Without the decayDg, this interpretation mimics the single-
barrier case in the last section. This tells us that “multi-
escaping-channels” for middle unstable state will introduce
the resonance enhancement effect.
The connection formula in this case is

M ¼
�

c1c2e−iL þ s1s2eiL iðc1s2e−iL þ s1c2eiLÞ
−iðs1c2e−iL þ c1s2eiLÞ s1s2e−iL þ c1c2eiL

�
;

ð29Þ

where si ¼ sinh Ŝi and ci ¼ cosh Ŝi. To include decaying
behavior, we let L ¼ lþ iΔ. For simplicity, we define ti ¼
tanh Ŝi and β ¼ e−2Δ. The transmission probability can be
calculated directly,

jT j2 ¼ βð1 − t21Þð1 − t22Þ
1þ ðt1t2βÞ2 þ 2t1t2β cos 2l

: ð30Þ

For β ¼ 1, t1 ¼ t2, and cos 2l ¼ −1, the transmission
probability jT j2 ¼ 1. The condition for resonance enhance-
ment is l ¼ ðnþ 1

2
Þπ, where n ∈ N. At the appropriate

incoming energy, the transmission can reach a maximum
that is not doubly exponentially suppressed. An interesting
situation is when the second barrier is slightly higher than
the first one, Ŝ2 > Ŝ1. Is we let Ŝ2 ¼ Ŝ1 þ ΔS we have the
relation

t2 ¼ tanh Ŝ2 ¼
tanh Ŝ1 þ tanhΔS
1þ tanh Ŝ1 tanhΔS

¼ t1 þ α

1þ t1α
; ð31Þ

where α ¼ tanhΔS < 1. We use this relation to replace t2
in the transmission probability and define the function

fðα; βÞ≡max jT j2 ¼ βð1 − t12Þ2ð1 − α2Þ
ð1 − βt12 þ ð1 − βÞt1αÞ2

: ð32Þ

As shown in Fig. 9, when α ¼ 0 the two barriers are the
same and the maximum of jT j2 could reach unity if β ¼ 1.
As α increases, the height of second barrier grows and
max jT j2 decreases. If α → 1, which means that the second
barrier becomes impossible to penetrate, the transmission
probability vanishes, as expected. The decay probability
jGj2 shares the same features as jT j2. The potential tilt
reduces max jT j2, while the resonance enhancement pat-
tern preserves it.

VII. TRIPLE-BARRIER CASE

In this section we extend the above analysis to
the three-barrier case and use seven parameters describe
the situation, which are t1;2;3 for three-barrier tunneling,
β1;2 for decay between barriers, and l1;2 for the energy
levels in the two potential wells. The explicit expressions
are given as

jT j2 ¼ 1

D
ðβ1β2ð1 − t12Þð1 − t22Þð1 − t32ÞÞ;

jRj2 ¼ 1

D
ðt12 þ ðt2β1Þ2 þ ðt1t2t3β2Þ2 þ ðt3β1β2Þ2

þ 2t1t2β1ð1þ t32β22Þ cos ð2l1Þ
þ 2t2t3β2ðt12 þ β1

2Þ cos ð2l2Þ
þ 2t1t22t3β1β2 cos ½2ðl1 − l2Þ�
þ 2t1t3β1β2 cos ½2ðl1 þ l2Þ�Þ;

jGj2 ¼ 1

D
ð1þ ðt1t2β1Þ2 þ ðt2t3β2Þ2 þ ðt1t3β1β2Þ2

− β1β2ð1 − t12Þð1 − t22Þð1 − t32Þ
− ðt12 þ ðt2β1Þ2 þ ðt1t2t3β2Þ2 þ ðt3β1β2Þ2Þ
þ 2t2t3β2ð1 − t12Þð1 − β1

2Þ cos ð2l2ÞÞ;

