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In this paper, we have studied the holographic subregion complexity for a boosted black brane for
striplike subsystem. The holographic subregion complexity has been computed for a subsystem chosen
along and perpendicular to the boost direction. We have observed that there is an asymmetry in the result
due to the boost parameter which can be attributed to the asymmetry in the holographic entanglement
entropy. The Fisher information metric and the fidelity susceptibility have also been computed using bulk
dual prescriptions. It is observed that the two metrics computed holographically are not related to the pure
black brane as well as the boosted black brane. This is one of the main findings in this paper, and the
holographic results have been compared with the results available in the quantum information literature
where it is known that the two distances are related to each other in general.

DOI: 10.1103/PhysRevD.100.026006

I. INTRODUCTION

The discovery of gauge/gravity duality that relates
conformal field theories living on the boundary of anti-
de Sitter (AdS) spacetime to the bulk theory living in one
extra spatial dimension has proved to be a remarkable
progress in theoretical physics [1–3]. It has enabled us in
getting deep insights in strongly coupled condensed matter
systems and has also been the focus of recent developments
in the field of string theory [4–11]. Holographic compu-
tation of quantum information theoretic quantities such
as entanglement entropy (EE) and complexity of a sub-
system living on the boundary conformal field theory
(CFT) has also been an intense area of research [12–30].
Investigations in these directions have led to a significant
understanding of the basic laws governing such systems. It
has been realized that small perturbations in the density
matrix in the boundary field theory obey thermodynamic-
like relations which are similar to the black hole thermo-
dynamical relations [31–53]. Interestingly, such kind of

relations have also been observed in the case of holographic
complexity [54,55]. The calculation prescription, for in-
stance, for holographic EE involves the evaluation of the
geometric area of spatial extremal surfaces embedded in
asymptotically AdS spacetime whose boundary ends on the
boundary of the subsystem at a fixed time [12,13].
In this paper, the computation of holographic subregion

complexity (HSC) for (dþ 1)-dimensional boosted black
brane has been carried out for a striplike subsystem. The
motivation of looking at such systems comes from the fact
that there has been a lot of study where boosted brane
solutions have provided a direct connection between the
boundary theory and string theory. To be more precise, the
AdS=CFT correspondence has been investigated in cases
involving a pp wave propagating along a particular direc-
tion in the world volume of the classical p-brane configu-
ration [56,57]. Two distinct cases are known to arise here
which depend on the configuration being Bogomol'nyi-
Prasad-Sommerfield bound saturated or not. The effect of
including the pp wave in the non-Bogomol'nyi-Prasad-
Sommerfield bound case turns out to be equivalent locally to
a Lorentz boost given along the direction of propagation of
thewave. It is to be noted that the validity of the equivalence
is global if the direction of propagation of the pp wave is
uncompactified. However, if the direction along which the
ppwave propagates is wrapped on a circle, the equivalence
is valid only locally. It is due to this reason thatp braneswith
ppwaves propagating on theirworld volumes are referred to
as boosted p branes. Further motivation of studying such
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systems comes from the fact that boosted AdS black brane
backgrounds correspond to a thermal plasma uniformly
boosted in a certain direction in the boundary theory [52].
Before proceeding with this computation, we would like

to mention about the other proposals existing in the
literature to compute the complexity holographically.
The prescription to compute the holographic complexity
(HC) was first proposed in [17,18]. The proposal stated that
the complexity of a state, measured in gates, is given by the
volume of the Einstein-Rosen bridge (ERB) and reads

CVðtL; tRÞ ¼
VðtL; tRÞ

RG
; ð1Þ

where V is the spatial volume of the ERB. This volume is
defined to be the maximum volume codimension of one
surface bounded by the CFT spatial slices at times tL, tR on
the two boundaries. The above formula is true up to a
proportionality factor of order one which is unknown due to
the problem of defining the gate complexity more precisely
than this.
Yet another proposal for computing the HC of a system

exists in the literature. The content of the proposal is the
following. The HC of a system can be obtained from the
bulk action evaluated on the Wheeler-DeWitt patch [19]

CW ¼ AðWÞ
πℏ

; ð2Þ

where AðWÞ is the action evaluated on the Wheeler-DeWitt
patchW with a suitable boundary time. It is to be noted that
in both the above proposals, the HC depends on the whole
state of the physical system and therefore is not a property
of a specific subsystem.
In this paper, we shall use the HSC proposal [20], which

depends on the reduced state of the system. It says that for
subsystem A in the boundary, if VðγÞ denotes the maximal
codimension one volume enclosed by the codimension two
minimal Ryu-Takayanagi (RT) surfaces in the bulk, then
the holographic subregion complexity can be calculated
from the following formula:

CV ¼ VðγÞ
8πRG

; ð3Þ

where R is the radius of curvature of the spacetime.
With the thin strip approximation, one may consider that

the bulk extension only penetrates the ultraviolet region of
the spacetime under consideration. The boosted black brane
geometry in the ultraviolet limit can be considered as a
perturbation around AdS spacetime. In this paper, we have
computed the HSC using the complexity-(RT) volume
proposal in Eq. (3) for the boosted black brane. In
particular, we have carried out our computation up to both
first and second orders in the perturbation parameter. Up to
first order in perturbation, the HSC has been computed for

the subsystem in both parallel and perpendicular directions
of boost. We have then defined a ratio that can be identified
as the holographic complexity asymmetry and computed
this ratio. We have then extended our analysis to second
order in perturbation. In this case, we have computed the
HSC for the subsystem which is perpendicular to the
direction of boost. We have then moved on to compute
holographically the Fisher information metric and the
fidelity susceptibility for the boosted black brane. In this
context, we would like to mention that there are two well-
known notions of distances in the quantum information
literature, one is the Fisher information metric and the other
is the Bures metric, also known as the fidelity susceptibility.
It is also known in the quantum information literature that
the two distances are the same for two infinitesimally close
pure states [37] and other related cases [36,38,39]. In
general cases, they are related [40]. We know that the
proposed bulk duals of the boundary quantities should
reproduce some of the properties of their boundary counter-
parts. For example, holographic EE is shown to satisfy the
subadditivity relations [41–43] and the entanglement first
law [31]. Motivated by this result we would like to look in
this paper its status in the holographic setup. The holo-
graphic computation of Fisher information metric is carried
out using the proposal in [44] for both the pure black brane
and the boosted black brane. We then follow the proposal in
[49] to compute the Fisher information metric holograph-
ically. The proposal involves computing the change in
subregion holographic complexity up to second order in
perturbation about the pure AdS spacetime and multiplying
it by a dimensionless constant Cd. The constant is fixed by
comparing it with the result obtained from the relative
entropy [44,50,52]. The other notion of distance, the
fidelity susceptibility has also been computed using
the prescription given in [51]. It has been argued that
the gravity dual of the fidelity susceptibility is approx-
imately given by the volume of the maximal time slice in
AdS spacetime when the perturbation is exactly marginal. It
was also generalized to incorporate mixed states. The
prescription was then applied to compute the fidelity
susceptibility of the black brane. In this paper, this compu-
tation has been carried out for the boosted black brane.
Another aspect that has been looked at in this inves-

