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We study the canonical AdS=CFT correspondence between 4d SUðNÞ N ¼ 4 super Yang-Mills theory
(SYM) and type IIB superstring theory on AdS5 × S5. We analyze the supersymmetric index of the
N ¼ 4 SYM on S1 ×M3 which counts supersymmetric states with fixed quantum numbers. We compute
an asymptotic behavior of the index in the limit of shrinking S1 for any N by a refinement of the 4d
supersymmetric Cardy formula. The asymptotic behavior for the superconformal index case (M3 ¼ S3) at
large N agrees with the Bekenstein-Hawking entropy of a rotating electrically charged Bogomolnyi-
Prasad-Sommerfeld (BPS) black hole in AdS5 via a Legendre transformation as recently shown in the
literature. We also find that the agreement formally persists for finite N if we slightly modify the AdS=CFT
dictionary between the Newton constant and N. This implies the existence of a nonrenormalization
property of the black hole entropy against quantum corrections. We also study the cases with other gauge
groups and additional matter and the orbifold N ¼ 4 SYM. It turns out that the entropies of all the CFT

examples in this paper are universally given by 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2 þQ1Q3 þQ2Q3 − 2cðJ1 þ J2Þ

p
with charges

Q1;2;3, angular momenta J1;2, and central charge c. The results for otherM3 make predictions to the gravity
side.

DOI: 10.1103/PhysRevD.100.026008

I. INTRODUCTION

It is widely expected that black hole mechanics is
connected to thermodynamics and, in particular, a black
hole has a macroscopic entropy given by a horizon area
[1]. Since string theory is the candidate of consistent
quantum gravity, string theory should give a microscopic
explanation. As is well known, the seminal paper [2] by
Strominger and Vafa has derived the Bekenstein-Hawking
entropy of an asymptotically flat black hole by counting
supersymmetric (SUSY) states in string theory.
In the context of AdS=CFT correspondence [3], the

problem of black hole entropy is mapped into whether the
entropy of an asymptotically AdS black hole is explained
by counting states of a dual CFT. Namely, if there is a
black hole with some quantum numbers on the gravity
side, then the Bekenstein-Hawking entropy of the black
hole should agree with the (log of) degeneracy of states
with the same quantum numbers on the dual CFT side in
the large-N limit. Recently, there have been great steps to

understand this problem along two directions. First, the
black hole entropies of static dyonic supersymmetric
(BPS) black holes have been reproduced by topologically
twisted indices of the 3d N ¼ 6 superconformal theory
[4,5] by using supersymmetry localization [6]. Then there
appeared agreement in various setups involving static
magnetic charged black holes [7].
The second type of progress has been made in the

canonical AdS=CFT correspondence between the 4d
SUðNÞ N ¼ 4 super Yang-Mills theory (SYM) and type
IIB superstring theory on AdS5 × S5, which is also the
subject of this paper. It is known that there are rotating
electrically charged black hole solutions in AdS5 [8] which
are embedded in the type IIB supergravity in AdS5 × S5 as
supersymmetric solutions with two supercharges (1=16-
BPS)1 [10]. The black holes have three charges (Q1, Q2,
and Q3) associated with Uð1Þ3 ⊂ SOð6Þ and two angular
momenta (J1 and J2) associated with the Cartan part of
SUð2Þ2 ∼ SOð4Þ ⊂ SOð4; 2Þ. They are related to the black
hole mass M by

M ¼ gðjJ1j þ jJ2j þ jQ1j þ jQ2j þ jQ3jÞ; ð1:1Þ
where g is the gauge coupling. The Bekenstein-Hawking
entropy of the black hole is [11]
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SBH ¼ area
4GN

¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2þQ1Q3þQ2Q3−

π

4GNg3
ðJ1þJ2Þ

r
;

ð1:2Þ

where the AdS=CFT dictionary between GNg3 and N is

π

2GNg3
¼ N2: ð1:3Þ

A long-standing question is whether this black hole
entropy is holographically explained by counting super-
symmetric states preserving two supercharges (1=16-BPS
states) in the N ¼ 4 SYM on S1 × S3. Technically, it is
much easier to analyze a supersymmetric index called the
superconformal index [12,13] rather than the net sum of the
1=16-BPS states:

IS1×S3 ¼ Tr½ð−1ÞFe−βfQ;Q†gpJ1þðr=2ÞqJ2þðr=2Þvq11 vq22 �
¼ TrBPS½ð−1ÞFpJ1þðr=2ÞqJ2þðr=2Þvq11 vq22 �; ð1:4Þ

where r ¼ 2
3
ðQ1 þQ2 þQ3Þ and q1;2 ¼ Q1;2 −Q3 taking

charges of Uð1Þ3 ⊂ SOð6ÞR symmetry to be Q1;2;3=2. One
common worry is that the index may have a huge
cancellation between bosonic and fermionic states due to
the ð−1ÞF with the fermion number F so that it does not
capture the black hole entropy [12] (see also Ref. [14] for
other early attempts).
However, very recent papers have updated our under-

standing. First, Ref. [15] has shown that a Legendre
transformation of the black hole entropy called the entropy
function is given by a generalization of supersymmetric
Casimir energy ECasimir [16,17] in the large-N limit2 which
is defined as a relative factor between the partition function
and index3:

ZS1×S3 ¼ e−βECasimirIS1×S3 : ð1:5Þ

Second, the authors of Ref. [20] have analyzed the index of
theUðNÞN ¼ 4 SYM in a limit of shrinking S1 at large N,
which we refer to as the Cardy limit, and identified a saddle
point of the holonomy integral which gives the black hole
entropy function. Then they have assumed the dominance
of the saddle point and derived the asymptotic behavior of
the index in the Cardy limit which agrees with the black

hole entropy (1.2) via a Legendre transformation with
respect to the chemical potentials. They have also discussed
a deconfinement transition in another paper [21]. Third, the
authors of Ref. [22] have analyzed the index for p ¼ q in
the large-N limit by using a Bethe ansatz type formula of
the index [23]. They have identified a saddle point which
reproduces the black hole entropy function corresponding
to the equal angular momenta case: J1 ¼ J2. They have
also assumed that the saddle point is most dominant. It has
also been stressed in Refs. [20–22] that the index with real
fugacities has more cancellations than generic complex
fugacities.
The aims of this paper are to provide further evidence

that the index gives a microscopic explanation of the black
hole entropy and make new predictions for the black hole
physics in a more general case. We mainly study the
supersymmetric index of the SUðNÞ N ¼ 4 SYM on
S1 ×M3. We compute an asymptotic behavior of the index
in the limit of shrinking S1 for arbitrary N by using a
refinement [24,25] of the supersymmetric Cardy formula
[26], which is supposed to capture a large-charge limit of the
black hole entropy. Therefore, our approach for the super-
conformal index case (M3 ¼ S3) is basically the same as the
one in Ref. [20]. The asymptotic behavior of the super-
conformal index at large N agrees with the Bekenstein-
Hawking entropy (1.2) via a Legendre transformation with
respect to the chemical potentials as already found in
Ref. [20]. We also find that the agreement formally persists
for finite N if we slightly modify the AdS=CFT dictionary
(1.3) as

π

2GNg3

����
finiteN

¼ N2 − 1 ¼ 4c; ð1:6Þ

where c ¼ ðN2 − 1Þ=4 is the central charge of the SUðNÞ
N ¼ 4 SYM. This implies the existence of a nonrenorm-
alization property for the black hole entropy function in the
small-S1 limit against quantum corrections. We also study
the cases with other gauge groups and additional matter in
conjugate representations and orbifoldN ¼ 4SYM. It turns
out that the entropies of all the CFT examples in this paper
are universally given by

SQFTðQ; JÞ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2 þQ1Q3 þQ2Q3 − 2cðJ1 þ J2Þ

p
;

ð1:7Þ

with the central charge c. This formula is our prediction for
the black hole entropy with full quantum corrections, which
would give hints for what string theory is in a fully quantum
mechanical sense. The results for otherM3 are also regarded
as predictions to the gravity side.4 It is also interesting to note

2This claim had been made in an earlier version of Ref. [15] in
arXiv. See a revised version for the update.

3The entropy function of the black hole was first computed in
Ref. [18]. It was also argued in Ref. [18] that the entropy function
is formally equal to the SUSY Casimir energy. The SUSY
Casimir energy of the N ¼ 4 SYM with the fugacities of
SOð6ÞR was first computed in Ref. [19].

4A proposal for quantum black hole entropy for the M3 ¼
S1 × T2 case has been made in Eq. (1.82) of Ref. [27].
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that the authors in Ref. [11] first wrote down the black hole
formula for the dual of the SUðNÞ N ¼ 4 SYM as

SBH ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2 þQ1Q3 þQ2Q3 − 2cðJ1 þ J2Þ

p
ð1:8Þ

and then substituted c ¼ N2=4 to get the formula

SBH ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2 þQ1Q3 þQ2Q3 −

N2

2
ðJ1 þ J2Þ

r
ð1:9Þ

in their derivation. Of course, there is no difference in the
large-N limit, but our result suggests that Eq. (1.8) is more
accurate for finite N.
Our argument for the M3 ¼ S3 case is overlapped with

the one made in Ref. [20]. While the approach is the same
up to technical details and the final result at large N has
been already obtained in Ref. [20], there are mainly three
differences. First, we mainly consider the SUðNÞ N ¼
4 SYM rather than the UðNÞ case, while the difference is
irrelevant at large N, and we also finally consider the N ¼
4 SYM with a general gauge group as well as other
theories. Second, we analyze the index for finite N, but
we will see that the result in Ref. [20] is formally correct
also for finiteN. Finally, we not only identify a saddle point
giving the black hole entropy (1.2) but also prove that the
saddle point is most dominant. This amounts to justifying
the assumption made in Ref. [20] at large N and making
sure that the most dominant contribution of the index gives
the black hole entropy. Some contents discussed in
Ref. [20] but not in this paper are the Macdonald limit
[28] and the case for AdS7 black holes.

