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Using the Batalin-Vilkovisky technique and the background field method the proof of gauge invariant
renormalizability is elaborated for a generic model of quantum gravity which is diffeomorphism invariant
and has no other, potentially anomalous, symmetries. The gauge invariant renormalizability means that in
all orders of loop expansion of the quantum effective action one can control deformations of the generators
of gauge transformations which leave such an action invariant. In quantum gravity this means that one can
maintain general covariance of the divergent part of effective action when the mean quantum field, ghosts,
and antifields are switched off.
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I. INTRODUCTION

Renormalization is one of the main issues in quantum
gravity. The traditional view on the difficulty of quantizing
gravitational field is that the quantum general relativity is
not renormalizable, while the renormalizable version of the
theory includes fourth derivatives [1] and therefore it is not
unitary. In the last decades this simple two-side story was
getting more complicated, with the new models of super-
renormalizable gravity, both polynomial [2] and nonpoly-
nomial [3] (see also earlier papers [4,5]). Typically, these
models intend to resolve the conflict between nonrenor-
malizability and nonunitarity by introducing more than four
derivatives.
The main advantage of the nonpolynomial models is that

the tree level propagator may have the unique physical pole
corresponding to massless graviton. At the same time the
dressed propagator has, typically, an infinite (countable)
amount of the ghostlike states with complex poles [6] and
hence the questions about physical contents and quantum
consistency of such a theory remains open, especially
taking into account the problems with reflection positivity
[7] (see further discussion in [8]). It might happen that the
construction of a consistent version of quantum gravity

should not go through the S-matrix approach, since the flat
limit and hence well-defined asymptotic states may not
exist for the theories of gravity which are consistent even at
the semiclassical level [9]. In this case the central question
related to ghosts is the stability of the physically relevant
classical solutions, and there are positive indications for the
nonlocal models in this respect [10].
On the other hand, within the polynomial model one can

prove the unitarity of the S-matrix within the Lee-Wick
approach [11] to quantum gravity in four [12] and even
higher dimensional space-times [13]. Furthermore, it is
possible to make explicit one-loop calculations [14] which
provide exact beta-functions in these theories due to the
superrenormalizability of the theory. In the part of stability,
the existing investigations concerned special backgrounds,
namely cosmological [15,16] and black hole cases [17–19].
While the black hole results are not conclusive, the results
for the cosmological backgrounds provide good intuitive
understanding of the problem of stability in the gravity
models with higher derivative ghosts.
Independent on the efforts in better understanding the

role of ghosts and instabilities in both polynomial and
nonpolynomial models, it would be useful to have a formal
proof that these theories are renormalizable or superrenor-
malizable. The existing proofs concern only fourth deriva-
tive quantum gravity [1] (see also Refs. [20,21] as an
application of a general approach [22]). In the present work
we present the proof of a gauge invariant renormalizability
in the general models of quantum gravity, which includes
second derivative and higher derivative, polynomial and
nonpolynomial models. The preliminary condition for the
consideration which is given in the present paper is that
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there should be regularization which preserves the sym-
metries of the classical action. Thus our consideration
cannot be directly applied to the models with conformal or
chiral symmetries where one can expect to meet the
corresponding anomalies. The consideration is based on
the Batalin-Vilkovisky formalism, which enables one to
analyse Becchi-Rouet-Stora-Tyutin (BRST) invariant
renormalization of a wide class of gauge theories (including
quantum gravity) without going into the details of a
quantum gravity model, but using only the general structure
of gauge algebra. The Batalin-Vilkovisky formalism use an
algebraic approach to construct solutions of the master
equation for different types of generating functionals of
Green functions. In the present work we apply this
formalism to establish the general structure of extended
action and renormalized effective action for a quantum
gravity model of a very general form within the background
field formalism.
The paper is organized as follows. In Sec. II we

formulate the Batalin-Vilkovisky formalism combined with
the background field method in the case of quantum
gravity. In Sec. III this formalism is applied to the formal
proof of renormalizability in the model of quantum gravity
of the general form. On the top of that we use the same
formalism to briefly discuss the gauge fixing independence
of the S-matrix of gravitational excitations in the theories of
quantum gravity. Section IV discuss the renormalization
of multiloop diagrams in the general type models of
quantum gravity. The difference with the subsequent
analysis of the power counting is that for the subdiagrams
one has to keep the mean fields of the quantum metric,
ghosts and auxiliary field, while for the power counting
the mean fields can be omitted. Section V consists of
the brief review of a power counting in quantum gravity,
which enables one to classify the nonrenormalizable,
renormalizable, and superrenormalizable models. Taking
into account the contents of the previous sections, this
classification is now based on a more solid background and
we decided to include it here. Finally, in Sec. VI we draw
our conclusions.
Condensed DeWitt’s notations [23] are used in the paper.

Right and left derivatives of a quantity f with respect to the
variable φ are denoted as δrf

δφ and δlf
δφ , correspondingly. The

Grassmann parity and the ghost number of a quantity A are
denoted by εðAÞ and ghðAÞ, see, e.g., Eq. (23) in the last
case. The condensed notation for the space-time integral
inD dimensions,

R
dx ¼ R

dDx is used throughout the text.

II. QUANTUM GRAVITY IN THE BACKGROUND
FIELD FORMALISM

Our starting point is an arbitrary action of a
Riemann’s metric, S0 ¼ S0ðgÞ, where g ¼ fgμνðxÞg. The
action is assumed invariant under the general coordinate
transformations,

x0μ ¼ fμðxÞ → xμ ¼ xμðx0Þ;

gμν → g0μνðx0Þ ¼ gαβðxÞ
∂xα
∂x0μ

∂xβ
∂x0ν : ð1Þ

The standard examples of the theories of our interest are
Einstein gravity with a cosmological constant term,

SEHðgÞ ¼ −
1

κ2

Z
dx

ffiffiffiffiffiffi
−g

p ðRþ 2ΛÞ ð2Þ

and a general version of higher derivative gravity,

SðgÞ ¼ SEHðgÞ þ
Z

dx
ffiffiffiffiffiffi
−g

p fRμναβΠ1ð□=M2ÞRμναβ

þ RμνΠ2ð□=M2ÞRμν þ RΠ3ð□=M2ÞRþOðR3
…Þg;
ð3Þ

where Π1;2;3 are polynomial or nonpolynomial form factors
and the last term represents nonquadratic in curvature
terms. In quantum theory the action (3) may lead to the
theory which is nonrenormalizable, renormalizable, or even
superrenormalizable, depending on the choice of the
functions Π1;2;3ðxÞ and the nonquadratic terms.
The parameter M2 in the form factors Π1;2;3ð□=M2Þ is a

universal mass scale at which the quantum gravity effect
becomes relevant. For instance, it can be the square of the
Planck mass, but there may be other options, including
multiple scale models, as analyzed in [24]. For the analysis
presented below the unique necessary feature is that the
action should be diffeomorphism invariant.
In the infinitesimal form the transformations (1) read

x0μ ¼ xμ þ ξμðxÞ → xμ ¼ x0μ − ξμðx0Þ;
gμν → g0μνðxÞ ¼ gμνðxÞ þ δgμνðxÞ; ð4Þ

where

δgμνðxÞ¼−ξσðxÞ∂σgμνðxÞ−gμσðxÞ∂νξ
σðxÞ−gσνðxÞ∂μξ

σðxÞ:
ð5Þ

The invariance of the action S0ðgÞ under the trans-
formations (5) can be expressed in the form of the
Noether identity

Z
dx

δS0ðgÞ
δgμνðxÞ

δgμνðxÞ ¼ 0: ð6Þ

In what follows we will also need the transformation rule
for vector fields AμðxÞ and AμðxÞ,

δAμðxÞ ¼ −ξσðxÞ∂σAμðxÞ − AσðxÞ∂μξ
σðxÞ; ð7Þ

δAμðxÞ ¼ −ξσðxÞ∂σAμðxÞ þ AσðxÞ∂σξ
μðxÞ: ð8Þ
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Let us present the transformations (5) in the form

δgμνðxÞ ¼
Z

dyRμνσðx; y; gÞξσðyÞ; ð9Þ

where

Rμνσðx; y; gÞ ¼ −δðx − yÞ∂σgμνðxÞ − gμσðxÞ∂νδðx − yÞ
− gσνðxÞ∂μδðx − yÞ ð10Þ

are the generators of gauge transformations of the metric
tensor gμν with gauge parameters ξσðxÞ. The algebra of
gauge transformations is defined by the algebra of gen-
erators, which has the following form:

Z
du

�
δRμνσðx;y;gÞ

δgαβðuÞ
Rαβγðu;z;gÞ−

δRμνγðx;z;gÞ
δgαβðuÞ

Rαβσðu;y;gÞ
�

¼−
Z

duRμνλðx;u;gÞFλ
σγðu;y;zÞ; ð11Þ

where

Fλ
αβðx; y; zÞ ¼ δðx − yÞδλβ

∂
∂xα δðx − zÞ

− δðx − zÞδλα
∂
∂xβ δðx − yÞ; ð12Þ

Fλ
αβðx; y; zÞ ¼ −Fλ

βαðx; z; yÞ ð13Þ

are structure functions of the gauge algebra which do not
depend on the metric tensor gμν. Therefore, independent on
the form of the action, any theory of gravity looks like a
gauge theory with closed gauge algebra and structure
functions independent on the fields (metric tensor, in the
case), i.e., similar to the Yang-Mills theory.
It proves useful to perform quantization of gravity on an

external background, represented by a metric tensor ḡμνðxÞ.
In the simplest case the Riemann space may be just the
Minkowski space-time with the metric tensor ημν ¼ const.
On the other hand, introducing an arbitrary background
metric provides serious advantages, as we shall see in what
follows. The standard reference on the background field
formalism in quantum field theory is [25–27] (see also
recent advances for the gauge theories in [28–32]).
Within the background field method the metric tensor

gμνðxÞ is replaced by the sum

gμνðxÞ → ḡμνðxÞ þ hμνðxÞ; such that

S0ðgÞ → S0ðḡþ hÞ: ð14Þ

Here hμνðxÞ is called quantum metric and is regarded as a
set of integration variables in the functional integrals for
generating functionals of Green functions.

