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Within the causal dynamical triangulations approach to the quantization of gravity, striking evidence has
emerged for the dynamical reduction of spacetime dimension on sufficiently small scales. Specifically, the
spectral dimension decreases from the topological value of 4 toward a value near 2 as the scale being
probed decreases. The physical scales over which this dimensional reduction occurs have not previously
been ascertained. We present and implement a method to determine these scales in units of either the Planck
length or the quantum spacetime geometry’s effective de Sitter length. We find that dynamical reduction of
the spectral dimension occurs over physical scales of the order of 10 Planck lengths, which, for the
numerical simulation considered below, corresponds to the order of 10−1 de Sitter lengths.
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I. INTRODUCTION

Studying the nonperturbative quantization of general
relativity afforded by causal dynamical triangulations,
Ambjørn, Jurkiewicz, and Loll made a striking discovery:
the effective dimension of quantum spacetime geometry
dynamically reduces to a value near 2 on sufficiently small
scales [1]. This phenomenon—dynamical dimensional
reduction—has been independently confirmed within
causal dynamical triangulations [2] and subsequently dis-
covered within other approaches to quantum gravity [3].
Ambjørn, Jurkiewicz, and Loll performed numerical

measurements of the spectral dimension, a scale-dependent
measure of dimensionality as determined by a diffusing
random walker. Their measurements yielded the spectral
dimension of quantum spacetime geometry as a function of
diffusion time, namely the number of steps in the diffusion
process. Shorter walks typically probe smaller scales, and
longer walks typically probe larger scales, but there is no
a priori connection between diffusion time and any
physical scale. One is thus left pondering the question
“Over what physical scales does dynamical reduction of the
spectral dimension occur?”
After briefly reviewing the formalism of causal dynami-

cal triangulations, the definition of the spectral dimension,
and the phenomenology of the former within the latter, we
present and implement a method for setting the physical
scales of dynamical dimensional reduction. Our method
proceeds in two successive steps: we first establish the

equivalent of the diffusion time in units of the lattice
spacing, and we then establish the equivalent of the lattice
spacing in units of either the Planck length or the quantum
spacetime geometry’s effective de Sitter length. We find
that the spectral dimension begins to reduce at a physical
scale of 40 Planck lengths or 0.34 de Sitter lengths and
continues to reduce at least to a physical scale of 10 Planck
lengths or 0.10 de Sitter lengths. Interestingly, this quantum-
gravitational phenomenon occurs on physical scales more
than an order of magnitude above the Planck length.

II. CAUSAL DYNAMICAL TRIANGULATIONS

Within a path integral quantization of general relativity,
one formally defines a probability amplitude A½γ� by the
equation

A½γ� ¼
Z
gj∂M¼γ

dμðgÞeiSEH½g�=ℏ∶ ð1Þ

integrate over all spacetime metric tensors g, inducing the
metric tensor γ on the boundary ∂M of the spacetime
manifold M, weighting each by the product of a measure
dμðgÞ and the exponential of i

ℏ times the Einstein-Hilbert
action SEH½g�. Within the causal dynamical triangulations
approach to this quantization [4–7], one instead considers
a lattice-regularized probability amplitude AΣ½Γ� given by
the equation

AΣ½Γ� ¼
X

Tc≅Σ×½0;1�
Tc j∂Tc¼Γ

μðTcÞeiSR½Tc�=ℏ∶ ð2Þ
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sum over all causal triangulations Tc of spacetime topology
Σ × ½0; 1�, inducing the triangulation Γ on the boundary
∂Tc, weighting each by the product of a measure μðTcÞ and
the exponential of i

ℏ times the Regge action SR½Tc�.
A causal triangulation Tc is a piecewise-Minkowski sim-
plicial manifold admitting a global foliation by spacelike
hypersurfaces all of the chosen topology Σ. In Fig. 1 we
depict part of a two-dimensional causal triangulation. One
constructs a causal triangulation by appropriately gluing
together ND D simplices, each a simplicial piece of D-
dimensional Minkowski spacetime with spacelike edges of
invariant length squared a2 and timelike edges of invariant
length squared −αa2. a is the lattice spacing, and α is a
positive constant. As Fig. 1 shows, these D-simplices
assemble such that they generate a distinguished spacelike
foliation, its leaves labeled by a discrete time coordinate τ.
There areDþ 1 types ofD-simplices; we distinguish these
types with an ordered pair ðp; qÞ, its entries indicating the
numbers of vertices on initial and final adjacent leaves.
The foliation enables a Wick rotation of a causal triangu-

lation from Lorentzian to Euclidean signature, achieved by
analytically continuing α to −α through the lower half
complex plane. The probability amplitude (2) transforms
accordingly into the partition function

ZΣ½Γ� ¼
X

Tc≅Σ×½0;1�
Tc j∂Tc¼Γ

μðTcÞe−S
ðEÞ
R ½Tc�=ℏ ð3Þ

in which SðEÞ
R ½Tc� is the resulting Euclidean Regge action.

