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We derive bounds on the number of Abelian gauge group factors in six-dimensional gravitational
theories with minimal supersymmetry and in their F-theoretic realizations. These bounds follow by
requiring consistency of certain Bogomol’nyi-Prasad-Sommerfield strings in the spectrum of the theory, as
recently proposed in the literature. Under certain assumptions, this approach constrains the number of
Abelian gauge group factors in six-dimensional supergravity theories with at least one tensor multiplet to be
N ≤ 20 (or N ≤ 22 in the absence of charged matter). For any geometric F-theory realization with at least
one tensor multiplet, we establish the bound N ≤ 16 by demanding unitarity of a heterotic solitonic string
which exists even in the absence of a perturbative heterotic dual. This result extends to four-dimensional
F-theory vacua on any blowup of a rational fibration. Our findings lead to universal bounds on the rank of
the Mordell-Weil group of elliptically fibered Calabi-Yau 3-folds.
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I. INTRODUCTION

It is widely believed that the compatibility of a gauge
theory with quantum gravity imposes extra constraints on
the structure of the theory, which may not be visible from
the consistency of the low-energy effective theory alone.
The resulting schism of theory space into a swampland [1]
of theories lacking an embedding into quantum gravity
versus the landscape of fully consistent theories including
gravity is a subject that has attracted considerable recent
attention [2,3].
In this paper, we report on new bounds on the maximal

number of Abelian gauge group factors in six-dimensional
gravitational theories with N ¼ ð1; 0Þ supersymmetry.
This class of theories is known to be highly constrained
by the consistent cancellation of gauge and gravitational
anomalies. Local anomaly considerations have lead to a
number of remarkable restrictions on the architecture of the
gauge sector of six-dimensional supergravities, such as
those found in Refs. [4–6] (see Ref. [7] for background and
more references). Apart from being interesting in itself, this
line of reasoning can also be viewed as a first step towards
studying similar questions in a four-dimensional context.

Abelian gauge symmetries play a distinguished role in
the swampland program: unlike their non-Abelian counter-
parts, they must necessarily couple to gravity [8] in order
for their anomalies to be canceled by a Green-Schwarz
mechanism. It is even more surprising that anomalies alone
do not seem to give a universal bound on the number of
Abelian gauge group factors even in the highly constrained
setup of six-dimensional supergravities with eight super-
charges. In Ref. [5] it was observed that the number of
Abelian gauge group factors can in principle be infinite, as
far as the structure of gauge-gravitational anomalies is
concerned, at least in the absence of charged hypermultiplet
matter and as long as the theory contains more than eight
tensor multiplets in its spectrum. For T ≤ 8 tensor multip-
lets, on the other hand, Ref. [5] determined the bound on
the number of Abelian gauge group factors in purely
Abelian theories to be [9]

N ≤ ðT þ 2Þ
�
T þ 7

2
þ
�
T2 − 51T þ 2225

4

�
1=2

�
; ð1Þ

which gives the upper bounds

f54; 81; 107; 134; 160; 185; 211; 236; 260g; ð2Þ

for T ¼ 0; 1;…; 8, respectively, while for T ¼ 0 the
stronger bound N ≤ 17 has been found.
As pointed out very recently in Ref. [10], extra con-

straints have to be imposed on a six-dimensional (6D)
supergravity theory by demanding unitarity of the sector of
Bogomol’nyi-Prasad-Sommerfield (BPS) strings coupling
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to the tensor multiplets. In this paper we observe that the
resulting consistency conditions severely constrain the
maximal number of possible Abelian gauge group factors,
whether or not a non-Abelian gauge sector is present. In a
pure supergravity analysis, bounds can be established
modulo certain assumptions on the integrality and generic
nondegeneracy of a class of BPS strings. With these
assumptions, in Sec. III, we will bound the number of
Abelian gauge group factors to be N ≤ 20 for T ≥ 1 in the
presence of charged matter [and N ≤ 22 if some Uð1Þ’s
have no charged matter] and N ≤ 32 for T ¼ 0. This rules
out the possibility of an infinite number of Abelian gauge
group factors, provides a definite bound for T ¼ 0 even
in the presence of a non-Abelian gauge sector, and con-
siderably improves the above-mentioned bound (1) for
1 ≤ T ≤ 8.
While the supergravity analysis relies on certain assump-

tions on the string charge spectrum, the situation is even
clearer once we turn to explicit realizations of 6D
N ¼ ð1; 0Þ supergravities in F-theory in Sec. IV. For all
such F-theory models with T ≥ 1 we are able to constrain
the maximal number of Abelian group factors to be

N ≤ 16 ð3Þ

by considering a heterotic string obtained by wrapping a
D3-brane on a distinguished curve on the F-theory com-
pactification space. The appearance of this heterotic string,
which exists even in the absence of a perturbative heterotic
dual, has played a crucial role in the study of swampland
and weak gravity conjectures in Refs. [11–14]. Our con-
straint (3) heavily relies on the results of Ref. [8] concern-
ing the form of the so-called height pairing of rational
sections describing Abelian gauge groups in F-theory.
Our main message is that Abelian gauge groups in six-

dimensional F-theory models with T ≥ 1 can always be
embedded in the E8 × E8 current algebra on the above-
mentioned heterotic string, even if no perturbative heterotic
dual exists. This is a notable difference to non-Abelian
gauge groups. Combined with the weaker bound N ≤ 32,
which we will derive for F-theory models with T ¼ 0, this
predicts a universal bound on the number of independent
nontorsional rational sections on any elliptically fibered
Calabi-Yau 3-fold. To date no such bound has been derived
in the mathematics literature.
In Sec. V we speculate on extensions of our results to F-

theory compactifications to four dimensions: as long as the
base of the elliptic fibration is the blowup of a rational
fibration, we expect the bound N ≤ 16 to continue to hold
for all Abelian gauge group factors which are associated
with rational sections. We furthermore conjecture that
the bound N ≤ 16 should also hold for six-dimensional
F-theory models with T ¼ 0, which would even improve
the existing conditional bound N ≤ 17 obtained from
anomaly cancellation in the absence of non-Abelian gauge

dynamics. Finally, our results on six-dimensional F-theory
with T ≥ 1 should also constrain the charge pattern for
Abelian gauge groups, as these must be embeddable into
E8 × E8.

