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In this paper, we propose a wider class of symmetries including the Galilean shift symmetry as a
subclass. We will show how to construct ghost-free nonlocal actions, consisting of infinite derivative
operators, which are invariant under such symmetries, but whose functional form is not simply given by
exponentials of entire functions. Motivated by this, we will consider the case of a scalar field and discuss
the pole structure of the propagator which has infinitely many complex conjugate poles, but satisfies the
tree-level unitarity. We will also consider the possibility to construct UV complete Galilean theories by
showing how the ultraviolet behavior of loop integrals can be ameliorated. Moreover, we will consider
kinetic operators respecting the same symmetries in the context of linearized gravity. In such a scenario, the
graviton propagator turns out to be ghost free and the spacetime metric generated by a pointlike source is
nonsingular. These new nonlocal models can be seen as an infinite derivative generalization of Lee-Wick
theories and open a new branch of nonlocal theories.
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I. INTRODUCTION

Back in the fifties, when the renormalizability of
quantum electrodynamics was still not totally established,
physicists were also trying to improve the UV behavior of
the loop integrals by introducing nonlocal form factors in
the Lagrangians [1]. It was observed that integrals could be
made more convergent by using nonpolynomial differential
operators, and infinite order derivative1 actions with such
form factors were also studied from a pure mathematical
and axiomatic point of view [2].
However, only in the last three decades infinite derivative

models have aroused much interest and have been widely
investigated [3–14]. Important results have been found
especially in the context of string-field theory and p-adic
string [15–21], and for quadratic (in the curvature) theories
of gravity around Minkowski [7–9], deSitter, and anti-
deSitter backgrounds [22].
Infinite derivative gauge theories and their UV behavior

were first studied in Refs. [3,5,6], where the authors
computed the propagator and noticed that the presence of

exponentials of entire functions does not introduce any new
poles other than the local ones. Subsequently, the same
results were also obtained in the context of gravity [7–9],
where it is possible to formulate an infinite derivative theory
whose action is of higher order in the curvature invariants but
still free from ghost fields, therefore unitary at the quantum
level [21,23–25]. Such theories are also often called ghost-
free infinite derivative field theories. An important point to
note here is that the infinite order derivatives make the
interaction nonlocal; indeed the interaction vertex is
smeared out in the momentum space.
In ghost-free infinite derivative gravity, the propagator has

been computed around maximally symmetric backgrounds
[9,22]. It was shown that no other dynamical degree of
freedom (d.o.f.) is introduced besides the massless graviton
of general relativity (GR) [3,8,9,22]. At the classical level,
the nonlocal gravitational interaction can solve blackhole
[8,9,22,26–40] and cosmological singularities [7,41–44].
Infinite derivative gravity in three dimensions has been
recently studied, in both massless and massive cases; see
Ref. [45]. At a quantum level, there are hints to show that the
UV behavior of the theory is ameliorated [4,6,8,10,46,47].
Furthermore, in Ref. [48], it was noticed that the β function
vanishes in theUV regime, i.e., for energies beyond the scale
of nonlocality, p2 > M2

s . Infinite derivative Lagrangians
were also studied in the context of thermal field theory [49–
51], inflationary cosmology [52], supersymmetry [53,54],
and applied to the study of the Casimir effect in curved
background [55]. Recently, it has also been pointed out that
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1In this paper, we will use both the expressions “nonlocal” and
“infinite derivative” to mean the same thing.
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in the presence of multiparticle interactions, such as muti-
particle scattering, the nonlocal scale can be transmuted
from the UV to the IR depending on the number of particles
involved in the scattering process. The emergence of such a
new scale in the IR is an interesting result which demon-
strates the existence of some complementarity principle in
infinite derivative theories [56].
So far, we have only mentioned nonlocal theories whose

Lagrangians are constructed in terms of analytic operators.
It is worthwhile to mention that nonanalytic operators like
1=□ and lnð□Þ naturally emerge from one-loop quantum
corrections to the effective action of quantum gravity
[57–60] and also in causal-set theory [61].
In this paper, our aim is to understand if there exist

nonlocal actions which exhibit some special symmetries. In
particular, we will ask whether we can enlarge the Galilean
symmetry [62], ∂μϕ → ∂μϕþ bμ, which is typical of the-
ories with some specific derivative self-interactions and is
often taken as a fundamental guiding principle to construct
and constrain the interactionLagrangians in both flat [62,63]
and curved backgrounds [64–71]. A very interesting aspect
of higher derivative theories with Galilean symmetry is that
the field equations are second order in the derivatives, thus
no instabilities arise [62]. However, we now wish to
generalize to actions with derivatives of infinite order.
The paper is organized as follows.
(i) In Sec. II, we will find nonlocal operators which are

invariant under a larger class of transformations
containing theGalilean transformations as a subclass.

(ii) In Sec. III, we will introduce a new nonlocal field
theoretical model motivated by such a new sym-
metry; we will compute the propagator and discuss
the pole structure, by showing tree-level unitarity.
We will show that the UV properties of one-loop
integrals are ameliorated by the presence of deriv-
atives of infinite order. Furthermore, we will notice
that such nonlocal models can be seen as an infinite
derivative generalization of the Lee-Wick theories,
since the propagator possesses infinite complex
conjugate poles.

(iii) In Sec. IV, we will consider the same class of
nonlocal operators in the context of linearized
quadratic gravity, and also in this case we will
compute the propagator by showing tree-level uni-
tarity. Very interestingly, we will notice that it is
possible to enlarge the class of nonlocal form factors
which make the graviton propagator ghost free at the
tree level, without restricting ourself to exponentials
of entire functions. Moreover, we will show that the
linearized spacetime metric generated by a pointlike
source is nonsingular.

(iv) In Sec. V, we will discuss our results and draw the
conclusions.

(v) In the Appendix, we will discuss another larger class
of transformations containing the shift transforma-

tions as a subclass, and consider a natural nonlocal
extension of the Dirac action, which can be gauge
invariant.

Throughout the paper, we will work with the mostly

positive metric signature ð−þþþÞ, and we use natural

units ℏ ¼ 1 ¼ c.