The action S0ðḡþ hÞ is a functional of two variables ḡ
and h and therefore it has additional symmetries because of
extra degrees of freedom. Namely, it is invariant under the
following transformations

δḡμν ¼ ϵμν and δhμν ¼ −ϵμν ð15Þ

with arbitrary symmetric tensor functions ϵνμ ¼ ϵμν ¼
ϵμνðxÞ. In particular, this means that there is an ambiguity
is defining the gauge transformations for ḡ and h. To fix this
arbitrariness we require that the transformation of our
interest has the right flat limit when ḡμνðxÞ is traded for
ημν. Then the gauge transformation of the quantum metric
fields hμν in the presence of external (fixed) background ḡ
should have the form

δhμνðxÞ ¼
Z

dyRμνσðx; y; ḡþ hÞξσ; ð16Þ

while δḡμνðxÞ ¼ 0 and the action remains invariant,
δS0ðḡþ hÞ ¼ 0.
Because of the similarity with the Yang-Mills field, the

Faddeev-Popov quantization procedure is quite standard
and the resulting action SFP ¼ SFPðϕ; ḡÞ has the form [33]

SFP ¼ S0ðḡþ hÞ þ Sghðϕ; ḡÞ þ Sgfðϕ; ḡÞ: ð17Þ

Taking into account the presence of an external background
metric ḡ, the ghost action has the form

Sghðϕ; ḡÞ ¼
Z

dxdydz
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
C̄αðxÞHβγ

α ðx; y; ḡ; hÞ

× Rβγσðy; z; ḡþ hÞCσðzÞ; ð18Þ

with the notation

Hβγ
α ðx; y; ḡ; hÞ ¼ δχαðx; ḡ; hÞ

δhβγðyÞ
: ð19Þ

The Sgfðḡ; hÞ is the gauge fixing action

Sgfðϕ; ḡÞ ¼
Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
BαðxÞχαðx; ḡ; hÞ: ð20Þ

which corresponds to the singular gauge condition. For the
nonsingular gauge condition the action has the form

Sgfðϕ;ḡÞ¼
Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p

×

�
BαðxÞχαðx;ḡ;hÞþ

1

2
BαðxÞḡαβðxÞBβðxÞ

�
: ð21Þ
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In what follows we shall use the form (20), where
χαðx; ḡ; hÞ are the gauge fixing functions, which are called
to remove the degeneracy of the action S0ðḡþ hÞ.
Let us introduce an important notation

ϕ ¼ fϕig ¼ fhμν; Bα; Cα; C̄αg ð22Þ

for the full set of quantum fields including quantum metric,
Faddeev-Popov ghost, antighost and the Nakanishi-Lautrup
auxiliary fields Bα. The Grassmann parity of these fields
will be denoted as εðϕiÞ ¼ εi, such that for ghost and
antighost εðCαÞ ¼ εðC̄αÞ ¼ 1, while for the auxiliary fields
Bα and metric εðBαÞ ¼ εðhμνÞ ¼ 0.
The conserved quantity called ghost number is defined

for the same fields as

ghðCαÞ ¼ 1; ghðC̄αÞ ¼−1 and ghðBαÞ ¼ ghðhμνÞ ¼ 0:

ð23Þ

For any admissible choice of gauge fixing functions
χαðx; ḡ; hÞ action (17) is invariant under global supersym-
metry (BRST symmetry) [34,35],1

δBhμνðxÞ¼
Z

dyRμναðx;y; ḡþhÞCαðyÞμ; δBBαðxÞ¼ 0;

δBCαðxÞ¼−CσðxÞ∂σCαðxÞμ; δBC̄αðxÞ¼BαðxÞμ; ð24Þ

where μ is a constant Grassmann parameter. Let us present
the BRST transformations (24) in the form

δBϕ
iðxÞ ¼ Riðx;ϕ; ḡÞμ; εðRiðx;ϕ; ḡÞÞ ¼ εi þ 1; ð25Þ

where Ri ¼ fRðhÞ
μν ; Rα

ðBÞ; R
α
ðCÞ; R

α
ðC̄Þg and

RðhÞ
μν ðx;ϕ; ḡÞ ¼

Z
dyRμνσðx; y; ḡþ hÞCσðyÞ;

Rα
ðBÞðx;ϕ; ḡÞ ¼ 0;

Rα
ðCÞðx;ϕ; ḡÞ ¼ −CσðxÞ∂σCαðxÞ;

Rα
ðC̄Þðx;ϕ; ḡÞ ¼ BαðxÞ: ð26Þ

Then the BRST invariance of the action SFP reads

Z
dx

δrSFP
δϕiðxÞR

iðx;ϕ; ḡÞ ¼ 0: ð27Þ

The invariance property (27) can be expressed in a compact
and useful form called Zinn-Justin equation, by introducing
the set of additional variables ϕ�

i ðxÞ. The new fields have

Grassmann parities opposite to the corresponding fields
ϕiðxÞ, namely εðϕ�

i Þ ¼ εi þ 1.
The extended action S ¼ Sðϕ;ϕ�; ḡÞ reads

S ¼ SFP þ
Z

dxϕ�
i ðxÞRiðx;ϕ; ḡÞ: ð28Þ

It easy to note that the new variables ϕ�
i ðxÞ serve as the

sources to BRST generators (26). Then the relation (27)
takes the standard form of the Zinn-Justin equation [38] for
the action (28),

Z
dx

δrS
δϕiðxÞ

δlS
δϕ�

i ðxÞ
¼ 0; ð29Þ

One can note that using left and right derivatives in the last
equation is relevant due to the nontrivial Grassmann
parities of the involved quantities.
According to the terminology of Batalin-Vilkovisky

formalism [39,40] the sources ϕ�
i ðxÞ are known as anti-

fields. The fundamental notion in the Batalin-Vilkovisky
formalism is the antibracket for two arbitrary functionals of
fields and antifields, F ¼ Fðϕ;ϕ�Þ and G ¼ Gðϕ;ϕ�Þ. The
antibracket is defined as

ðF;GÞ ¼
Z

dx

�
δrF

δϕiðxÞ
δlG

δϕ�
i ðxÞ

−
δrF

δϕ�
i ðxÞ

δlG
δϕiðxÞ

�
; ð30Þ

which obeys the following properties:
(1) Grassmann parity relations

εððF;GÞÞ ¼ εðFÞ þ εðGÞ þ 1 ¼ εððG;FÞÞ; ð31Þ

(2) Generalized antisymmetry

ðF;GÞ ¼ −ðG;FÞð−1ÞðεðFÞþ1ÞðεðGÞþ1Þ; ð32Þ

(3) Leibniz rule

ðF;GHÞ ¼ ðF;GÞH þ ðF;HÞGð−1ÞεðGÞεðHÞ; ð33Þ

(4) Generalized Jacobi identity

ððF;GÞ;HÞð−1ÞðεðFÞþ1ÞðεðHÞþ1ÞþcycleðF;G;HÞ≡0:

ð34Þ

In terms of antibracket Eq. (29) can be written in a
compact form,

ðS; SÞ ¼ 0; ð35Þ

which is the classical master equation of Batalin-
Vilkovisky formalism [39,40]. This equation will be
generalized to the quantum domain and extensively used

1The gravitational BRST transformations were introduced in
[1,36,37].
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to analyze renormalizability of quantum gravity in the next
section.
Now we are in a position to formulate the quantum

theory. The generating functional of Green functions is
defined in the form of functional integral2

ZðJ; ḡÞ ¼
Z

dϕ exp

�
i
ℏ
½SFPðϕ; ḡÞ þ Jϕ�

�

¼ exp

�
i
ℏ
WðJ; ḡÞ

�
; ð36Þ

where WðJ; ḡÞ is the generating functional of connected
Green functions. In (36) the DeWitt notations are used,
namely

Jϕ ¼
Z

dxJiðxÞϕiðxÞ; where

JiðxÞ ¼ fJμνðxÞ; JðBÞα ðxÞ; J̄αðxÞ; JαðxÞg ð37Þ

are external sources for the fields (22). The Grassmann
parities and ghost numbers of these sources satisfy the
relations

εðJiÞ ¼ εðϕiÞ; ghðJiÞ ¼ ghðϕiÞ: ð38Þ

Let us a detailed consideration of the generating func-
tionals and their gauge dependence. As a first step, consider
the vacuum functional ZΨðḡÞ, which corresponds to the
choice of gauge fixing functional (27) in the presence of
external fields ḡ,

ZΨðḡÞ ¼
Z

dϕ exp

�
i
ℏ
½S0ðḡþ hÞ þΨðϕ; ḡÞR̂ðϕ; ḡÞ�

�

¼ exp
�
i
ℏ
WΨðḡÞ

�
; ð39Þ

where we introduced the operator

R̂ðϕ; ḡÞ ¼
Z

dx
δr

δϕiðxÞR
iðx;ϕ; ḡÞ ð40Þ

and Ψðϕ; ḡÞ is the fermionic gauge fixing functional,

Ψðϕ; ḡÞ ¼
Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
C̄αχαðx; ḡ; hÞ: ð41Þ

Taking into account (40) and (41), the definition (39)
becomes an expression

ZΨðḡÞ ¼
Z

dϕ exp

�
i
ℏ
SFPðϕ; ḡÞ

�
; ð42Þ

which is nothing but (36) without the source term in the
exponential.
In order to take care about possible change of the gauge

fixing, let ZΨþδΨ be the modified vacuum functional
corresponding to Ψðϕ; ḡÞ þ δΨðϕ; ḡÞ, where δΨðϕ; ḡÞ is
an arbitrary infinitesimal functional with odd Grassmann
parity. Besides from this requirement, δΨðϕ; ḡÞ can be
arbitrary, in particular it may be different from Eq. (41).
Taking into account (42), with the new term we get

ZΨþδΨðḡÞ¼
Z

dϕexp

�
i
ℏ
½SFPðϕ; ḡÞþδΨðϕ; ḡÞR̂ðϕ; ḡÞ�

�
:

ð43Þ

The next step is to make the change of variables ϕi in the
form of BRST transformations (24) but with replacement of
the constant parameter μ by a functional μ ¼ μðϕ; ḡÞ,

ϕiðxÞ → ϕ0iðxÞ ¼ ϕiðxÞ þ Riðx;ϕ; ḡÞμðϕ; ḡÞ
¼ ϕiðxÞ þ ΔϕiðxÞ: ð44Þ

In what follows we shall use short notations Riðx;ϕ; ḡÞ ¼
RiðxÞ and μðϕ; ḡÞ ¼ μ. Due to the linearity of BRST
transformations, action SFPðϕ; ḡÞ is invariant under (44)
even for the nonconstant μ. It is easy to check that the
Jacobian of transformations (44) reads [41]3

J ¼ Jðϕ; ḡÞ ¼ exp

�Z
dxð−1ÞεiMi

iðx; xÞ
�
; ð45Þ

where matrix Mi
jðx; yÞ has the form

Mi
jðx; yÞ ¼

δrΔϕiðxÞ
δϕjðyÞ

¼ ð−1Þεjþ1
δrμ

δϕjðyÞR
iðxÞ − ð−1Þεjðεiþ1Þ δlR

iðxÞ
δϕjðyÞ μ:

ð46Þ

In Yang-Mills type theories due to antisymmetry properties
of structure constants the following relation

Z
dxð−1Þεi δlR

iðxÞ
δϕiðxÞ ¼ 0 ð47Þ

holds. Then from (45) and (46) it follows that2Let us note that for exploring gauge invariance of renorm-
alization we need to introduce a more general object ZðJ;ϕ�; ḡÞ
which also depends on the set of antifields ϕ�. This extended
definition will be given below.

3Note that the Jacobian of the transformations (44) can be
calculated exactly [42,43].
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J ¼ expf−μðϕ; ḡÞR̂ðϕ; ḡÞg: ð48Þ

Choosing the functional μ in the form

μ ¼ i
ℏ
δΨðϕ; ḡÞ; ð49Þ

one can observe that the described change of variables in
the functional integral completely compensates the modi-
fication in the expression (43) compared to the fiducial
formula (42). Thus we arrive at the gauge independence of
the vacuum functional

ZΨðḡÞ ¼ ZΨþδΨðḡÞ: ð50Þ

One can present this identity as vanishing variations of the
vacuum functionals Z and W,

δΨZðḡÞ ¼ 0 ⇒ δΨWðḡÞ ¼ 0: ð51Þ

Due to the invariance feature (50) we can omit the label Ψ
in the definition of the generating functionals (36).
Furthermore, it is known that due to the equivalence
theorem [44] the invariance (50) implies that if the back-
ground metric ḡμν admits asymptotic states (e.g., if it is a
flat Minkowski metric), then the S-matrix in the theory of
quantum gravity does not depend on the gauge fixing. It is
remarkable that we can make this statement for an arbitrary
model of quantum gravity (QG), even without requiring the
locality of the classical action. One can say that if the theory
admits the construction of the S-matrix, the last will be
independent on the choice of the gauge fixing conditions.
Let us note that this is true only within the conventional
perturbative approach to quantum field theory, while the
situation may be opposite in other approaches. For in-
stance, the S-matrix is not invariant if it is constructed on
the basis of the concept of average effective action related
to functional renormalization group [45–48]. The corre-
sponding proof for the Yang-Mills theory is based on the
general result of Ref. [44] and can be found in Ref. [49]. We
believe it can be directly generalized for the case of gravity.
A similar situation takes place in the standard formulation
of the Gribov-Zwanziger theory [50–52] when the corre-
sponding effective action depends on the choice of gauge
even on-shell [53,54]. This difficulty illustrates the sit-
uation which we meet when trying to go beyond the
framework of perturbative field theory, that would be
especially relevant in the case of quantum gravity.
The effective action ΓðΦ; ḡÞ is defined by means of

Legendre transformation,

ΓðΦ; ḡÞ ¼ WðJ; ḡÞ − JiΦi; ð52Þ

whereΦ ¼ fΦig are mean fields and Ji are the solutions of
the equations

δWðJ; ḡÞ
δJi

¼ Φi and JiΦi ¼
Z

dxJiðxÞΦiðxÞ: ð53Þ

In terms of effective action the property (51) means the on-
shell gauge fixing independence and reads

δΨΓðΦ; ḡÞ
���δΓðΦ;ḡÞ

δΦ ¼0
¼ 0; ð54Þ

i.e., the effective action evaluated on its extremal does not
depend on gauge.
Until now we did not assume that the background metric

may transform under the general coordinate transformation.
This was a necessary approach, as it was explained after the
definition of the splitting (14) of the metric into background
and quantum parts. However, since effective action is
defined, one can perform the coordinate transformation
for the background metric ḡμν together with the corre-
sponding transformation for the quantum metric. It is
important that this transformation does not lead either to
the change of the form of the Faddeev-Popov action (17) or
to the change of the transformation rules for the auxiliary
and ghost fields.
Thus, consider a variation of the background metric

under general coordinates transformations of external
metric tensor ḡμν, treating it as a symmetric tensor, hence

δðcÞω ḡμν ¼ RμνσðḡÞωσ: ð55Þ

The symbol (c) indicates that the transformation concerns
the background metric, i.e., in the sector of classical fields.
In the quantum fields sector hμν the form of the trans-

formations is fixed by the requirement of invariance of the
action,

δðqÞω hμν ¼ RμνσðhÞωσ

¼ −ωσ∂σhμν − hμσ∂νω
σ − hσν∂μω

σ; ð56Þ

where the symbol (q) indicates the gauge transformations
in the sector of quantum fields. Then we have

δωS0ðḡþ hÞ ¼ 0; δω ¼ ðδðcÞω þ δðqÞω Þ: ð57Þ

With these definitions, for the variation of ZðḡÞ we have

δðcÞω ZðḡÞ ¼ i
ℏ

Z
dϕ½δðcÞω S0ðḡþ hÞ þ δðcÞω Sghðϕ; ḡÞ

þ δðcÞω Sgfðϕ; ḡÞ� exp
�
i
ℏ
SFPðϕ; ḡÞ

�
: ð58Þ

Let us stress that here we consider the transformations
of ḡ only, that is why the δðqÞ does not enter into the last
expression.
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Using a change of variables in the functional integral
(58) one can try to arrive at the relation δðcÞω ZðḡÞ ¼ 0 to
prove invariance of ZðḡÞ under the transformations (55).
In the analysis of the gauge fixing action Sgfðϕ; ḡÞ we

can use that this action depends only on the three variables
hμν, Bα and ḡμν. Also, for the two of them, hμν and ḡμν, the
transformation law is already defined in (55) and (56).
Thus, we need to define the transformation for the
remaining field Bα. This unknown transformation rule

δðqÞω Bα should be chosen in such a way that it compensates
the variation of Sgfðϕ; ḡÞ caused by the transformations of
ḡμν and hμν. Therefore, we have

δωSgf ¼
Z

dx
ffiffiffiffiffiffi
−ḡ

p ½ðδðqÞω Bα þ ωσ∂σBαÞχαðḡ; hÞ

þ Bαωσ∂σχαðḡ; hÞ þ Bαδωχαðḡ; hÞ�: ð59Þ

The gauge fixing functions χα are not independent, since
they are constructed from the metric, which is transformed
as a tensor, according to Eq. (55). Thus the variation of the
gauge fixing functions χα has the form (7) for the vector
fields,

δωχα ¼ −ωσ∂σχα − χσ∂αω
σ: ð60Þ

The transformation of the auxiliary field B can be chosen
by the covariance arguments, following the rule (8). This
gives

δðqÞω Bα ¼ −ωσ∂σBα þ Bσ∂σω
α ð61Þ

and provides the desired relation

δωSgf ¼ 0: ð62Þ

In the same way one can analyze the variation of the
ghost action and find its invariance,

δωSgh ¼ 0; ð63Þ

for the following transformation laws for the ghost fields
C̄α and Cα:

δðqÞω C̄αðxÞ ¼ −ωσðxÞ∂σC̄αðxÞ þ C̄ρ∂ρω
αðxÞ;

δðqÞω CαðxÞ ¼ −ωσðxÞ∂σCαðxÞ þ Cρ∂ρω
αðxÞ: ð64Þ

All in all, we conclude that the Faddeev-Popov action
SFP is invariant

δωSFP ¼ 0 ð65Þ

under the new version of gauge transformations, which is
based on the background transformations of all fields ϕ and
ḡ including (55), (56), (61), and (64).

As a consequence of (65), vacuum functional possesses
gauge invariance too,

δωZðḡÞ ¼ δðcÞω ZðḡÞ ¼ 0: ð66Þ

The same statement is automatically valid for the back-
ground effective action, that is the effective action with
switched off mean fields Φi.
As we shall see in what follows, one can use Eq. (66) to

prove the gauge invariance of an important object
ΓðḡÞ ¼ ΓðΦ ¼ 0; ḡÞ, that means

δðcÞω ΓðḡÞ ¼ 0: ð67Þ

Indeed, this relation is one of the main targets of our
work. It shows that when the mean quantum fields Φ ¼
fh; C; C̄; Bg are switched off (later on we shall see how this
should be done), the remaining effective action of the
background metric is covariant.
It is useful to start by exploring the gauge invariance

property of generating functionals of our interest off-shell.
To this end it is useful to present the background trans-
formations (55), (56), (61), and (64) in the form

δðcÞω ḡμν ¼ RμνσðḡÞωσ; δðqÞω ϕi ¼ Ri
σðϕÞωσ; ð68Þ

where the generatorsRi
σðϕÞ are linear in the quantum fields

ϕ and do not depend on the background metric ḡ. The
general form of the transformation of an arbitrary func-
tional [let it be Γ ¼ Γðϕ; ḡÞ] can be written in the form

δωΓ ¼ δðcÞω Γþ δrΓ
δϕi R

i
σðϕÞωσ: ð69Þ

Consider the variation of the generating functional
ZðJ; ḡÞ (36), under the gauge transformations of the
background metric