II. ASYMPTOTIC BEHAVIOR OF THE
SUPERSYMMETRIC INDEX IN SUðNÞ N = 4 SYM

Let us consider the SUðNÞ N ¼ 4 SYM on S1β ×M3

with the radius β. We take M3 to preserve a part of
supersymmetry, and this constrains S1β ×M3 to be complex
[29]. Different choices of M3 count different quantum
numbers, as different M3’s have different isometries. One
of the most well-studied cases is the index on S1 × S3

known as the superconformal index [12,13]:

IS1×S3 ¼ TrBPS½ð−1ÞFpJ1þðr=2ÞqJ2þðr=2Þvq11 vq22 �; ð2:1Þ

where

p ¼ e2πiσ; q ¼ e2πiτ; v1;2 ¼ e2πim1;2 : ð2:2Þ

We are interested in an asymptotic behavior of the partition
function in the shrinking S1 limit: β → 0. In this limit, the
partition function is exactly the same as the supersymmetric
index, since we can ignore the contribution from the SUSY
Casimir energy in Eq. (1.5). Therefore, we are essentially
looking at the asymptotic behavior of the index. There is a

general formula to describe such asymptotic behavior for
the general 4d N ¼ 1 SUSY theory with Uð1ÞR symmetry
and a Lagrangian description which is a refinement [24,25]
of the SUSY Cardy formula [26].
For simplicity of explanation, we first consider the

superconformal index, which is defined through the super-
symmetric partition function on a space with a topology of
S1 × S3. For example, if we take M3 to be the squashed
sphere S3b, τ and σ are given by τ ¼ −βb=2πi and
σ ¼ −βb−1=2πi, respectively. For any choices, the Cardy
limit β → 0 for the superconformal index is equivalent to
jτj, jσj → 0. The refined SUSY Cardy formula for the
superconformal index is given by5

IS1×S3 ≃
jτj;jσj→0

e−½iπðτþσÞ=12τσ�TrðRÞ

×
Z

drankGa eiπ=6τσV2ðaÞþ½iπðτþσÞ=2τσ�V1ðaÞ; ð2:3Þ

which has been derived in two ways: taking the limit in the
localization formula [25] and effective theory considera-
tion [24].
Several definitions are in order. First, G is the gauge

group, and e2πiaj with j ¼ 1;…; rankG is holonomy around
S1 valued in the maximal torus of G. Second, TrðRÞ is the
anomaly coefficient6 of the Uð1ÞR symmetry and related to
conformal anomalies by TrðRÞ ¼ −16ðc − aÞ for the
superconformal case. Third, V2ðaÞ and V1ðaÞ are piecewise
polynomials of aj and flavor chemical potentials whose
forms are explicitly determined if we specify representa-
tions,Uð1ÞR charges, and flavor charges of chiral multiplets
(see the Appendix). Their explicit forms for the SUðNÞ
N ¼ 4 SYM are7

V2ðaÞ¼−
X

1≤i≠j≤N
½κðaijþm1Þþ κðaijþm2Þ

þ κðaij−m1−m2Þ�
− ðN−1Þ½κðm1Þþ κðm2Þþ κð−m1−m2Þ�;

V1ðaÞ¼
1

3

X
1≤i≠j≤N

½3θðaijÞ−θðaijþm1Þ−θðaijþm2Þ

−θðaij−m1−m2Þ�

−
N−1

3
½θðm1Þþθðm2Þþθð−m1−m2Þ�; ð2:4Þ

where

5See Ref. [30] for earlier related works.
6This is simply the sum of Uð1ÞR charges of fermions in the

theory under consideration.
7For m1 ¼ 0 ¼ m2, V2ðaÞ and V1ðaÞ are zero. The leading

asymptotic behavior of the index for this case is ðN − 1Þ log β as
shown in Ref. [25].
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aij¼ ai−aj;
XN
j¼1

aj¼ 0;

κðxÞ¼ fxgð1−fxgÞð1−2fxgÞ; θðxÞ¼ fxgð1−fxgÞ;
ð2:5Þ

with fractional part fxg≡ x − ½x� (see Fig. 1). V2ðaÞ
[V1ðaÞ] is apparently a piecewise cubic (quadratic) poly-
nomial, but this is actually quadratic (linear) because of
anomaly cancellations involving the gauge symmetry.
Here we restrict ourselves to