II. ENLARGING THE GALILEAN SYMMETRY:
FROM LOCAL TO NONLOCAL OPERATORS

In standard local field theory, Lagrangians are con-
structed in terms of polynomials of fields and polynomials
of derivatives of fields since one is interested in observables
at low energies; therefore, the order of derivatives is always
finite,

L≡ Lðϕ; ∂ϕ; ∂2ϕ;…; ∂nϕÞ; ð1Þ

where n is a positive finite integer and ϕðxÞ, in principle,
can be any kind of tensorial field. It is often very important
to ask what kind of transformations leave a Lagrangian
(action) invariant, especially in order to find symmetries
and conserved quantities. In particular, we are interested
here in the Galilean shift symmetry in the Minkowski
spacetime, defined by the following transformation:

∂μϕðxÞ → ∂μϕðxÞ þ bμ; ð2Þ

which is also equivalent to

ϕðxÞ → ϕðxÞ þ bμxμ þ a; ð3Þ

where fbμ; ag are five constant parameters which generate
the whole Galilean symmetry. Lagrangians invariant under
the above transformations can be constructed, in terms of a
massless scalar field ϕðxÞ, where only specific derivative
self-interactions are present. For example, the following
Lagrangian exhibits such a symmetry [62]:

L ¼ 1

2
ϕ□ϕ −

1

2Λ3
□ϕ∂μϕ∂μϕþ � � � ; ð4Þ

where Λ can be, for example, a cutoff energy scale above
which an effective field theory description may break
down. A more general form of the Lagrangian in Eq. (4)
can be found in Ref. [62]. By integrating by parts, it can be
easily shown that the Lagrangian (or, more rigorously, the
action) in Eq. (4) is invariant under the Galilean trans-
formation in Eqs. (2) and (3).
We now wish to understand whether we can enlarge the

Galilean symmetry while working with nonlocal differ-
ential operators. First of all, for the sake of clarity, let us
mention that a nonlocal Lagrangian is a function which can
be also made up of nonpolynomial differential operators,
like, for instance,
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L≡L
�
ϕ;∂ϕ;∂2ϕ;…;∂nϕ;

1

□
ϕ;lnð□=M2

sÞϕ;e□=M2
sϕ;…

�
;

ð5Þ

where the nonpolynomial operators contain infinite order
covariant derivatives; Ms is the energy scale of nonlocality
beyond which new physics should manifest and observ-
ables at high energy can be computed, and it is math-
ematically needed to make the arguments of logarithm and
exponential dimensionless. For example, in the case of the
exponential of the d’Alembertian, we can write the operator

e□=M2
s ¼

X∞
n¼0

1

n!

�
□

M2
s

�
n
; ð6Þ

where the derivative order n goes up to infinity. As also
mentioned above in Sec. I, exponentials of entire functions,
like the one in Eq. (6), have been used previously in the
context of infinite derivative field theory and gravity
[3,4,6–9,14].
In order to satisfy the Galilean shift symmetry in Eqs. (2)

and (3), we need to construct other nonlocal operators
which are different from the ones already known in the
literature. Further note that second order derivative oper-
ators, containing terms like the ones in Eq. (4), are invariant
under the Galilean transformation in Eqs. (2) and (3). It is
easy to understand that if□ϕ is invariant under the Galilean
transformation, then any power □nϕ will be also invariant,
which in turn implies that the following nonlocal operator
is also invariant under the Galilean transformation:

O1ϕ≡ ðe−□=M2
s − 1Þϕ ¼

X∞
n¼1

1

n!

�
−

□

M2
s

�
n
ϕ; ð7Þ

which is slightly different from the one in Eq. (6).
We now wish to ask the following question—is there any

function ψðxÞ, such that the transformation ϕðxÞ → ϕðxÞ þ
ψðxÞ leaves invariant the nonlocal operator in Eq. (7), but
not the local one? Or, in other words, can we find a function
ψðxÞ such that ðe−□=M2

s − 1Þψ ¼ 0, but □ψ ≠ 0?

A. 1D case

Let us start considering a one-dimensional (1D) case as a
warm-up exercise, namely let us find solutions to the
following nonlocal differential equation:

ðe−∂2x=M2
s − 1ÞψðxÞ ¼ 0 ⇔ e−∂x=M2

sψðxÞ ¼ ψðxÞ; ð8Þ

which also means to find the eigenfunctions ψ of the
operator e−∂2x=M2

s of unit eigenvalue. First of all, note that
the following property holds:

e−∂2x=M2
s ¼ e−∂2x=M2

sþi2πk ≡ eθ2 ; ð9Þ

where k is an integer number and we have defined the
differential operator

θ2 ≔ −
∂2
x

M2
s
þ i2πk: ð10Þ

Thus, we need to find solutions for the equation
θ2ψðxÞ ¼ 0,

θ2ψðxÞ ¼ −
∂2
x

M2
s
ψðxÞ þ i2πkψðxÞ ¼ 0 ⇒ ψkðxÞ

¼ Ckeð1þiÞ ffiffiffiffi
πk

p
Msx þDke−ð1þiÞ ffiffiffiffi

πk
p

Msx; ð11Þ

where Ck andDk are two integration constants, which need
to be fixed by imposing that for k ¼ 0, then we recover the
Galilean shift symmetry in Eqs. (2) and (3). Indeed, by
choosing

Ck ¼
Bffiffiffi
k

p ; Dk ¼ −
Bffiffiffi
k

p þ a; ð12Þ

we obtain

ψkðxÞ ¼
Bffiffiffi
k

p ðeð1þiÞ ffiffiffiffi
πk

p
Msx − e−ð1þiÞ ffiffiffiffi

πk
p

MsxÞ

þ ae−ð1þiÞ ffiffiffiffi
πk

p
Msx; ð13Þ

which in the limit k → 0 gives ψ0ðxÞ ¼ bxþ a,

lim
k→0

Bffiffiffi
k

p ðeð1þiÞ ffiffiffiffi
πk

p
Msx − e−ð1þiÞ ffiffiffiffi

πk
p

MsxÞ

¼ 2ð1þ iÞB ffiffiffi
π

p
Msx≡ bx; ð14Þ

where b≡ 2ð1þ iÞB ffiffiffi
π

p
Ms. The solutions in Eq. (13) are

valid for positive integer, k > 0, while in the case of k < 0,
the solutions read

ψkðxÞ ¼ −
iBffiffiffiffiffijkjp ðeði−1Þ

ffiffiffiffiffiffi
πjkj

p
Msx − e−ði−1Þ

ffiffiffiffiffiffi
πjkj

p
MsxÞ

þ ae−ði−1Þ
ffiffiffiffiffiffi
πjkj

p
Msx: ð15Þ

B. 4D case

We can now apply the same procedure to the 4D case.
Also, in this case we will find a larger class of solutions
which are eigenfunctions of the differential operator
e−□=M2

s with eigenvalue equal to one,

ðe−□=M2
s − 1ÞψðxÞ ¼ 0 ⇔ e−□=M2

sψðxÞ ¼ ψðxÞ; ð16Þ

and such that □ψðxÞ ≠ 0. We can write
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e−□=M2
s ¼ e−□=M2

sþi2πk ≡ eθ2 ; ð17Þ

where we have now defined

θ2 ≔ −
□

M2
s
þ i2πk: ð18Þ

We can show that the solutions of the differential equation
θ2ψðxÞ ¼ 0 are given by

ψkðxÞ ¼
Bffiffiffi
k

p ðeð1þiÞ ffiffiffiffi
πk

p
Mscμxμ − e−ð1þiÞ ffiffiffiffi

πk
p

MscμxμÞ

þ ae−ð1þiÞ ffiffiffiffi
πk

p
Mscμxμ ; ð19Þ

where c2 ≡ cμcμ ¼ 1; the analog solution for k < 0 can be
easily found too, as done above for the 1D case. In the limit
k → 0, we obtain

lim
k→0

ψkðxÞ ¼ 2ð1þ iÞB ffiffiffi
π

p
Mscμxμ þ a≡ bμxμ þ a; ð20Þ

which recovers the Galilean shift symmetry in Eq. (3), with
bμ ≡ 2ð1þ iÞB ffiffiffi