As in several past studies, we take Σ to be the 2-sphere
topology, and we periodically identify the temporal interval
[0, 1]. For these choices

SðEÞ
R ½Tc� ¼ −k0N0 þ k3N3 ð4Þ

in which k0 and k3 are specific functions of the bare
Newton constant, the bare cosmological constant, α, and a.
We consider the test case of three spacetime dimensions so
that the computations required for the analysis presented

below are somewhat less intensive. This analysis carries
over straightforwardly to the realistic case of four spacetime
dimensions, and we fully expect its results to carry over as
well since these two cases possess essentially all of the
same phenomenology [1,2,8–17].
We numerically study the partition function (3) for the

action (4) (at fixed numbers N3 of 3-simplices and T of
spacelike leaves) using standardMarkov chainMonte Carlo
methods. This partition function exhibits two phases of
quantum spacetime geometry. We consider exclusively the
so-called deSitter phase, the physical properties ofwhichwe
discuss below. One ascertains these physical properties by
measuring observables OTc , specifically, their expectation
values

E½O� ¼ 1

Z½Γ�
X

Tc≅Σ×½0;1�
Tc j∂Tc¼Γ

μðTcÞe−S
ðEÞ
cl ½Tc�=ℏOTc ð5Þ

in the quantum state defined by this partition function,which
we approximate by their averages

hOi ¼ 1

NðTcÞ
XNðTcÞ

j¼1

OT ðjÞ
c

ð6Þ

over an ensemble of NðTcÞ causal triangulations generated
by our Markov chain Monte Carlo algorithm.
Ultimately, one aims to learn about the probability

amplitudes (1) both by taking a continuum limit in which
the lattice regularization is removed via a nontrivial ultra-
violet fixed point and by returning from Euclidean to
Lorentzian signature via an Osterwalder-Schrader-type
theorem.

III. SPECTRAL DIMENSION

The spectral dimension measures the dimensionality of a
space as experienced by a random walker diffusing through
this space. Taking this space to be a Wick-rotated causal
triangulation Tc, the spectral dimension is specifically
defined as follows [1,11,13].
The integrated discrete diffusion equation

KTcðs;s0;σÞ¼ ð1−ϱÞKTcðs;s0;σ−1Þ
þ ϱ

NðN sð1ÞÞ
X

s00∈N sð1Þ
KTcðs00;s0;σ−1Þ ð7Þ

governs the random walker’s diffusion. The heat kernel
elementKTcðs; s0; σÞ gives the probability of diffusion from
D-simplex s to D-simplex s0 (or vice versa) in σ diffusion
time steps. KTcðs; s0; σÞ is simply the weighted average of
the probability to have diffused from s to s0 in σ − 1 steps—
the first term on the right-hand side of Eq. (7)—and the
probability to diffuse from a D-simplex s00 in the setN sð1Þ

FIG. 1. Part of a two-dimensional causal triangulation with the
discrete time coordinate τ labeling five consecutive leaves of its
distinguished foliation.
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of nearest neighbors to s in σ steps—the second term on
the right-hand side of Eq. (7). The diffusion constant ϱ
characterizes the dwell probability of a step in the diffusion
process. By averaging KTcðs; s0; σÞ for s ¼ s0 over all
NsðTcÞ D-simplices in Tc, one arrives at the return
probability (or heat trace):

