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We study the flight time fluctuations of a probe light propagating in a slab of nonlinear optical material
with an effective fluctuating refractive index caused by thermal fluctuations of background photons at a
temperature T, which are analogous to the lightcone fluctuations due to fluctuating spacetime geometry
when gravity is quantized. A smoothly varying second order susceptibility is introduced, which results in
that background field modes whose wavelengths are of the order of the thickness of the slab give the main
contribution. We show that, in the low-temperature limit, the contribution of thermal fluctuations to the
flight time fluctuations is proportional to T4, which is a small correction compared with the contributions
from vacuum fluctuations, while in the high-temperature limit, the contribution of thermal fluctuations
increases linearly with T, which dominates over that of vacuum fluctuations. Numerical estimation shows
that, in realistic situations, the contributions from thermal fluctuations are still small compared with that
from vacuum fluctuations even at room temperature.
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I. INTRODUCTION

As necessitated by the uncertainty principle, lightcones
are expected to be fluctuating in any theory of quantum
gravity. It was first conjectured by Pauli that the ultraviolet
divergences in quantum field theory, which arise from the
lightcone singularities of two-point functions, might be
removed when gravity is quantized, since lightcones are
supposed to be smeared out due to the fluctuations of the
spacetime metric [1]. This idea was further investigated by
several authors [2–5]. A direct consequence of lightcone
fluctuations is that the flight time of a probe light from its
source to a detector is no longer fixed, but undergoes
fluctuations around its classical value [6–13].
In principle, the flight time fluctuations are observable.

However, this effect is generally too small to be observed.
Recently, Ford et al. proposed that a nonlinear medium
with a fluctuating background field may be considered as
an analogue system for quantum lightcone fluctuations
[14,15]. In a nonlinear medium, the effective refractive
index for a probe light is fluctuating when the medium is
subjected to a fluctuating background field, which leads to
a fluctuating flight time. This is in close analogy to the
lightcone fluctuation due to metric fluctuations when
gravity is quantized. Besides the analogue models for
active gravitational field fluctuations, which are analogous
to the fluctuations of the dynamical degrees of freedom of
gravity itself [14,15], there are also analogue models for

passive fluctuations of gravity driven by the fluctuations
of matter fields [16,17]. The fluctuating background field
can be either a squeezed vacuum [14,16], or a bath of
fluctuating electromagnetic fields in vacuum [15,17]. Apart
from being an analogue model for quantum gravity, the
work [15,17] also provides a model to show that vacuum
fluctuations sampled in a finite time scale are potentially
observable. Therefore, a natural question is how this effect
may be affected by thermal fluctuations which are unavoid-
able in an actual experiment. In this paper, we study the
contribution of thermal fluctuations to the flight time
fluctuations in detail. In particular, we are interested in
whether we need a very low temperature environment if we
aim at observing the lightcone fluctuations in a nonlinear
medium due to vacuum fluctuations. The paper is organ-
ized as follows: In Sec. II, we briefly introduce the basic
formalism of quantum lightcone fluctuations in a nonlinear
medium [14,15]. In Sec. III, we investigated the contribu-
tion of thermal fluctuations to the lightcone fluctuations.
Finally, we give a summary in Sec. IV. The Lorentz-
Heaviside units with ℏ ¼ c ¼ kB ¼ 1 are used in this paper
unless specified.

II. THE BASIC FORMALISM

To begin, we review the lightcone fluctuations in
quantum gravity. Consider a flat spacetime ημν with a
linear perturbation hμν, so the spacetime metric gμν can be
written as

gμν ¼ ημν þ hμν: ð1Þ
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Define σ as one-half of the squared geodesic distance
between two spacetime points x and x0, so it can be
expanded with respect to hμν as

σ ¼ σ0 þ σ1 þOðh2μνÞ: ð2Þ

If hμν is quantized, the lightcone is expected to be
fluctuating as a result of the quantum gravitational vacuum
fluctuations. In particular, we have hσ21i ≠ 0. Such quantum
gravitational effect is in principle observable by consider-
ing the propagation of light pulses from their source to a
detector separated by a distance r. The root-mean-square
deviation of the flight time is [6]