δðcÞω ZðJ;ḡÞ¼ i
ℏ

Z
dϕδðcÞω SFPðϕ;ḡÞexp

�
i
ℏ
½SFPðϕ;ḡÞþJϕ�

�
:

ð70Þ

Using the background transformations in the sector of
quantum fields ϕ and taking into account that for the linear
change of variables the Jacobian of this transformation is
independent on the fields, we arrive at the relation

i
ℏ

Z
dϕfδðqÞω SFPðϕ; ḡÞ þ JδðqÞω ϕg exp

�
i
ℏ
½SFPðϕ; ḡÞ þ Jϕ�

�

¼ 0: ð71Þ

On the other hand, from (65) and (71) it follows that
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δðcÞω ZðJ; ḡÞ¼ i
ℏ

Z
dϕJjR

j
σðϕÞωσ exp

�
i
ℏ
½SFPðϕ; ḡÞþJϕ�

�
;

ð72Þ

or

δðcÞω ZðJ; ḡÞ ¼ i
ℏ
JjR

j
σ

�
ℏ
i
δ

δJ

	
ZðJ; ḡÞωσ: ð73Þ

In terms of the generating functional of connected Green
functions, W ¼ WðJ; ḡÞ ¼ −iℏ lnZðJ; ḡÞ, the relation (73)
reads

δðcÞω WðJ; ḡÞ ¼ JjR
j
σ

�
δW
δJ

	
ωσ; ð74Þ

where we used linearity of generators Ri
σðϕÞ with respect

to ϕ.
Once again, consider the generating functional of vertex

functions (effective action),

Γ ¼ ΓðΦ; ḡÞ ¼ WðJ; ḡÞ − JΦ; ð75Þ

where

Φj ¼ δlW
δJj

;
δrΓ
δΦj ¼ −Jj and δW ¼ δΓ ð76Þ

under the variation of external metric and the mean fields
(68). In terms of Γ the relation (74) becomes

δðcÞω ΓðΦ; ḡÞ ¼ −
δrΓ
δΦjR

j
σðΦÞωσ; ð77Þ

or, using the identity (69), simply

δωΓðΦ; ḡÞ ¼ 0 ð78Þ

if the variations of all variables (68) are taken into account.
It is important that the relations (77) and (78) serve as a

proof of the fundamental property (67). In order to see this,
one has to note that the generators of quantum fields (56),
(64), and (61) have linear dependence of these fields. As a
result one meets the following limit for the generators
Ri

σðΦÞ when the mean fields are switched off:

lim
Φ→0

Rj
σðΦÞ ¼ 0; ð79Þ

Thus the effective action Γ is invariant under nondeformed
background transformations and repeats the invariance
property of the Faddeev-Popov action SFP.
Let us come back to formulating the instruments required

for the proof of renormalizability. In the renormalization
program based on Batalin-Vilkovisky formalism the
extended action S ¼ Sðϕ;ϕ�; ḡÞ (28) and corresponding

extended generating functionals of Green functions
Z ¼ ZðJ;ϕ�; ḡÞ, and of connected Green functions
W ¼ WðJ;ϕ�; ḡÞ,

ZðJ;ϕ�; ḡÞ ¼
Z

dϕ exp

�
i
ℏ
½Sðϕ;ϕ�; ḡÞ þ Jϕ�

�

¼ exp

�
i
ℏ
WðJ;ϕ�; ḡÞ

�
; ð80Þ

play the role of precursor for the full effective action, which
satisfies the quantum version of Eq. (35).
Due to the invariance of SFP under background fields

transformations, the variation of S takes the special form

δωSðϕ;ϕ�; ḡÞ ¼ ϕ�
i δωR

iðϕ; ḡÞ; ð81Þ

that shows that the action is gauge invariant on the
hypersurface ϕ�

i ¼ 0. The variations δωRiðϕ; ḡÞ are quad-
ratic in the sector of fields hμν and Cα and linear in the
sector of field C̄α. Using the condensed DeWitt’s notation
one can write the variations of the generators δωRiðϕ; ḡÞ in
the following compact form:

δωR
ðhÞ
μν ðϕ; ḡÞ ¼−ωσ∂σRμνλðḡþhÞCλ− ∂μω

σRσνλðḡþhÞCλ

− ∂νω
σRμσλðḡþhÞCλ;

δωRα
ðBÞðϕ; ḡÞ ¼ 0;

δωRα
ðCÞðϕ; ḡÞ ¼ωσ∂σðCλ∂λCαÞ−Cλ∂λCσ∂σω

α;

δωRα
ðC̄Þðϕ; ḡÞ ¼−ωσ∂σBαþBσ∂σω

α: ð82Þ

Let us now consider the variation of the extended
generating functional ZðJ;ϕ�; ḡÞ (80) under the gauge
transformations of external metric ḡ,

δðcÞω ZðJ;ϕ�; ḡÞ ¼ i
ℏ

Z
dϕðδðcÞω SFPðϕ; ḡÞ þϕ�

i δ
ðcÞ
ω Riðϕ; ḡÞÞ

× exp

�
i
ℏ
½Sðϕ;ϕ�ḡÞ þ Jϕ�

�
: ð83Þ

Making the change of variables ϕi according to (56), (61),
and (64) in the functional integral and taking into account
the triviality of the corresponding Jacobian, we arrive at the
relation

i
ℏ

Z
dϕfδðqÞω SFPðϕ; ḡÞ þ ϕ�

i δ
ðqÞ
ω Riðϕ; ḡÞ þ Jiδ

ðqÞ
ω ϕig

× exp

�
i
ℏ
½Sðϕ;ϕ�ḡÞ þ Jϕ�

�
¼ 0: ð84Þ

Combining Eqs. (83) and (84) and using the gauge
invariance of SFP (65) we obtain
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δðcÞω ZðJ;ϕ�; ḡÞ ¼ i
ℏ

Z
dϕfϕ�

i δωR
iðϕ; ḡÞ þ JiRi

σðϕÞωσg

× exp

�
i
ℏ
½Sðϕ;ϕ�ḡÞ þ Jϕ�

�
; ð85Þ

or, equivalently,

δðcÞω ZðJ;ϕ�; ḡÞ ¼ i
ℏ
ϕ�
i δωR

i

�
ℏ
i
δ

δJ
; ḡ

	
ZðJ;ϕ�; ḡÞ

þ i
ℏ
JiRi

σ

�
ℏ
i
δ

δJ

	
ZðJ;ϕ�; ḡÞωσ: ð86Þ

In terms of the generating functional of connected Green
functions W ¼ WðJ;ϕ�; ḡÞ the relation (86) reads

δðcÞω WðJ;ϕ�; ḡÞ ¼ ϕ�
i δωR

i

�
δW
δJ

þ ℏ
i
δ

δJ
; ḡ

	
1

þ JiRi
σ

�
δW
δJ

	
ωσ; ð87Þ

where the symbol 1 means that the operator acts on the
numerical unit, 1 ¼ 1. In the case of functional derivative
one has δ

δϕ 1 ¼ 0, but since in many cases the expressions
are nonlinear, this is a useful notation.
The extended generating functional of vertex functions

(extended effective action) is defined in a standard way
through the Legendre transformation of W ¼ WðJ;ϕ�; ḡÞ
introduced in Eq. (80),

ΓðΦ;ϕ�; ḡÞ ¼ WðJ;ϕ�; ḡÞ − JΦ;

Φj ¼ δlW
δJj

;
δrΓ
δΦj ¼ −Jj: ð88Þ

As usual,

ðΓ00Þij× ðW00Þjk¼ δr
δJk

�
δlW
δJi

	
×

δl
δΦi

�
δrΓ
δΦj

	
¼−δkj ; ð89Þ

where we introduced a compact notation for the second
variational derivatives of Γ and W.
It proves useful to introduce the following notations:

δωR̄iðΦ;ϕ�; ḡÞ ¼ δωRiðΦ̂; ḡÞ1;

Φ̂j ¼ Φj þ iℏðΓ00−1Þjk δl
δΦk ; ð90Þ

where the symbol ðΓ00−1Þjk denotes the matrix inverse to the
matrix of secondderivativesof the functionalΓ defined in (89),

ðΓ00−1ÞikðΓ00Þkj ¼ δij: ð91Þ

Using these notations, in terms of extended effective
action the equation (87) rewrites as

δðcÞω ΓðΦ;ϕ�;ḡÞ¼−
δrΓ
δΦiR

i
σðΦÞωσþϕ�

i δωR̄
iðΦ;ϕ�;ḡÞ; ð92Þ

or, using the relation (69), in the form

δωΓðΦ;ϕ�; ḡÞ ¼ ϕ�
i δωR̄

iðΦ;ϕ�; ḡÞ: ð93Þ

At this point we can draw a general conclusion from our
consideration of quantum gravity theories in the back-
ground field formalism. At the nonrenormalized level any
covariant quantum gravity theory has the following general
property: the extended quantum action S ¼ Sðϕ;ϕ�; ḡÞ
satisfies the classical master (Zinn-Justin) equation of the
Batalin-Vilkovisky formalism [39,40], as we already antici-
pated in Eq. (35). And, moreover, the extended effective
action Γ ¼ ΓðΦ;ϕ�; ḡÞ also satisfies the classical master
equation,

ðΓ;ΓÞ ¼ 0: ð94Þ

The functionals S ¼ Sðϕ;ϕ�; ḡÞ and Γ ¼ ΓðΦ;ϕ�; ḡÞ are
invariant under the background gauge transformations

δωSjϕ�¼0 ¼ 0; δωΓjϕ�¼0 ¼ 0; ð95Þ

on the hypersurface ϕ� ¼ 0 and, more general, satisfy the
relations (81) and (93).