PTcðσÞ ¼
1

NsðTcÞ
XNsðTcÞ

s¼1

KTcðs; s; σÞ: ð8Þ

As its name implies, PTcðσÞ—and, subsequently, the
spectral dimension—derives from random walks that return
to their starting D-simplices.
One now defines the spectral dimension DðTcÞ

s ðσÞ as the
power with which PTcðσÞ scales with σ multiplied by −2,

DðTcÞ
s ðσÞ ¼ −2

d lnPTcðσÞ
d ln σ

; ð9Þ

for a suitable discretization of the logarithmic derivative.
Equation (9) provides a measure of a causal triangulation’s
dimensionality as a function of σ. We approximate the

expectation value E½DsðσÞ� of DðTcÞ
s ðσÞ by the ensemble

average hDsðσÞi. We follow the methods of [18] in
estimating hDsðσÞi and its error.
In Fig. 2 we display hDsðσÞi for an ensemble of causal

triangulations within the de Sitter phase characterized by
k0 ¼ 1 and N3 ¼ 30850 for ϱ ¼ 0.8. We study this
ensemble throughout the paper.1 The plot in Fig. 2 displays
the characteristic behavior of hDsðσÞi within this phase.

hDsðσÞi first increases monotonically from a value of
approximately 2.5 to a value of approximately 2.86 and
then decreases monotonically from a value of approxi-
mately 2.86 (eventually) toward a value of 0. This mon-
otonic rise, followed in reverse, is the phenomenon of
dynamical reduction of the spectral dimension; the mon-
otonic fall results from the quantum geometry’s large-scale
positive curvature [13]. Finite-size effects depress the
maximum of hDsðσÞi below the topological value of 3 [14].

IV. QUESTION

The diffusion time σ is simply the parameter that
enumerates the random walker’s steps. For smaller values
of σ, the random walker typically probes smaller physical
scales, and, for larger values of σ, the random walker
typically probes larger physical scales. The quantitative
correspondence between σ and the physical scales being
probed depends on the space through which the random
walker diffuses. We propose a method to determine this
correspondence for an ensemble of causal triangulations
within the de Sitter phase. We implement this method to
set the physical scales characterizing the phenomenology
of the ensemble average spectral dimension hDsðσÞi within
the de Sitter phase. Specifically, we determine the interval
of physical scales over which dynamical reduction occurs
and the physical scale at which hDsðσÞi coincides with the
topological dimension D.

V. METHODS

Our method is conceptually straightforward. First we
directly determine the average geodesic distance in units of
the lattice spacing a traversed by the random walker for
walks that return in σ diffusion time steps. Then we employ
the analysis of [9] to express the lattice spacing a in units of
either the Planck length lP or the quantum spacetime
geometry’s effective de Sitter length ldS.
Before presenting our method in detail, we introduce two

standard mathematical notions that we use extensively in
our method: the dual triangulation and the triangulation
geodesic distance. Given a causal triangulation (or, indeed,
any triangulation), one constructs its dual in two steps:
first place a dual vertex s̃ at the geometric center of each
D-simplex s; then connect s̃ and s̃0 with a dual edge ẽs̃s̃0
if and only if s and s0 are nearest-neighbor D-simplices.
In Fig. 3 we display the dual of the part of the two-
dimensional causal triangulation depicted in Fig. 1. As Fig. 3
shows, a dual triangulation is itself not necessarily a
triangulation. One may also conceive of a dual causal
triangulation as an abstract mathematical graph. Since the
D-simplices employed in constructing causal triangulations
are not regular, and since everyD-simplex hasDþ 1nearest-
neighborD-simplices, the dual is a weighted (Dþ 1)-valent
graph. (Of course, one may also conceive of a causal
triangulation as an abstract mathematical graph, weighted

FIG. 2. The ensemble average spectral dimension hDsi as a
function of the diffusion time σ (in blue). Each point’s vertical
extent (in light blue) indicates its statistical error.

1The analysis that we describe below, particularly its first part,
is computationally intensive; accordingly, with the computing
resources available to us, we have not yet analyzed ensembles
characterized by larger values of N3. Cooperman has demon-
strated that this ensemble provides physically reliable results for
the spectral dimension [14].
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and polyvalent.) We choose to work with the dual
causal triangulation because dual vertices correspond to
D-simplices, rendering diffusion a process along dual edges.
As a random walker diffuses, hopping from D-simplex

to D-simplex along dual edges, it delineates a path P
through the causal triangulation. Let Pfs;…; s0g be a path
from s to s0, a string of D-simplices. The triangulation
distance dðPfs;…; s0gÞ of Pfs;…; sg is the sum of the
lengths of the path’s dual edges. Denoting by N

ẽðu;vÞðp;qÞ
ðPfs;…; s0gÞ the number of dual edges connecting a
ðp; qÞ D-simplex and a ðu; vÞ D-simplex along