Δt ¼
ffiffiffiffiffiffiffiffiffi
hσ21i

p
r

: ð3Þ

In a nonlinear medium, the fluctuations of background
field will cause a fluctuating effective refractive index for a
probe light propagating in it, which leads to a fluctuating
flight time [14,15]. The source free Maxwell’s equations in
a dielectric medium can be written as

∇ ·D ¼ 0; ∇ ×E ¼ −
∂B
∂t ; ∇ · B ¼ 0;

∇ ×H ¼ ∂D
∂t : ð4Þ

Here E and B are the electric and the magnetic fields
respectively, and D and H are the corresponding induced
fields. The constitutive relations are B ¼ μH, and
D ¼ ε0Eþ P. In a nonlinear medium, the relation between
the electric polarization Pi and the electric field Ei takes the
form

Pi ¼ Pð1Þ
i þ Pð2Þ

i þ � � � ¼ χð1Þij E
j þ χð2ÞijkE

jEk þ � � � ; ð5Þ

where χðiÞ is the ith order susceptibility tensor. Hereafter the
Einstein convention is assumed for repeated index. The
total electric field Ei is taken to be the sum of a background
field Ei

0ðω0Þ and a probe field Ei
1ðω1Þ. Here, the strength of

the probe light Ei
1 is assumed to be much smaller than the

background field Ei
0, while its frequency ω1 is much larger

than that of the background field ω0 [14,15]. The second

order polarization Pð2Þ
i can be written as [18]

Pð2Þ
i ðωm þ ωnÞ ¼

X1
m;n¼0

χð2Þijkðωm þ ωnÞEj
mðωmÞEk

nðωnÞ:

ð6Þ

We assume that in the frequency regime of the back-
ground field ω0, the second order susceptibility tensor

χð2Þijkð2ω0Þ can be neglected. So, when the probe field is

absent, the relation between the electric polarization Pi and
the electric field Ei is linear, so the background field modes
satisfy the following wave equation

∇2Ei
0 −

1

v2B

∂2Ei
0

∂t2 ¼ 0; ð7Þ

where vB ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χð1ÞB

q
¼ 1=nB. Here we have assumed

that for the background field the medium is isotropic, i.e.,

χð1Þij ¼ δijχ
ð1Þ
B , and in the frequency regime of the back-

ground field, dispersion can be neglected [15]. Note that the
wave equation for the background field (7) takes exactly the
same form as that in the vacuum, except that the speed of
light c is replaced with vB. As we will see later, this implies
that the difference between the electric field two-point
functions and the corresponding ones in vacuum is only an
overall factor of 1=n3B, and a replacement of the time t
with t=nB.
For the probe field Ei

1, we assume that it propagates in
the x-direction and is polarized in the z-direction, i.e.,
Ei
1 ¼ δizE1ðt; xÞ. The wave equation for E1 can be obtained

by subtracting the wave equation of E0 from that of the total
field E0 þ E1, and neglect terms with E2

1 and _E0 as [15]

∂2E1

∂x2 −
1

v2P

�
1þ 1

n2P
ðχð2Þzzj þ χð2ÞzjzÞ

� ∂2E1

∂t2 ¼ 0: ð8Þ

The equation above describes a wave propagating with a
space and time dependent phase velocity

v ≈ vP

�
1 −

1

2n2P
ðχð2Þzzj þ χð2ÞzjzÞEj

0

�
; ð9Þ

where j 1
2n2P

ðχð2Þzzj þ χð2ÞzjzÞEj
0j ≪ 1 is assumed. Here, vP ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χð1ÞP

q
¼ 1=nP is generally different from vB when

dispersion is taken into account, and in this paper, we are
concerned with the case nP > nB. That is, the worldline of
the probe field is inside the effective lightcone.
Therefore, the flight time of the probe light propagating

through a nonlinear medium with a thickness d is

t ¼
Z

d

0

dz
v

¼ nP

Z
d

0

�
1þ 1

2n2P
ðχð2Þzzj þ χð2ÞzjzÞEj

0ðt; x⃗Þ
�
dx:

ð10Þ

The integration is along the trajectory of the probe pulse,
i.e., x ¼ vPt ¼ t=nP. In this paper, we assume that the
background field E0 is that of a thermal bath of photons at a
temperature T ¼ 1=β, where β is thermal photon wave-
length. The thermal fluctuations of E0 will cause fluctua-
tions of the flight time t, and the relative flight time variance
takes the form [14,15]
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δ2 ¼ ht2i − hti2
hti2 ¼ 1

4n4Pd
2

Z
d

0

dx
Z

d

0

dx0ðχð2Þzzi þ χð2ÞzizÞ

× ðχð2Þzzj þ χð2ÞzjzÞhEi
0ðt; x⃗ÞEj

0ðt0; x⃗0Þiβ; ð11Þ

where hiβ denotes the expectation value over thermal state,

and we have assumed that hEj
0iβ ¼ 0. Here, thermal

expectation in the equation above is a summation over
the contributions of electromagnetic field modes in all
frequencies, while in deriving the wave equation for the
probe field Eq. (8) we have assumed that the frequency
of the background field ω0 is much smaller than that
of the probe field ω1. To fulfill this assumption, first we
assume that the frequency of thermal photon β−1, the
frequency at which the background thermal radiation
spectrum peaks, is much small compared with ω1. Then
we introduce an effective cutoff of the contributions
from high frequency background modes, which can be
realized by a smoothly varying second order susceptibility
χð2ÞðxÞ along the path of the probe light [15]. Let

χð2Þi ≡ 1
2d

R
∞
−∞ dxðχð2ÞzziðxÞ þ χð2ÞzizðxÞÞ, where χð2Þi is the aver-

aged second order susceptibility along the x-axis. If we

choose the profile of χð2ÞzziðxÞ as the Lorentzian function

χð2ÞzziðxÞ ¼
d2

πðx2 þ d2Þ χ
ð2Þ
zzi ; ð12Þ

the relative flight time variance Eq. (11) can be reformed as

δ2 ∝ h0j
Z

∞

−∞
dωe−jωjτEi

0ðωÞ
Z

∞

−∞
dω0e−jω0jτEj

0ðω0Þj0i;

ð13Þ

where Ei
0ðωÞ is the Fourier transform of Ei

0ðtÞ, and
τ ¼ nPd. It is clear that contributions from field modes
whose wavelengths are shorter compared with the thickness
of the medium will be effectively suppressed. Plugging
Eq. (12) into Eq. (11), the relative flight time variance can
be rewritten as

δ2 ¼ ðχð2Þ0 Þ2d2
π2n4P

Z
∞

−∞
dx

Z
∞

−∞
dx0

1

x2 þ d2
1

x02 þ d2

× hEi
0ðt; x⃗ÞEj

0ðt0; x⃗0Þiβ: ð14Þ

III. LIGHTCONE FLUCTUATIONS DUE TO
THERMAL FLUCTUATIONS

In this section, we study the lightcone fluctuations of a
probe light pulse in a nonlinear medium due to thermal
fluctuations. First, let us work out thermal two-point
function of the electric field in the dielectric. In an empty
space, the two-point function for the four potentialAμðxÞ at a
finite temperature T¼β−1, Dμν

β ðx;x0Þ¼h0jAμðxÞAνðx0Þj0iβ,

can be written as an infinite imaginary-time image sum
of the corresponding zero-temperature two-point function,
Dμν

0 ðx − x0Þ, as [19]

Dμν
β ðx; x0Þ ¼

X∞
m¼−∞

Dμν
0 ðx − x0; t − t0 þ imβÞ: ð15Þ

In the Feynman gauge, we have

Dμν
0 ðx − x0Þ

¼ 1

4π2
ημν

ðt − t0 − iϵÞ2 − ðx − x0Þ2 − ðy − y0Þ2 − ðz − z0Þ2 ;

ð16Þ

where ϵ → þ0, and η ¼ diagð1;−1;−1;−1Þ. The electric
field two-point function hEiðxÞEjðx0Þiβ can then be
expressed as

hEiðxÞEjðx0Þiβ

¼ 1

4π2
X∞

m¼−∞
ðδij∂0∂ 0

0−∂i∂ 0
jÞ

×
1

ðx−x0Þ2þðy−y0Þ2þðz− z0Þ2− ðt− t0 þ imβ− iϵÞ2 ;