tigation is the following: modifications to the holographic
entanglement entropy (HEE) first law of thermodynamics
have been obtained in AdS spacetimes carrying gauge
charges [34,53]. In particular, the boosted AdS black branes
have given rise to modifications of the first law of holo-
graphic entanglement thermodynamics (HET) [53,58]. It
has been observed that the boosted black branes lead to an
asymmetry in the first law of HET. In this work, two cases
were investigated, namely, strip subsystem parallel to the
boost direction and also the other perpendicular to the boost
direction. It was found that ΔS⊥ ≥ ΔSk and the entangle-
ment asymmetry ratio were also computed. The asymmetry
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was found to be dependent on the boost parameter and was
bounded from above. As mentioned in the preceding
paragraph, the computation of the HSC has also been
done for two cases, namely, strip subsystem parallel to the
boost direction and also the other perpendicular to the boost
direction. These studies also allow us to find asymmetry in
the HSC for the two cases. Further, the investigations also
put some light on the dependence of the HSC with the
holographic entanglement entropy. This dependence of the
HSC on the HEE gives a possible reason for the asymmetry
in the HSC since it was observed in [58] that the HEE (for
the strip subsystem parallel or perpendicular to the boost
direction) has an asymmetry due to the difference in the
entanglement pressure in the two directions.
This paper is organized as follows. In Sec. II, compu-

tation of HSC for (dþ 1)-dimensional AdS spacetime for a
striplike subsystem has been done. The computation of
HSC for (dþ 1)-dimensional boosted black brane has been
carried out in Sec. III. In Sec. IV, we have given a detailed
analysis of the Fisher information metric and the fidelity
susceptibility for boosted black brane. We have concluded
in Sec. V. The paper also contains Appendixes.

II. HOLOGRAPHIC SUBREGION COMPLEXITY
FOR (d + 1)-DIMENSIONAL AdS SPACETIME

In this section, we shall present a review of the
computation of the HSC for a striplike entangling surface
in (dþ 1)-dimensional AdS spacetime [21]. The AdSdþ1

metric is given by

ds2 ¼ −dt2 þ dx12 þ � � � þ dxd−12 þ dz2

z2
; ð4Þ

where we have set the AdS radius R ¼ 1. To compute the
holographic subregion complexity, we embed a striplike
surface in this background given by t¼ constant;x1¼ x1ðzÞ.
The boundaries of the extremal bulk surface coincidewith the
two ends of the interval ð− l

2
≤ x1 ≤ l

2
Þ. The regulated size of

the rest of the coordinates is taken to be large with
0 ≤ xi ≤ Li. The area of the striplike surface is given by

Að0Þ ¼ 2Vðd−2Þ

Z
z�ð0Þ

0

dz
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x01ðzÞ2

q
; ð5Þ

where zð0Þ� is the turning point of the surface and
Vðd−2Þ ¼ L2L3 � � �Ld−1. The minimal surface is obtained
by minimizing the area functional. On minimizing, we get

x01ðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz�ð0Þz Þ2ðd−1Þ − 1

q : ð6Þ

The identification of the boundary x1ð0Þ ¼ l=2 leads to the
integral relation

l
2
¼

Z
z�ð0Þ

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz�ð0Þz Þ2ðd−1Þ − 1

q
¼ z�ð0Þ

Z
1

0

td−1
dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t2ðd−1Þ
p ¼ z�ð0Þb0; ð7Þ

where t ¼ z
z�ð0Þ

. The volume of the minimal surface is

given by

Vð0Þ ¼ 2Vðd−2Þ

Z
z�ð0Þ

δ

dz
zd

Z
x1ðzÞ

0

dx1ðzÞ; ð8Þ

where δ is the UV cutoff. Now using Eq. (6), we can write
Eq. (8) as

Vð0Þ ¼2Vðd−2Þ

Z
z�ð0Þ

δ

dz
zd

Z
z�ð0Þ

z

�
u

z�ð0Þ

�
d−1 duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−
�

u
z�ð0Þ

�
2ðd−1Þ

r

¼ Vðd−2Þ
ðd−1Þ

l
δd−1

−
2d−2π

ðd−1Þ
2

ðd−1Þ2

0
B@ Γð d

2d−2Þ
Γ
�

1
2ðd−1Þ

�
1
CA

d−3
Vðd−2Þ
ld−2

; ð9Þ

where we have used Eq. (7) in writing the second line of the
above equation. Hence, the HC for pure AdS spacetime is
given by

Cð0Þ ¼
Vð0Þ

8πGðdþ1Þ

¼ Vðd−2Þ
8πGðdþ1Þðd − 1Þ

l
δd−1

−
2d−2π

ðd−1Þ
2

8πGðdþ1Þðd − 1Þ2
�
Γð d

2d−2Þ
Γð 1

2ðd−1ÞÞ
�d−3 Vðd−2Þ

ld−2
: ð10Þ

Note that the first term in the holographic complexity is
divergent (volume law), whereas the second term is finite.
In the next section, we proceed to investigate the subregion
holographic complexity of the boosted black brane.