Pfs;…; s0g and by dðẽðu;vÞðp;qÞÞ the length of a dual edge

connecting a ðp; qÞ D-simplex and a ðu; vÞ D-simplex,

dðPfs;…; s0gÞ ¼
X
ðp;qÞ
ðu;vÞ

N
ẽðu;vÞðp;qÞ

ðPfs;…; s0gÞdðẽðu;vÞðp;qÞÞ: ð10Þ

If a causal triangulation were regular, then dðPfs;…; s0gÞ
would simply be the number of dual edges along
Pfs;…; s0g multiplied by the lattice spacing a (multiplied
by a number of order 1). Causal triangulations are not in

general regular because dðẽðu;vÞðp;qÞÞ depends on the types of

D-simplices. For our choice of α ¼ 1, however, dðẽðu;vÞðp;qÞÞ ¼
affiffi
6

p irrespective of the types of 3-simplices. The triangula-

tion geodesic distance dgðs; s0Þ between s and s0 is the
minimum of dðPfs;…; s0gÞ over the set fPfs;…; s0gg of
paths between s and s0:

dgðs; s0Þ ¼ min
fPfs;…;s0gg

dðPfs;…; s0gÞ: ð11Þ

Intuitively, dgðs; s0Þ is the shortest distance (in units of a)
along dual edges from s to s0.
We now explain the first part of our method in which we

establish the lattice distance associated with the diffusion
time σ. Awalk that returns to its startingD-simplex forms a

cycle C in T̃ c. Consider a cycle Cfs0; s1;…; sσ−1g of σ
steps starting and ending at s0. (Note that we do not include
sσ ¼ s0 in our notation for a cycle.) We associate a distance
d̄gðCfs0; s1;…; sσ−1gÞ with Cfs0; s1;…; sσ−1g as follows.
We compute dgðs0; skÞ for k ∈ f0; 1;…; σ − 1g, and we
average dgðs0; skÞ over these k:

d̄gðCfs0; s1;…; sσ−1gÞ ¼
1

σ

Xσ−1
k¼0

dgðs0; skÞ: ð12Þ

For the randomwalk depicted in Fig. 3, we list the distances
dgðs0; skÞ for k ∈ f0; 1;…; 19g in Table I. d̄gðCfs0; s1;…;
sσ−1gÞ is the randomwalker’s average triangulation geodesic
distance from its startingD-simplex; d̄gðCfs0; s1;…; sσ−1gÞ
quantifies the typical lattice scale probed by the random
walker diffusing along Cfs0; s1;…; sσ−1g.
As many cycles contribute to the heat kernel element

KTcðs0; s0; σÞ, we associate a distance d̄gðs0; σÞ with s0 by
averaging d̄gðCfs0; s1;…; sσ−1gÞ over these NðCfs0; σgÞ
cycles:

d̄gðs0; σÞ ¼
1

NðCfs0; σgÞ

×
XNðCfs0;σgÞ

j¼1

d̄gðCjfs0; s1;…; sσ−1gÞ: ð13Þ

As many D-simplices contribute to the return probability
PTcðσÞ, we associate a distance d̄gðσÞ with Tc by averaging
over all NsðTcÞ simplices:

d̄gðσÞ ¼
1

NsðTcÞ
XNsðTcÞ

s0¼1

d̄gðs0; σÞ: ð14Þ

We estimate the expectation value E½d̄gðσÞ� of d̄gðσÞ by the
ensemble average hd̄gðσÞi. hd̄gðσÞi is the distance in units
of a that we associate with σ for random walks contributing
to the ensemble average spectral dimension hDsðσÞi.
The number of cycles, particularly nonsimple cycles,

increases tremendously with the diffusion time, so we
cannot possibly consider all cycles. To sample cycles

FIG. 3. The dual of the part of the two-dimensional causal
triangulation of Fig. 1 shown in dotted lines. The thick dotted
lines indicate a representative random walk starting from and
returning to the 2-simplex s0.

TABLE I. The triangulation geodesic distances dg of the
random walker from its starting simplex s0 in units of a=

ffiffiffi
6

p
as a function of the diffusion time σ for the random walk depicted
in Fig. 3.