II. BACKGROUND AND REVIEW

Consider a 6D N ¼ ð1; 0Þ supergravity theory with
vector multiplets in the gauge group G ¼ Q

ι Gι, where
Gι are simple non-Abelian factors, as well as T tensor
multiplets. Each tensor multiplet contains one antichiral
tensor B−

α , α ¼ 1;…; T, along with a real scalar. In
addition, the gravity multiplet contains a self-dual tensor
Bþ. The structure of gauge and gravitational anomalies of
this theory is characterized by the anomaly coefficients bGι

and a, which can be represented as vectors in R1;T ,
endowed with an intersection product of signature
ð1; TÞ. The gravitational anomaly coefficient a must satisfy
the relation a · a ¼ 9 − T. This is solved, for instance, by
the vector −a ¼ ð3;−1;…;−1Þ ∈ R1;T, where we choose
the inner product to be ηAB ¼ diagð1;−1;…;−1Þ (for
A ∈ f0; αg). The real scalars in the tensor multiplet are
assembled in a vector j ∈ R1;T subject to the normalization
condition j · j ¼ 1. The inverse gauge coupling squared of
the vector multiplets is controlled by the scalars in the
tensor multiplet as

1

g2Gι

¼ j · bGι
: ð4Þ

The tensor fields couple to BPS strings whose world-
sheet theory is described by a two-dimensional (2D)
N ¼ ð0; 4Þ theory. From the perspective of the super-
gravity theory alone the BPS strings are characterized by an
integral charge vector Q in a unimodular lattice [15] of
tension j ·Q. As in Ref. [10], we are interested in strings
that do not correspond to instanton strings in 6D
N ¼ ð1; 0Þ superconformal field theories (SCFTs) once
gravity is decoupled or in little string theories (LSTs). An
analysis of the anomaly polynomial of these strings reveals
that the left- and right-moving central charges of the 2D
SCFTs to which the worldsheet theories flow in the infrared
(IR) are given by (see Ref. [10] and references therein)

cL ¼ 3Q ·Q− 9Q · aþ 2; cR ¼ 3Q ·Q− 3Q · a: ð5Þ

In these expressions, the contribution from the free hyper-
multiplet describing the center-of-mass motion of the string
has already been removed. Furthermore, Eq. (5) relies on
the identification of the R symmetry of the 2D worldsheet
SCFT in the IR with the factor SUð2ÞR in the decom-
position SOð4Þ ¼ SUð2ÞR × SUð2Þl, where SOð4Þ is the
rotation group acting on the extended directions transverse
to the string. This is the correct identification for the strings
that are not associated with 6D SCFTs or LSTs [10].
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The gauge group G of the 6D supergravity as well as the
SUð2Þl symmetry act as flavor symmetries on the string,
with ’t Hooft anomaly coefficients

kGι
¼ Q · bGι

; kl ¼
1

2
ðQ ·QþQ · aþ 2Þ: ð6Þ

In the IR 2D SCFT, these take the role of the Kac-Moody
level of the worldsheet current realizing the respective
flavor symmetry (see, e.g., Ref. [16] for background). The
unitarity of the worldsheet SCFT demands that cR, kGι

, and
kl are all non-negative, and hence [10]

Q ·Q ≥ −1; Q ·QþQ · a ≥ −2; Q · bGι
≥ 0: ð7Þ

The left-moving central charge cL receives contributions
from the left-moving current algebra associated with the
flavor groups Gι as

cG ¼
X
ι

cGι
≔

X
ι

kGι
dimðGιÞ

kGι
þ h∨Gι

: ð8Þ

Here h∨Gι
are the dual Coxeter numbers of Gι. Hence, the

consistency of the worldsheet SCFT implies furthermore
that [10]

X
ι

cGι
≤ cL ¼ 3Q ·Q − 9Q · aþ 2: ð9Þ

This was used in Ref. [10] to rule out a number of theories
with non-Abelian gauge groups, which would otherwise
satisfy the 6D anomaly cancellation conditions.
If the 6D supergravity theory has a realization via

F-theory compactified on an elliptic Calabi-Yau 3-fold
Y3 with projection

π∶ Y3 → B2; ð10Þ

then the BPS strings correspond to solitonic strings from
D3-branes wrapping a curve C on the Kähler surface B2. In
this case, one identifies the string charge lattice with the
cohomology lattice H2ðB2;ZÞ and the intersection pairing
with the cohomological intersection pairing of signature
ð1; TÞ. Furthermore, −a ¼ K̄B2

where K̄B2
is the antica-

nonical class of B2.
The condition for the string to not describe a 6D SCFT

instanton string is that it wraps a curve of self-intersection
not smaller than −1. The worldsheet theory of such strings
can then be obtained by reducing the four-dimensional
(4D)N ¼ 4 supersymmetric Yang-Mills theory on a single
D3-brane along C with the help of a topological duality
twist [17], as detailed in Refs. [18,19]. The spectrum of
worldsheet fields can be found in Table I. Suppose the
curve class C wrapped by a D3-brane allows for a
decomposition C ¼ P

p npCp, where Cp are the effective

curve classes and np > 0. Then, the 2D SCFT of the string
associated with C can split into the sum of SCFTs
associated with np D3-branes wrapping Cp [18]. If the
curve C is irreducible, such a split occurs only for specially
tuned values of the moduli of C, while for generic moduli
the string flows to the SCFT associated with C. We will
encounter such a situation in many cases. As long as the
nondegenerate string associated with C is itself not an
SCFT instanton or LST string, bounds of the form (9) can
be derived from it at generic points in the moduli space
even though at special points in the moduli space the SCFT
may degenerate to a sum of instanton strings.