III. HOLOGRAPHIC SUBREGION COMPLEXITY
FOR BOOSTED AdSd + 1 BLACK BRANE

The boosted AdSdþ1 black brane metric is given by

ds2¼ 1

z2

�
−
fdt2

K
þKðdy−ωÞ2þdx21þ���þdx2d−2þ

dz2

f

�
;

ð11Þ

with

KðzÞ ¼ 1þ β2γ2
zd

zd0
; fðzÞ ¼ 1 −

zd

zd0
; ð12Þ
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where 0 ≤ β ≤ 1 is the boost parameter γ ¼ 1ffiffiffiffiffiffiffiffi
1−β2

p , and z0

is the horizon of the black brane. It is clear from the metric
that the boost is taken along y direction and the radius of
curvature of AdS spacetime has been set to one. The
Kaluza-Klein one form ω reads

ω ¼ β−1
�
1 −

1

K

�
dt: ð13Þ

The metric (11) has an anisotropy due to the boost along y
direction. This motivates us to investigate the effect of
anisotropy on subregion holographic complexity. To carry
out this investigation, we compute the subregion complex-
ity for two cases, first, for a strip along the direction of
boost (y direction) and second, for a strip in the direction
perpendicular to the boost (x direction).

A. Strip parallel to the direction of boost

To compute the HSC for a striplike subregion, we
consider that the boundaries of the extremal bulk surface
coincide with the two ends of the interval −l=2 ≤ y ≤ l=2
and 0 ≤ xi ≤ Li, with Li ≫ l. The extremal surface is
parametrized as y ¼ yðzÞ. Furthermore, we have taken the
strip to be thin, so that the bulk extension can only penetrate
the UV geometry.
Using the Ryu-Takayanagi prescription, the entangle-

ment entropy for this striplike subsystem is given by

Sk ≡
Areaðγmin

A Þk
4Gðdþ1Þ

¼ Vðd−2Þ
2Gðdþ1Þ

Z
zk�

δ

dy
zd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzÞ þ ð∂yzÞ2

fðzÞ

s
; ð14Þ

where Gðdþ1Þ is (dþ 1)-dimensional Newton’s constant, δ
is the UV cutoff, and Vðd−2Þ ≡ L1L2L3 � � �Ld−2. As we are
interested in computing the change in complexity from pure
AdS spacetime, we can choose Li in such a way so that this

Vðd−2Þ has same value as in pure AdS case. Here, zk� is the
turning point of the extremal surface inside the bulk
geometry.
Now using the standard procedure of minimization, we

obtain from Eq. (14) the following expression for the
extremal surface:

dy
dz

≡
�
z

zk�

�
d−1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðzÞKðzÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzÞ
K�

− ð z
zk�
Þ2d−2

r ; ð15Þ

where K� ¼ KðzÞjz¼zk�
. To find an expression for the

turning point in terms of the strip length, we make the
identification yð0Þ ¼ l=2. This gives

l
2
¼

Z
zk�

0

dz

�
z

zk�

�
d−1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðzÞKðzÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzÞ
K�

−
�

z
zk�

�
2d−2

r :

For a small subsystem, the turning point of the RT surface

will be near to the AdS boundary region ðzk� ≪ z0Þ. Now
for finite boost we can evaluate the above integral by
expanding it around the pure AdS such that the condition

�
zk�
z0

�
d
≪ 1; β2γ2

�
zk�
z0

�d

≪ 1 ð16Þ

is always preserved. Under this approximation, we can
write the above integral as follows:

l
2
¼ zk�

Z
1

0

dttd−1
1ffiffiffiffi
R

p

×

�
1þ 1

2
pdtd −

1

2
qdtd þ 1

2
qd

1 − td

R
þ � � �

�

≡ zk�

�
b0 þ

1

2
ðpdb1 − qdb1 þ qdIlÞ

�
þ � � � ; ð17Þ

where we have introduced R≡ 1 − t2d−2, t ¼ z
zk�
,

qd ¼ β2γ2ðzk�z0Þ
d
, p ¼ zk�

z0
, and the dots indicate terms of

higher order in ðzk�z0Þd. The coefficients b0, b1, and Il are
provided in Appendix A.
As we are using the metric (11) to compute subregion

HC keeping the strip length l same as in the case of pure
AdS spacetime, hence the turning point of the extremal

surface will change. To express the new turning point zk� in
terms of z�ð0Þ, which is the turning point in AdS spacetime,
we invert Eq. (17) and use Eq. (7) to get

zk� ¼ l=2
b0 þ 1

2
ðpdb1 − qdb1 þ qdIlÞ

≃
z�ð0Þ

1þ 1
2
ðp̄d b1

b0
− q̄d b1

b0
þ q̄d Il

b0
Þ ; ð18Þ

where we have kept terms only up to ðzk�z0Þd under the thin

strip approximation and p̄ ¼ z�ð0Þ
z0

and q̄d ¼ β2γ2ðz�ð0Þz0
Þd.

Now the volume of the bulk extension under the RT
minimal surface is given by
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Vk ¼ 2Vðd−2Þ

Z
zk�

δ

dz
zd

ffiffiffiffiffiffiffiffiffiffi
KðzÞ
fðzÞ

s Z
zk�

z
dz

�
u

zk�

�
d−1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðuÞKðuÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðuÞ
K�

−
�

u
zk�

�
2d−2

r

¼ 2Vðd−2Þ
zk�

d−2

Z
1

δ

z
k
�

dt
td

ffiffiffiffiffiffiffiffiffi
KðtÞ
fðtÞ

s Z
1

t
dwwd−1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðwÞKðwÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðwÞ
K�

− w2d−2
q ; ð19Þ

where w ¼ u
zk�
, KðwÞ ¼ 1þ ðwqÞd; fðwÞ ¼ 1 − ðtpÞd. Now in the limit (16) one can make an expansion of the functions

(K, f) and keep terms up to linear order. This enables us to write the volume enclosed by the RT as a series around the pure
AdS volume.
Under these approximations, we can expand the volume as

Vk ¼
2Vðd−2Þ
zk�

d−2

Z
1

δ

z
k
�

dt
td

�
1þ td

2
ðpd þ qdÞ

�Z
1

t
dwwd−1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðwÞKðwÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðwÞ
K�

− w2d−2
q

¼ 2Vðd−2Þ
zk�

d−2

Z
1

δ

z
k
�

dt
td

Z
1

t
dwwd−1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðwÞKðwÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðwÞ
K�

− w2d−2
q

þ Vðd−2Þ
zk�

d−2 ðpd þ qdÞ
Z

1

δ

z
k
�

dt
Z

1

t
dwwd−1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðwÞKðwÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðwÞ
K�

− w2d−2
q : ð20Þ

After evaluating these straightforward integrals, we use Eq. (18) to obtain the minimal volume Vk in terms of the minimal
volume of pure AdS spacetime [Eq. (9)] to get

Vk ¼ Vð0Þ −
Vðd−2Þp̄d

ðd − 1Þz�ð0Þd−2
�ðd − 2Þπb1
2ðd − 1Þb20

þ ð2 − dÞc0
�

−
Vðd−2Þq̄d

ðd − 1Þz�ð0Þd−2
� ðd − 2Þπ
2ðd − 1Þ2b0

�
2b1
b0

− 1

�
þ c2 − c0d

�
; ð21Þ

where we have kept terms up to linear order in p̄d and q̄d. We can recast the change in volume using Eq. (7) in terms of the
length l of the strip as

ΔVk ¼ Vk − Vð0Þ

¼ −
Vðd−2Þl2

4b02ðd − 1Þz0d
�� ðd − 2Þπb1

2ðd − 1Þb02
þ ð2 − dÞc0

�
þβ2γ2

� ðd − 2Þπ
2ðd − 1Þ2b0

�
2b1
b0

− 1

�
þ c2 − c0d

��
: ð22Þ

Hence, the change in complexity for a strip parallel to the direction of boost is given by

ΔCð1Þ
k ≡ ΔVk

8πGðdþ1Þ

¼ −
Vðd−2Þl2

32πGðdþ1Þb02ðd − 1Þz0d
�� ðd − 2Þπb1

2ðd − 1Þb02
þ ð2 − dÞc0

�
þ β2γ2

� ðd − 2Þπ
2ðd − 1Þ2b0

�
2b1
b0

− 1

�
þ c2 − c0d

��
: ð23Þ

It can be clearly seen that the change in holographic complexity depends on the boost parameter. Note that in the β → 0
limit, the result agrees with the pure black brane result obtained in [21].
This can be recast in the following form:

ΔCð1Þ
k ¼ −

πðd − 2Þ
2ðd − 1Þ3b20

�
ΔSk −

b20
ðdþ 1Þb21

ΔS⊥
�
; ð24Þ
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where the expression for ΔSk and ΔS⊥ is given
by [58],

ΔSk ¼
Vðd−2Þl2b1ðdþ 1Þ
32Gðdþ1Þb20z

d
0

�
d − 1

dþ 1
þ 2

dþ 1
β2γ2

�

ΔS⊥ ¼ Vðd−2Þl2b1ðdþ 1Þ
32Gðdþ1Þb20z

d
0

�
d − 1

dþ 1
þ β2γ2

�
ð25Þ

are the change in entanglement entropies up to first order in
perturbation.
The interesting point to note in the above result is that

the change in holographic complexity in the parallel
direction contains information of the changes in the holo-
graphic entanglement entropy in both the parallel and the
perpendicular directions of the boost with respect to the
subsystem.

B. Strip perpendicular to the
direction of boost

In this subsection, we essentially follow the analysis
similar to the earlier section to compute the HSC of the
striplike subsystem with the strip being perpendicular to the
direction of boost. Using the Ryu-Takayanagi prescription,
the entanglement entropy for this striplike subsystem is as
follows:

S⊥ ≡ Areaðγmin
A Þ⊥

4Gðdþ1Þ

¼ Vðd−2Þ
2Gðdþ1Þ

Z
z⊥�

δ

dz
zd−1

ffiffiffiffiffiffiffiffiffiffi
KðzÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðzÞ þ ð∂zx1Þ2
s

: ð26Þ

Here, z⊥� is the turning point of the extremal surface inside
the bulk geometry. Now using the standard procedure of
minimization, we obtain from Eq. (26) the following
expression for extremal surface:

dx1

dz
¼

�
z
z⊥�

�
d−1 1ffiffiffiffiffiffiffiffiffi

fðzÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzÞ
K�

− ð z
z⊥�
Þ2d−2

q ; ð27Þ

where K� ¼ KðzÞjz¼z⊥� . To find an expression for the
turning point in terms of the strip length, we make the
identification x1ð0Þ ¼ l=2. This yields

l
2
¼

Z
z⊥�

0

dz

�
z
z⊥�

�
d−1 1ffiffiffiffiffiffiffiffiffi

fðzÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzÞ
K�

− ð z
z⊥�
Þ2d−2

q ;

where we have taken the same subsystem size as in the
parallel case and is assumed to be small. Hence, the turning
point will lie near the asymptotic region ðz⊥� ≪ z0Þ. Thus,
for finite boost, we can expand the above integral around
pure AdS preserving the following condition:

�
z⊥�
z0

�
d
≪ 1; β2γ2

�
z⊥�
z0

�
d

≪ 1; ð28Þ

Thus, in this limit, expanding the above integral gives

l
2
¼ z⊥�

Z
1

0

dttd−1
1ffiffiffiffi
R

p
�
1þ 1

2
xdtd þ 1

2
yd

1 − td

R
þ � � �

�

¼ z⊥�
�
b0 þ

1

2
ðxdb1 þ ydIlÞ

�
þ � � � ; ð29Þ

where we have introduced R≡ 1 − t2d−2, t ¼ z
z⊥�
,

yd ¼ β2γ2ðz⊥�z0Þd, x ¼ ðz⊥�z0 Þ, and the dots indicate terms of

higher order in ðz⊥�z0Þd.
To express the new turning point z⊥� in terms of z�ð0Þ, we

invert Eq. (29) and use Eq. (7) to get

z⊥� ¼ l=2
b0 þ 1

2
ðxdb1 þ ydIlÞ

≃
z�ð0Þ

1þ 1
2
ðx̄d b1

b0
þ ȳd

b0
IlÞ

; ð30Þ

where we have kept the terms only up to ðz⊥�z0Þd under the
thin strip approximation. Note that the two turning points,
the perpendicular and the parallel, reduces to the same
result in the β → 0 limit.
Now the volume of the bulk extension under RT minimal

surface is given by

V⊥ ¼ 2Vðd−2Þ

Z
z⊥�

δ

dz
zd

ffiffiffiffiffiffiffiffiffiffi
KðzÞ
fðzÞ

s Z
z⊥�

z
dz

�
u
z⊥�

�
d−1 1ffiffiffiffiffiffiffiffiffi

fðuÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðuÞ
K�

− ð uz⊥� Þ
2d−2

q

¼ 2Vðd−2Þ
z⊥� d−2

Z
1

δ
z⊥�

dt
td

ffiffiffiffiffiffiffiffiffi
KðtÞ
fðtÞ

s Z
1

t
dwwd−1 1ffiffiffiffiffiffiffiffiffiffi

fðwÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðwÞ
K�

− w2d−2
q : ð31Þ
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Once again in the limit z⊥�
z0
≪ 1, one can make an asymptotic expansion of the defining functions (K, f) in terms of this

parameter up to linear order. Under these approximations, we can write the volume as