π
p

Mscμ, where the integration constant
can be also written as B ¼ ffiffiffiffiffiffiffiffiffiffi

bμbμ
p

=ð2ð1þ iÞ ffiffiffi
π

p
MsÞ. Note

that we can now rewrite the function ψk in Eq. (19) in a
more compact form as follows:

ψkðxÞ ¼
2Bffiffiffi
k

p sinh

� ffiffiffi
k

p

2B
bμxμ

�
þ ae−

ffiffi
k

p
2Bbμx

μ
: ð21Þ

Hence, we have explicitly shown that by working with the
nonlocal, infinite derivative operator introduced in Eq. (7),
we can enlarge the Galilean shift symmetry, which now
becomes a subclass of a wider class described by the
following family of parameters:

fa; bμ; kg: ð22Þ

Thus, the Galilean transformations correspond to the
subfamily fa; bμ; 0g. In other words, the Galilean shift
symmetry turns out to be a subclass (k ¼ 0) of this larger
symmetry which is expressed in terms of the following field
transformation2:

ϕðxÞ → ϕðxÞ þ ψkðxÞ: ð23Þ

C. Generic powers of □

So far we have only performed our study for the non-
local operator O1 ¼ ðe−□=M2

s − 1Þ, where the exponent is
simply given by □. However, we can also consider more
generic entire functions in the exponent, as, for example,
ð−□=M2

sÞn or even nonpolynomial entire functions. In the
former general scenario, a new symmetry can be still found,
but the solutions for ψkðxÞ become more complicated as the
power n increases.
For instance, we can consider the following more general

operator:

On ≔ eð−□=M2
sÞn − 1: ð24Þ

First of all, we can write

eð−□=M2
sÞn ¼ eð−□=M2

sÞnþi2πk ≡ eθn ; ð25Þ

where

θn ≔
�
−

□

M2
s

�
n
þ i2πk: ð26Þ

In this more general case, the solutions of the field equation

θnψkðxÞ≡
�
−

□

M2
s

�
n
ψkðxÞ þ i2πkψkðxÞ ¼ 0 ð27Þ

is formally given by

ψkðxÞ ¼
X2n
l¼1

Ck;ledlðkÞ
1=2nMscμxμ ; ð28Þ

where dl are constant parameters depending on the order 2n
of the differential equation in Eq. (27) and satisfy the
algebraic equation ð−d2l Þn þ 2πi ¼ 0, while Ck;l are inte-
gration constants. Anyway, in this paper we will mainly
work with the nonlocal operator O1.

III. A NONLOCAL MODEL WITH INFINITE
COMPLEX CONJUGATE POLES

In this section, we wish to construct actions, or in other
words Lagrangians, which respect the new symmetry in
Eq. (23). By working with the nonlocal operator O1,
defined in Eq. (7), possible action terms are given by

S ¼ S1 þ S2 þ S3 þ � � � þ Sn þ � � � ; ð29Þ

where

2The transformation in Eq. (23) generalizes the Galilean
symmetry in Eq. (3) to the case of nonpolynomial differential
operators. In a similar way, we can also construct other nonlocal
differential operators which exhibit an enlarged shift symmetry
(ϕ → ϕþ c). See Appendix for more details.
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S1 ¼ −
M2

s

2

Z
d4xϕðe−□=M2

s − 1Þϕ;

S2 ¼ −λ2
M2

s

2

Z
d4x½ðe−□=M2

s − 1Þϕ�2;

S3 ¼ −λ3
Ms

3!

Z
d4x½ðe□=M2

s − 1Þϕ�3;

..

. ..
.

Sn ¼ −λn
M4−n

s

n!

Z
d4x½ðe□=M2

s − 1Þϕ�n

..

. ..
.
; ð30Þ

with λi being dimensionless coupling constants and the
iteration is meant for n > 2. For instance, up to cubic vertex
interaction, the action in Eq. (29) explicitly reads

S ¼ −
1

2

Z
d4x

�
ð1 − 2λ2ÞM2

sϕe−□=M2
sϕ − ð1 − λ2ÞM2

sϕ
2

þ λ2M2
sðe−□=M2

sϕÞ2 − λ3Ms

3
ϕ3 þ λ3Msϕ

2e□=M2
sϕ

− λ3Msϕðe□=M2
sϕÞ2 þ λ3Ms

3
ðe□=M2

sϕÞ3
�
þ � � � ; ð31Þ

and it is invariant under the transformation in Eq. (23).
Moreover, we can expand the previous action in powers of
1=Ms, and up to order Oð1=M5

sÞ, we obtain

S ¼
Z

d4x

�
1

2
ϕ□ϕ −

ð1þ 2λ2Þ
4M2

s
ϕ□2ϕþ ð1þ 6λ2Þ

12M4
s

ϕ□3ϕ

−
λ3

3!M5
s
ð□ϕÞ3 þO

�
1

M6
s

��
; ð32Þ

which is now invariant under the Galilean shift trans-
formation in Eqs. (2) and (3). However, the nonlocal,
infinite derivative action in Eqs. (29) and (30) is not the
most general one. Indeed, we can also consider nonlocal
terms which include the ones in Eq. (4) when expanding in
powers of 1=Ms. For example, the following nonlocal term:

M3
s

Z
d4xðe□=M2

s − 1Þϕ ðe□=M2
s − 1Þ
□

∂μϕ
ðe□=M2

s − 1Þ
□

∂μϕ

ð33Þ

is invariant under the transformation in Eq. (23), and the
first nonvanishing term in the expansion is given by

1

M3
s
□ϕ∂μϕ∂μϕ; ð34Þ

which appears in the effective local Lagrangian in Eq. (4),
where the energy cutoff is now the nonlocal scale Ms.

Hence, we have shown that by demanding the symmetry in
Eq. (23) we can straightforwardly construct new field
theoretical models for nonlocal interaction.

A. Nonlocal propagator

In this subsection, we will consider the simplest action
possessing the symmetry in Eq. (23) and only work with a
kinetic term, as we are mainly interested in computing the
propagator. Such a kinetic action is

S1 ¼ −
M2

s

2

Z
d4xϕðe−□=M2

s − 1Þϕ; ð35Þ

which, in the local limit, recovers the Klein-Gordon action
for a massless scalar field. The field equation can be easily
found by variating the action and reads

e−□=M2
sϕ ¼ ϕ: ð36Þ

The bare propagator is defined as the inverse of the kinetic
operator, and in momentum space it is given by