III. BOUNDS ON THE NUMBER OF Uð1Þ
FACTORS IN SUPERGRAVITY

We now derive bounds on the number of Abelian gauge
group factors in 6D N ¼ ð1; 0Þ supergravity theories. We
will be using the same constraint [Eq. (9)] as in Ref. [10],
but applied to Abelian gauge groups.
The discussion can be phrased either in purely field-

theoretic language or in the context of F-theory. We begin
in this section with a supergravity approach. This, however,
will only lead to bounds barring various assumptions
concerning the integrality and nondegeneracy of suitable
charge vectors, as we will make explicit. By contrast, in
explicit string-theoretic realizations in F-theory (studied in
the next section) no comparable assumptions have to be
made, but these follow directly from the geometry of the
compactification.
To each Abelian gauge group factor Uð1Þi, i ¼ 1;…; N,

of a 6D N ¼ ð1; 0Þ supergravity we can associate an
anomaly coefficient bi [5], which is the counterpart of
the anomaly coefficient bGι

for the non-Abelian gauge
groups. Similarly, each Abelian gauge group factor Uð1Þi
induces a Uð1Þi current on the BPS string with charge
vector Q, whose Kac-Moody level is given by

ki ¼ Q · bi; ð11Þ

with the understanding that ki ¼ 0 corresponds to no
current. The Uð1Þi current central charge is

TABLE I. Massless spectrum of the effective 2D N ¼ ð0; 4Þ
worldsheet theory of the string that arises from a D3-brane
wrapping a genus g curve C ⊂ B2 (not contained in the
discriminant). The representations are under SUð2ÞR × SUð2Þl ×
SOð1; 1Þ and the þ=− signs in the second column denote
chiralities.

Fermions Bosons (0,4) Multiplicity

2 × ð2; 1Þ1 þ 4 × ð1; 1Þ0 Hyper g − 1þ K̄B2
· C

2 × ð1; 2Þ1 þ ð2; 2Þ0 Twisted Hyper 1
2 × ð1; 2Þ−1 − Fermi gðCÞ
ð1; 1Þ−1 − Half-Fermi 8K̄B2

· C
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ci ≔ cUð1Þi ¼ 1 for ki ≠ 0: ð12Þ

Suppose now that the theory contains a BPS string with
charge vector Q subject to Eq. (7) such that for every Uð1Þi
gauge group factor in the 6D supergravity theory the level
on the string is positive,

ki ¼ Q · bi > 0 ∀ i ¼ 1;…; N: ð13Þ

Suppose furthermore that the associated string does not
generically degenerate into SCFT instantons or LST
strings. Then, the total number N of Uð1Þi factors in the
6D supergravity theory is constrained to be

N ¼
X
i

ci ≤ cL ¼ 3Q ·Q − 9Q · aþ 2: ð14Þ

As we will discuss, a string charge vector Q satisfying
Eq. (13) can always be found as long as for each Uð1Þi
there exists some hypermultiplet carrying nonzero Uð1Þi
charge. Before showing this, note that the latter condition is
always satisfied in theories with T ≤ 8 [5]: recall that the
anomaly coefficient bi appears, among other places, in the
condition for the cancellation of the quartic Uð1Þi anomaly
and the mixed Uð1Þi-gravitational anomaly as

bi · bi ¼
1

3

X
I

MIðqðiÞI Þ4; ð15Þ

−a · bi ¼
1

6

X
I

MIðqðiÞI Þ2; ð16Þ

where MI denotes the number of hypermultiplets with

Uð1Þi charge qðiÞI . Clearly, the first condition implies that
bi · bi ≥ 0. If bi · bi ¼ 0, then by Eq. (15) there is no
charged matter, and one can furthermore show [8] that there
can be no kinetic mixing with the remaining Abelian gauge
factors Uð1Þj, j ≠ i. In this sense the Uð1Þi theory is
completely trivial. In any case, theories with bi · bi ¼ 0
cannot occur if T ≤ 8: the reason is that bi · bi ¼ 0,
together with a · bi ¼ 0 [which follows from Eqs. (15)
and (16)] leads to 9 − T ¼ a · a ≤ 0.

A. Supergravities with T = 0

Let us now analyze the bound (14) on the number N of
Uð1Þi gauge group factors in supergravity. We begin with
the simplest case, T ¼ 0. In this case −a ¼ 3 and j ¼ 1,
and we consider the string with charge

Q0 ¼ 1; ð17Þ

with Q2
0 ¼ 1 and Q0 · a ¼ −3. Here and in the rest of this

section we will always assume that the charge Q0 is
properly quantized so that a corresponding string satisfies

the Dirac quantization condition; this is the first of a
number of assumptions which can be manifestly verified in
the F-theory realizations presented in the next section.
According to the completeness conjecture [20] all strings
on the charge lattice are in the physical spectrum of a
quantum gravity theory, and hence there exists a string with
charge (17).
Since b2i > 0 and j · bi > 0, we know that bi > 0 and

hence Q0 · bi > 0. It is furthermore clear that the string
cannot degenerate to a product of SCFT or LST strings
since there are no such sectors in a theory with no tensor
multiplets. Therefore, the number of Uð1Þi factors is
bounded as

N ≤ cL ¼ 32; T ¼ 0: ð18Þ
This bound is to be compared with the conditional bound
N ≤ 17 derived previously in Ref. [5] based entirely on the
6D supergravity anomaly conditions. We emphasize that
our bound is universal for T ¼ 0 supergravities and in
particular also works in the presence of a non-Abelian
sector.