Re

�
i
τσ

�
< 0 ð2:6Þ

and Imðm1;2Þ ¼ OðβÞ. We will mention other regimes later.
In this regime, the integral in the limit is dominated by the
saddle point configuration(s) to minimize the function
V2ðaÞ. We can easily find a dominant saddle point as
follows. Noting κð−xÞ ¼ −κðxÞ and8 κðxþ 1Þ ¼ κðxÞ, we
rewrite V2ðaÞ as

V2ðaÞ ¼
X
i<j

fðaijÞ þ
N − 1

2
fð0Þ; ð2:7Þ

where

fðaijÞ ¼ κðaij − fm1gÞ − κðaij þ fm1gÞ þ κðaij − fm2gÞ
− κðaij þ fm2gÞ þ κðaij þ fm1g þ fm2gÞ
− κðaij − fm1g − fm2gÞ: ð2:8Þ

It is sufficient to minimize each fðaijÞ and show that we
can realize a simultaneously minimizing configuration. As
a result, the minimizing configuration is simply aj ¼ 0 for
any j as illustrated in Fig. 2 for a specific value of ðm1; m2Þ.
To see this generally, it is convenient to first analyze the
regime

0 ≤ fm2g ≤ fm1g; fm1g þ fm2g ≤
1

2
; ð2:9Þ

and extend it to other regimes by using the periodicity
m1;2 ∼m1;2 þ 1. In this regime, noting κðxÞ ¼ 2x3 −
3xjxj þ x for jxj ≤ 1, the function fðxÞ in “the fundamental
region” jxj < 1 − fm1g þ fm2g is given by

fðxÞ ¼

8>>>>><
>>>>>:

6x2 þ 12fm1gfm2gðfm1g þ fm2g − 1Þ for jxj ≤ fm2g;
12m2jxj þ 6m2ð2m2

1 þ 2m1m2 − 2m1 −m2Þ for fm2g ≤ jxj ≤ fm1g;
−6ðjxj − fm1g − fm2gÞ2 þ 12fm1gfm2gðfm1g þ fm2gÞ for fm1g ≤ jxj ≤ fm1g þ fm2g;
12fm1gfm2gðfm1g þ fm2gÞ for fm1g þ fm2g ≤ jxj;

ð2:10Þ

which has the minimum at the origin:

fðxÞjmin¼fð0Þ¼12fm1gfm2gðfm1gþfm2g−1Þ: ð2:11Þ

FIG. 2. fðxÞ for ðm1; m2Þ ¼ ð0.2; 0.1Þ.

8Physically, this periodicity reflects invariance under a large
gauge transformation.

FIG. 1. κðxÞ and θðxÞ.
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Therefore, the minimum of V2ðaÞ is realized by aij ¼ 0 for
all i, j with the traceless condition

P
N
j¼1 aj ¼ 0, which is

nothing but aj ¼ 0. Thus, we find the minimum of V2ðaÞ as

V2ðaÞjmin¼V2ð0Þ
¼ 6ðN2−1Þfm1gfm2gðfm1gþfm2g−1Þ:

ð2:12Þ

The next order Oðβ−1Þ is simply obtained by substitut-
ing9 the saddle point into V1ðaÞ:

V1ðaÞjaj¼0 ¼
2ðN2 − 1Þ

3
½fm1g2 þ fm2g2

þ fm1gfm2g − fm1g − fm2g�: ð2:13Þ

Then, noting c − a ¼ 0 in the N ¼ 4 SYM, we find the
Cardy limit of the superconformal index to be

logIS1×S3 ≃
jτj;jσj→0

iπðN2−1Þ
τσ

�
fm1gfm2gðfm1gþfm2g−1Þ

þ τþσ

3
ðfm1g2þfm2g2þfm1gfm2g

−fm1g−fm2gÞ
�
: ð2:14Þ

In order to directly compare this with the Bekenstein-
Hawking entropy, it is convenient to rewrite the result in the
following two steps. First, we redefine the chemical
potentials m1;2 as

m1;2 ¼ Δ1;2 −
τ þ σ

3
; ð2:15Þ

so that our index becomes

TrBPS½ð−1ÞFpJ1þQ3qJ2þQ3e2πiΔ1ðQ1−Q3Þe2πiΔ2ðQ2−Q3Þ�:
ð2:16Þ

This object is the same as the grand canonical partition
function

TrBPS

�
pJ1qJ2

Y3
a¼1

e2πiΔaQa

�
; ð2:17Þ

with the constraint10 Δ1 þ Δ2 þ Δ3 − τ − σ − 1 ∈ 2Z. In
this parametrization, the asymptotic behavior of the index
becomes

logIS1×S3 ≃
jτj;jσj→0

iπðN2−1ÞfΔ1gfΔ2gðfΔ1gþfΔ2g−1−σ− τÞ
τσ

:

ð2:18Þ

Second, we make a Legendre transformation [18] with
respect to ðσ; τ;Δ1;Δ2Þ to directly obtain entropy or
equivalently degeneracy of states with fixed charges and
angular momenta as explained in the next subsection.