σ dg σ dg σ dg σ dg

0 0 5 5 10 8 15 5
1 1 6 6 11 7 16 4
2 2 7 7 12 6 17 3
3 3 8 6 13 7 18 2
4 4 9 7 14 6 19 1
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efficiently without bias, we explicitly run a computationally
reasonable number of random walks. Specifically, for each
causal triangulation within an ensemble, we randomly
sample of order 102 starting D-simplices, and, for each
sampled starting D-simplex, we run of order 102 random
walks. (Of course, only some of these walks form cycles,
and this constitutes the primary inefficiency of our com-
putations.) When estimating the error in our determination
of hd̄gðσÞi, we account for the errors stemming from these
three levels of sampling.
In Fig. 4 we display a measurement of hd̄gðσÞi. By

inverting hd̄gðσÞi, we determine the scale corresponding to
σ in units of a. The analysis leading to Fig. 4 constitutes our
primary innovation.
We next explain the second part of our method in which

we relate the lattice spacing a to two physical length
scales—the Planck length lP and the quantum geometry’s
effective de Sitter length ldS—through the analysis first
performed for D ¼ 4 in [9] and subsequently performed
for D ¼ 3 in [15]. These authors analyzed the evolution
of the discrete spatial D-volume in the distinguished
foliation as quantified by the number NSL

D−1 of spacelike
(D − 1)-simplices as a function of the discrete time
coordinate τ. In Fig. 5 we display hNSL

2 ðτÞi (in blue).
Defining the perturbation

δNSL
2 ðτÞ ¼ NSL

2 ðτÞ − hNSL
2 ðτÞi; ð15Þ

we display in Fig. 6 the first four eigenvectors of
hδNSL

2 ðτÞδNSL
2 ðτ0Þi (in blue), and we display in Fig. 7

the eigenvalues of hδNSL
2 ðτÞδNSL

2 ðτ0Þi (in blue).
Following [15] in particular, we model hNSL

2 ðτÞi and
hδNSL

2 ðτÞδNSL
2 ðτ0Þi on the basis of a minisuperspace trunca-

tion of the Euclidean Einstein-Hilbert action

SðEÞEH ½V2� ¼
1

32πG

Z
tf

ti

dt
ffiffiffiffiffi
gtt

p �
_V2
2ðtÞ

gttV2ðtÞ
− 4ΛV2ðtÞ

�
ð16Þ

(for a nonstandard overall sign). G is the renormalized
Newton constant, equivalent (for D ¼ 3) to lP=ℏ, and Λ
is the renormalized cosmological constant. To make direct
contact with our measurements of NSL

2 ðτÞ, we express the
action (16) in terms of the spatial 2-volumeV2 (as opposed to
the scale factor) as a function of the global time coordinate t.ffiffiffiffiffi
gtt

p
is the constant tt component of the metric tensor. The

extremum of the action (16) is Euclidean de Sitter space for
which

VðEdSÞ
2 ðtÞ ¼ 4πl2

dScos
2

� ffiffiffiffiffi
gtt

p
t

ldS

�
ð17Þ

with t ∈ ½−πldS=2
ffiffiffiffiffi
gtt

p
;þπldS=2

ffiffiffiffiffi
gtt

p � and ldS ¼ Λ−1=2.
ldS is the de Sitter length. Expanding the action (16)
to second order in the perturbation δV2ðtÞ about the
solution (17),

SðEÞEH½δV2�¼SðEÞEH½VðEdSÞ
2 �þ

Z
tf

ti

dt
Z

t0f

t0i

dt0δV2ðtÞKðt;t0ÞδV2ðt0Þ

þO½ðδV2Þ3� ð18Þ

with

Kðt; t0Þ ¼ −
ffiffiffiffiffi
gtt

p
δðt − t0Þ

64π2Gl4
dS

sec2
� ffiffiffiffiffi

gtt
p

t

ldS

��
l2
dS

gtt

d2

dt2

þ 2ldSffiffiffiffiffi
gtt

p sec

� ffiffiffiffiffi
gtt

p
t

ldS

�
tan

� ffiffiffiffiffi
gtt

p
t

ldS

�
d
dt

þ 2 sec2
� ffiffiffiffiffi

gtt
p

t

ldS

��
: ð19Þ

FIG. 5. The ensemble average number hNSL
2 i of spacelike

2-simplices as a function of the discrete time coordinate τ (in
blue) overlain with the best fit discrete analogue V2ðτÞ (in black).
Statistical errors are not visible at this plot’s scale.