III. GAUGE-INVARIANT RENORMALIZABILITY

Up to now we were considering the nonrenormalized
generating functionals of Green functions. The next step is
to prove the gauge invariant renormalizability, that is the
property of renormalized generating functionals. In the
framework of Batalin-Vilkovisky formalism one can prove
the BRST invariant renormalizability which means the
preservation of basic equations (35) for the extended action
S ¼ Sðϕ;ϕ�; ḡÞ and an identical equation (94) for the
extended effective action Γ ¼ ΓðΦ;Φ�; ḡÞ after renormal-
ization, that means

ðSR; SRÞ ¼ 0 and ðΓR;ΓRÞ ¼ 0: ð96Þ

Let us remember that the “classical” actions S and SR are
nothing but zero-order approximations of the loop expan-
sions in the parameter ℏ of the effective actions Γ and ΓR. In
this sense Eq. (35) is the zero order approximation of Eq. (94)
and what we have to do now is to extend these two equations
to the renormalized quantitiesSR andΓR. Our strategywill be
to make this extension order by order in the loop expansion
parameter ℏ. Then we will prove that the renormalized
actions SR and ΓR obey the gauge invariance property.

A. BRST invariant renormalization

As a first step, consider the one-loop approximation
for Γ ¼ ΓðΦ;Φ�; ḡÞ. For the uniformity of notations we
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use Φ� ¼ ϕ� for the antifields in what follows. The
effective action can be presented in the form

Γ ¼ Γð1Þ þOðℏ2Þ ¼ Sþ ℏ½Γð1Þ
div þ Γð1Þ

fin � þOðℏ2Þ; ð97Þ

where S ¼ SðΦ;Φ�; ḡÞ and Γð1Þ
div and Γð1Þ

fin denote the
divergent and finite parts of the one-loop approximation
for Γ.
In the local models of quantum gravity the locality of the

divergent part of effective action is guaranteed by the
Weinberg’s theorem [55] (see also [56] for an alternative
proof). Furthermore, even if the starting action is nonlocal,
the UV divergences may be described by local functionals,
just because the high energy domain always corresponds to
the short-distance limit. And in the case of UV divergences
the energies are infinitely high, hence the distances should
be infinitely short, that does not leave space to the non-
localities. As it was argued in Refs. [3,57,58], the UV
divergent part of effective action for a wide class of models
of quantum gravity is local, including the ones with a
nonlocal classical action. Thus we assume that Γð1Þ

div is a
local functional. Since it determines the form of the
counterterms of the one-loop renormalized action

S1R ¼ S − ℏΓð1Þ
div; ð98Þ

the last is also a local functional. Furthermore, from the
expansion of the divergent parts of Eqs. (94) and (97) up to

the first order in ℏ follows that Γð1Þ
div and Γð1Þ

fin satisfy the
equation

0 ¼ ðΓ;ΓÞ ¼ ðS; SÞ þ 2ℏðS;Γð1Þ
divÞ þ 2ℏðS;Γð1Þ

fin Þ þOðℏ2Þ
¼ 2ℏðS;Γð1Þ

divÞ þ 2ℏðS;Γð1Þ
fin Þ þOðℏ2Þ: ð99Þ

In the first order in ℏ we have a vanishing sum of the two
terms, one of them is infinite and hence it has to vanish
independent on another one. Therefore

ðS;Γð1Þ
divÞ ¼ 0: ð100Þ

Let us consider

ðS1R; S1RÞ ¼ ðS; SÞ − 2ℏðS;Γð1Þ
divÞ þ ℏ2ðΓð1Þ

div;Γ
ð1Þ
divÞ: ð101Þ

Taking into account (35) and (100), we find the relation

ðS1R; S1RÞ ¼ ℏ2E2; ð102Þ

where E2 is an unknown functional. Thus we have shown
that S1R satisfies the classical master equation (35) up to the
terms of order ℏ2,

E2 ¼
1

2
ðΓð1Þ

div;Γ
ð1Þ
divÞ: ð103Þ

The one-loop effective action Γ1R can be constructed by
adding a local counterterm to the OðℏÞ part of Eq. (97). As
usual, the counterterm has the divergent part which cancel

the divergence of Γð1Þ
div, and the remaining contribution is

finite and typically depends on the renormalization param-
eter μ. This contribution is not only finite, but also satisfies
the same symmetries as the initial action S. Thus, the sum
of (97) and the counterterm, that is Γ1R, also satisfies the
same symmetries. Since we are not interested in the
dependence on μ in this work, we shall simply use (98)
and assume that Γ1R is constructed by following the
procedure of quantization described above, with S replaced
by S1R.
Being constructed in this way, the functional Γ1R is finite

in the one-loop approximation and satisfies the equation

ðΓ1R;Γ1RÞ ¼ ℏ2E2 þOðℏ3Þ: ð104Þ

Now we are in a position to make the second step.
Consider the one-loop renormalized effective action in the
form which takes into account the Oðℏ2Þ-terms,

Γ1R ¼ Sþ ℏΓð1Þ
fin þ ℏ2ðΓð2Þ

1;div þ Γð2Þ
1;finÞ þOðℏ3Þ: ð105Þ

Here Γð2Þ
1;div and Γ

ð2Þ
1;fin are divergent and finiteOðℏ2Þ parts of

the two-loop effective action constructed on the basis of S1R
instead of S. The divergent part Γð2Þ

1;div of the two-loop
approximation for Γ1R determines the two-loop renormal-
ization for S2R according to

S2R ¼ S1R − ℏ2Γð2Þ
1;div ð106Þ

and satisfies the equation

ðS;Γð2Þ
1;divÞ ¼ E2:

As a third step consider

ðS2R; S2RÞ ¼ ℏ3E3 þOðℏ4Þ: ð107Þ

We have found that S2R satisfies the master equations up to
the terms ℏ3E3, where

E3 ¼
1

2
ðΓð1Þ

div;Γ
ð2Þ
1;divÞ; ð108Þ

The effective action Γ2R is generated by replacing S2R into
functional integral instead of S. Therefore, Γ2R is auto-
matically finite in the two-loop approximation,

Γ2R ¼ Sþ ℏΓð1Þ
fin þ ℏ2Γð2Þ

1;fin þ ℏ3ðΓð3Þ
2;div þ Γð3Þ

2;finÞ þOðℏ4Þ
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and satisfies the equation

ðΓ2R;Γ2RÞ ¼ ℏ3E3 þOðℏ4Þ: ð109Þ

By applying the induction method we find that the totally
renormalized action SR is given by the expression

SR ¼ S −
X∞
n¼1

ℏnΓðnÞ
n−1;div: ð110Þ

We assume that ΓðnÞ
n−1;div and ΓðnÞ

n−1;fin are the divergent and
finite parts of the n-loop approximation for the effective
action, which is already finite in (n − 1)-loop approxima-
tion, since it is constructed on the basis of the action
Sðn−1ÞR.
The action (110) is a local functional and satisfies the

classical master equations exactly,

ðSR; SRÞ ¼ 0: ð111Þ

It means the preservation of the BRST symmetry of
renormalized action SR that corresponds exactly to the
BRST cohomology on local functionals with ghost
number 0 [59,60].
The renormalized effective action ΓR is finite in each

order of the loop expansion in the powers of ℏ,

ΓR ¼ Sþ
X∞
n¼1

ℏnΓðnÞ
n−1;fin; ð112Þ

and satisfies the analog of Slavnov-Taylor identities
[61–63] in Yang-Mills theory (see also [64] for the
pedagogical introduction),
Thus the renormalized action SR and the effective action

ΓR satisfy the classical master equation and the Ward (or
Slavnov-Taylor) identity, respectively.

B. Gauge invariance of renormalized background
effective action

As far as our main target is the symmetries of the
renormalized effective action, the next stage of our con-
sideration will be to generalize the transformation relations
(81) and (93) for the renormalized functionals SR and ΓR. In
the one-loop approximation from (93) follows that

δωΓðΦ;Φ�; ḡÞ ¼Φ�
i δωR

iðΦ; ḡÞ þ ℏΦ�
i δωR̄

ið1Þ
div ðΦ;Φ�; ḡÞ

þ ℏΦ�
i δωR̄

ið1Þ
fin ðΦ;Φ�; ḡÞ þOðℏ2Þ; ð113Þ

where the condensed notations (90) were used. In the last

expression δωR̄
ið1Þ
div ðΦ;Φ�; ḡÞ andδωR̄ið1Þ

fin ðΦ;Φ�; ḡÞ are diver-
gent and finite parts of the one-loop approximation for the
gauge transformations δωR̄iðΦ;Φ�; ḡÞ, correspondingly.

On the other hand, from (97) we have

δωΓðΦ;Φ�; ḡÞ ¼ δωSðΦ;Φ�; ḡÞ þ ℏδωΓ
ð1Þ
div

þ ℏδωΓ
ð1Þ
fin þOðℏ2Þ: ð114Þ

The comparison of the relations (113) and (114) tells us that

δωΓ
ð1Þ
div ¼ Φ�

i δωR̄
ið1Þ
div ðΦ;Φ�; ḡÞ; ð115Þ

δωΓ
ð1Þ
fin ¼ Φ�

i δωR̄
ið1Þ
fin ðΦ;Φ�; ḡÞ: ð116Þ

From Eq. (115) and the definition (98) follows that the
one-loop renormalized action S1R ¼ S1RðΦ;Φ�; ḡÞ trans-
forms according to

δωS1R ¼ Φ�
i δωR

ið1Þ
R ; ð117Þ

where

Rið1Þ
R ¼ Rið1Þ

R ðΦ;Φ�; ḡÞ
¼ δωRiðΦ; ḡÞ − ℏδωR̄

ið1Þ
div ðΦ;Φ�; ḡÞ: ð118Þ

The last relations mean that the action S1R is invariant under
the background gauge transformations with one-loop

deformed gauge generators Rið1Þ
R (118) on the hypersurface

Φ� ¼ 0. Furthermore, due to Eq. (117) the functional Γ1R
obeys the transformation rule

δωΓ1R ¼ Φ�
i δωR

i þ ℏΦ�
i δωR̄

ið1Þ
fin

þ ℏ2ðΦ�
i δωR̄

ið2Þ
1;div þΦ�

i δωR̄
ið2Þ
1;finÞ þOðℏ3Þ; ð119Þ

where δωR̄
ið2Þ
1;div ¼ δωR̄

ið2Þ
1;divðΦ;Φ�; ḡÞ and δωR̄

ið2Þ
1;fin ¼

δωR̄
ið2Þ
1;finðΦ;Φ�; ḡÞ are related to Γð2Þ

1;div and Γð2Þ
1;fin (105) as

δωΓ
ð2Þ
1;div ¼ Φ�

i δωR̄
ið2Þ
1;div; δωΓ

ð2Þ
1;fin ¼ Φ�

i δωR̄
ið2Þ
1;fin: ð120Þ

Therefore the functional Γ1R is finite in one-loop approxi-
mation and is invariant under the background gauge
transformations up to the second order in ℏ on the hyper-
surface Φ� ¼ 0.
Applying the induction method one can show that the

renormalized functionals SR and ΓR satisfy the properties4

δωSR ¼ Φ�
i δωR

i
R; δωΓR ¼ Φ�

i δωR̄
i
R; ð121Þ

where

4We note that these statements are very close to the results
concerning preservation of global symmetries of initial classical
action at quantum level when the effective action of theory under
consideration is invariant under deformed global transformations
of all fields [65].
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δωRi
R ¼ δωRi − ℏδωR̄

ið1Þ
div − ℏ2δωR̄

ið2Þ
1;div − � � � ; ð122Þ

δωR̄i
R ¼ δωRi þ ℏδωR̄

ið1Þ
fin þ ℏ2δωR̄

ið2Þ
1;fin þ � � � : ð123Þ

It is important that δωR̄i
R defined in (123) are finite.