A. Comments on other regimes of ðτ;σÞ
If we take another regime Reð i

τσÞ > 0, then we need to
minimize −V2ðaÞ or, equivalently, maximize V2ðaÞ. Then
the dominant saddle points are given by the points maxi-
mizing fðxÞ. According to Eq. (2.10), the saddle points are
any configurations giving the plateau regime of fðxÞ,
namely, the ones satisfying fm1g þ fm2g ≤ jfaijgj <
1 − fm1g þ fm2g. We immediately see that the saddle
points are no longer isolated, and, therefore, it remains
integration over the saddle points which seems complicated,
since V1ðaÞ is not constant in this regime. As a result, the
asymptotic behavior of the index is

logIS1×S3 ≃
jτj;jσj→0

iπfm1gfm2g
τσ

× ½ðN2−1Þðfm1gþfm2gÞ−ðN−1Þ�

þ log
Z
saddles

dNaδ

�XN
j¼1

aj

�
eiπðτþσÞ=2τσV1ðaÞ:

ð2:19Þ

This implies that we have an anti-Stokes line at Reð i
τσÞ ¼ 0,

since the dominant saddle point changes there. The above
saddle points are unstable in the regime Reð i

τσÞ < 0, which
we have mainly considered in this paper. Relatedly, Stokes
phenomena have been observed in the large-N analysis of
the Bethe ansatz type formula [22]. It would be interesting to
understand the above phenomena in more detail and find
their physical interpretations especially from the gravity
side. This might be related to hairy black holes [31].

B. Comparison with Bekenstein-Hawking entropy

This subsection is essentially a review of various papers
[15,18,20,22] up to identifications of parameters and final
results.11 The Legendre transformation of the black hole
entropy is referred to as the entropy function [33]. Suppose
that we have the entropy function S:

9The saddle point of V2ðaÞ also realizes the minimum of V1ðaÞ
as a result, though this property is not necessary for our analysis.

10Note that ð−1ÞF ¼ e2πiQ3 .

11The original argument was in Sec. 3 of Ref. [18]. This
subsection is also a review of Appendix B of Ref. [15], Sec. 2.3 of
Ref. [20], and Sec. 6 of Ref. [22]. See also Ref. [32] for a similar
argument for AdS7 black holes.
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S ¼ 2πiν
X1X2X3

ω1ω2

; ð2:20Þ

with the constraint

X1 þ X2 þ X3 − ω1 − ω2 ¼ n: ð2:21Þ

These quantities in our case are

S¼− logIS1×S3b ; ν¼N2−1

2
;

ω1¼ σ; ω2 ¼ τ; Xa ¼fΔag; n¼ 1: ð2:22Þ

The entropy SðQ; JÞ is obtained by the Legendre trans-
formation

SðQ; JÞ ¼ SðXa;ωiÞ þ 2πi

�X3
a¼1

XaQa þ
X2
I¼1

ωIJI

�

þ 2πiΛ
�X3

a¼1

Xa −
X2
I¼1

ωI − n

�����
Xa;ωi

; ð2:23Þ

where Λ is the Lagrange multiplier. The extremization
conditions are

∂S
∂Xa

¼−2πiðQaþΛÞ; ∂S
∂ωI

¼−2πiðJI −ΛÞ; ð2:24Þ

with the constraint (2.21). Note that we do not need explicit
solutions for ðXa;ωIÞ to compute S if we use the relation

S ¼
X3
a¼1

Xa
∂S
∂Xa

þ
X2
I¼1

ωI
∂S
∂ωI

: ð2:25Þ

Then the entropy is simply given by

S ¼ 2πinΛ; ð2:26Þ

where Λ satisfies

0 ¼ ðQ1 þ ΛÞðQ2 þ ΛÞðQ3 þ ΛÞ þ νðJ1 − ΛÞðJ2 − ΛÞ
¼ Λ3 þ p2Λ2 þ p1Λþ p0; ð2:27Þ

with

p0 ¼ Q1Q2Q3 þ νJ1J2;

p1 ¼ Q1Q2 þQ2Q3 þQ3Q1 − νðJ1 þ J2Þ;
p2 ¼ Q1 þQ2 þQ3 þ νJ1J2: ð2:28Þ

The equation forΛ has the three solutionsΛ¼f−p2;�i
ffiffiffiffiffi
p1

p g
with p1, p2 ∈ R≥0. Imposing S ∈ R≥0, the physical solution
among the three is Λ ¼ −isgnðnÞ ffiffiffiffiffi

p1

p
. which leads us to the

entropy

S ¼ 2πjnj ffiffiffiffiffi
p1

p
: ð2:29Þ

Under the identifications (2.22), the entropy computed by the
superconformal index of the SUðNÞ N ¼ 4 SYM is