ΠðpÞ ¼ 1

M2
sðep2=M2

s − 1Þ : ð37Þ

First of all, because of the presence of infinite order time
derivatives no spectral representation can be defined for the
propagator in Eq. (37) since the time-ordered structure is
lost. As a physical consequence, causality is violated at
very small length scales of the order of 1=Ms; see, for
instance, Refs. [11,14].
Note that the pole structure of the propagator is more

complicated than the local one; besides the usual real
massless pole at p2 ¼ 0, we now have an infinite number of
complex conjugate poles. Indeed, the denominator in
Eq. (37) vanishes for

p2 ¼ i2πM2
sl ⇔ p0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 − i2πM2

sl
q

; ð38Þ

where l is an integer number: l ¼ 0 corresponds to the
only real massless pole, while each value of l ≠ 0 is
associated with two complex poles, whose conjugates are
the ones corresponding to the opposite integer −l. In fact,
the square root in Eq. (38) can be also decomposed in real
and imaginary parts as follows:

p0 ¼ �

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗4 þ 4π2M4

sl2
p

2

s

− iεðlÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p⃗2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗4 þ 4π2M4

sl2
p

2

s 1
CA; ð39Þ
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where εðlÞ ≔ θðlÞ − θð−lÞ, with θ being the Heaviside
step function, or equivalently εðlÞ≡ signðlÞ. See Fig. 1 for
the graphic location of the poles.
We can isolate the real massless pole in the propagator by

writing

ΠðpÞ ¼
�

p2

M2
sðep2=M2

s − 1Þ

�
1

p2
≡ 1

fðpÞ
1

p2
;

fðpÞ≡M2
s
ep

2=M2
s − 1

p2
; ð40Þ

where the zeros of the function fðpÞ correspond to the
complex poles. Indeed fðpÞ ¼ 0, if and only if
p2 ¼ i2πM2

sl, with l ≠ 0. Furthermore, the propagator
has no essential singularities at infinity which, in principle,
allow us to define a Wick rotation from Minkowski to
Euclidean space and vice versa.
Note that the presence of complex poles, in general, may

spoil perturbative unitarity [72], in such a way that
predictability would be lost at the quantum level. For this
reason, further investigations are needed in order to under-
stand whether the unitarity condition, and so the optical
theorem, is satisfied.

B. Unitarity with infinite complex conjugate poles

The unitarity condition of the S matrix reads

S†S ¼ 1; ð41Þ

which, by writing S ¼ 1þ iT, can also be expressed as
follows:

2ImfTg ¼ T†T; ð42Þ

where the last equation represents the so-called optical
theorem. One of the implications of the optical theorem is

that the imaginary part of any amplitude T cannot be
negative. For instance, in the case of a tree-level amplitude
with constant three-vertex interaction, it requires the
imaginary part of the propagator to satisfy the inequality:
ImfΠðpÞg ≥ 0. It is very important to understand whether
the imaginary part of the propagator in Eq. (37) satisfies the
optical theorem, i.e., whether the presence of infinite
complex conjugate poles spoils unitarity or not.
Let us introduce a new variable z ≔ −p2=M2

s , so that the
nonlocal propagator in Eq. (37) will read

ΠðzÞ ¼ 1

M2
sðe−z − 1Þ ; ð43Þ

whose poles are given by z ¼ i2πl, where l is an integer
number. We now wish to partially decompose the propa-
gator in an infinite number of fractions, each corresponding
to a single pole. Indeed, we can write

ΠðzÞ ¼ −
ez=2

M2
sðez=2 − e−z=2Þ ¼ −

1

2M2
s

ez=2

sinhðz=2Þ

¼ 1

i2M2
s

ez=2

sinðiz=2Þ ; ð44Þ

then by using the following identity:

1

sinðiz=2Þ ¼
2

i

X∞
l¼−∞

ð−1Þl 1

zþ i2πl
; ð45Þ

we obtain3

ΠðzÞ ¼ −
ez=2

M2
sz

−
ez=2

M2
s

X∞
l¼1

ð−1Þl
�

1

zþ i2πl
þ 1

z − i2πl

�
:

ð46Þ

By going back to the momentum variable p2, we obtain the
nonlocal propagator in Eq. (37) expressed in partial
decomposition,

ΠðpÞ ¼ e−p
2=2M2

s

p2
þ e−p

2=2M2
s

X∞
l¼1

ð−1Þl
�

1

p2 þ i2πM2
sl

þ 1

p2 − i2πM2
sl

�
: ð47Þ

FIG. 1. In this plot it is illustrated the complex plane forp0 and the
locations of some poles of the propagator in Eq. (37). We have set
Ms ¼ jp⃗j ¼ 1 for simplicity, and plotted the poles l ¼ 0;…; 12.

3Note that the result in Eq. (46) is a consequence of the
Weierstrass factorization theorem for entire functions. Indeed, the
theorem states that any entire functionHðzÞ can be always written
as HðzÞ ¼ ehðzÞ

Q
N
i¼1ðz − η2i Þ, where hðzÞ is also an entire

function and the number N can be either finite or infinite, and
counts the number of zeros of the function HðzÞ. In our case,
HðzÞ ¼ 2M2

se−z=2 sinhðz=2Þ is the kinetic operator which has an
infinite number of zeros given by η2l ¼ i2πM2

sl, with l ∈ Z.
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Therefore, we have been able to explicitly isolate all the
poles of the propagators. The first term corresponds to the
real massless pole, p2 ¼ 0, while the second term takes into
account of all the infinite complex conjugate poles, p2 ¼
�i2πM2

slwith l ≠ 0. By using this form of the propagator,
it is now easy to compute its imaginary part

ImfΠðpÞg ¼ Im

�
e−p

2=2M2
s

p2 − iϵ

�
¼ e−p

2=2M2
sϵ

p4 þ ϵ2
¼ πδð4Þðp2Þ> 0;

ð48Þ

where in the last step we have taken the limit ϵ → 0, and we
have used the fact that

Im

�X∞
l¼1

ð−1Þl
�

1

p2 þ i2πM2
sl

þ 1

p2 − i2πM2
sl

��
¼ 0:

ð49Þ

Thus, the infinite complex poles do not contribute to the
imaginary part of the propagator, and it is due to the fact
that they appear in conjugate pairs. This implies that the
propagator in Eqs. (37) and (47) satisfies the tree-level
unitarity condition.
It is worthwhile to mention that in Refs. [73–77], the

authors have considered the unitarity issue with a finite
number of complex conjugate poles; in particular in
Refs. [74,75] it was rigorously shown that the optical
theorem is preserved at all orders in perturbation theory.
They have considered the so-called Lee-Wick theories,
whose Lagrangians are sixth order in the derivatives and the
propagator is made up of the usual real pole plus a pair of
complex conjugate poles. Our propagator in Eqs. (37) and
(47) can be seen as a nonlocal extension of the Lee-Wick
propagator, where we now have infinite pairs of complex
conjugate poles whose infinite number is related to the
presence of infinite order derivatives in the Lagrangian. In
this respect, the new nonlocal model we have introduced
can be seen as an infinite derivative Lee-Wick model.
Since the nonlocal propagators whose form given by the

first term in Eq. (47) leads to unitary theories [21,23–25],
and knowing that the presence of a finite number of
complex conjugate poles does not break the unitary
condition either, we would expect also in our case the
optical theorem to hold at all orders in perturbation theory.
However, further investigations on perturbative unitarity
with infinite complex conjugate poles will be subject of
future works.