D ¼ 1þ ðt1t2β1Þ2 þ ðt2t3β2Þ2 þ ðt1t3β1β2Þ2
þ 2t1t2β1ð1þ t32β22Þ cos ð2l1Þ
þ 2t2t3β2ð1þ t12β12Þ cos ð2l2Þ
þ 2t1t22t3β1β2 cos ½2ðl1 − l2Þ�
þ 2t1t3β1β2 cos ½2ðl1 þ l2Þ�;
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FIG. 9. The function fðα; βÞ≡max jT j2 in the ðα; βÞ parameter
space. The maximum tunneling max jT j2 ¼ 1 for α ¼ 0 (same
barrier) and β ¼ 1 (no decay).
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where D is the denominator. In the simple case where
t ¼ t1 ¼ t2 ¼ t3, βi ¼ 1, and l ¼ l1 ¼ l2, the transmission
probability becomes

jT j2¼ ð1− t2Þ3
1þ5t2þ4t2ð1þ t2Þcosð2lÞþ2t2ð2ðcosð2lÞÞ2−1Þ;

which yields jT j2 ¼ 1 for cosð2lÞ ¼ −ð1þ t2Þ=2. The
analytical expressions for the probabilities are too compli-
cated, and numerical calculations would be more helpful.
Here the calculations could not distinguish the probabilities
of the decays into the two potential wells. Thus, jGj2 refers
to the total decay probability that is neither reflected nor
transmitted.

VIII. SPHALERON POTENTIAL

If there are two identical barriers only and no decay,
when the incoming energy hits the resonant energy
the transmission probability approaches unity, due to the
coherent sum of an infinite set of paths, even if the
tunneling through a single barrier is exponentially sup-
pressed. For energies away from the resonant energy, the
transmission probability is typically doubly exponentially
suppressed and the reflection dominates. The process could
be understood as tunneling through the first barrier, while
the second tunneling is treated as the decay of the resonant
state. So, if we raise the height of the second barrier
substantially to infinity in which the particle cannot reach
region C, the reflection probability approaches unity; no
particle can stay in region B, even if now we lower the first
barrier height so it becomes easier to reach region B from
region A.
We apply this understanding to the (Bþ L)-violating

process in the Bloch-wave approach. If we include the
fermion masses, sooner or later the wave will be stopped
by a totally inaccessible barrier, as shown in Fig. 2,
causing the reflection probability to be unity without decay,
which implies that no (Bþ L) violation takes place. As
discussed in previous cases, tunneling plus decay may
produce a similar enhancement as the resonant tunneling
phenomenon. The idea clearly applies to the more
complicated cases, so an estimate of the rate may be
nontrivial. A typical case will involve multiple tunneling
and decay channels, which can also produce a resonant
enhancement effect.
Due to the lack of exact information about the decay

behaviors of the resonance level in the sphaleron case, we
can only make order-of-magnitude estimations. In the pure
Bloch-wave-model with only massless fermions, we have
the total transmission probability for a wave packet
described as

jT j2 ¼ ΓB

ΓB þ 0.5ðΔþ þ Δ−Þ
;

where ΓB is the Bloch-wave band width and Δ� represents
the band gap above or below the band. The denominator can
be considered as the energy spread of a wave packet ΔE.
Physically, one expects that a high-energy statewould have a
large decay width, which is also the case for the Bloch band
width. It is a reasonable approximation to use ΓB (calculated
in Ref. [19]) as input γ when calculating the decay
parameters βi with Eq. (20). We use the modified potential
in Eq. (6) (in which an additional linear term is included due
to the accumulated fermion mass) to calculate the tunneling
parameter ti for each barrier. With the decay behavior
considered, the possibility that an incoming wave tunnels
to other states could be nonzero.
If we only consider one decay channel without trans-

mission (the second barrier is infinitely high), we have two
parameters (t, β) to describe the system. We can see from
Eq. (26) that the enhancement effect would be more explicit
if these two parameters are close to each other. As shown in
Fig. 10, resonance enhancement are expected as energy
approaches sphaleron energy (9.1 TeV).
Every potential well has its own resonant energy level