FIG. 4. The ensemble average geodesic distance hd̄gi in units of
the lattice spacing a as a function of the diffusion time σ (in blue).
Each point’s vertical extent (in light blue) indicates its statistical
error.
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Kðt; t0Þ is the van Vleck-Morette determinant [19].
A standard calculation of the expectation value E½δV2ðtÞ
δV2ðt0Þ� demonstrates that

E½δV2ðtÞδV2ðt0Þ� ¼ ℏK−1ðt; t0Þ: ð20Þ

This model makes contact with numerical measurements
of NSL

2 ðτÞ through the double scaling limit

V3 ¼ lim
N3→∞
a→0

C3N3a3 ð21Þ

for the spacetime 3-volume V3 [9,11,12,15,16]. In the
combination of the thermodynamic (N3 → ∞) and con-
tinuum (a → 0) limits, the product C3N3a3 approaches a
constant, namely V3. (For α ¼ 1, C3 ¼ 1

6
ffiffi
2

p , the dimension-

less discrete spacetime 3-volume of a 3-simplex.) Using the
double scaling limit (21) and the solution (17), Anderson
et al. [12], following [9], derived the discrete analogue

VðEdSÞ
2 ðτÞ of the solution (17),

VðEdSÞ
2 ðτÞ ¼ 2hN3i

πωhN3i1=3
cos2

�
τ

ωhN3i1=3
�

ð22Þ

in which

ω ¼ ldSffiffiffiffiffi
gtt

p
V1=3
3

: ð23Þ

In Fig. 5 we display VðEdSÞ
2 ðτÞ (in black) fit to hNSL

2 ðτÞi
(in blue). This first fit determines the value of ω. Using the
double scaling limit (21) and the propagator (20),
Cooperman, Lee, and Miller [15], following [9], derived
the discrete analogue hδV2ðτÞδV2ðτ0Þi of the propagator
(20). In Fig. 6 we display the first four eigenvectors of
hδV2ðτÞδV2ðτ0Þi (in black) fit to the first four eigenvectors
of hδNSL

2 ðτÞδNSL
2 ðτ0Þi (in blue). This second fit takes as

input the value of ω determined by the first fit and involves
no further fit parameters. In Fig. 7 we display the
eigenvalues of hδV2ðτÞδV2ðτ0Þi (in black) fit to the eigen-
values of hδNSL

2 ðτÞδNSL
2 ðτ0Þi (in blue). This third fit also

takes as input the value of ω determined by the first fit
and also requires the ratio r of the (largest) eigenvalue of
hδNSL

2 ðτÞδNSL
2 ðτ0Þi to the (largest) eigenvalue of hδV2ðτÞ

δV2ðτ0Þi. All of these fits improve as N3 increases [16].
These fits constitute the primary evidence that the quantum
spacetime geometry on sufficiently large scales of the de
Sitter phase is that of Euclidean de Sitter space.
Euclidean de Sitter space has spacetime 3-volume

VðEdSÞ
3 ¼ 2π2l3

dS. Substituting VðEdSÞ
3 for V3 in the double

scaling limit (21) (assumed to hold for finite N3 and a with
negligible corrections), one obtains the relationship

FIG. 6. The first four eigenvectors (in blue) of hδNSL
2 ðτÞδNSL

2 ðτ0Þi overlain with the first four eigenvectors (in black) of the discrete
analogue hδV2ðτÞδV2ðτ0Þi. Statistical errors are not visible at this plot’s scale.
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a ¼
�

2π2

C3N3

�
1=3

ldS ð24Þ

between a and ldS. E½δV2ðtÞδV2ðt0Þ� has eigenvalues
proportional to 64π2ℏGl4

dS=
ffiffiffiffiffi
gtt

p
. Relating the eigenvalues

of E½δV2ðtÞδV2ðt0Þ� to the eigenvalues of hδNSL
2 ðτÞ

δNSL
2 ðτ0Þi through the double scaling limit (21), and using

Eqs. (23) and (24), one obtains the relationship

a ¼ 32N2=3
3

C1=3
3 ωr

lP ð25Þ

between a and lP. Having determined σ in units of a
through our method’s first part, we now use Eq. (24) or
Eq. (25) to express a in units of ldS or lP, finally giving us
the ensemble average spectral dimension hDsi as a function
of a physical scale.