V⊥¼2Vðd−2Þ
z⊥� d−2

Z
1

δ
z⊥�

dt
td

�
1þ td

2
ðxdþydÞ

�Z
1

t
dwwd−1 1ffiffiffiffiffiffiffiffiffiffi

fðwÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðwÞ
K�

−w2d−2
q

¼2Vðd−2Þ
z⊥� d−2

Z
1

δ
z⊥�

dt
td

Z
1

t
dwwd−1 1ffiffiffiffiffiffiffiffiffiffi

fðwÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðwÞ
K�

−w2d−2
q þVðd−2Þ

z⊥� d−2 ðxdþydÞ
Z

1

δ
z⊥�

dt
Z

1

t
dwwd−1 1ffiffiffiffiffiffiffiffiffiffi

fðwÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðwÞ
K�

−w2d−2
q : ð32Þ

Evaluating these straightforward integrals, we use Eq. (30) to obtain the minimal volume in terms of the minimal volume of
pure AdS spacetime. This leads to

V⊥ ¼ Vð0Þ −
Vðd−2Þx̄d

ðd − 1Þz�ð0Þd−2
� ðd − 2Þπb1
2ðd − 1Þb02

þ c0

�
−

Vðd−2Þȳd

ðd − 1Þz�ð0Þd−2
� ðd − 2ÞπIl
2ðd − 1Þb02

þ c2

�
þ Vðd−2Þc0

z�ð0Þd−2
ðx̄d þ ȳdÞ; ð33Þ

where we have kept terms up to linear order in x̄d and ȳd. In terms of the length l of the strip, the change in volume can be
recast in the form

ΔV⊥ ≡ V⊥ − Vð0Þ

¼ −
Vðd−2Þl2

4b02ðd − 1Þz0d
�� ðd − 2Þπb1

2ðd − 1Þb02
þ ð2 − dÞc0

�
þβ2γ2

� ðd − 2ÞπIl
2ðd − 1Þb02

þ c2 − ðd − 1Þc0
��

: ð34Þ

Hence, the change in complexity for a strip perpendicular to the direction of boost is given by

ΔCð1Þ
⊥ ¼ ΔV⊥

8πGðdþ1Þ

¼ −
Vðd−2Þl2

32πGðdþ1Þb02ðd − 1Þz0d
�� ðd − 2Þπb1

2ðd − 1Þb02
þ ð2 − dÞc0

�
þ β2γ2

� ðd − 2ÞπIl
2ðd − 1Þb02

þ c2 − ðd − 1Þc0
��

; ð35Þ

which can be recast in the following form:

ΔCð1Þ
⊥ ¼ ΔCð1Þ

k −
Vðd−2Þl2β2γ2c0

32πGðdþ1Þðd − 1Þb20zd0

�
1þ ðd − 2Þðdþ 1Þ b

2
1

b20

�
: ð36Þ

Note that there is an asymmetry in the holographic
subregion complexities in both the directions which owes
its origin to the boost parameter. In the β → 0 limit, this
asymmetry vanishes and reassuringly both the changes
agree with each other.
The above expression for ΔCð1Þ

⊥ can also be recast in a
form similar to Eq. (24). This reads

ΔCð1Þ
⊥ ¼ 1

2ðd−1Þ3
�

ΔSk
ðdþ1Þb21

−ΔS⊥
�
d−2

b20
−

d−3

ðdþ1Þb21

��
:

ð37Þ

We now proceed to investigate the asymmetry in the
result in HSC for the parallel and perpendicular directions

of the boost with respect to the subsystem size. For this, let
us define a quantity

RC ¼
ΔCð1Þ

⊥ − ΔCð1Þ
k

ΔCð1Þ
⊥ þ ΔCð1Þ

k
: ð38Þ

This can be called the holographic subregion complexity
ratio. To understand the effect of anisotropy on the HSC,
we use Eqs. (24) and (37) to get

RC ¼
h

2−d
2ðd−1Þ3b2

0

− 1
2ðd−1Þ3ðdþ1Þb2

1

i
A

2−d
2ðd−1Þ3b2

0

þ Rþ2d−5
2ðd−1Þ3ðdþ1Þb2

1

; ð39Þ
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where R and A are given by [58]

R ¼ ΔSk
ΔS⊥

¼ 1þ 2
d−1 β

2γ2

1þ dþ1
d−1 β

2γ2
; ð40Þ

A ¼ ΔS⊥ − ΔSk
ΔS⊥ þ ΔSk

¼ 1 −R
1þR

¼ β2γ2

2þ dþ3
d−1 β

2γ2
: ð41Þ

It is easy to check thatRC ≥ 0 for β ≥ 0. Hence, there is an
asymmetry in the holographic subregion complexities for
the perpendicular and parallel directions of the boost with
respect to the system. This asymmetry in the holographic
subregion complexities owes its origin to the asymmetry in
the holographic entanglement entropies in the perpendicular
and the parallel directions. The key to this holographic
entanglement entropy asymmetry can be related to the
unequal entanglement pressure [58]. Studies of holographic
entanglement entropy in spatially anisotropic field theory
also showed such asymmetry owing its origin to the fact that
the pressure in one direction is different from the others [59].
This is also consistent with the results obtained using the
complexity equals action proposal [60].
It is important to note from Eq. (39) that the minimum

value of RC is zero which corresponds to β ¼ 0. Further we
note from Eq. (39) that the maximum value of RC will
depend on the maximum value of A and R. Their
maximum value is obtained by taking the simultaneous