The last observation is that, in case of local theories the
quantities δωRi

R (122) are local due to the Weinberg’s
theorem [55], while in the nonlocal models of quantum
gravity there are also strong arguments in favor of locality
of divergences [3,58], including the transformations δω.
The important consequence of the results (121) is that we

can state that renormalized functionals SRðΦ; ḡÞ ¼
SRðΦ;Φ� ¼ 0; ḡÞ and ΓRðΦ; ḡÞ ¼ ΓRðΦ;Φ� ¼ 0; ḡÞ satisfy
the same equations

δωSRðΦ; ḡÞ ¼ 0; δωΓRðΦ; ḡÞ ¼ 0; ð124Þ

as nonrenormalized functionals SðΦ; ḡÞ ¼ SFPðΦ; ḡÞ and
ΓðΦ; ḡÞ in (65) and (78), respectively. Then from (124) we
deduce the invariance for renormalized background func-
tionals SRðḡÞ ¼ SðΦ ¼ 0; ḡÞ and ΓðḡÞ ¼ ΓðΦ ¼ 0; ḡÞ
under general coordinate transformations of external back-
ground metric ḡ,

δðcÞω SRðḡÞ ¼ 0; δðcÞω ΓRðḡÞ ¼ 0: ð125Þ

These properties repeat exactly the invariance of initial
action S0ðḡÞ and ΓðḡÞ in (66).

C. Comparison with the proof based on cohomology

In order to understand better the relevance of the results
described above, let us present a short historical review of
the subject. The first proof of the gauge invariant renor-
malizability in quantum gravity was given by Stelle in the
famous 1977 paper [1]. The considerations in this paper
concerned only the renormalizable model of quantum
gravity. However, most of the analysis is quite general
and can be applied to many covariant models of QG, not
only to the general four-derivative gravity. After that there
were many important publications devoted to the invariant
renormalizability in gauge theories of a general form,
including gravity. One can say that the progress in under-
standing renormalizability of quantum gravity was per-
formed in relatively small steps after [1], that does not mean
at all that the progress in this area was irrelevant.
The most significant achievement in this respect was the

demonstration of BRST invariant renormalizability in the
theories which may be not renormalizable by power
counting. In particular, in 1982 it was formulated the first
proof for the general gauge theories [66], based on the
Batalin-Vilkovisky formalism [39,40]. The approach in this
paper assumed the regularization procedure respecting
the gauge invariance of initial classical action and zero
volume divergences, δð0Þ¼0.Within theBatalin-Vilkovisky

formalism one can prove that the full gauge fixed action
S ¼ Sðϕ;ϕ�Þ satisfies the classical master equation
ðS; SÞ ¼ 0, generalizing the Zinn-Justin equation [38].
The next step is to show that the generating functional of
vertex functions (effective action), Γ ¼ ΓðΦ;Φ�Þ, con-
structed on the basis of S ¼ Sðϕ;ϕ�Þ, satisfies the Ward
identity being the same master equation, ðΓ;ΓÞ ¼ 0.
Applying the minimal substraction scheme one can prove
that both local functional of renormalized action SR and
renormalized effective action ΓR satisfy the corresponding
master equations, ðSR; SRÞ ¼ 0 and ðΓR;ΓRÞ ¼ 0. The proof
is valid for any boundary condition related to an initial gauge
invariant action and for arbitrary choice of gauge fixing
functions. Furthermore, the renormalization procedure of
[66] can be described in terms of anticanonical transforma-
tions (for recent developments, see [67,68]) which are
defined as transformations preserving the antibracket (we
use terminology of the standard review [69]).
An alternative, albeit very close, approach to prove the

BRST invariant renormalization of general gauge theories
[70], is based on the use of cohomologies of nilpotent
BRST operator, ŝ, associated with adjoint operation of the
antibracket of the action S with an arbitrary functional F,
ŝF ¼ ðS; FÞ [59,60]. The detailed description of this
approach can be found in [69] and in the chapter 17.3
of the Weinberg’s book [64]. Let us note that this approach
does not directly cover the useful formalism of background
field formalism, apparently for this reason the use of the
linear background field gauges is discussed in the next
chapter of [64].
Indeed, the background field formalism [25–27] repre-

sents a powerful approach to study quantum properties of
gauge theories, allowing us to keep the gauge invariance, or
general covariance in the quantum gravity case, at all stages
of quantum calculations. From the viewpoint of the
quantization of gauge systems this method corresponds
to the special choice of a boundary condition and to the
special choice of gauge fixing functions. However, since
the background field method requires the presence of an
“external” field in the course of the Lagrangian quantiza-
tion, this formalism should be considered as a very special
case which requires special care. Indeed, this special case
attracted a great deal of attention recently, see, e.g., the
papers [28–32]. We believe that the consistent treatment of
this method in quantum gravity that we presented in the
previous subsections, will contribute to a better general
understanding of the formalism.
In the present work, we mainly follow the approach of

[66] (and subsequent [20,21] for the quantum gravity case)
but, for the first time, we consider the BRST renormaliz-
ability in the background field method from the very
beginning. As a result, we prove that both renormalized
action SR and effective action ΓR satisfy the original gauge
symmetry (125), when antifields, ghosts, and the mean
quantum metric are switched off.
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The main result concerning renormalizability is essen-
tially the same as the one in the original work of Stelle [1]
and in all subsequent publications mentioned above.
However, it is easy to see that the treatment of renormal-
ization in the previous subsections is different from the
approach in the works based on cohomology. Starting from
the second loop, we have the terms such as the right-hand
side of Eq. (102), which violate the form of the master
equations (96). This fact represents a difficulty for the
approach of [70], while in our case it is solved automati-
cally. The solution of this problem in [70] implies the
modification of the one-loop divergence by introducing
into it the term Oðℏ2Þ. The procedure can be continued to
higher than the second loops, and at the end the full
perturbative expansion satisfies the equation for cohomol-
ogy or, in our notations, the master equations (96). We
leave it to the reader to compare the two approached. The
additional benefits of our method is the proof of the
invariance (124) for the renormalized effective action ΓR,
which is a finite nonlocal object (even if the boundary
condition corresponds to a local covariant action). All in all,
we believe that the present work represents one more
relevant step forward in the consistent description of gauge
invariant renormalization of quantum gravity theories.

IV. OBSERVATION ABOUT MULTILOOP
RENORMALIZATION

In order to apply the results derived in the previous
section to the analysis of renormalization, one cannot go
directly to the power counting for the renormalized
effective action (125). The reason is that the power
counting provides information only about the last integral
of the multi-loop diagram. In the last integration we can
really switch off not only the antifields, but also the mean
fields of quantum metric, ghosts, and the auxiliary field B.
On the other hand, in the internal integrals of subdiagrams,
one has to hold all the mean fields, while the antifields can
be switched off. Thus, before classifying the theories of
quantum gravity according to their renormalization proper-
ties, it is useful to formulate the procedure of invariant
renormalization of multi-loop diagrams.
The most general object is the renormalized background

effective action ΓR ¼ ΓRðΦ;Φ�; ḡÞ (112) can be found as a
solution to the following functional derivative equation

ΓRðΦ;Φ�; ḡÞ¼ SRðΦ;Φ�; ḡÞ

− iℏ ln
Z

Dϕexp

�
i
ℏ

�
SRðΦþϕ;Φ�; ḡÞ

−SRðΦ;Φ�; ḡÞ−δΓRðΦ;Φ�; ḡÞ
δΦ

ϕ

��
: ð126Þ

Switching off all the antifields, this boils down to the
equation for the reduced effective action functional
Γ̄RðΦ; ḡÞ ¼ ΓRðΦ;Φ� ¼ 0; ḡÞ, satisfying the equation

Γ̄RðΦ; ḡÞ ¼ S̄RðΦ; ḡÞ

− iℏ ln
Z

Dϕexp

�
i
ℏ

�
S̄RðΦþϕ; ḡÞ− S̄RðΦ; ḡÞ

−
δΓ̄RðΦ; ḡÞ

δΦ
ϕ

��
; ð127Þ

where S̄RðΦ; ḡÞ ¼ SRðΦ;Φ� ¼ 0; ḡÞ. This is exactly the
object, which is sufficient to deal with to consider the
renormalization of the subdiagrams. The two important
observations are as follows. First, both Eqs. (126) and (127)
are closed expressions for effective actions with respect to
the corresponding fields. For (126) this statement is trivial,
since all fields are included. For (127) this means that the
right-hand side is written in terms of the background metric
and the mean fields, without invoking antifields. Second,
the effective action ΓRðΦ; ḡÞ obeys the symmetries such as
BRST and the combined background transformation δω.
As a result, we can guarantee that the renormalization of

p-loop diagrams occurs in a completely covariant way. Up
to the last integration the divergences are removed such that
we get the p − 1 order of the loop expansion of (127), and
in the last (surface) integral one can switch off all the means
fields, arriving at the functional

ΓRðḡÞ ¼ Γ̄RðΦ ¼ 0; ḡÞ: ð128Þ

This functional satisfies the equation

ΓRðḡÞ ¼ SRðḡÞ

− iℏ ln
Z

Dϕ exp

�
i
ℏ
½S̄Rðϕ; ḡÞ

− SRðḡÞ −
δΓ̄RðΦ; ḡÞ

δΦ

����
Φ¼0

ϕ

��
; ð129Þ

where SRðḡÞ ¼ S̄RðΦ ¼ 0; ḡÞ. It is easy to see that the main
object of the background field formalism (BFM) in
quantum gravity, namely the effective action (129), is
not a closed expression, in the sense explained above.
At the same time, we have proved in the previous sections
that it is a covariant functional. Together with the locality of
divergences, this result enables one to evaluate the power
counting, as it is done in the next section.