and corresponding width. When the incoming energy is
near the resonance, the transmission and decay probabil-
ities can be amplified. If the linear term in the potential is
turned off, VðxÞ becomes purely periodic and all resonant
levels would be the same, thus forming the well-known
Bloch band. Because of the existence of the tilting linear
term, the resonant levels could be different, which would
cause the probabilities of transmission and decay to be
greatly suppressed when going through more barriers due
to the mismatch between resonances at neighboring poten-
tial wells. The numerical estimates of the resonance levels
in the first two potential wells are shown in Table I. We see
that when the potential is more tilted the mismatch of
nearby resonances is more severe, which means that the
resonance enhancement effect is more suppressed. In other
words, the probability of going through the barriers would
be exponentially small. This can also be seen through direct
numerical estimations.
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FIG. 10. The two parameters ðt; βÞ describing the tunneling and
decay behaviors tend to merge as the Bloch band center energy
increases.
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Numerical order-of-magnitude estimates reveal the sit-
uation of going through two and three barriers, in which
resonance enhanced probability of transmission and
decaying are listed in Table II. We see that in both cases,
the probability of transmission in the three-barrier case is
generally much smaller than in the two-barrier case. Also,
compared to the 3 GeV case, the 20 GeV tilt causes a
greater suppression of jT j2 and jGj2 in both the two- and
three-barrier cases. All numerical results in these tables can
only used as tools to see that the resonant enhancement
effect does exist, as we lack exact information about the
decay behavior.

From above analysis, we argue that it is possible for
incoming wave going through one or two barriers unsup-
pressed. Overall, for left-incoming wave, we expect that the
Δn¼1 process ismuchmore likely than theΔn ¼ 2 process.

IX. DISCUSSION

Earlier work [19] argued why (Bþ L)-violating processes
may not be exponentially suppressed for two-particle scat-
tering at energies close to and above the sphaleron energy.
However, in view of the QM analysis, it is not clear what the
Bloch-wave analysis will lead to: a single sphaleron tran-
sition, multisphaleron transition, or no transition. Naive
arguments seem to suggest that no (Bþ L)-violating tran-
sition will take place. Here we point out that decay is
necessary for the resonant tunneling phenomenon to take
place for a sphaleron potential like that shown in Fig. 2.
For energies much lower than the sphaleron energy of

9 TeV, the band widths are too narrow to be relevant, so we
focus on incoming energies close to and above the sphaleron
energy. At the 14 TeV LHC proton-proton run, the rate of

TABLE II. Estimation of probabilities.

c ¼ 3mW=π GeV, Δn ¼ 2

Ein (TeV) γD (GeV) α β jT j2 jGj2
9.056 7.192 0.09951 0.5183 0.08012 0.4769
9.022 2.621 0.09963 0.7976 0.01221 0.2172
8.986 0.8255 0.09976 0.9339 1.271 × 10−3 0.07464
8.948 0.2382 0.09989 0.9811 1.888 × 10−5 3.904 × 10−3

8.908 0.06460 0.1000 0.9950 7.466 × 10−6 5.887 × 10−3

c ¼ 20mW=π GeV, Δn ¼ 2

Ein (TeV) γD (GeV) α β jT j2 jGj2
9.072 7.192 0.5821 0.5173 0.06436 0.7090
9.003 2.621 0.5832 0.8072 1.379 × 10−4 0.04507
8.965 0.8255 0.5838 0.9366 6.009 × 10−6 7.553 × 10−3

8.925 0.2382 0.5844 0.9818 5.423 × 10−7 2.776 × 10−3

8.884 0.06460 0.5851 0.9952 1.021 × 10−8 2.154 × 10−4

c ¼ 3mW=π GeV, Δn ¼ 3

Ein (TeV) γD (GeV) jT j2 jGj2
9.060 7.192 0.02024 0.4065
9.054 2.621 0.06084 0.7511
9.022 0.8255 5.551 × 10−3 0.5454
8.989 0.2382 1.677 × 10−4 3.497 × 10−3

8.986 0.06460 1.011 × 10−3 0.6364

c ¼ 20mW=π GeV, Δn ¼ 3

Ein (TeV) γD (GeV) jT j2 jGj2
9.059 7.192 9.816 × 10−5 0.07456
9.039 2.621 1.230 × 10−5 0.3894
9.023 0.8255 6.491 × 10−6 1.356 × 10−3

9.003 0.2382 1.008 × 10−6 0.3517
8.985 0.06460 4.511 × 10−7 4.966 × 10−5

TABLE I. Resonance in a potential well.