B. Supergravities with T = 1

Assume next that T ¼ 1. There exist two choices for the
unimodular charge lattice [15],

Γ0 ¼
�
0 1

1 0

�
or Γ1 ¼

�
1 0

0 −1

�
: ð19Þ

Let us first discuss Γ1: one can always choose, without loss
of generality, −a ¼ ð3;−1Þ [4]. We consider the string with
charge

Q0 ¼ ð1;−1Þ; ð20Þ
which satisfies

Q0 ·Q0 ¼ 0; Q0 · a ¼ −2 ð21Þ

and therefore fulfills the first two conditions in Eq. (7). Let
us furthermore assume that the string with charge Q0 does
not degenerate (generically) into several strings, including
instanton strings. We will explicitly verify this in the F-
theory realization of these models in the next section, but
for now we leave it as an assumption from the pure
supergravity perspective. Let us make the ansatz

bi ¼ ðb0i ; b1i Þ: ð22Þ

The condition bi · bi > 0, known to be valid for T ¼ 1,
enforces that

b0i > jb1i j ≥ 0 or b0i < −jb1i j ≤ 0: ð23Þ
The second possibility can be excluded by recalling that
j · bi denotes the diagonal part of the matrix involving the
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Abelian gauge kinetic couplings and hence must be non-
negative whenever j lies in the cone of allowed tensor
multiplet vacuum expectation values. Let us approach the
boundary of this cone (subject to the normalization
j · j ¼ 1) by sending j → ð1; 0Þ. Then, demanding that
j · bi remains non-negative rules out the case b0i < 0 and
thereby the second option in Eq. (23). We thus conclude
that

ki ¼ Q0 · bi ¼ b0i þ b1i > 0: ð24Þ

This means that each Uð1Þi couples to the string, and
therefore demanding Eq. (14) implies that the number N of
Uð1Þi factors in the supergravity theory is bounded as

N ≤ cL ¼ 20; ðT ¼ 1Þ: ð25Þ

For the lattice Γ0, there exist two inequivalent choices for
a subject to a · a ¼ 8, namely, −a ¼ ð2; 2Þ or −a ¼ ð4; 1Þ
[15]. Either way, bi · bi > 0 implies that in bi ¼ ðb0i ; b1i Þ
both entries must be nonvanishing and hence Q · bi ≠ 0 for
any Q ¼ ðQ0; Q1Þ. If − a ¼ ð2; 2Þ, one then obtains the
same bound (25) forQ0 ¼ ð1; 0ÞwithQ0 ·Q0 ¼ 0 andQ0 ·
ð−aÞ ¼ 2 and with the convention for the cone of scalar
fields j that b1i > 0 to satisfy j · bi > 0. If −a ¼ ð4; 1Þ, this
choice would imply Q0 ·Q0 ¼ 0 and Q0 · ð−aÞ ¼ 1. If this
Q0 is properly quantized, it is clear that this cannot have a
geometric interpretation in terms of a curve class on a
Kähler surface in an F-theory context (for which the
Riemann-Roch theorem would have to hold). Indeed, the
choice −a ¼ ð4; 1Þ does not have a known string-theoretic
realization [6]. In any event, we would obtain the bound
N ≤ 11 from Q0 for −a ¼ ð4; 1Þ, and by comparison with
Eq. (25), N ≤ 20 remains to be the relevant constraint for
T ¼ 1 supergravities.
We will give an interpretation of this constraint in the

next section. Furthermore, it is interesting to note that
Eq. (25) is much stronger than the bound

N ≤ ðT þ 2Þ
�
T þ 7

2
þ
�
T2 − 51T þ 2225

4

�
1=2

�
; ð26Þ

which was found in Ref. [5] for a theory with only Abelian
gauge group factors and T ≤ 8: for T ¼ 1, Eq. (26) merely
constrains the number of Abelian gauge group factors to
be N ≤ 81.

C. Supergravities with T > 1

It is clear that even for 1 < T ≤ 8 these results can be
generalized, where for simplicity we only consider super-
gravity models with charge lattice

Γ ¼ diagð1;−1;…;−1Þ; −a ¼ ð3;−1;…;−1Þ: ð27Þ

Consider the string with charge

Q0 ¼ ð1;−1; 0;…; 0Þ ð28Þ

and make the ansatz bi ¼ ðb0i ; b1i ; b2i ;…; bTi Þ. Again, bi ·
bi > 0 implies Eq. (23), and the second option can be
excluded by demanding j · bi > 0 for the boundary value
j ¼ ð1; 0;…; 0Þ. Hence, Eq. (24) continues to hold, barring
the assumption that Q0 is an integer charge vector corre-
sponding to a nondegenerate string.
A similar analysis, again subject to the assumptions

concerning the integrality and nondegeneracy of charge
vectors, can also be carried out for supergravities with
T ≥ 9 and Eq. (27). If bi · bi ≠ 0 for every Uð1Þi factor, the
same bound (25) applies as in the theories with 1 ≤ T ≤ 8
and−a ¼ ð3;−1;…;−1Þ. Even in the presence of bi ’s with
bi · bi ¼ 0, a relaxed bound of 22 can be obtained by
considering T strings with charges

QðαÞ
0 ¼ ð1; 0;…; 0;−1; 0;…; 0Þ; for α ¼ 1;…; T; ð29Þ

for which the only nonzero entries are the zeroth and the
αth components: upon combining the resulting constraints,
one can bound the total number of Uð1Þ factors by

N ≤ 20
T

T − 1
≤ 22.5; ð30Þ

where T ≥ 9 has been used in the last step. In particular,
this allows us to rule out models with an infinite number of
Abelian gauge groups with bi · bi ¼ 0. As shown in
Ref. [5], this possibility cannot be ruled out based solely
on the 6D supergravity anomaly cancellation conditions.
In summary, for the charge lattice choices made above,

the consistency conditions from BPS strings lead to a
considerably stronger bound on the number of Abelian
gauge group factors than 6D anomaly considerations alone.