V. POWER COUNTING AND CLASSIFICATION
OF QUANTUM GRAVITY MODELS

Equations (121) show that with the antifields switched
off, for Φ� ¼ 0, the renormalized action SR and effective
action ΓR are both gauge invariant quantities. In particular,
this means that if we restrict the attention by the standard
nonextended generating functional of the Green functions,
without introducing sources for the ghosts C, C̄ and
the auxiliary field B, the effective action will be
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metric-dependent and generally covariant functional. This
statement concerns both divergences and the finite part of
renormalized effective action.
As far as we are interested in renormalizability of the

theory, our main focus should be on the structure of
divergences. In this case one can use the power counting
arguments to classify the theories of quantum gravity to the
nonrenormalizable, renormalizable, and superrenormaliz-
able models. The power counting in quantum gravity is
especially simple, because the metric field is dimension-
less. As a result, the dimension of a Feynman diagram is
divided between the internal momenta defining divergences
and the external momenta, or the number of metric
derivatives in the counterterms.
It is clear that the simple structure of power counting in

higher derivative quantum gravity, as described above,
requires that the following two conditions are fulfilled:
(i) The propagator of the gravitational field should be
homogeneous in the powers of momenta. This means, in
particular, that the free equations for different modes of the
gravitational field (tensor, vector, and scalar) are of the
same order in derivatives after the gauge fixing is imple-
mented through the Faddeev-Popov procedure. (ii) The
propagator of gauge ghosts must have the same powers of
momenta as all modes of the gravitational field.
In order to ensure these two conditions are fulfilled, the

standard Faddeev-Popov procedure needs to be modified.
Instead of the conventional gauge fixing term (singular or
not) and the usual ghost action, there must be a modified
term of the form

Sgf ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
χαYαβχ

β; ð130Þ

Sgh ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
C̄αYαβM

β
λC

λ; ð131Þ

where, according to (18) and (19),

Mβ
λ ¼ Hρσ

β ðx; y; ḡ; hÞRρσλðy; z; ḡþ hÞ: ð132Þ

The choice of the weight operator Yαβ should be done in
such a way that the total amount of derivatives in the
expressions (130) and (131) are the same as in the action of
the model of quantum gravity under consideration. For
instance, in the quantum gravity based on general relativity
Yαβ ¼ θgαβ, where θ is a constant gauge fixing parameter.
In case of the fourth order gravity one has to take [1,71,72]

Yαβ ¼ θ1δαβ□þ θ2∇α∇β þ θ3Rαβ þ θ4δαβR; ð133Þ

where θ1;2;3;4 are gauge fixing constants. In the case of six-
derivative superrenormalizable gravity model [2] θ1;2;3;4
should be linear functions of d’Alembertian operator □,
plus the possible linear in curvature tensor terms, for the

eight-derivative quantum gravity the parameters θ1;2;3;4
become quadratic functions of □, etc.
An important question is how to incorporate the modi-

fied gauge fixing and ghost actions (130) and (131) into the
proof of gauge invariant renormalizability which we
developed in the previous Sec. III.
The simplest possibility in this direction is as follows.

The effective action in the superrenormalizable quantum
gravity theories with more than four derivatives does not
depend on the gauge fixing [2]. This fact can be explained
by covariance, power counting and by the fact that the
gauge fixing dependencies vanish on-shell. At higher loops
the on-shell condition involves not only classical equations
of motion, but also the loop corrections. However, the
classical part is included and it has more than four
derivatives. On the other hand, quantum corrections in
these models may have at most four derivatives in the
polynomial part, such that the gauge dependence is ruled
out. Thus the scheme based on the weight function (133)
with θ1;2;3;4 being at least linear functions of a □, does not
affect the loop corrections, regardless it is critically
important for correctly evaluating the power counting in
these theories. This argument looks convincing and its
output is eventually correct, but it is indeed based on a
logical loophole. We have the proof of covariance based on
the conventional gauge fixing, leading to a nonhomogene-
ous propagator. At the same time the power counting that is
another element of the presented argument, is essentially
based on the homogeneity of the propagator (see below,
and also in [2,6] and [6]). Hence we really need to modify
the standard Faddeev-Popov procedure in this case and see
whether something has to be changed in the proof given in
the previous section.
Consider χα ¼ χαðx; ḡ; hÞ being a standard gauge fixing

functions used in previous sections. We can introduce the
set of two differential operators, Yβ

α and Y1αβ. These weight
operators must have the structure of tensor fields of types
(1,1) and (0,2), respectively, and cannot depend on the
quantum metric hμν,

Yβ
αðx;yÞ¼Yβ

αðx;y; ḡ;□̄Þ and Y1αβðx;yÞ¼Y1αβðx;y; ḡ;□̄Þ:
ð134Þ

The next step is to modify the gauge fixing functions χα, by
the following rule:

χmod
α ðx; ḡ; h; BÞ ¼

Z
dy

�
Yβ
αðx; y; ḡ; □̄Þχβðy; ḡ; hÞ

þ 1

2
Y1αβðx; y; ḡ; □̄ÞBβðyÞ

�
ð135Þ

and construct the corresponding gauge fixing functional,

PETER M. LAVROV and ILYA L. SHAPIRO PHYS. REV. D 100, 026018 (2019)

026018-14



Ψmodðϕ; ḡÞ ¼
Z

dx
ffiffiffiffiffiffi
−ḡ

p
C̄αðxÞχmod

α ðx; ḡ; h; BÞ: ð136Þ

According to what we previously learned, the transforma-
tion law of χmod

α coincides with the transformation rule of
tensor fields of type (0,1). Then the modified Faddeev-
Popov action is constructed in the standard manner, using
the generator of BRST transformations, R̂ðϕ; ḡÞ,

Smod
FP ðϕ; ḡÞ ¼ S0ðḡþ hÞ þ Ψmodðϕ; ḡÞR̂ðϕ; ḡÞ: ð137Þ

The explicit form of the second term in the right-hand side
of (137) is

Ψmodðϕ; ḡÞR̂ðϕ; ḡÞ

¼
Z

dxdydzdu
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
C̄αðxÞYβ

αðx; u; ḡ; □̄Þ

×Hγσ
β ðu; y; ḡ; hÞRγσρðy; z; ḡþ hÞCρðzÞ

þ
Z

dxdy
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p �
BαðxÞYβ

αðx; y; ḡ; □̄Þχβðy; ḡ; hÞ

þ 1

2
BαðxÞY1αβðx; y; ḡ; □̄ÞBβðyÞ

�
:

It is easy to see that the first term in the right-hand side of
the last formula is exactly of the desired form (131) with
(132), if the weight operator is properly defined. The key
observation is that, since the transformation rules for the

terms in the Faddeev-Popov action depend only on the type
of the tensor fields, all the main statements of the previous
sections remain valid for the new choice of the gauge fixing
functions (135).
Consider a special choice of the operator Y1αβ,

Y1αβðx; yÞ ¼ ḡαγðxÞðY−1Þγβðx; yÞ; whereZ
dzYγ

αðx; zÞðY−1Þβγ ðz; yÞ ¼ δβαδðx − yÞ;

Yβ
αðx; yÞ ¼ Yβ

αðx; ḡ; □̄Þδðx − yÞ:

Since the problem of the homogeneity in the ghost sector is
already resolved by Eq. (138), we need to deal only with
the propagator of the quantum metric hμν. Integrating over
the fields Bα in the functional integral defines the generat-
ing functional of Green functions it terms of C̄α, Cα and
hμν. As a results we obtain the functional determinant that is
equal to

½Det Yβ
αðx; yÞ�1=2; ð138Þ

and does not depend on the variables (quantum fields) of
integration. Let us note that the factor (138) is well-known
in both fourth derivative quantum gravity [71,72] and
superrenormalizable models [2,14], but we got it a new
way here.
After all, we need the following modifications:

Ψmodðϕ; ḡÞR̂ðϕ; ḡÞþ
Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
JðBÞα ðxÞBαðxÞ→

Z
dxdydz

ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
C̄αðxÞYβ

αðx; ḡ;□̄ÞHγσ
β ðx;y; ḡ;hÞRγσρðy;z; ḡþhÞCρðzÞ

−
1

2

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
χαðx; ḡ;hÞYβ

αðx; ḡ;□̄Þχβðx; ḡ;hÞ

−
1

2

Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
JðBÞαðxÞYβ

αðx; ḡ;□̄ÞJðBÞβ ðxÞ

−
Z

dx
ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
JðBÞα ðxÞχαðx; ḡ;hÞ; ð139Þ

where the notations

χαðx; ḡ; hÞ ¼ ḡαβðxÞχβðx; ḡ; hÞ;
JðBÞαðxÞ ¼ ḡαβðxÞJðBÞβ ðxÞ ð140Þ

are used. It is easy to see that the second term in the
expression (139) is exactly what is needed for the homo-
geneity condition (130). At the same time the terms with
the source of the auxiliary field BαðxÞ remains and this
opens the possibility to define the corresponding mean field
in a standard way.