Two identical barriers

E0 (TeV) Γ (TeV)

9.080 0.09793
9.053 0.02669
9.019 3.031 × 10−3

8.983 2.790 × 10−4

8.945 2.228 × 10−5

8.905 1.592 × 10−6

8.864 1.036 × 10−7

8.821 6.206 × 10−9

8.779 3.454 × 10−10
..
. ..

.

c ¼ 3mW=π GeV

Resonance in n ¼ 1 Resonance in n ¼ 2

E1 (TeV) Γ1 (TeV) E2 (TeV) Γ2 (TeV)

9.083 0.1016 9.086 0.1008
9.056 0.02690 9.059 0.0268
9.022 3.045 × 10−3 9.025 3.045 × 10−3

8.986 2.804 × 10−4 8.989 2.804 × 10−4

8.948 2.239 × 10−5 8.951 2.239 × 10−5

8.908 1.600 × 10−6 8.911 1.599 × 10−6

8.867 1.041 × 10−7 8.869 1.041 × 10−7

8.825 6.237 × 10−9 8.828 6.237 × 10−9

8.782 3.472 × 10−10 8.785 3.472 × 10−10
..
. ..

. ..
. ..

.

c ¼ 20mW=π GeV

Resonance in n ¼ 1 Resonance in n ¼ 2

E1 (TeV) Γ1 (TeV) E2 (TeV) Γ2 (TeV)

9.101 0.09504 9.121 0.09467
9.072 0.03206 9.0923 0.03217
9.003 3.417 × 10−4 9.059 3.698 × 10−3

8.965 2.734 × 10−5 9.023 3.417 × 10−4

8.925 1.956 × 10−6 8.985 2.734 × 10−5

8.884 1.274 × 10−7 8.945 1.956 × 10−6

8.842 7.641 × 10−9 8.904 1.273 × 10−7

8.798 4.258 × 10−10 8.862 7.641 × 10−9

8.755 2.218 × 10−11 8.819 4.258 × 10−10
..
. ..

. ..
. ..

.
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quark-quark scattering with 9 TeV incoming quark-quark
energy is suppressed by the parton distribution function
(about 10−6) and by the phase-space suppression factor of
about 10−4 [probability of 9 TeV energy in the (Bþ L)-
violating direction instead of sharing it with the other
(Bþ L)-conserving directions] so the (Bþ L)-violating
cross section is suppressed by 9 orders of magnitude just
from phase-space considerations. Due to the uncertainties in
the estimate given in Ref. [19], the detection of (Bþ L)-
violating processes in the 14 TeV run is not assured even if
the overall Bloch-wave picture is correct. Increasing the
proton-proton energy will go a long way in enhancing the
parton distribution probability as well as the available phase
space (i.e., Ejj versus Eqq) so that the (Bþ L)-violating
scattering processes have a much better chance of being
observed.
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APPENDIX A: THE PRESENCE OF
CONTINUOUS BANDS

For the sake of completeness and clarity, here we review
the argument that Bloch-wave bands do exist in EW theory.
In the absence of left-handed fermions, the periodic
sphaleron potential in the SUð2Þ gauge theory maps to a
circle (pendulum), so there are no continuous bands, and
the ground state is described by the θ vacuum jθi. In the
presence of quarks (and leptons), the vacua have different
baryon numbers, implying that the sphaleron potential is
actually a periodic potential which allows continuous
Bloch-wave bands.
Note that, as is well known, there are no Bloch-wave

bands in QCD even though the quarks couple to the gluon
fields. This is because the quark currents coupled to the
SUð3Þ gauge fields are vector-like and remain conserved.
The corresponding axial currents are anomalous, but they
do not carry baryon number. In contrast, the anomalous
left-handed fermionic currents in the EW model do carry
baryon and lepton numbers.
Our discussion here follows that in Ref. [28]. Consider a

particle moving in a one-dimensional periodic potential
with period π, VðμÞ ¼ Vðμþ nπÞ, n ∈ Z. However, the
model is not fully specified: the translational symmetry
is local (gauged) or global. If it is gauge (local), μ plays the
role of the angle of a circle for a pendulum, with the action