C. Ultraviolet behavior

The tree-level Lagrangians in local Galilean theories are
free from any kind of instabilities as the corresponding field
equations turn out to be of second order in the deri-
vatives [62]. However, as shown in Refs. [78,79], quantum

corrections can introduce new higher derivative terms like
ϕ□2ϕ, ϕ□3ϕ and ϕ□4ϕ, which cause classical instabilities
and unitarity violation, since ghost modes are introduced.
Nonlocal generalizations of Galilean theories can avoid

any ghost d.o.f., not only at the tree level but also when
quantum loop corrections are taken into account, due to
their improved UV behavior. As an example, we can
consider the following nonlocal model4:

S ¼ −
M2

s

2

Z
d4xϕðe−□=M2

s − 1Þϕ

− λ
M3

s

2

Z
d4xðe□=M2

s − 1Þϕ ðe□=M2
s − 1Þ
□

∂μϕ

×
ðe□=M2

s − 1Þ
□

∂μϕ; ð50Þ

where λ is a dimensionless coupling constant. Very
interestingly, in the low energy regime, □ ≪ M2

s , the
action in Eq. (50) reduces to some version of local
Galilean actions with the cubic term in Eq. (34) plus
higher order terms including the one-loop quantum cor-
rections found in Refs. [78,79]; for instance, by expanding
up to Oð1=M6

sÞ, we obtain

S ¼
Z

d4x
�
1

2
ϕ□ϕ −

1

4M2
s
ϕ□2ϕ −

λ

2M3
s
□ϕ∂μϕ∂μϕ

þ 1

12M4
s
ϕ□3ϕ −

λ

M5
s
□ϕ∂μϕ□∂μϕ

−
1

24M6
s
ϕ□4ϕþOð1=M7

sÞ
�
: ð51Þ

Therefore, the action in Eq. (50) can represent a UV
completion of the local cubic Galilean action considered
in Refs. [78,79]; we will now clarify it with a one-loop
computation.
The corresponding Feynman rules in Euclidean space are

given by the nonlocal propagator ΠðkÞ in Eq. (37) and by
the following three vertices:

Vðk1;k2;k3Þ¼ λM3
sðe−k21=M2

s −1Þðe−k22=M2
s −1Þðe−k23=M2

s −1Þ

×

�
k1 ·k2
k21k

2
2

þk1 ·k3
k21k

2
3

þk2 ·k3
k22k

2
3

�
: ð52Þ

The presence of the exponentials in both propagator and
interaction vertex ameliorates the UV behavior of the
theory not only at the tree level but also at higher loop
orders. From power counting arguments we can easily
understand how loop integrals will behave: since both
propagator and vertices are exponentially suppressed at

4Note that the action in Eq. (50) is intrinsically nonlocal, i.e.,
there exists no field redefinition which can transform it into a
local form.
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high energy, the UV behavior of the loop integrals is
generally governed by e−Ik

2=M2
s, where I is the number of

internal propagators, thus the superficial degree of diver-
gence is given by

D ¼ −I: ð53Þ

Note that D is always negative, which is a good hint in
favor of the finiteness of loop integrals for the model in
Eq. (50). We can explicitly show this feature, and make it
more clear, by computing the self-energy ΣðpÞ at one loop
for the action in Eq. (50),

Σð1ÞðpÞ ¼
Z

d4k
ð2πÞ4 ΠðkÞΠðp − kÞV2ðk; p − k; pÞ

¼ λ2M2
sðe−p2=M2

s − 1Þ2
Z

d4k
ð2πÞ4

×
ðe−k2=M2

s − 1Þ2ðe−ðp−kÞ2=M2
s − 1Þ2

ðek2=M2
s − 1Þðeðp−kÞ2=M2

s − 1Þ

×

�
k · ðp − kÞ
k2ðp − kÞ2 þ

k · p
k2p2

þ p · ðp − kÞ
p2ðp − kÞ2

�
2

: ð54Þ

The integral for the self-energy is finite; indeed, by taking
the UV regime ðk2 ≫ M2

sÞ of the integrand, we obtain

Σð1ÞðpÞ!UV
λ2M2

sðe−p2=M2
s − 1Þ2e−p2=M2

s

Z
d4k
ð2πÞ4

e−2k
2=M2

s

k2
;

ð55Þ

where the factor 2 in the exponent is in agreement with the
power counting in Eq. (53):D ¼ −2. Note that the integrals
in Eq. (54) can be computed in Euclidean space and then
have to be analytically continued back to Minkowski.
From Eq. (55) we can notice that the loop integral is

exponentially suppressed at high energy and does not need
to be renormalized. Therefore, for the model in Eq. (50), we
would expect no ghost d.o.f. to emerge when quantum loop
corrections are taken into account, unlike the local case
studied in Refs. [78,79]. However, more general studies
regarding the UV behavior of these nonlocal models are
needed and will be subjected to future investigations.

D. Comparison with infinite derivative field theory

In the context of infinite derivative field theory (IDT), the
simplest action we can consider is [11,14]

SIDT ¼
Z

d4x

�
1

2
ϕe−□=M2

s□ϕ −
λ

3!
ϕ3

�
; ð56Þ

which, by making the field redefinition ϕ̃ ¼ e−□=2M2
sϕ, can

be equivalently written as

SIDT ¼
Z

d4x

�
1

2
ϕ̃□ϕ̃ −

λ

3!
ðe□=2M2

s ϕ̃Þ3
�
: ð57Þ

From Eqs. (56) and (57), it is clear that nonlocality in IDT
becomes important only when the interaction is switched
on, while at the level of free theory it does not play any role
and the only solutions are given by the local ones [80], i.e.,
□ϕ ¼ 0. A different scenario happens in our nonlocal
model; indeed, the free field equation in Eq. (36) admits a
larger class of solution as we have shown above.
The propagator for the action in Eq. (56) is given by

ΠIDTðpÞ ¼
e−p

2=M2
s

p2
≡ 1

fIDTðpÞ
1

p2
; fIDTðpÞ≡ ep

2=M2
s ;

ð58Þ

which has only one massless real pole at p2 ¼ 0 and has the
same form of the first term of the nonlocal propagator in
Eq. (37). Therefore, the main difference between the
propagators in Eqs. (37) and (58) is due to the presence
of infinite complex conjugate poles in the latter, corre-
sponding to the zeros of the function fðpÞ in Eq. (40).
While, in the case of IDT, the function fIDTðpÞ does not
have any poles, being an exponential of an entire function.
The IDT propagator in Eq. (58) has an essential singularity
at infinity, while the propagator in Eq. (37) does not diverge
at infinity, along any direction. Another net distinction is
related to the fact that the IDT propagator diverges in the
UV for timelike exchange,5 while the new nonlocal
propagator does not, being well behaved for both timelike
(s-channel) and spacelike (t-channel) separations.
Both propagators have an improved UV behavior due to

the presence of the exponential which gives a suppression
in the high energy limit. Furthermore, the IDT action in
Eq. (56) does not exhibit the enlarged Galilean symmetry
in Eq. (23).