SQFTðQ;JÞ

¼2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2þQ1Q3þQ2Q3−

N2−1

2
ðJ1þJ2Þ

r
; ð2:30Þ

which agrees with the Bekenstein-Hawking entropy (1.2)
via the AdS=CFT dictionary (1.3) in the large-N limit.
Interestingly, the agreement persists for finiteN if we slightly
modify the AdS=CFT dictionary for finite N as

π

2GNg3

����
finiteN

¼ N2 − 1 ¼ 4c; ð2:31Þ

where c ¼ N2−1
4

is the central charge. This may suggest that
the black hole entropy with full quantum corrections is
captured by the Bekenstein-Hawking entropy with the
renormalized Newton constant (2.31) in the Cardy limit.

C. General M3

The refined SUSY Cardy formula for the SUðNÞ N ¼ 4

SYM on S1 ×M3 is

IS1×M3
≃
β→0

Z
dNaδ

�XN
j¼1

aj

�
e−ðπ

3iAM3
=6β2ÞV2ðaÞþðπ2LM3

=2βÞV1ðaÞ−ð1=2βÞṼ1ðaÞ; ð2:32Þ

where Ṽ1ðaÞ is the contribution absent in the superconformal index:

Ṽ1ðaÞ ¼
X
i≠j

ðli
M3

− lj
M3
Þ½θðaij þm1Þ þ θðaij þm2Þ þ θðaij −m1 −m2Þ þ θðaijÞ�: ð2:33Þ
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The quantities AM3
, LM3

, and li
M3

are local functionals on
M3 given by bosonic fields in the 3d new minimal super-

gravity multiplet ðhμν; AðRÞ
μ ; H; cμÞ and 3d N ¼ 2 vector

multiplet12 ðAμ; σ; DÞ:

AM3
¼ i

π2

Z
M3

d3x
ffiffiffi
h

p
½−cμvμ þ 2H�;

LM3
¼ 1

π2

Z
M3

d3x
ffiffiffi
h

p �
−AðRÞμ

μ vμ þ vμvμ −
1

2
H2 þ 1

4
R
�
;

li
M3

¼ 1

π2

Z
M3

d3x
ffiffiffi
h

p
½−Ai

μvμ þDi�; ð2:34Þ

which come from induced Chern-Simons terms of
Uð1ÞKK −Uð1ÞKK, Uð1ÞKK −Uð1ÞR, and Uð1ÞKK-gauge
or flavor, respectively, from the viewpoint of the 3d
effective theory13 on M3. Technically, AM3

and LM3
are

just constants for fixedM3, while liM3
generally depends on

(supersymmetric configurations of) the dynamical vector
multiplets, though it has typically a simple form because of
SUSY.14

Here we restrict ourselves to

Re

�
iAM3

β2

�
> 0; ð2:35Þ

which generalizes the condition (2.6). Then the
integral in the β → 0 limit is dominated by the saddle
point of V2ðaÞ which is already found as aj ¼ 0. Thus,
noting Ṽ1ðaÞjaj¼0 ¼ 0, the asymptotic behavior of the
index for general M3 is

logIS1×M3
≃
β→0

−
2π3iAM3

ðN2−1Þ
β2

fm1gfm2gðfm1g

þfm2g−1Þþπ2LM3
ðN2−1Þ
3β

× ½fm1g2þfm2g2þfm1gfm2g−fm1g−fm2g�:
ð2:36Þ

This makes predictions to the gravity side for more general
M3. For example, the case for a lens space index is

log IS1×S3=Zn
≃

jτj;jσj→0

log IS1×S3
n

: ð2:37Þ

III. GENERALIZATIONS

A. Other gauge groups

Generalization to other gauge groups is straightforward,
because we can still apply the technique in the SUðNÞ case.
For the N ¼ 4 SYM with gauge group G, the functions
appearing in the SUSY Cardy formula are

V2ðaÞ ¼ −
X
α∈root

½κðα · aþm1Þ þ κðα · aþm2Þ

þ κðα · a −m1 −m2Þ�
− rankðGÞ½κðm1Þ þ κðm2Þ þ κð−m1 −m2Þ�;

V1ðaÞ ¼
1

3

X
α∈root

½3θðα · aÞ − θðα · aþm1Þ − θðα · aþm2Þ

− θðα · a −m1 −m2Þ�

−
N − 1

3
½θðm1Þ þ θðm2Þ þ θð−m1 −m2Þ�;