limit β → 1 and z0 → ∞ keeping the ratio β2γ2

zd
0

¼ 1
zdI
¼ fixed

such that the perturbative expression remains valid. In this
simultaneous limit, the boosted black brane geometry
reduces to the AdS pp-wave background

ds2 ¼ L2

z2
ð−K−1dt2 þ Kðdy − ð1 − K−1ÞdtÞ2

þ dx21 þ � � � þ dx2d−2 þ dz2Þ; ð42Þ

where KðzÞ ¼ 1þ zd

zdI
. For this geometry, the entanglement

pressure along the wave direction only is nonzero while the
entanglement pressure in all other directions vanishes.
Thus, the pressure (difference) asymmetry is maximum.
In this background, the maximum values of R ¼ 2

dþ1
and

A ¼ d−1
dþ3

are achieved. Thus, the difference in entanglement
pressure in the CFT is the source of the asymmetry in
complexity.
In the β → 0 limit,RC ¼ 0. The β → 0 limit implies that

the complexity is same (ΔCð1Þ
⊥ ¼ ΔCð1Þ

k ) in both the parallel

and perpendicular directions of the subsystem.

C. Holographic subregion complexity up to second
order in perturbation

In this section, we have computed the HSC for striplike
subregion in boosted black brane (11) background with the
perturbation up to second order in ðz�z0Þd and β2γ2ðz�z0Þd
around the pure AdS background. The strip has been
chosen to be in a direction perpendicular to the direction
of boost. As we are interested in second-order perturbation,
therefore the expression for the turning point and volume
will receive some corrections. As the volume under
minimal surface depends upon the turning point of the
minimal surface, hence we shall first compute the change in
turning point. To begin with let us first compute the length l
of the subsystem perturbatively in the same limit as in
Eq. (28) up to second order. The expression for length of
the subsystem when the strip is perpendicular to the
direction of boost is given by

l
2
¼

Z
z�

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð zz0Þd

q ðz=z�Þd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzÞ
K�

− ðz=z�Þ2ðd−1Þ
q

¼ z�

�Z
1

0

dt
td−1ffiffiffiffi
R

p þ xd

2

Z
1

0

dt
td−1ffiffiffiffi
R

p
�
td þ β2γ2

1 − td

R

�

þx2d
Z

1

0

dt
td−1ffiffiffiffi
R

p
�
3

8
t2d þ β2γ2

4

tdð1 − tdÞ
R

þ β4γ4
�
3

8

ð1 − tdÞ2
R2

−
1

2

1 − td

R

���

¼ z�

�
b0 þ

xd

2
ðb1 þ β2γ2IlÞ þ x2d

�
3

8
b2 þ Jl

��
; ð43Þ

where the coefficients b0, b1, Il, and Jl are given in Appendix A. In order to express this turning point z� in terms of the

turning point zð0Þ� of pure AdS background, we use Eq. (7) to get

z� ¼
zð0Þ�

1þ 1
2b0

ðb1 þ β2γ2IlÞx̄d þ ð3b2
8b0

þ Jl
b0
− dðb1þβ2γ2Il

2b0
Þ2Þx̄2d

; ð44Þ
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where x̄ ¼ zð0Þ� =z0. Now the expression for volume is given by

V ≃
2Vðd−2Þ
zd−2�

Z
1

δ
z�

dt
td

�
1þ xd þ yd

2
td þ

�
3

8
x2d þ xdyd

4
−
y2d

8

�
t2d

�Z
1

t
dw

1ffiffiffiffiffiffiffiffiffiffi
fðwÞp wd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðwÞ
K�

− w2ðd−1Þ
q : ð45Þ

After some lengthy calculations, we obtain the volume from the above expression to be

V ¼ Vð0Þ −
Vðd−2Þx̄d

ðd − 1Þz̄d−2�

�
d − 2

d − 1

πb1
2b20

þ ð2 − dÞc0
�
−

Vðd−2Þȳd

ðd − 1Þz̄d−2�

�
d − 2

d − 1

πIl
2b20

þ c2 − ðd − 1Þc0
�

−
Vðd−2Þx̄2d

z̄d−2�
v00 −

Vðd−2Þx̄dȳd

z̄d−2�
v01 þ

Vðd−2Þȳ2d

z̄d−2�
v11; ð46Þ

where Vð0Þ is the volume under RT surface for pure AdS given in Eq. (9) with

v00 ¼
�
3πb2
8b20

d − 2

ðd − 1Þ2 −
πb21
8b30

ðd − 2Þðdþ 3Þ
ðd − 1Þ2 þ c0b1

b0

d − 2

d − 1
−
c1
2

d2 − 4

d2 − 1

�

v01 ¼
�
b1
b0

�
c0 −

c2
d − 1

�
−
�
c3
2
þ ðdþ 2Þc1

2ðdþ 1Þ
�
þ d − 2

d − 1

c0Il
b0

þ 2K1

d − 1
þ d − 2

ðd − 1Þ2
πJ1
b20

−
ðd − 2Þðdþ 3Þ

ðd − 1Þ2
πb1Il
4b30

�

v11 ¼
�
c3
2
−

c1
4ðdþ 1Þ þ

2K2

d − 1
−
�
c0 −

c2
d − 1

�
Il
b0

−
d − 2

ðd − 1Þ2
πJ2
b20

þ ðd − 2Þðdþ 3Þ
ðd − 1Þ2

πI2l
8b30

�
: ð47Þ

Now using the expression given in the earlier section for
subregion HC for strip perpendicular to the direction of
boost with perturbation up to first order, we write the HSC
up to second order in the perturbation to be

ΔC ¼ ΔCð1Þ
⊥ þ ΔCð2Þ

⊥ ; ð48Þ

where

ΔCð2Þ
⊥ ¼ −

Vðd−2Þldþ2

8πGðdþ1Þz2d0 ð2b0Þdþ2
½v00 þ β2γ2v01 − β4γ4v11�:

ð49Þ

This is the second-order change in the holographic com-
plexity. We will use this expression in the next section to
calculate the Fisher information metric. It is important to
note that the boosted black brane is a stationary spacetime.
For such spacetimes, one should use the covariant HRT
proposal instead of the static RT proposal. However, it can
be shown that at first order of the perturbative expansion, it
is sufficient to take the t ¼ constant slicing. At first order,
the sole contribution comes from the metric perturbations
[45–47]. Deviations of the minimal surface only contribute
at the second order. Thus, at second order one cannot work
with the same t ¼ constant embedding for stationary
asymptotically AdS spacetimes. But as shown in [48]
one can still work with the t ¼ constant slice in the boosted
black brane spacetime but only for the perpendicular case.