E. Comparison with p-adic string

The action of p-adic string is given by [16]

Sp-adic ¼
m4

s

g2s

p2

p − 1

Z
d4x

�
−
1

2
ϕp−□=m2

sϕþ 1

pþ 1
ϕpþ1

�
;

ð59Þ

where ϕðxÞ is a scalar field and represents the open string
tachyon, the scale ms is the string mass, and the parameter
gs is the open string coupling constant. By defining
M2

s ≡m2
s= lnp, we can also write the action in Eq. (59)

as follows:

5In infinite derivative field theories, this pathologic behavior of
the bare propagator can be cured by dressing it through quantum
loop corrections [14,81].
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Sp-adic¼
M4

s

g2s

p2ðlnpÞ2
p−1

Z
d4x

�
−
1

2
ϕe−□=M2

sϕþ 1

pþ1
ϕpþ1

�
:

ð60Þ

The first derivation of the p-adic action assumed p to be a
prime number, but it was realized that it can be defined for
any positive integer, and even the case p ¼ 1 can be treated
in some way [82].
At first sight, the nonlocal action in Eq. (35) seems a

particular case of the p-adic action in Eq. (60); indeed for
p ¼ 1, we obtain the term ϕ2. However, the p-adic string
for p ¼ 1 has nothing to do with the action in Eq. (35): the
1-adic action also has a potential term as shown in
Ref. [82], while the action in Eq. (35) is purely kinetic.
Moreover, unlike the propagator in Eq. (37), the p-adic
propagator is given by

Πp-adicðpÞ ¼ e−p
2=M2

s ; ð61Þ

which possesses no poles. As for the high energy regime,
both propagators in Eqs. (37) and (61) have a similar
ameliorated UV behavior.

IV. A NONLOCAL GRAVITY WITH INFINITE
COMPLEX CONJUGATE POLES

In this section, we will construct a linearized gravita-
tional action around the Minkowski background by using
the nonpolynomial form-factor introduced in the previous
sections, in such a way that the graviton propagator has a
similar structure as the one in Eq. (37). Wewill also find the
corresponding nonlinear action up to quadratic order in the
curvature invariants, around Minkowski background.
Let us consider the following gravitational action, which

is the most general quadratic in the curvature, torsion free,
and parity invariant [3,4,7–9,22]6:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 1

2
ðRF 1ð□ÞR

þRμνF 2ð□ÞRμν þRμνρσF 3ð□ÞRμνρσÞ
�
; ð62Þ

where F ið□Þ are three form factors which we can be
uniquely determined around Minkowski background by
fixing the form of the graviton propagator [8,9]. Since we
are interested in the linearized regime, we can always
neglect the Riemann squared term RμνρσF 3ð□ÞRμνρσ;
indeed, the following identity holds:

Rμνρσ□
nRμνρσ ¼ 4Rμν□

nRμν −R□
nRþOðR3Þ þ div;

ð63Þ

where OðR3Þ takes into account of terms of the order
Oðh3Þ and div includes total derivatives. By linearizing
around the Minkowski,

gμν ¼ ημν þ κhμν; ð64Þ

where κ ≔
ffiffiffiffiffiffiffiffiffi
8πG

p
and hμν is the linearized metric pertur-

bation; we obtain the following action up to Oðh2μνÞ [9]:

Sð2Þ ¼ 1

4

Z
d4x

�
1

2
hμνfð□Þ□hμν − hσμfð□Þ∂σ∂νhμν

þ hgð□Þ∂μ∂νhμν −
1

2
hgð□Þ□h

þ 1

2
hλσ

fð□Þ − gð□Þ
□

∂λ∂σ∂μ∂νhμν
�
; ð65Þ

where h≡ ημνhμν is the trace, □ ¼ ημν∂μ∂ν is the flat
d’Alembertian and

fð□Þ ¼ 1þ 1

2
F 2ð□Þ□;

gð□Þ ¼ 1 − 2F 1ð□Þ□ −
1

2
F 2ð□Þ□: ð66Þ

The gauge independent part of the saturated graviton
propagator around the Minkowski background has the
following general expression [3,8,9]:

ΠðpÞ ¼ P2

fðpÞp2
þ P0

s

ðfðpÞ − 3gðpÞÞp2
; ð67Þ

where we have suppressed the tensorial indices for sim-
plicity; P2 and P0

s are the so-called spin projection
operators, which project along the spin-2 and spin-0
components, respectively; see Refs. [9,31,84] for more
details. Note that for f ¼ 1 ¼ g we recover the graviton
propagator, ΠGRðpÞ ¼ P2=p2 − P0

s=2p2, of the Einstein
general relativity.

A. Gravitational action and propagator

The gravitational analog of the nonlocal scalar propa-
gator defined in Eq. (37) can be found by making the
following choice for the functions fðpÞ and gðpÞ∶

fðpÞ ¼ gðpÞ ¼ M2
s
ep

2=M2
s − 1

p2
→ fð□Þ ¼ gð□Þ

¼ −M2
s
e−□=M2

s − 1

□
; ð68Þ

which fixes the form of the gauge independent part of the
saturated propagator as follows:

6See Ref. [83] for a more general infinite derivative action
which also contains torsion and generalizes Poincaré gravity.
Here, we will not discuss this more general case.
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ΠðpÞ ¼ 1

fðpÞΠGRðpÞ ¼
p2

M2
sðep2=M2

s − 1ÞΠGRðpÞ

¼ 1

M2
sðep2=M2

s − 1Þ

�
P2 −

P0
s

2

�
: ð69Þ

Note that the linearized action in Eq. (65) with the nonlocal
operator in Eq. (68) is invariant under the following
enlarged Galilean transformation7:

hμνðxÞ → hμνðxÞ þ ημνψkðxÞ; ð70Þ

where ψk has been introduced in Eqs. (19) and (21).
Also in this case, the propagator possesses a massless

real pole, p2 ¼ 0, and an infinite number of massive
complex conjugate poles. However, as we have shown
in Sec. III B, tree-level unitarity is maintained. From the
choice made in Eq. (68), we can also find the expressions
for the form factors in the full nonlinear gravitational
action; indeed we can easily check that Eq. (68) implies

2F 1ð□Þ ¼ −F 2ð□Þ ¼ 2M2
s
e−□=M2

s − 1

□
2

þ 2

□
: ð71Þ

Thus, the nonlocal quadratic gravitational action is given by
the following expression:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − Gμν

1

□
Rμν

−M2
sGμν

e−□=M2
s − 1

□
2

Rμν

�
; ð72Þ

where Gμν ¼ Rμν − 1=2gμνR is the Einstein tensor. Note
that the two quadratic terms with 1=□ and 1=□2 are
individually nonanalytic, but their particular combination
in Eq. (71) and so the gravitational action in Eq. (72) are
analytic functions of □. Such an analyticity is also
respected at the linearized level, where the nonlocal
operator in the kinetic term is given by ðe−□=M2

s − 1Þ=□;
see Eq. (73) in the next subsection. In relation with the
discussion in Sec. III B, the nonlocal gravitational model in
Eq. (72) can be seen as an infinite derivative generalization
of (local) Lee-Wick theories of gravity [76,77,85].