ð17Þ

where ∂i
0 denotes the differentiation with respect to x0i. The

two-point function of the electric field in a dielectric can then
be derived by considering the fact that the net effect of a
dielectric on the electric field two-point functions is an
overall factor of 1=n3B, and a replacement of the time t with
t=nB as [15,20,21]

h0jExðxÞExðx0Þj0iβ

¼ 1

π2n3B

X∞
m¼−∞

1

½ðΔtþ imβÞ2=n2B − ðΔxÞ2�2 ; ð18Þ

h0jEyðxÞEyðx0Þj0iβ
¼ h0jEzðxÞEzðx0Þj0iβ

¼ 1

π2n3B

X∞
m¼−∞

ðΔxÞ2 þ ðΔtþ imβÞ2=n2B
½ðΔtþ imβÞ2=n2B − ðΔxÞ2�3 ; ð19Þ

where we have taken the spatial separation to be in the
x-axis, i.e.,Δy ¼ Δz ¼ 0. Here them ¼ 0 term corresponds
to the contribution from vacuum fluctuations, which will be
omitted in the following calculations as we focus on the
lightcone fluctuations due to thermal fluctuations.
The relative flight time variance due to thermal fluctua-

tions δ2T can then be expressed as

LIGHTCONE FLUCTUATIONS IN A NONLINEAR MEDIUM DUE … PHYS. REV. D 100, 026009 (2019)

026009-3



δ2T ¼ ðχð2Þx Þ2d2
π4n3Bn

4
P

Z
∞

−∞
dx

Z
∞

−∞
dx0

1

x2 þ d2
1

x02 þ d2
X∞

m¼−∞

0 1

½ðΔtþ imβÞ2=n2B − ðΔxÞ2�2

þ ðχð2Þy Þ2d2
π4n3Bn

4
P

Z
∞

−∞
dx

Z
∞

−∞
dx0

1

x2 þ d2
1

x02 þ d2
X∞

m¼−∞

0 ðΔxÞ2 þ ðΔtþ imβÞ2=n2B
½ðΔtþ imβÞ2=n2B − ðΔxÞ2�3

þ ðχð2Þz Þ2d2
π4n3Bn

4
P

Z
∞

−∞
dx

Z
∞

−∞
dx0

1

x2 þ d2
1

x02 þ d2
X∞

m¼−∞

0 ðΔxÞ2 þ ðΔtþ imβÞ2=n2B
½ðΔtþ imβÞ2=n2B − ðΔxÞ2�3 : ð20Þ

Here, the prime means that them ¼ 0 term is omitted. With
the help of the residue theorem, the integrations above can
be directly calculated as

δ2T ¼ 2nBðχð2Þx Þ2
π2n4P

X∞
m¼1

×
1

ðmβ þ 2nPd − 2nBdÞ2ðmβ þ 2nPdþ 2nBdÞ2

þ 2nB½ðχð2Þy Þ2 þ ðχð2Þz Þ2�
π2n4P

X∞
m¼1

×
4d2ðn2B þ n2PÞ þ 4mnPdβ þm2β2

ðmβ þ 2nPd − 2nBdÞ3ðmβ þ 2nPdþ 2nBdÞ3
:

ð21Þ

The summation in the result above is hard to find, so in
the following we discuss two special cases, i.e., the low
temperature (T ≪ d−1) and high temperature (T ≫ d−1)
limits. As discussed above, to fulfil requirement that the
frequency of the background field ω0 is much smaller than
that of the probe field ω1, the thermal photon frequency β−1

should be small compared with ω1. Therefore, the low and
high temperature limits actually mean T ≪ d−1 ≪ ω1 and
d−1 ≪ T ≪ ω1 respectively. In the low temperature limit,
the flight time fluctuations are found to be in the following
form