Ṽ1ðaÞ ¼
X
α∈root

α · lM3
½θðα · aþm1Þ þ θðα · aþm2Þ

þ θðα · a −m1 −m2Þ þ θðα · aÞ�: ð3:1Þ

In terms of fðxÞ, we rewrite V2ðaÞ as

V2ðaÞ ¼
X

α∈rootþ

fðα · aÞ þ rankðGÞ
2

fð0Þ; ð3:2Þ

which has the global minimum at aj ¼ 0 by the same logic15

as in Sec. II. Thus, the index asymptotically behaves as

logIS1×M3
≃
β→0

−
2π3iAM3

dimðGÞ
β2

fm1gfm2gðfm1gþfm2g−1Þ

þπ2LM3
dimðGÞ
3β

½fm1g2þfm2g2

þfm1gfm2g−fm1g−fm2g�: ð3:3Þ

Especially, the superconformal index is16

logIS1×S3

≃
jτj;jσj→0

iπdimGfΔ1gfΔ2gðfΔ1gþfΔ2g−1−σ− τÞ
τσ

:

ð3:4Þ

12This is for both gauge and global symmetries.
13See Refs. [24,26] for details.
14For example, li

S3=Zn
¼ 0 and li

S1×Σg
∝ ðmagnetic chargeÞ

with Riemann surface Σg.

15For G ¼ UðNÞ, this is sufficient but not necessary due to
decoupling the diagonal Uð1Þ. The same minimum is realized by
any configuration satisfying a1 ¼ � � � ¼ aN , which is the same as
the one obtained in Ref. [20]. This flat direction affects Oðlog βÞ.

16For G ¼ UðNÞ, the result is the same as the one obtained in
Ref. [20], which takes the large-N limit. However, our result
shows that the result of Ref. [20] is formally correct also for finite
N. This implies that contributions which are ignored in Ref. [20]
vanish in the Cardy limit.
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The Legendre transformation leads us to the entropy

SQFTðQ;JÞ¼2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2þQ1Q3þQ2Q3−

dimG
2

ðJ1þJ2Þ
r

¼2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2þQ1Q3þQ2Q3−2cðJ1þJ2Þ

p
;

ð3:5Þ

wherewe have used c ¼ dimG=4. This implies that the dual
black hole entropy for gauge group G is captured by (1.2)
under the identification

π

2GNg3

����
finiteN

¼ 4c; ð3:6Þ

even if G is not necessarily SUðNÞ or UðNÞ.

B. Adding matter in conjugate representations

Let us add pairs of chiral multiplets in conjugate
representations to the N ¼ 4 SYM with the gauge group
G. In general, this theory may have new flavor symmetries,
but let us keep their fugacities turned off for simplicity. For
this case, the function V2ðaÞ does not receive contributions
from the matter because of κð−xÞ ¼ −κðxÞ. Therefore, the
holonomy integral of the SUSY Cardy formula is still
dominated by aj ¼ 0. Furthermore, contributions from the
additional matter to the V1ðaÞ and Ṽ1ðaÞ are zero at aj ¼ 0.
Thus, the asymptotic behavior of the index is

logIS1×M3
≃
β→0

−
π2LM3

12β
TrðRÞ

−
2π3iAM3

dimðGÞ
β2

fm1gfm2gðfm1gþfm2g−1Þ

þπ2LM3
dimðGÞ
3β

½fm1g2þfm2g2

þfm1gfm2g−fm1g−fm2g�: ð3:7Þ

Note that only the difference from the N ¼ 4 SYM is the
first term, which is simply captured by the unrefined SUSY
Cardy formula [26]. Specifying to the superconformal
index case, we find

logIS1×S3 ≃
jτj;jσj→0

iπdimGfΔ1gfΔ2gðfΔ1gþfΔ2g−1−σ−τÞ
τσ

−
iπðτþσÞ
12τσ

TrðRÞ: ð3:8Þ

This indicates that the entropies in theories with
jTrðRÞj=N2 ≪ 1 in the large-N limit are universally cap-
tured by the one of the N ¼ 4 SYM.

C. Orbifold N = 4 SYM

Let us consider so-called orbifold N ¼ 4 SYM which
is the circular quiver N ¼ 2 gauge theory with the
UðNÞ1 × � � �UðNÞK gauge group and one bifundamental
hypermultiplet of neighboring gauge group UðNÞI×
UðNÞIþ1. We turn on chemical potentials m1 and m2 of
flavor symmetry Uð1Þ1 × Uð1Þ2 in which the Uð1Þ1
(Uð1Þ2) symmetry assigns charge 1 to each N ¼ 1 (anti)
bifundamental chiral multiplet and charge −1 to each
N ¼ 1 adjoint chiral multiplet in the N ¼ 2 vector
multiplet. The function V2ðaÞ for this theory is

V2ðaÞ ¼ −
XK
I¼1

X
1≤i;j≤N

½κðaðIÞi − aðIþ1Þ
j þm1Þ

þ κð−aðIÞi þ aðIþ1Þ
j þm2Þ þ κðaðIÞij −m1 −m2Þ�:

ð3:9Þ

It is not easy to find the global minimum of this function in
contrast to the N ¼ 4 SYM. Instead of solving this
problem completely, we proceed by taking the physically
motivated ansatz:

aðIÞj ¼ aðJÞj ¼ aj; ð3:10Þ
which reflects Zk rotation symmetry of the quiver diagram
or, equivalently, all the gauge groups are “democratic.”17