B. Linearized metric solution

We now wish to compute the gravitational potential
generated by a pointlike source in the nonlocal theory of

gravity introduced above. By varying the linearized action
in Eq. (65), and imposing the choice in Eq. (68), we can
obtain the following linearized field equations:

M2
s
e−□=M2

s − 1

□
ð□hμν − ∂σ∂νhσμ − ∂σ∂μhσν þ ημν∂ρ∂σhρσ

þ ∂μ∂νh − ημν□hÞ ¼ 16πGTμν; ð73Þ

where Tμν is the stress-energy tensor of the matter sector.
By working in the transverse gauge, we can write a

static and spherically symmetric linearized metric as
follows [86]:

ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΨÞðdr2 þ r2dΩ2Þ; ð74Þ

so that κh00¼−2Φ<1, κhij¼−2Ψδij <1, κh¼2ðΦ−3ΨÞ,
with Φ and Ψ being the two unknown metric potentials.
Then, by considering a static pointlike source, of mass m,
described by the stress-energy tensor Tμν ¼ mδ0μδ

0
νδ

ð3Þðr⃗Þ,
one can show that the metric potentials solve the following
modified Poisson equation:

M2
sðe−∇2=M2

s − 1ÞΦðrÞ ¼ M2
sðe−∇2=M2

s − 1ÞΨðrÞ
¼ −4πGmδð3Þðr⃗Þ; ð75Þ

which in the local limit Ms → ∞ recovers the standard
Poisson equation for the Newtonian potential. The solution
of the nonlocal differential equation in Eq. (75) can be
found by going to Fourier space and then antitransforming
back to coordinate space as follows:

ΦðrÞ ¼ ΨðrÞ ¼ −
2Gm
πM2

s

1

r

Z
∞

0

dk
k sinðkrÞ
ek

2=M2
s − 1

: ð76Þ

We have not been able to compute the integral in Eq. (76)
analytically; however, we can do it numerically and its
behavior is shown in comparison with the Newtonian
potential8 in Fig. 2.
We can notice that the metric potential is nonsingular at

the origin, unlike the Newtonian one, indeed nonlocality
regularizes its behavior. We can exactly compute the value
of the metric potential at r ¼ 0 and is given by

Φð0Þ≡ lim
r→0

ΦðrÞ ¼ −
2Gm
πM2

s

Z
∞

0

dk
k2

ek
2=M2

s − 1

¼ −
GmMs

2
ffiffiffi
π

p ζ

�
3

2

�
; ð77Þ

7Note that the transformation in Eq. (70) is uniquely defined up
to constant factors. Indeed, the transformations δhμν ¼ cμνψk,
with cμν being a constant symmetric tensor, and δhμν ¼ c∂μ∂νψk
with c being a constant scalar, have the same functional form as
the one in Eq. (70). It is obvious that this enlarged Galilean
symmetry is only respected at the linearized level, while it is not
realized at the nonlinear level.

8It is worthwhile mentioning that the best experiment of
Newton’s law has been performed with torsion balances and
the law has been tested up to 5.6 × 10−5 m [87]. From such an
experiment, one could infer a rough constraint on the new scale
which would read 1=Ms < 5.6 × 10−5 m.
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where ζðxÞ≡P∞
n¼0 n

−x is the Riemann zeta function. Note
that the linearity of the metric potential holds as long as the
following inequality is satisfied:

GmMsffiffiffi
π

p ζ

�
3

2

�
< 1: ð78Þ

C. Comparison with infinite derivative gravity

Now we briefly make a comparison between the non-
local gravity model we have introduced above and the
infinite derivative gravity (IDG) studied in Refs. [7–9]. The
simplest form of the gravitational action in IDG is given by
the following choice for the form factors [8,9,26]:

fIDGð□Þ ¼ gIDGð□Þ ¼ e−□=M2
s ⇒ 2F IDG;1ð□Þ

¼ −F IDG;2ð□Þ ¼ −2
e−□=M2

s − 1

□
; ð79Þ

which fixes the form of the gravitational action as follows:

SIDG¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
RþGμν

e−□=M2
s −1

□
Rμν

�
: ð80Þ

The gauge independent part of the graviton propagator
around the Minkowski background takes the following
form [3,6–8]:

ΠIDGðpÞ ¼
1

fIDGðpÞ
ΠGRðpÞ ¼ e−p

2=M2
sΠGRðpÞ;

fIDGðpÞ≡ ep
2=M2

s : ð81Þ

As in the scalar case analyzed in Sec. II, we note that there
is a net difference between the two propagators in Eqs. (69)

and (81). The main difference is contained in the function
fðpÞ. Indeed, in IDG the function fIDGðpÞ does not
introduce any new d.o.f. besides the massless spin-2
graviton. While, for the gravitational model proposed in
this paper, the function fðpÞ possesses zeros which
introduce extra poles in the graviton propagator in
Eq. (69), and they are complex and infinite in number.
Nevertheless, both satisfy the tree-level unitarity.

V. CONCLUSIONS

In this paper, we have introduced a new nonlocal model
motivated by a symmetry principle. We have noticed that
by working with nonlocal actions it is possible to enlarge
the Galilean shift symmetry. Indeed, we have found a new
class of transformations, ϕ → ϕþ ψk [see Eq. (23)], under
which our nonlocal actions are invariant, and such a wider
class includes the Galilean shift symmetry as a subclass, for
k ¼ 0. The energy scale Ms does not play the role of a
cutoff, but it is a new physical scale which tells us when
nonlocality becomes relevant. In this sense, nonlocal
theories are an attempt toward UV completeness and are
aimed to go beyond the effective field theory prescription.
For a scalar field, we have constructed some possible

actions which respect such a symmetry and studied the
corresponding field equation and propagator. The pole
structure of the propagator turns out to be more compli-
cated; indeed, besides the massless pole of the local theory,
we have also an infinite number of complex conjugate
poles which, in principle, may spoil unitarity. However, we
have noticed that all the infinite complex poles do not
contribute to the imaginary part of the propagator, so that
unitarity turns out to be preserved at the tree level. We have
good hints that the optical theorem holds at all orders in
perturbation theory, but further investigations will be
subject of future works. Moreover, we have made some
comparisons with other two already well-known nonlocal
theories, i.e., infinite derivative field theory and p-adic
string. Our new nonlocal model can be seen as an infinite
derivative generalization of Lee-Wick theories, as we have
propagators with pairs of conjugate poles which are not
finite in number, but infinite.
We have analyzed these particular form factors also in

the context of linearized gravity. We have constructed its
nonlocal action quadratic in the curvature, which in the
linear regime around Minkowski manifestly exhibits the
enlarged Galilean symmetry. Also, in this case we have
computed the propagator which, besides the massless
graviton pole, possesses an infinite number of complex
conjugate poles, but no real ghost modes. We have also
computed the gravitational potential generated by a point-
like source, which turns out to be nonsingular at the origin,
unlike the Newtonian one.
In the framework of nonlocal theories, the requirement of

using exponentials of entire functions seemed to be
fundamental in order to avoid ghost modes in higher

FIG. 2. We have plotted the numerical result of the integral in
Eq. (76) (blue solid line), which represents the behavior of the
gravitationalmetric potential generated by a pointlike source in the
nonlocal theory described by the action in Eq. (72). We have also
plotted the Newtonian potential (red dashed line) to make a
comparison.We have setG ¼ 1 ¼ Ms andm ¼ 0.5 for simplicity.
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derivative gravity9 [7,9] and, thus, preserving unitarity at
the perturbative level [21,23–25]. Very interestingly, we
have been able to enlarge the class of nonlocal form factors
which make the propagator ghost free, without restricting
ourself to functions fðpÞ which are equal to exponential of
entire functions. However, further studies to show that the
optical theorem holds at each order in perturbation theory
will be subject of future works.
Analogously to the scalar field case, this new model of

nonlocal gravity can be seen as an infinite derivative
generalization of Lee-Wick theories of gravity. However,
we have to be careful in the extension to full nonlinear
gravity because Galilean shift symmetry must be broken
when we couple it to gravity even in finite order derivative
theories. We need to consider further extension [89,90],
which will be investigated in future publication. These new
form factors might be useful to be explored also in the
context of string field theory.
Finally, one could also take a different point of view

according to which nonlocal extensions of the Galilean
symmetry might be useful to formulate nonlocal effective
field theories, analogously to the local case with the
Galilean symmetry, but now by demanding the enlarged
symmetry in Eq. (23) to be satisfied. This might be crucial
for discriminating local and nonlocal theories. We leave
such a possibility for future investigations.