As far as the problem of homogeneity and introduction
of (130) and (131) has been solved, we are in a position to
review the power counting and classify the models of
quantum gravity. For this sake, consider the Feynman
diagrams with n vertices, lint internal lines, and p loops.
It is easy to verify that these three quantities satisfy the
topological relation

lint ¼ pþ n − 1: ð141Þ

Another relation links the superficial degree of divergence
D of the diagram and the total number of momenta external
lines of the diagram d with the power of momenta in the
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inverse propagator of internal line rl and the number of
vertices Kν with ν momenta. The formula of our interest
is [1]

Dþ d ¼
X
lint

ð4 − rlÞ − 4nþ 4þ
X
ν

Kν: ð142Þ

As the first example, let us see how these two formulas
work for the quantum gravity based on general relativity. In
the theory without cosmological constant we have rl ¼ 2
and K2 ¼ n. Replacing these numbers into (142) and using
(141) we arrive at

Dþ d ¼ ð4 − 2Þlint − 4nþ 4 − 2n ¼ 4þ 2p: ð143Þ

For the logarithmic divergences D ¼ 0 and we discover
that the dimension of covariant counterterms grows with
the number of loops as d ¼ 4þ 2p. The theory is obvi-
ously nonrenormalizable. In the presence of cosmological
constant the quantity d becomes smaller d ¼ 4þ 2p − 2K0

with each vertex without derivatives, and the loss of
dimension is compensated by the powers of the cosmo-
logical constant. The results of the previous section and
locality of divergences enable one to use the quantity of d to
write down all possible counterterms in any loop order p.
For p ¼ 1 there are OðR2

…Þ and□R type divergences [73],
for p ¼ 2 we meet OðR3

…Þ [74,75], etc.
The next example is the fourth derivative quantum

gravity [1]. In this case one can modify the definition of
ghost action in such a way that rl ¼ 4 for both metric and
ghost propagators. Also, there are vertices with four K4,
two K2 and zero K0 derivatives. Combining (142) and
(141) it is easy to get

Dþ d ¼ 4 − 2K2 − 4K0: ð144Þ

The results of the previous section (for this theory the
renormalizability was originally demonstrated in [1]) show
that the divergences are covariant. Since they are also local,
this means that if we include all terms of dimension four
into the classical action,

S4DQG¼ SEH−
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2λ
C2þ1

ρ
E4þ τ□Rþ ω

3λ
R2

�
;

ð145Þ

then the divergences will repeat the form of the classical
action. Thus, such a theory is multiplicatively renormaliz-
able. In Eq. (145) we used the standard (in quantum
gravity) basis for the four derivative terms, with C2 being
the square of the Weyl tensor

C2 ¼ RμναβRμναβ − 2RαβRαβ þ 1

3
R2 ð146Þ

and E4 is the integrand of the Gauss-Bonnet topological
invariant,

E4 ¼ RμναβRμναβ − 4RαβRαβ þ R2: ð147Þ

The next example of our interest is the model (3) with
functions Π1ðxÞ, Π2ðxÞ, and Π3ðxÞ being polynomials of
the same order k ≥ 1 [2],

Π1;2;3ðxÞ ¼ a1;2;30 xk þ a1;2;31 xk−1 þ � � � þ a1;2;3k−1 xþ a1;2;3k :

ð148Þ

The terms with Π1;2;3ðxÞ have at most 2kþ 4 derivatives of
the metric. The terms þOðR3

…Þ should satisfy the same
restriction on the number of derivatives. Then we have rl ¼
2kþ 4 and the maximal number of derivatives in the
vertices is also ν ¼ 2kþ 4. If we are interested in the
diagrams with the strongest divergences, K4kþ4 ¼ n. Once
again, combining (142) and (141) for the maximally
divergent diagrams it is easy to arrive at the result

Dþ d ¼ 4þ 2kð1 − pÞ: ð149Þ

This formula shows that for the logarithmic divergences at
the one-loop order p ¼ 1 and we have d ¼ 4. Taking the
covariance and locality arguments into account, the one-
loop divergences repeat the form of the four-derivative
action (145). Thus, the theory (3) can be renormalizable
only if the coefficients a1;2;3k in Eq. (148) are all nonzero,
and the Einstein-Hilbert action with the cosmological
constant is also included.
In case of k ≥ 3 Eq. (149) tells us that there are no

divergences beyond the first loop. For k ¼ 2 we have only
the cosmological constant divergences at two loop order.
Finally, in the case of k ¼ 1 there are cosmological
constant-type divergences at three loop order and linear
in R divergences at two loops. Obviously, the theory is
superrenormalizable. Let us stress that in this case we have
locality guaranteed due to the Weinber’s theorem and
covariance holds since we proved it in the previous section.
Finally, let us consider an example of the nonlocal

gravity. The main proposal of this kind of model is to
avoid the presence of higher derivative massive ghost in the
spectrum of tree-level theory while keeping the theory
renormalizable [3–5]. The general analysis of how the
freedom from ghosts can be achieved can be found in
[3,57,58] and we will not repeat this part, since our purpose
here is the study of renormalization. It is sufficient for us to
give an example of the theory which satisfies the ghost-free
condition. The typical Euclidean space propagator in such a
theory has the form

GðpÞ ∝ 1

p2
expf−p2=M2g: ð150Þ
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Since gravity action is always nonpolynomial, this structure
of propagator means that the vertices have the UV behavior
which is at least proportional to

VðpÞ ∝ p2 expfp2=M2g: ð151Þ

The proof of the gauge-invariant renormalizability which
we achieved in Sec. III is based only on the hypothesis of
diffeomorphism invariance of the classical action.
Therefore it is perfectly well applicable to the nonlocal
models. Thus, the question of whether these theories are
renormalizable depend only on power counting and locality
of divergences. The power counting in this case represents a
serious problem, because the expression (142) boils down
to the indefinite difference of the ∞−∞ type. However,
there is a solution [6], which is based on the topological
relation (141). It is clear from Eqs. (150) and (151) that the
diagrams with lint > n will be convergent, while those with
lint < n will be strongly (to say the least) divergent. Thus
the logarithmic divergences will be the maximal ones only
if lint ¼ n, that gives p ¼ 1. This means that all diagrams
beyond one-loop order are finite (except one-loop sub-
diagrams, as usual). Furthermore, in the one-loop case all
exponentials cancel out and the diagram has divergences
which are of the same order as in the quantum GR. Taking
covariance of divergences into account, this means that the
one-loop divergences are of the four-derivative type (145).
There are two consequences of the power counting

which we have described. The first is that the exponential
nonlocal model has the power counting which is exactly the
same as the polynomial model (3), (148) with k ≥ 3. In
other words, such a theory is superrenormalizable by power
counting. However, the theory which is free from ghosts
and has one-loop divergences cannot be even renormaliz-
able, because all the coefficients of four-derivative terms
should be precisely fine-tuned to provide the structure of
the propagator (150) required for absence of ghosts. The
problem can be alleviated by introducing a specially fine
tuned OðR3

…Þ terms called “killers” [58] (see also earlier
discussion in [2] for the polynomial models). These terms
can make the theory finite, but still do not guarantee the
ghostfree structure in the dressed propagator [6]. All in all,
the nonlocal ghostfree models meet the problem of abso-
lutely precise fine-tuning, which cannot be maintained
upon (even finite) renormalization, even if the theory is
superrenormalizable. Together with the problem is physical
unitarity [7] this situation makes nonlocal theories less
prospective, but of course they still remain very interesting
models to study.
Finally, we note that in the polynomial models (3), (148)

there are no problems with locality of divergent parts of
effective action, and hence the proof of gauge invariant
renormalizability can be used to give solid background to
the power counting arguments.

VI. CONCLUSIONS

We described in detail the general proof of that the
diffeomorphism invariance can be maintained in quantum
gravity theories. Themain advantages of the approach of the
present paper is related to the explicit form of variation of
extended effective action under the gauge transformations of
all fields appearing in the background field formalism. The
derived form of these variations can be applied to an
arbitrary gravity theory which respects diffeomorphism
invariance. The variation has a very special form, providing
an exact invariance of the effective actionwhen the antifields
(sources for the BRST generators) are switched off.
After switching off the mean field of quantum metric,

Faddeev-Popov ghosts, auxiliary field and antifields, the
divergent part of effective action possess general covari-
ance, and this important property holds in all orders of the
perturbative loop expansion. This statement is proved
correct for generic models of quantum gravity, including
the ones with higher derivatives and even with certain
(phenomenologically interesting) models with nonlocal-
ities. Starting from covariance and using power counting
and locality of the counterterms one can easily classify the
models of quantum gravity into nonrenormalizable, renor-
malizable, and superrenormalizable versions.
On the other hand, we have extended the usual statement

concerning the gauge invariance of the background effective
action up to the gauge invariance of effective action depend-
ingon themeanquantum fields. Furthermore,we extended all
mentioned results from the nonrenormalizable effective
action to renormalized one. The gauge invariance of renor-
malized extended effective under the renormalized finite
gauge transformations has been proved on the hypersurface
of switched off antifields. An important consequence of the
last result is thegauge invariance of renormalizedbackground
effective action under deformed gauge transformations of
background metric for any covariant quantum gravity theory.
One of the possible applications of the new developments

of the present work is that our treatment of background field
method can be extended to the case of nonlinear gauges,
which was never done [76]. This is an interesting problem to
solve, because in the recent years there were several pub-
licationsof different authors on thegauge andparametrization
dependence in quantum gravity (see, e.g., [77,78] and further
references therein). From the background field method side,
the nonlinear change of parametrization may transform the
linear gauge into nonlinear. Thus, it would be interesting to
include the nonlinear gauges into this consideration. From
this perspective, our work can be seen as a preparation for a
solid field theoretical analysis of this issue.
It is tempting to extend the results achieved in this work

to the nonperturbative domain. Unfortunately this cannot
be done for the standard versions of average effective
action, since the last does not admit the consistent on-shell
limit in the case of gauge fields. In this respect the most
promising is the new version of functional renormalization
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group which is based on the composite fields, as introduced
in [49] for the Yang-Mills fields. However, for this end one
has to extend this new scheme to quantum gravity and,
most difficult, to learn how it can be used for making
practical calculations. As a reward we can hope to get a
consistent nonperturbative treatment of not only vector
gauge fields, but also gravity.
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