δ2T ≈
X∞
m¼1

2nB½ðχð2Þx Þ2 þ ðχð2Þy Þ2 þ ðχð2Þz Þ2�
π2n4Pβ

4m4

¼ π2nB½ðχð2Þx Þ2 þ ðχð2Þy Þ2 þ ðχð2Þz Þ2�T4

45n4P
; ð22Þ

where we have used the relation

X∞
m¼1

1

m4
¼ π4

90
: ð23Þ

Therefore, in the low temperature limit, thermal corrections
to the flight time fluctuations is proportional to T4, which is
a higher-order correction compared with that induced by

vacuum fluctuations proportional to d−4, c.f. Eq. (33)
in Ref. [15].
In the high temperature limit, the summation in Eq. (21)

can be approximated by the following integration

δ2T ≈
2nBðχð2Þx Þ2
π2n4Pd

3β

Z
∞

β=d

1

ðxþ2nP−2nBÞ2ðxþ2nPþ2nBÞ2
dx

þ2nB½ðχð2Þy Þ2þðχð2Þz Þ2�
π2n4Pd

3β

Z
∞

β=d

×
4ðn2Bþn2PÞþ4nPxþx2

ðxþ2nP−2nBÞ3ðxþ2nPþ2nBÞ3
dx: ð24Þ

Direct calculations show that the leading terms are

δ2T ≈
ðχð2Þx Þ2T

16π2n2Bn
4
Pd

3

�
2nBnP
n2P − n2B

þ ln

�
nP − nB
nP þ nB

��

þ ½ðχð2Þy Þ2 þ ðχð2Þz Þ2�T
16π2n2Bn

4
Pd

3

�
nBnPð3n2B − n2PÞ

ðn2P − n2BÞ2

−
1

2
ln

�
nP − nB
nP þ nB

��
: ð25Þ

In this case, the relative flight time variance due to thermal
fluctuations is proportional to d−3T, which dominates over
the contribution of vacuum fluctuations since T ≫ d−1.
Now a question arises naturally as to whether a very

low temperature environment is necessary if we aim at
observing the lightcone fluctuations in a nonlinear medium
due to vacuum fluctuations. We consider the experiment
proposed in Ref. [15] with a Cadmium selenide (CdSe)
slab. The wavelength of the probe light λP ¼ 1.06 μm,
which corresponds to a temperature TP ¼ 2.15 × 103 K if it
is taken as thermal photon wavelength. The thickness of the
slab d, which determines the frequency regime of the
background field that gives the dominant contribution, is
taken as d ¼ 10.6 μm, and the corresponding temperature
TB ¼ 2.15 × 102 K. Therefore, the room temperature T ≈
3 × 102 K is small compared with TP as required, but it is
in neither the low-temperature nor the high-temperature
regime compared with TB, so we will calculate Eq. (21)

numerically. Note that the second order susceptibility χð2Þz ≈
1.1 × 10−10 m=V, and the refractive index nB ¼ 2.43 at a
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wavelength of 10.6 μm, and the refractive index nP ¼ 2.54
at a wavelength of 1.06 μm [22,23]. After a unit conversion,
the dimensionless ratio χð2Þ=d2 can be written as

χð2Þ

d2
¼ 6.0 × 10−8

�
χð2Þ

10−12 m=V

��
1 μm
d

�
2

: ð26Þ

Direct calculations show that the result is δrms ¼
1.8 × 10−9, which is about 18.6% that induced by vacuum
fluctuations. Therefore, the main contributions are still from
vacuum fluctuations even when the experiment is done at
room temperature.

IV. SUMMARY

In this paper, we have studied the lightcone fluctuations
in a nonlinear medium caused by thermal fluctuations.
The effective refractive index for a probe light fluctuates

due to thermal fluctuations of the background electro-
magnetic fields, which are analogous to the lightcone
fluctuations when gravity is quantized. We have shown
that, in the low-temperature limit, the contribution of
thermal fluctuations to the flight time fluctuations is
proportional to T4, which is negligible compared with
that caused by vacuum fluctuations, while in the high-
temperature limit, the contribution of thermal fluctuations
to the flight time fluctuations increases linearly with T,
which dominates over that of vacuum fluctuations.
Numerical estimations show that, at room temperature,
the contributions from thermal fluctuations are still small
compared with that from vacuum fluctuations in realistic
situations.
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