VI. RESULTS

For the ensemble of causal triangulations that we
consider, ω ¼ 0.2978 and r ¼ 0.0000948 both with neg-
ligible statistical error. Equation (24) becomes

a ¼ 0.176ldS; ð26Þ

and Eq. (25) becomes

a ¼ 20.46lP: ð27Þ

Consistent with previous studies, our simulations do not yet
probe physical scales below lP.
In Fig. 8 we display the ensemble average spectral

dimension hDsi as a function of physical scale in units of
the Planck length lP and in units of the effective de Sitter
length ldS. hDsi attains its maximum (depressed below the
topological value of 3 by finite-size effects) at the physical

scale of 40lP or 0.34ldS. Dynamical reduction of hDsi then
extends at least to a physical scale of 10lP or 0.10ldS.

VII. CONCLUSION

Through a conceptually straightforward but computa-
tionally intensive method, we have established the physical
scales over which dynamical reduction of the spectral
dimension occurs within the de Sitter phase of causal
dynamical triangulations. Our analysis demonstrates that
this quantum-gravitational phenomenon begins to occur on
physical scales more than an order of magnitude above the
Planck length lP. Our analysis also demonstrates that the
spectral dimension attains the value of the topological
dimension D on a physical scale of 40lP. That the spectral
dimension agrees with this value plausibly implies that the
quantum spacetime geometry becomes semiclassical on
this scale. Such an inference dictates that the quantum
spacetime geometry within the de Sitter phase of causal
dynamical triangulations is already semiclassical on scales

FIG. 8. The ensemble average spectral dimension hDsi as a
function of physical scale in units of the Planck length lP (top)
and in units of the effective de Sitter length ldS (bottom). Each
points’ horizontal and vertical extents (in light blue) indicate its
statistical error.

FIG. 7. The eigenvalues of hδNSL
2 ðτÞδNSL

2 ðτ0Þi (in blue) over-
lain with the eigenvalues (in black) of the discrete analogue
hδV2ðτÞδV2ðτ0Þi. Statistical errors are not visible at this plot’s
scale.
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only 1 order of magnitude above lP. Benedetti and
Henson’s analysis of the spectral dimension indicates that
this quantum spacetime geometry is not yet classical on
this scale: they found that the ensemble average spectral
dimension hDsðσÞi only begins to match the spectral
dimension of Euclidean de Sitter space on a somewhat
larger scale [13]. When combined with our method, the
analysis of Benedetti and Henson would allow for the
determination of the physical scale above which hDsðσÞi
coincides with its classical value and for an independent
determination of the quantum geometry’s effective de Sitter
length ldS.
Ambjørn, Jurkiewicz, and Loll suggested that lP is the

physical scale governing dynamical reduction of the
spectral dimension [1]. These authors’ suggestion arose
from their fit of a phenomenological 3-parameter function
Dsðσ; α; β; γÞ to hDsðσÞi. The dimensionless parameter α
sets Dsðσ; α; β; γÞ to (approximately) 4 in the limit of
large diffusion times; the dimensionless parameter β sets
Dsðσ; α; β; γÞ to (approximately) 2 in the limit of small
diffusion times; and the dimensionful parameter γ deter-
mines the rate at which Dsðσ; α; β; γÞ dynamically reduces
from 4 to 2. Noting that γ divides the diffusion time σ,
which itself has dimensions of length squared, they
identified γ with l2

P. We interpret Ambjørn, Jurkiewicz,
and Loll’s ensuing discussion as an argument intended
to bolster the identification of γ with l2

P. These authors
made two observations. First, they estimated the spacetime
4-volume V4 of a causal triangulation in their ensemble as
N4l4

P. We presume that they drew on the double scaling
limit

V4 ¼ lim
N4→∞
a→0

C4N4a4; ð28Þ

the equivalent of Eq. (21) for D ¼ 4. Setting lP ¼ C1=4
4 a is

then an implicit assumption. Taking the fourth root of N4l4
P

yielded approximately 20lP for such a causal triangula-
tion’s linear size. Second, recalling that σ has dimensions of
length squared, they estimated a random walker’s linear
diffusion depth on a causal triangulation in their ensemble
as

ffiffiffi
σ

p
lP. That one diffusion time step corresponds to a

distance lP is essentially the same implicit assumption.
Considering the diffusion time σmax at which hDsðσÞi
attains a value of 4 yielded approximately 20lP for such
a causal triangulation’s linear diffusion depth. We presume
that they chose to consider σmax on the basis of the previous
paragraph’s reasoning that the quantum spacetime geom-
etry is plausibly (at least) semiclassical on the scale at
which hDsðσÞi attains a value of 4. We take Ambjørn,
Jurkiewicz, and Loll’s two observations to imply the
argument’s unstated conclusion: the (approximate) equality
of the two estimates constitutes evidence for the validity of
the identification of lP with the physical scale governing
dynamical reduction of the spectral dimension.