S ¼
Z

dtL ¼
Z

dt

�
1

2
M _μ2 − VðμÞ − θ _μ=π

�
; ðA1Þ

where the topological term is due to a magnetic flux
through the circle and plays the role of the θ term in the
SUðNÞ gauge theory.
In the presence of left-handed fermions coupled to the

SUð2Þ gauge fields, conserved currents in Eq. (11) show
that ðn − 3BÞ is conserved, so we have to introduce the
constraint

μ=π − 3B ¼ const: ðA2Þ
(Since B − L is conserved, we simplify the discussion by
ignoring the leptons.) Let us introduce a Lagrange multi-
plier λ into L in Eq. (A1) instead of the θ term,

L0 ¼ 1

2
M _μ2 − VðμÞ − cjBj − λð _μ − 3π _BÞ; ðA3Þ

where we also introduce the term cjBj to indicate that the
presence of baryon masses lifts the energy of the ground
states. So now the (approximate) translational symmetry is
global. This yields

Mμ̈þ dVðμÞ
dμ

− _λ ¼ 0;

3π _λ� c ¼ 0;

_μ − 3π _B ¼ 0;

where � depends on B being positive or negative.
Choosing μ ¼ B ¼ 0 as the starting point, a slight rear-
rangement gives

Mμ̈þ d
dμ

�
VðμÞ þ c

3π
jμj

�
¼ 0; ðA4Þ

yielding the potential (6) used earlier. This system can be
interpreted as a particle moving in the ðμ − 3πBÞ-conserv-
ing direction, as shown in Fig. 3, with a potential VeffðμÞ
breaking the original periodic structure that VðμÞ possesses.
Even for c ¼ 0, we see that the translational symmetry is
global, since the baryon number B is different for different
jni states. So, continuous Bloch-wave bands are present.
One may add a kinetic term for B inside L0 in Eq. (A3).

Because of the constraint (A2), the B̈ term merges with the
μ̈ term in Eq. (A4). This will introduce a modification of the
mass M here and the mass m in Eq. (4).

APPENDIX B: THE TRIPLE-α PROCESS IN
NUCLEOSYNTHESIS

The resonantly enhanced tunneling has been applied to
the triple-α process to create carbon-12 in stars. Based on
the existence of carbon and higher elements in nature, the
resonant state was predicted by Salpeter and Hoyle in 1953
and quickly confirmed in experiment [29,30]. In the later
evolutionary stages of stars, the temperature becomes high
enough that helium starts to burn. Through the triple-α
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process, carbon is produced via a resonance enhancement.
Without this excited carbon resonance, carbon and higher
elements would not be formed.
The nuclear reaction we are interested in is the second

step of the triple-α process,

4Heþ 4Heþ 4He → 4Heþ 8Be → 12C�;

where 12C� stands for the resonance state in carbon-12. This
two-body collision problem can be simplified as one
particle with s reduced mass mr going through an effective
repulsive Coulombic potential of the beryllium nucleus.
Because both the excited and ground states of carbon-12
are s-wave and the reaction takes place in a background of
helium gas, we can consider only the direct collisions and
apply the time-independent Schrödinger equation with
reduced mass mr and potential VðrÞ, which is the combi-
nation of Coulombic repulsion and nuclear attraction,
similar to the potential shown in Fig. 6. When the helium
tunnels through the potential barrier, it forms the excited
state 12C�, which has a number of decay channels. There are
two important channels: one is decay into the ground state
12C, and the other is decay back to 4He and 8Be. These two
channels correspond to the parameters Γa;b in Eq. (26).
Thus, we have the formula for the probability of such a
reaction producing the ground state of carbon-12. With the
classical collision rate between the nuclei of 4He and 8Be,
we can write the production rate of carbon-12 as