IV. BOUNDS ON THE NUMBER OF Uð1Þ
FACTORS IN F-THEORY

We now interpret and sharpen the bounds found in the
previous section, focusing on those supergravity theories
with a realization as an F-theory compactification on an
elliptic Calabi-Yau 3-fold π∶Y3 → B2. In order to avoid
nonminimal singularities in the fiber, which would spoil the
Calabi-Yau condition, the base B2 of the elliptic fibration
must be of one of the following three types [22]:1

(1) B2 ¼ P2 ⇒ T ¼ 0.
(2) B2 ¼ Fn with n ¼ 0;…; 8; 12 ⇒ T ¼ 1.
(3) B2 ¼ BlkðFnÞ, a k-fold blowup of Fn ⇒ T ¼ 1þ k.

In this paper, whenever we speak of F-theory constructions
we specifically have one of these three smooth classes of
base spaces in mind.

1In addition, the F-theory base could be an Enriques surface; in
this case, there are no gauge fields in F-theory [21] and we hence
do not consider this choice further.
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Abelian gauge potentials Ai in the effective action arise
by expanding the M-theory 3-form C3 as C3¼

P
i Ai ∧wi,

where wi ∈ H2ðY3;RÞ is the image of a rational section
Si of Y3 under the so-called Shioda map, wi ¼ σðSiÞ.
The rational sections of Y3 form the Mordell-Weil group
MW(Y3), whose rank therefore counts the number of
independent (non-Cartan) Uð1Þi gauge factors in the
effective action. See Refs. [23,24] and references therein
for more information.
The anomaly coefficients bi associated with such Uð1Þi

gauge factors are given by the so-called height pairing

bi ¼ −π�ðσðSiÞ · σðSiÞÞ: ð31Þ

The crucial property which we will be using is that, as
discussed in Ref. [8] based on the considerations in
Ref. [25], this divisor class can always be written as

bi ¼
1

m2
i
ð2K̄B2

þ δiÞ; for some mi ∈ Z>0; ð32Þ

where δi is an effective divisor on B2 and K̄B2
represents the

anticanonical class on B2. The effective divisor bi can be
thought of as the linear combination of 7-brane divisors
supporting the Abelian gauge group Uð1Þi.
We can now interpret and sharpen the constraints found

in the previous section for the three types of F-theory base
spaces listed above.

A. F-theory vacua with T = 0

For T ¼ 0, i.e., B2 ¼ P2, we can consider a string by
wrapping a D3-brane along the rational curve C ¼ H,
where H denotes the hyperplane class of B2 with
H ·H ¼ 1, in terms of which K̄P2 ¼ 3H. Every height
pairing bi can be parametrized as bi ¼ bH for b > 0. This
system is of course an explicit realization of the super-
gravity setup with T ¼ 0 considered in the previous section
and simply reproduces the bound (18). We will come back
to this setup in Sec. V and argue that this bound can be
sharpened.

B. F-theory vacua with T = 1

For T ¼ 1, the F-theory base is a Hirzebruch surface
B2 ¼ Fn, for n ¼ 0; 1;…; 8; 12, corresponding to a fibra-
tion of a rational curve P1

f over a base P
1
h [26]. The classes

of the fiber f and of the base h span the cohomology
H2ðFn;ZÞ ¼ hf; hi and have the intersection numbers

f · f ¼ 0; f · h ¼ 1; h · h ¼ −n: ð33Þ

The Mori cone of effective curvesMðFnÞ and the closure of
the Kähler cone K̄ðFnÞ are given by

MðFnÞ ¼ hf; hi; K̄ðFnÞ ¼ hf; hþ nfi; ð34Þ

while the anticanonical class evaluates to

K̄Fn ¼ 2hþ ð2þ nÞf: ð35Þ

Consider now the string obtained by wrapping
a D3-brane along the curve class

C ¼ f; ð36Þ

with

C · C ¼ 0; C · K̄Fn ¼ 2: ð37Þ

This is an explicit realization of the properties (21) for an
integral curve class C. Since C ¼ f is a generator of the
Mori cone, it cannot split into other effective curve classes.
The worldsheet SCFTassociated with the string is therefore
manifestly nondegenerate. Since f is furthermore in the
closure of the Kähler cone (34), we know that

f · δ ≥ 0 ∀ δ effective: ð38Þ

As a result, any Uð1Þi factor in the theory leads to a
worldsheet current on the string with a nontrivial Kac-
Moody level because

ki ¼ C · bi ¼ f ·
1

m2
i
ð2K̄Fn þ δiÞ ≥

2

m2
i
f · K̄Fn ¼

4

m2
i
> 0;

ð39Þ
where we used Eq. (32). Hence, the string associated withC
satisfies all properties to apply Eq. (14) to bound the
number N of Abelian gauge group factors in such F-theory
models, leading again to the bound

N ≤ cL ¼ 20: ð40Þ
In fact, the string from the D3-brane wrapped on C ¼ f

is not just any solitonic string: its zero-mode spectrum
coincides with the spectrum of a critical heterotic string
propagating in six dimensions; see Table I for the field
contents of the worldsheet theory. This is of course no
surprise because F-theory on B2 ¼ Fn is dual to the
heterotic string on an elliptic K3 over P1

h, and in this
duality the solitonic string from a D3-brane wrapping the
fiber P1

f reduces to the critical heterotic string in the limit of
small volume of P1

f. This realization of the heterotic string
has played an important role in the context of the weak
gravity conjecture in F-theory [11–14].
The value cL ¼ 20 of the heterotic string has an

immediate interpretation: the left-moving sector of the
string (apart from the free hypermultiplet associated with
the string motion in R1;5) comprises 8C · K̄Fn ¼ 16 left-
moving fermions in N ¼ ð0; 4Þ half-Fermi multiplets,
along with one hypermultiplet associated with the propa-
gation of the string on the dual heterotic K3 surface
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(see Table I). The half-Fermi multiplets are due to the zero
modes at the intersection of C with the 7-branes on B2.
They are the only source of charge of the string with respect
to the 7-brane gauge groups since the hypermultiplet is
uncharged. This suggests that the number of Uð1Þi gauge
fields is in fact subject to the slightly stronger bound