ACKNOWLEDGMENTS

The authors thank Francesco Di Filippo, Anupam
Mazumdar, and Luciano Petruzziello for constructive com-
ments. M. Y. is supported in part by JSPS KAKENHI
Grants No. JP25287054, No. JP15H05888,
No. JP18H04579, and No. JP18K18764, and by the
Mitsubishi Foundation. M. Y. would like to thank Luca
Buoninfante and Gaetano Lambiase for invitation and
hospitality during his stay at University of Salerno, where
this work was completed.

APPENDIX: ENLARGING THE SHIFT
SYMMETRY

In this paper, we have constructed nonlocal Lagrangians
invariant under the transformations in Eq. (23), which
generalize the Galilean symmetry in Eq. (3) to the case of
nonpolynomial differential operators. However, we have
not yet considered the simpler case of the shift symmetry,
which is defined by the following transformation [91–93]:

ϕðxÞ → ϕðxÞ þ c; ðA1Þ

where c is a constant parameter generating the whole
family of shift transformations; for instance, first derivative
operators like ∂xϕ exhibit such a symmetry. As we have
done for the Galilean symmetry in Sec. II, we now wish to
find some differential operator invariant under a wider class
which also includes the shift symmetry in Eq. (A1) as a
subclass. In other words, we want to find the form of the
function χðxÞ such that the operators are invariant under the
transformation ϕ → ϕþ χ, but ∂xχ ≠ 0.
Let us consider a one-dimensional case and find the

solution for the following differential equation:

ðe−∂x=Ms − 1ÞχðxÞ ¼ 0 ⇔ e−∂x=MsχðxÞ ¼ χðxÞ; ðA2Þ

which also means to find the eigenfunctions χ of the
operator e−∂x=Ms of unit eigenvalue. First of all, note that the
following property holds:

e−∂x=Ms ¼ e−∂x=Msþi2πk ≡ eθ1 ; ðA3Þ

where k is an integer number and we have defined the
differential operator

θ1 ≔ −
∂x

Ms
þ i2πk: ðA4Þ

Thus, we need to find solutions for the equation
θ1χðxÞ ¼ 0,

θ1χðxÞ ¼ −
∂x

Ms
χðxÞ þ i2πkχðxÞ ¼ 0 ⇒ χkðxÞ ¼ ceiπkMsx;

ðA5Þ

where c is an integration constant, which can be uniquely
fixed by imposing that for k ¼ 0 we recover the shift
symmetry in Eq. (A1).
Hence, we have explicitly shown that by working with

the nonpolynomial operator introduced in Eq. (A2), we can
enlarge the shift symmetry, which now becomes a subclass
of a wider class described by the following family of
parameters:

fc; kg; ðA6Þ

which is expressed in terms of the following field trans-
formation:

ϕðxÞ → ϕðxÞ þ χkðxÞ: ðA7Þ

Thus, the shift transformations correspond to the
subfamily fc; 0g.
The generalization to a four-dimensional case is given by

replacing the operator ∂x by dμ∂μ with dμ being a constant
vector: such a nonpolynomial operator might break the
Lorentz invariance explicitly.

9It is worthwhile to mention that the authors in Refs. [88]
introduced a new quantization prescription which converts the
ghost mode into a so-called fakeon (fake particle), in such a way
that both unitarity and renormalizability are satisfied even in four-
derivative gravity.
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1. A nonlocal generalization of the Dirac action

Another interesting case with this enlarged shift sym-
metry in four dimension is a fermion, ψðxÞ. Wewant to find
the form of the function λðxÞ such that the operators are
invariant under the transformation ψðxÞ → ψðxÞ þ λðxÞ,
but ∂μλðxÞ ≠ 0.
Let us find the solution for the following differential

equation:

ðeiγμ∂μ=Ms − 1ÞλðxÞ ¼ 0 ⇔ eiγ
μ∂μ=MsλðxÞ ¼ λðxÞ; ðA8Þ

which means to find the eigenfunctions ψðxÞ of the
operator eiγ

μ∂μ=Ms of unit eigenvalue; here, γμ are the
standard Gamma matrices. Note that the following property
holds:

eiγ
μ∂μ=Ms ¼ eiγ

μ∂μ=Msþi2πk1 ≡ eθ̂1 ; ðA9Þ

where k is an integer number, 1 is the 4 × 4 identity matrix,
and we have defined the differential matrix operator

θ̂1 ≔ i
γμ∂μ

Ms
þ i2πk1: ðA10Þ

Thus, we need to find solutions for the equation
θ̂1λðxÞ ¼ 0,

θ̂1λðxÞ¼ i
γμ∂μ

Ms
λðxÞþ i2πkλðxÞ¼0⇒ λkðxÞ¼eiMslμxμλ0;

ðA11Þ

where λ0 is a constant Dirac spinor, which can be uniquely
fixed by imposing that for k ¼ 0 we recover the standard

shift symmetry, while lμ is a vector satisfying −lμγμ=
Ms þ 2πik1 ¼ 0.
Hence, we have explicitly shown that by working with

the nonpolynomial operator introduced in Eq. (A8), we
can enlarge the shift symmetry, which now becomes a
subclass of a wider class described by the following family
of parameters:

fλ0; kg; ðA12Þ

which is expressed in terms of the following field trans-
formation:

ψðxÞ → ψðxÞ þ λkðxÞ: ðA13Þ

Thus, the shift transformations correspond to the subfam-
ily fλ0; 0g.
Note that the following action is invariant under this

enlarged shift symmetry:

S ¼ Ms

Z
d4xψ̄ðeiγμ∂μ=Ms − 1Þψ ; ðA14Þ

which is a natural nonlocal extension of the Dirac action.
Such an action is invariant under the global Uð1Þ.
Furthermore, if we introduce a gauge field Aμ and cova-
riantize the derivatives, the following operator eiγ

μDμ, with
Dμ ¼ ∂μ þ ieAμ, one can show that also the local gauge
symmetry is preserved. Indeed, if ψ → eiαðxÞψ and
Aμ → Aμ þ 1=e∂μαðxÞ, then ðiγμDμÞnψ→eiαðxÞðiγμDμÞnψ .
The fermionic nonlocal action in Eq. (A14) will be

further investigated in future publication.
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