dn�12
dt

¼ n4n8πr02ð41
3 þ 8

1
3Þ2

�
8

mrπ

�1
2

�
1

kBT

�3
2

×
Z
fusion window

E exp

�
−

E
kBT

�����GðEÞj2dE; ðB1Þ

where n4;8 are the particle concentrations of helium and
beryllium, respectively. If we consider helium burning at a
temperature T ¼ 2 × 108 K and density ρ ¼ 108 kg · m−3,
then n4 ¼ 1.5 × 1034 m−3 and n8 ¼ 7 × 1026 m−3. jGðEÞj2
is a function of the incoming energy E as given in Eq. (26),
which describes the probability of an incoming particle
staying inside the potential well. The helium obeys the
Maxwell-Boltzmann distribution, which drops rapidly as E
increases, while tunneling is exponentially suppressed as E
decreases. As a result, the helium distribution that pene-
trates the barrier has a peak (i.e., the Gamow peak) in
energy EG. The position of this peak and its width is the
“fusion window.” As predicted, this is where the resonance
level of carbon-12 is located. According to Ref. [31], the
total decay width of the state is 9.3 eV and the radiative
decay width is 3.7 × 10−3 eV. This gives the stellar

synthesis rate of carbon-12 dn�
12

dt ∼ 1030 m−3 · s−1. If the
12C� resonance is absent (or off by a fraction of an MeV) or
its decay is slower, the synthesis of carbon will be very
much suppressed. This case clearly illustrates the need for
the resonance as well as its decay after tunneling.

APPENDIX C: SPHALERON IN MINKOWSKI
SPACETIME

Here we take the opportunity to make a few comments
on the “few-to-many” issue for the initial state. An
instanton in Euclidean space is four-dimensional and
spherically symmetric, allowing all available sizes. On
the other hand, in tunneling through a sphaleron barrier in
Minkowski spacetime, we only have three-dimensional
spherical symmetry, where its size is determined by the
W-boson mass mW and the Higgs boson mass mH. Now, it
is straightforward to treat the Chern-Simons variable
μðtÞ=π as a function of Minkowski time [24]. Although
the choice of μðtÞ is gauge dependent, it is gauge invariant
at μ=π ∈ Z=2 and can be identified with the topological
Chern-Simons or Hopf index at μ=π ∈ Z.
For energies just above or just below the sphaleron

energy, we find that the width Γ of the Bloch wave is of the
order of 10 GeV [19], yielding a time scale of δt ∼ ℏ=Γ.
This should be compared with the width of the sphaleron in
the spatial direction, dictated by mW and mH (of the order
of 100 GeV). For lower-energy Bloch waves, the μðtÞ=π
lasts much longer. This is in line with the argument given in
Ref. [32] that is worth repeating here.
For two W bosons with momenta pμ ¼ ðE; 0; 0; pÞ and

qμ ¼ ðE; 0; 0;−pÞ in high energy (E ≫ mW) scattering, we
have pþ ¼ Eþ p ∼ 2E and q− ∼ 2E, while p− ∼m2

W=2E
and qþ ∼m2

W=2E. In position space, since

FIG. 11. A schematic picture of how two high-energy W
bosons can produce a sphaleron in Minkowski spacetime. Each
vertex factor of g from their peripheral emission is canceled by a
1=g when it hits the sphaleron. So the initial process (with an
infinite set of diagrams) has a leading-order contribution of g−2.
Each final-state W boson has a factor of 1=g associated with it;
thus, there is the possibility of enhancing the the (Bþ L)-
violating rate with multiple production of W bosons [8].
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x� ∼ 1=p∓; y� ∼ 1=q∓;

as in multiperipheral scattering, the characteristic distance
probed by their scattering is

ðx − yÞ2 ∼ ðxþ − yþÞðx− − y−Þ ∼ −xþy− ∼ −E2=m4
W;

which is large. In general, the sphaleron scattering behaves
quite different from that of the instanton. This is illustrated in
Fig. 11,where μðtÞ ismore extended along the time direction
than along the spatial directions. The initial scattering at 1=α

order in the coupling is shown. This includes all tree
diagrams in which there is no exchange of bosons.
Figure 11 suggests that the creation of such a sphaleron
is not suppressed by any power in the coupling.
So far, our discussion has ignored theUð1Þ gauge field in

the standard EW theory. Turning it on will lower the
sphaleron mass from 9.1 to 9.0 TeV [2]. It is interesting to
note that the resulting sphaleron may be described as a
virtual magnetic monopole-antimonopole pair, as a stable
magnetic monopole does not exist in EW theory.
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