N ≤ ðcL − 4Þ ¼ 16; ð41Þ

where we have subtracted the contribution from the [Uð1Þi
neutral] hypermultiplet associated with the moduli of the
string along the dual K3 surface. In hindsight, the bound
(41) is simply the well-known statement that the Uð1Þi
gauge groups in models with a perturbative heterotic dual
on a smooth K3 can be embedded into the perturbative
heterotic E8 × E8 gauge group. A far less trivial statement
is that the bound N ≤ 16 continues to hold in all F-theory
compactifications with T > 1, as we will see momentarily.
It is interesting to compare the bound (41) relevant for

geometric F-theory vacua to the less strict bound (25)
derived for general supergravity theories with T ¼ 1.
Consistent supergravities satisfying Eq. (25) but not
Eq. (41) exist. For instance, 6D N ¼ ð1; 0Þ vacua of the
perturbative heterotic string can have a gauge group of rank
up to 20, as is known from purely conformal field-theoretic
constructions (e.g., Ref. [28]). These are, however, not the
geometric heterotic K3 compactifications which the soli-
tonic string in our F-theory model is related to [29].
Correspondingly, a split of the worldsheet fields of a
heterotic string as in Table I, which underlies the reduced
bound (41), is a consequence of the specific realization of
the heterotic worldsheet theory as a wrapped D3-brane in
F-theory setups. In this sense, the bound N ≤ 20 found in
the supergravity approach, without any prejudice concern-
ing an embedding into F-theory, is indeed the correct
bound for general 6D N ¼ ð1; 0Þ supergravities.
Finally, recall the well-known fact that F-theory on Fn

necessarily supports a non-Higgsable non-Abelian gauge
group Gn on 7-branes wrapping the base class h with self-
intersection h · h ¼ −n. Since bGn

· C ¼ h · f ¼ 1, this
gives rise to a Gn current on the string at level kGn

¼ 1,
which contributes to the central charge cL with cGn

given in
Eq. (8). From Table II, we find that this improves the bound
on the number of possible Abelian gauge group factors
to be

N ≤ b16− cGn
c ¼ f16;16;16;14;12;10;10;9;9;8g ð42Þ

for F-theory models on B2 ¼ Fn with n ¼ 0; 1;…; 8; 12,
respectively.

C. F-theory vacua with T > 1

We now come to the most interesting case, where the
F-theory base B2 is an arbitrary blowup of Fn. Recall that
Fn is a nondegenerate P1

f fibration. After we blow up a
single point into an exceptional divisor (curve), the new
fiber degenerates into two curves when it hits the blowup
locus. This process can be repeated multiple times. Let us
introduce the morphism

p∶ B2 → Fn; ð43Þ

which corresponds to the blowdown of the exceptional
divisors El on B2. The anticanonical classes of both spaces
are related as K̄B2

¼ p�ðK̄FnÞ þ
P

l alEl for some coef-
ficients al. The idea is now to consider the string obtained
from a D3-brane wrapping the curve

C ¼ p�ðfÞ ⊂ B2; ð44Þ

where f is the fiber class on Fn prior to the blowup. This
curve has the properties

C ·B2
C ¼ p�ðfÞ ·B2

p�ðfÞ ¼ f ·Fn f ¼ 0 ð45Þ

and

C ·B2
K̄B2

¼ p�ðfÞ ·B2

�
p�ðK̄FnÞ þ

X
l

alEl

�
ð46Þ

¼ f ·Fn K̄Fn þ
X
l

alf ·Fn p�ðElÞ ð47Þ

¼ f ·Fn
K̄Fn ¼ 2: ð48Þ

Before the last line we have used that f ·Fn p�ðElÞ ¼ 0

because the blowdown map p contracts the exceptional
divisors to points.
The string associated with C therefore still has the same

zero-mode structure as the heterotic string in six dimen-
sions. As alluded to above, the difference with the situation
with T ¼ 1 is that the curve C ¼ p�ðfÞmay split, at certain
loci in its moduli space, into various exceptional divisors on
B2. In the dual heterotic picture, this corresponds to a
degeneration of the heterotic string into various noncritical
strings at the location of NS5-branes. Importantly for us,
away from the NS5-branes, the heterotic worldsheet is
nondegenerate and continues to be described by a single
SCFT in the IR for which the analysis of Sec. II is valid.
It is still true that each Uð1Þi gauge symmetry in the 6D

F-theory induces an Abelian worldsheet current on the
string of nonvanishing level ki ≠ 0. This is because prior to

TABLE II. Non-Higgsable gauge groups on Fn.