Our analysis above as well as the analyses of Ambjørn
et al. [9] and Benedetti and Henson [13] inform the previous
paragraph’s argument. The implicit assumption—that lP ¼
C1=4
4 a—yields lP ≈ 1

2
a for typical values of C4. In combi-

nation with the double scaling limit (28) and the spacetime
4-volume of Euclidean de Sitter space, the estimate of V4

yields ldS ≈ 3a. Ambjørn et al.’s more detailed analysis
corroborates these estimates [9]. Ambjørn, Jurkiewicz, and
Loll’s estimate of the linear diffusion depth then dictates that
hDsðσÞi attains a value of 4 on a scale of approximately
3ldS. This value is an order of magnitude greater than
the same scale’s value, 0.34ldS, within our simulations.
Moreover, Benedetti and Henson’s analysis suggests that σ
reaches the scale ldS well beyond σmax, the value of σ at
which hDsðσÞi attains the valueD [13]. One might therefore
suspect that estimating the linear diffusion depth as

ffiffiffi
σ

p
—the

scaling for Euclidean space—is simply too naive; however,
our measurement of the ensemble average geodesic distance
hd̄gðσÞi justifies this estimate. Fitting the function κση to
hd̄gðσÞi yields κ ¼ 0.157� 0.001 and η ¼ 0.488� 0.002
for these two parameters. In Fig. 9 we display κση (in black)
fit to hd̄gðσÞi (in blue). The plot in Fig. 9 shows that hd̄gðσÞi
increases with σ very nearly as

ffiffiffi
σ

p
except for sufficiently

small σ. We have thus substantiated the estimates of
Ambjørn, Jurkiewicz, and Loll.
While N1=4

4 lP and
ffiffiffiffiffiffiffiffiffi
σmax

p
lP agree for the ensemble of

four-dimensional causal triangulations that Ambjørn,
Jurkiewicz, and Loll considered, N1=3

3 lP and
ffiffiffiffiffiffiffiffiffi
σmax

p
lP

disagree by an order of magnitude for the ensemble of
three-dimensional causal triangulations that we consider.
The argument based on the approximate equality ofN1=D

D lP
and

ffiffiffiffiffiffiffiffiffi
σmax

p
lP breaks down for D ¼ 3, and we now doubt

that this argument holds generally for D ¼ 4. This break-
down notwithstanding, we can lend new support to the
suggestion of Ambjørn, Jurkiewicz, and Loll that lP

FIG. 9. The ensemble average geodesic distance hd̄gi in units of
the lattice spacing a as a function of the diffusion time σ (in blue)
overlain with the best fit function κση (in black). Each point’s
vertical extent (in light blue) indicates its statistical error.
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governs the dynamical reduction of the spectral dimension.
Above we have unveiled the following picture: within
simulations studied so far for D ¼ 3, dynamical reduction
of hDsðσÞi occurs over scales of order 10lP or 10−1ldS,
and, within simulations studied so far for D ¼ 4, the
dynamical reduction of hDsðσÞi occurs over scales of order
10lP or ldS. The physical scale characterizing dynamical
reduction of hDsðσÞi is independent of D when expressed
in units of lP, which suggests that lP sets the scale of this
quantum-gravitational phenomenon.
Cooperman first advocated that measurements of

hDsðσÞi could form the basis for a renormalization group
analysis of causal dynamical triangulations, and he pro-
posed a method for performing such an analysis [18].
Subsequently, Ambjørn et al. attempted to track relative
changes in the lattice spacing across the de Sitter
phase with measurements of hDsðσÞi [8]. These authors

employed a different method, which Cooperman criticized
[20]. Our above analysis, when combined with
Cooperman’s scaling analysis of the spectral dimension
[14], should allow for the realization of Cooperman’s
original proposal. We hope that our analysis thereby aids
the search for a continuum limit of causal dynamical
triangulations effected by a nontrivial ultraviolet fixed
point of the renormalization group.
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