Under this ansatz, V2ðaÞ becomes

V2ðaÞjaðIÞj ¼aðJÞj ¼aj
¼ −K

X
1≤i;j≤N

½κðaij þm1Þ þ κð−aij þm2Þ

þ κðaij −m1 −m2Þ�; ð3:11Þ

which is proportional to V2ðaÞ of the UðNÞ N ¼ 4 SYM.
Thus, the asymptotic behavior of the index is

log IS1×M3
jorbifold SYM ¼ K log IS1×M3

jN¼4SYM: ð3:12Þ

This result has a nice interpretation from the viewpoint of
so-called large-N orbifold equivalence [35], which states
that a free energy of a “daughter” theory obtained by a
projection of a “parent” theory by a group Γ obeys

lim
N→∞

Fdaughter

N2
¼ 1

jΓj limN→∞

Fparent

N2
; ð3:13Þ

where jΓj is the order of Γ. Since the orbifoldN ¼ 4 SYM
is obtained by a ZK projection of the UðKNÞN ¼ 4 SYM,
the above result is expected from the orbifold equivalence.
For the case of the superconformal index, the entropy after
the Legendre transformation is given by

17This type of ansatz was also taken in the large-N analysis of
the orbifold N ¼ 4 SYM on S4 [34].
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SQFTðQ;JÞ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2þQ1Q3þQ2Q3−

KN2

2
ðJ1þJ2Þ

r
;

ð3:14Þ
which is also expressed as

SQFTðQ;JÞ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2þQ1Q3þQ2Q3−2cðJ1þJ2Þ

p
;

ð3:15Þ

via c ¼ KN2=2.

IV. FUTURE DIRECTIONS

There are several questions and interesting future direc-
tions. Perhaps the most immediate question is whether or
not our results match at the quantum level. The first step to
test this would be to compute a logarithmic correction to the
black hole entropy by a one-loop analysis of the super-
gravity as in the case of the magnetically charged AdS4
black holes [36]. Our result suggests that the logarithmic
correction is absent in the Cardy limit. Another question is
what are physical interpretations of the dominant saddle
points in the regime Reð i

τσÞ > 0, which we have not mainly
considered in this paper. The dominant saddle points in this
regime are not isolated and technically give the plateau in

the function fðxÞ given in Eq. (2.10), but they are not
degenerate at Oðβ−1Þ. This question might be related to
hairy black holes [31]. It would be also interesting to study
higher-order corrections of β to the Cardy limit in order to
interpolate our result to the one in Ref. [22], which does not
take the Cardy limit. The higher-order corrections might be
significantly different between large N and finite N.
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APPENDIX: EXPLICIT FORMS OF V2ðaÞ, V1ðaÞ,
AND Ṽ1ðaÞ FOR GENERAL LAGRANGIAN 4D

N = 1 THEORY

Let us consider the 4d N ¼ 1 SUSY gauge theory with
gauge group G coupled to chiral multiplets of representation
RI having Uð1ÞR charge RI and flavor charge Qj

I of Uð1Þj
flavor symmetry. The refined Cardy formula takes the
form [24]

IS1×M3
≃
β→0

e−½π
2TrðRÞLM3

=12β�
Z

drankGa e−ðπ
3iAM3

=6β2ÞV2ðaÞþðπ2LM3
=2βÞV1ðaÞ−ð1=2βÞṼ1ðaÞ; ðA1Þ

where18

V2ðaÞ ¼ −
X

I∈matter

X
ρI∈RI

κ

�
ρI · aþ

X
j∈flavor

Qj
Imj

�
;

V1ðaÞ ¼
X
α∈root

θðα · aÞ þ
X

I∈matter

X
ρI∈RI

ðRI − 1Þθ
�
ρI · aþ

X
j∈flavor

Qj
Imj

�
;

Ṽ1ðaÞ ¼
X

I∈matter

X
ρI∈RI

ρI · lM3
θ

�
ρI · aþ

X
j∈flavor

Qj
Imj

�
: ðA2Þ

[1] J. D. Bekenstein, Black holes and the second law, Lett.
Nuovo Cimento 4, 737 (1972); Black holes and entropy,
Phys. Rev. D 7, 2333 (1973); Generalized second law of
thermodynamics in black hole physics, Phys. Rev. D 9, 3292
(1974); S. W. Hawking, Particle creation by black holes,

Commun. Math. Phys. 43, 199 (1975); Black hole explo-
sions, Nature (London) 248, 30 (1974).

[2] A. Strominger and C. Vafa, Microscopic origin of the
Bekenstein-Hawking entropy, Phys. Lett. B 379, 99
(1996).

18More generally, Ṽ1ðaÞ can have lM3
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