Fn 0 1 2 3 4 5 6 7 8 12

Gn − − − SUð3Þ SOð8Þ F4 E6 E7 E7 E8

h∨G − − − 3 6 9 12 18 18 30
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the blowup, f is in the closure K̄ðFnÞ of the Kähler cone,
and its pullback under the blowdown (43) continues to lie
in the Kähler cone closure [30]. Therefore, the same
computation as in Eq. (39), now performed on B2, shows
that

ki ¼ C ·B2
bi > 0 ∀ bi: ð49Þ

We conclude that the same upper boundN ≤ cL ¼ 20, or in
fact

N ≤ ðcL − 4Þ ¼ 16; ð50Þ

holds for any F-theory compactification with at least one
tensor [or in fact the stronger bound (42) for F-theory on a
k-fold blowup of Fn]. Here we have again subtracted the
contribution from the Uð1Þi uncharged hypermultiplet on
the worldsheet of the heterotic string as realized by a
wrapped D3-brane.
Note that this certainly does not mean that the total rank

of the gauge group, including non-Abelian factors, should
be bounded by 16: unlike Abelian gauge group factors,
non-Abelian gauge symmetries can “hide” from the world-
sheet of the heterotic string in that they need not necessarily
induce a worldsheet current with nonzero level kGι

. After
all, the crucial property of Abelian gauge symmetries
underlying our analysis is that their anomaly coefficients
take the form (32), which prevents ki ¼ 0 for the heterotic
string under consideration. Non-Abelian gauge group
factors with kGι

¼ 0 with respect to the heterotic string
are truly nonperturbative in that they cannot be embedded
into the heterotic E8 × E8 current on the heterotic world-
sheet. The anomaly coefficients of such gauge groups
satisfy

bGι
· bGι

≤ 0 ð51Þ

because bGι
· C ¼ 0 and C · C ¼ 0 can only be solved, with

an intersection form of signature ð1; TÞ, for bGι
· bGι

≤ 0

(and bGι
· bGι

¼ 0 if and only if bGι
¼ αC for some α ∈ Q).

In fact, bGι
is the divisor class wrapped by the 7-brane with

gauge group Gι, and the gauge groups with bGι
· C ¼ 0

include all the gauge groups wrapping blowup divisors on
B2: as discussed, these blowup divisors are contained in
C ¼ p�ðfÞ and hence intersect it trivially. These excep-
tional divisors support 6D SCFT sectors on shrinkable
curves on B2 and are, in the above sense, truly non-
perturbative from the heterotic string point of view [31]. In
particular, our results imply that it is not possible to Higgs
these to Abelian gauge group factors. This is (trivially) true
not only for the non-Higgsable gauge groups supported on
blowup divisors, but also after enhancing the gauge group
further by tunings of the elliptic fibration in F-theory. Even
after such tunings that enhanceG → H, there are no adjoint

scalars available to Higgs H → G ×Uð1Þl because the
blowup curves are rigid.
Another way to phrase the origin of the bound (50) is

this: F-theory on a blowup of Fn is dual to the heterotic
string on K3 with NS5-branes. Due to nonperturbative
effects associated with the NS5-branes, additional gauge
groups will in general occur which cannot be embedded
into E8 × E8. In F-theory these are realized on the blowup
divisors, and since the latter have vanishing intersection
with the curve C ¼ p�ðfÞ they do not correspond to a
current algebra on the heterotic string. On the other hand,
Abelian gauge groups are guaranteed to induce a Uð1Þi
current on the worldsheet because of Eq. (49). Hence, the
nonperturbative sector does not contain the Uð1Þi gauge
groups, which are consequently purely perturbative and
embeddable into E8 × E8.

V. DISCUSSION AND SPECULATIONS

In this short paper, we have derived universal bounds on
the number N of Abelian gauge group factors in F-theory
compactifications to six dimensions. Our main result is the
boundN ≤ 16 for any 6DF-theory compactification giving
rise to at least one tensor multiplet. The derivation
combines the recent idea of Ref. [10] to deduce constraints
on the form of 6D N ¼ ð1; 0Þ supergravity theories from
the consistency of embedded BPS strings on the one hand,
and specific properties of the anomaly coefficients for
Abelian gauge group factors [8,25] on the other hand. As in
Refs. [11–14], we have identified a certain solitonic string
on any F-theory base other than P2 as the heterotic string;
applying the constraint (9) to this string in the context of
Abelian gauge groups leads to the precise bounds (42)
and (50). For F-theory on an elliptic fibration over base P2,
no such heterotic string can be identified in the spectrum of
solitonic strings; the resulting bound found for this class of
models hence a priori only takes the form N ≤ 32. We will
come back to this point below.
Our results are interesting from the perspective of the

swampland program of ruling out theories without a UV
completion despite their (apparent) low-energy consis-
tency; e.g., in Ref. [5] it was observed that 6D anomaly
cancellation alone is not enough to rule out 6D supergravity
models with an infinite number of Uð1Þ gauge fields with
anomaly coefficients bi · bi ¼ 0. Our analysis shows that
such theories are in the swampland, both from the
perspective of F-theory and—barring the assumptions
stated—more generally in supergravity even without invok-
ing any string-theoretic realization.
Our results can also be interpreted as giving a prediction

for the maximal rank of the Mordell-Weil group of any
elliptically fibered Calabi-Yau 3-fold to be

rkðMWðY3ÞÞ ≤ 16ðB2 ≠ P2Þ or ≤32ðB2 ¼ P2Þ; ð52Þ

SEUNG-JOO LEE and TIMO WEIGAND PHYS. REV. D 100, 026015 (2019)

026015-8



where the bound for B2 ¼ P2 will be revisited below. To
date, the elliptically fibered Calabi-Yau 3-fold with the
highest known Mordell-Weil rank is an elliptic fibration
over P2 with rkðMWðY3ÞÞ ¼ 10 [32]. It would be interest-
ing to see if the bounds (52) for elliptic Calabi-Yau 3-folds
can be improved further, or else be derived from a purely
mathematical point of view.
We end with a number of extensions of our results, some

of which are speculative.

A. F-theory on P2 revisited

First, it is natural to conjecture that the universal bound
N ≤ 16 should also apply to F-theory with base P2. The
total value of cL ¼ 32 for the string associated with C ¼ H
on P2 can be understood as cL ¼ 24þ 8, where the second
factor is due to the two interacting hypermultiplets of
the string (see again Table I) and the first factor is due to the
8K̄P2 · C ¼ 24 fermionic 3–7 modes. Since these are the
only source of Uð1Þi charge of the string, it is again
suggestive that N ≤ cL − 8 ¼ 24.
However, we conjecture that this is still an overcounting.

To understand its origin in our framework, note that the
surface P2 can be obtained from F1 by blowing down
the base curve P1

h with class h. On F1, we can consider the
string associated with the curve class C0 ¼ f þ h. By
blowing down h, C0 maps to the class C ¼ H associated
with the string on P2 that we are interested in. By wrapping
a D3-brane along C0 on F1 we obtain a bound state of the
heterotic string (from a D3-brane on f) with one E-string
(from a D3-brane on h with h · h ¼ −1). At generic values
of the curve moduli the string is nondegenerate and
described by the invariants C0 · C0 ¼ 1, C0 · K̄F 1

¼ 3.
This matches the string on the curve C ¼ H after the
blowdown on P2. The total left-moving central charge for
the string on C0 is cL ¼ 32 ¼ 24þ 8. Since C0 ¼ hþ f is
in the Kähler cone (34), we know that ki ¼ bi · C0 ≠ 0 for
every Uð1Þi in the theory, but bi · h need not be non-
vanishing. Indeed, the heterotic string has a current algebra

Eð1Þ
8 × Eð2Þ

8 , while the E-string has only a single E8 current,
and some Uð1Þi factors are orthogonal to this E8. The
bound N ≤ 24 can then be interpreted as N ≤ Nf þ Nh,
where Nf ¼ 16 is the number of Uð1Þi that couple to the
heterotic string and Nh is the number of Uð1Þi coupling to
the E-string. Since the latter set is included in the first, we
end up with N ≤ 16 for the total number of Uð1Þi. Now, on
P2, there exists no individual heterotic and E-string, but
only their bound state along C ¼ H; nonetheless, we
conjecture that a similar overcounting is at work, and that
the bound can be improved to N ≤ 16, which is even
sharper than the conditional bound N ≤ 17 from anomalies
[5]. This translates into the conjecture that rkðMWðY3ÞÞ ≤
16 for any elliptic Calabi-Yau 3-fold with base P2, and it
would be extremely interesting to verify or falsify this
speculation.

B. Extensions to 4D F-theory

Our findings can be immediately extended to F-theory
compactifications on Calabi-Yau 4-folds to four dimen-
sions. This is particularly useful because no comparable
anomaly constraints exist in this case, at least for (non-
chiral) situations without gauge fluxes.
Strings from D3-branes wrapping curves C on the base

3-fold B3 are now described by a 2D N ¼ ð0; 2Þ world-
sheet theory [19], even though these strings are not BPS
objects from the viewpoint of the 4D N ¼ 1 supersym-
metry algebra. As long as B3 is the blowup of a P1

f

fibration, a D3-brane wrapping the class of the generic P1
f

fiber gives rise to a heterotic string, which becomes the
fundamental string in the dual heterotic frame [13]. This
continues to hold even if no perturbative heterotic dual of
the F-theory model exists due to the presence of NS5-
branes on the heterotic side. These now wrap curves on the
base of the dual heterotic Calabi-Yau 3-fold, which are the
location over which the blowups have been performed on
the F-theory side. The form (32) for the Uð1Þi anomaly
coefficients bi ¼ 1

m2
i
ð2K̄B3

þ δiÞ carries over to Calabi-Yau

4-folds and by similar arguments as before, every Uð1Þi
couples to the heterotic worldsheet in F-theory. More
precisely, prior to the blowup, let us denote by r∶B3 →
B2 the P1

f fibration of B3, where B2 is a surface; then, we
can always realize the fiber P1

f as the class P1
f ¼ 1

n ðr�J0 ·
r�J0Þ for some Kähler form J0 on B2 (where n is an
integer). Now, r�J0 · r�J0 · δi ≥ 0 because J0 pulls back to
an element in the closure of the Kähler cone of B3 and δi is
effective, and r�J0 · r�J0 · K̄B3

¼ 2 because the fiber is a
rational curve of self-intersection zero. Hence,
ki ¼ bi · ½P1

f� ≥ 4=m2
i > 0. This result remains invariant

under blowups of B3.
We therefore reproduce the same bound

N ≤ cL − 6 ¼ 22 − 6 ¼ 16; ð53Þ

where cL ¼ 22 denotes the left-moving central charge of
the internal sector (after subtracting the contribution from
two free scalars corresponding to the motion in the two
transverse directions) and the subtraction of six is for the
chiral left-moving scalars which are uncharged under the
7-brane gauge group, as before. See Table 3.1. of Ref. [13]
for details of the worldsheet spectrum.
Note that Eq. (53) only constrains the number of Abelian

gauge group factors, which are realized in terms of rational
sections, on blowups of rational fibrations. Unlike in six
dimensions, even the part of the non-Abelian gauge sector
which is not embedded in the heterotic worldsheet algebra
may contribute additional Uð1Þ’s due to the possibility of
breaking the gauge group with gauge fluxes. These sectors
are not constrained by our arguments. SuchUð1Þ’s, however,
are not realized by rational sections of the fibration.
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Furthermore, the set of possible base spaces is considerably
richer for four-dimensional F-theory, and it would be
interesting to extend our bounds to other geometries.

C. Constraints on charges

Coming back to six dimensions for simplicity, the
essence of our bounds is the realization that Abelian gauge
groups are embedded into the E8 × E8 algebra of a
heterotic worldsheet, at least for models with T ≥ 1.
This statement holds independently of the existence of a
perturbative heterotic dual. It should also carry over to the
level of charged matter states in that not only is the possible
number of Abelian gauge group factors constrained, but
also the possible spectrum of charges. In other words, all

Abelian gauge charges in F-theory models with T ≥ 1
should follow from a decomposition of the 248 × 248
of E8 × E8. It would be very interesting to understand
this further, in particular in view of recent attempts to
classify possible charges in F-theory geometry (e.g., in
Refs. [6,33–36], with a more complete list of references
provided in Refs. [23,24]).
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