This is due to the fact that the minimal surface still remains
in the same time slice. The deviations contribute in other
spatial directions.

IV. FISHER INFORMATION METRIC
AND FIDELITY SUSCEPTIBILITY

In this section, we shall compute the Fisher information
metric and the fidelity susceptibility for the boosted black
brane from the proposals existing in the literature. Before
we begin our analysis we would like to briefly mention
about the quantities in the context of quantum information
theory. Two well-known notions of distance between two
quantum states exist in the literature. One is the Fisher
information metric, and the other is the Bures metric or
fidelity susceptibility. The Fisher information metric is
defined as [49]

GF;λλ ¼ hδρδρiðσÞλλ ¼ 1

2
tr

�
δρ

d
dðδλÞ logðσ þ δλδρÞjδλ¼0

�
;

ð50Þ

where δρ is a small deviation from the density matrix σ.
A second notion of distance between two states is known

as fidelity susceptibility and reads

Gλλ ¼ ∂2
λF; F ¼ tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σλ

p
ρλþδλ

ffiffiffiffiffi
σλ

pq
; ð51Þ
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where σ and ρ are the initial and final density matrices; F is
called the fidelity.
The first holographic computation of the Fisher infor-

mation metric was carried out in [44], with the Fisher
information metric defined as

GF;mm ¼ ∂2

∂m2
Srelðρmkρ0Þ; Srelðρmkρ0Þ ¼ΔhHρ0i−ΔS;

ð52Þ

where m is a perturbation parameter, ΔhHρ0i is the change
in modular Hamiltonian, and ΔS is the change in entan-
glement entropy from the vacuum state. It has been shown
in [44] that at first order in m the relative entropy vanishes
(entanglement first law) and in second order in m the
relative entropy is given by Srel ¼ −ΔSð2Þ. With this basic
background in place, we first compute the Fisher informa-
tion metric for the black brane.
The inverse of the lapse function can be written as

1

fðzÞ ¼
1

1 − zd

zd
0

¼ 1þmzd þm2z2d þ � � � ; ð53Þ

wherem ¼ 1=zd0 , which is the perturbation parameter in the
bulk. In terms of this parameter, the change in area of the
minimal surface up to second order is given by [52]

A−A0 ¼
�
Vðd−2Þa1l2

4b20

d− 1

dþ 1
mþVðd−2Þa1h0ldþ2

ð2b0Þdþ2
m2

�
; ð54Þ

where

h0 ¼
d − 1

dþ 1

�
−

b1
2b0

þ 3ðdþ 1Þ
4ð2dþ 1Þ

a2
a1

�
: ð55Þ

The relative entropy in this case becomes

Srel ¼ −
1

4Gðdþ1Þ

�
Vðd−2Þa1h0ldþ2

ð2b0Þdþ2
m2

�
: ð56Þ

It is to be noted that h0 has negative values for all d. Hence,
Srel is a positive quantity.
From Eq. (52), the Fisher information metric therefore

reads

GF;mm ¼ ∂2

∂m2
Srel ¼ −

Vðd−2Þa1h0ldþ2

2Gðdþ1Þð2b0Þdþ2
: ð57Þ

In [49], a proposal for computing the above quantity is
given. The proposal is to consider the difference of two
volumes yielding a finite expression

F ¼ CdðVðm2Þ − Vð0ÞÞ; ð58Þ

where Vðm2Þ is evaluated for a second-order fluctuation
about AdS spacetime. Cd is a dimensionless constant which
cannot be fixed from the first principles of the gravity side.
We shall now apply this proposal to compute the Fisher
information metric for the black brane. The change in
volume under Ryu-Takayanagi minimal surface at second
order in perturbation takes the form (for β ¼ 0 case)

V −Vð0Þ ¼ −
�

Vðd−2Þl2

4b02ðd− 1Þmv0 þ
Vðd−2Þldþ2

ð2b0Þdþ2
m2v00

�
: ð59Þ

The holographic dual of Fisher information metric is now
defined as

GF;mm ¼ ∂2
mF ; F ¼ CdðV − Vð0ÞÞ; ð60Þ

with the constant Cd to be determined by requiring that the
holographic dual Fisher information metric from the above
equation must agree with that obtained from the relative
entropy (57). The constant Cd is therefore given by

Cd ¼
h0a1

4Gðdþ1Þv00
: ð61Þ

On the other hand, the relative entropy for boosted black
brane (β ≠ 0) is given by [53]

Srel ¼ −
1

4Gðdþ1Þ

��
l

2b0

�
dþ2

ðh0 þ h1β2γ2 þ h2β4γ4Þm2

�
;

ð62Þ

where

h1 ¼
�
−
b1
b0

þ a2
2a1

�
;

h2 ¼
dþ 1

d − 1

�
−

b1
2b0

þ 3a2
4a1ðdþ 1Þ

�
: ð63Þ

It is to be noted that h1 and h2 have negative values for all d.
Hence, Srel is a positive quantity. Thus, the Fisher infor-
mation metric reads

GF;mm ¼ ∂2

∂m2
Srel

¼ −
1

2Gðdþ1Þ

�
l

2b0

�
dþ2

ðh0 þ h1β2γ2 þ h2β4γ4Þ:

ð64Þ

Now the change in volume under Ryu-Takayanagi
minimal surface at second order in perturbation takes the
form (for β ≠ 0 case)
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V − Vð0Þ ¼ −
Vðd−2Þl2

4b20ðd − 1Þ
�
d − 2

d − 1

πb1
2b20

þ ð2 − dÞc0
�
m −

Vðd−2Þl2β2γ2

4b20ðd − 1Þ
�
d − 2

d − 1

πIl
2b20

þ c2 − ðd − 1Þc0
�
m

−
Vðd−2Þldþ2

ð2b0Þdþ2
ðv00 þ β2γ2v01 − β4γ4v11Þ: ð65Þ

The holographic dual of the Fisher information metric can
be defined as Eq. (60) with the constant Cd as follows:

Cd ¼
a1

4Gðdþ1Þ

�
h0 þ h1β2γ2 þ h2β4γ4

v00 þ β2γ2v01 − β4γ4v11

�
: ð66Þ

It is obvious from the above expression that the con-
stant Cd matches with Eq. (61) in the β → 0 limit. We
would like to mention that the constant Cd in this case
depends on the boost parameter β, which in the case of
the pure black brane was independent of any physical
parameter and depends only on the dimensionality of the
spacetime.
We now look at the other holographic proposal [51] to

compute the fidelity susceptibility. For pure states, the
expression for fidelity (51) reduces to

hΨðλÞjΨðλþ δλÞi ¼ 1 −GλλðδλÞ2 þ � � � ; ð67Þ

where for simplicity we assume that the states depend on a
single parameter λ. Therefore, one can say that Gλλ

measures the distance between two quantum states. Gλλ

is called fidelity susceptibility. In [51], it has been proposed
that for a d-dimensional CFT deformed by a perturbation,
the fidelity susceptibility can be computed holographically
by the formula

Gλλ ¼ nd−1
VolðΣmaxÞ

Rd ; ð68Þ

where nd−1 is a Oð1Þ constant and R is the radius of
curvature of AdS spacetime. Σmax is the maximum volume

in the AdS that ends at the AdS boundary at a fixed time
slice. Though the above formula has been derived for the
case of pure states, it has been also applied for mixed states
[51]. Therefore, we can apply this formula to calculate the
fidelity susceptibility for boosted black brane.
Let us first calculate fidelity susceptibility for the AdS

black brane. The metric for AdS black brane in (dþ 1)
dimensions is given by

ds2 ¼ 1

z2

�
−fdt2 þ dx21 þ � � � þ dx2d−1 þ

dz2

f

�
; ð69Þ

with

f ¼ 1 −
zd

zd0
: ð70Þ

Using the formula (68), the fidelity susceptibility reads

Gλλ ¼ nd−1Ld−1
Z

z0

δ
dz

1

zd
ffiffiffiffiffiffiffiffiffiffiffi
1 − zd

zd
0

q
¼ nd−1Ld−1

zd−10

�
1

d
B

�
1 − d
d

;
1

2

�
þ zd−10

ðd − 1Þδd−1
�
: ð71Þ

We see that the above expression for the fidelity
susceptibility does not agree with the Fisher information
metric obtained in Eq. (57). We now proceed to calculate
the fidelity susceptibility for the boosted black brane
metric (11). In this case, the fidelity susceptibility takes
the form

Gλλ ¼ nd−1Ld−1
Z

z0

δ
dz

1

zd

ffiffiffiffiffiffiffiffiffiffi
KðzÞ
fðzÞ

s

¼ nd−1Ld−1

"
1

zd−10

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p Z
1

0

dt
1

td

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2ð1 − tdÞ

1 − td

s
þ 1

ðd − 1Þδd−1
#
; ð72Þ

where t ¼ z=z0. Now making a transformation 1 − td ¼ p yields
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Gλλ ¼ nd−1Ld−1
�

1

d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
zd−10

Z
1

0

dpffiffiffiffi
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2p

p
ð1 − pÞ2d−1d

þ 1

ðd − 1Þδd−1
�

¼ nd−1Ld−1
�

1

d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
zd−10

B

�
1

2
;
1 − d
d

�
2F1

�
−
1

2
;
1

2
;
2 − d
2d

; β2
�
þ 1

ðd − 1Þδd−1
�
: ð73Þ

It is clear from Eq. (73) that in the β ¼ 0 limit, the result
matches with that of the AdS black brane given in
Eq. (71). We see that the above expression for the fidelity
susceptibility does not agree with the Fisher information
metric obtained in Eq. (64). Although from quantum
information literature we know that these two quantities
are related (see Appendix B). A possible reason for this
difference in the holographic results for the two metrics
may be due to the difference in their definitions, which in
the Fisher information metric case is an integration up to
the turning point of the RT surface, whereas in the fidelity
susceptibility or the Bures metric case involves an
integration up to the horizon radius of the black brane
solution. The definition of fidelity susceptibility given in
[51] is an exact expression, while the Fisher information
metric in [49] is obtained by computing the volume
integral perturbatively up to second order. From the
quantum information literature, it is known that both
the metrics are obtained by evaluating fidelity or relative
entropy between a reference state (ρ0) and a one param-
eter family of nearby states ðρ ¼ ρ0 þ λδρþ λ2δ2ρÞ. It
should be noted that the expressions of the two metrics
from the quantum information perspective gets contribu-
tion from the first-order perturbation in the density matrix
Eq. (50), Appendix B, whereas the expressions from the
bulk require perturbations up to second order in the bulk
metric and perturbations of the extremal surface.
However, it is not clear how this perturbation of density
matrices on the boundary are exactly related to the
perturbations of the extremal surface and the metric in
the bulk. This discrepancy could be a reason for the two
results not being in agreement with the results from the
quantum information viewpoint.
Further, from the bulk perspective, we see that for the

Fisher information metric case an integration up to the
turning point of the RT surface is involved which is
obtained perturbatively. This act of evaluating the volume
integral perturbatively contains the information of the
asymptotic region only [31,32]. However, the fidelity
susceptibility or the Bures metric case involves an inte-
gration up to the horizon radius of the black brane solution
and the integral is evaluated exactly; no ordering is
maintained. Thus, it contains the information of the full
spacetime geometry. This could be another reason for the
disagreement.

V. CONCLUSION

In this paper, we have computed the holographic sub-
region complexity for a boosted black brane for two cases
where the boost direction is in the parallel and perpendicular
directions to the strip length comprising the subsystem. The
computation has been carried out up to both first and second
orders in the boost parameter. An asymmetry has been
found in the holographic subregion complexity up to first
order. This asymmetry in the holographic subregion com-
plexities owes its origin to the asymmetry in the holographic
entanglement entropies in the perpendicular and the parallel
directions, which in turn can be related to the unequal
entanglement pressure. The results up to second order in the
boost parameter have been used to compute the Fisher
information metric up to an undetermined constant. This
constant has been fixed by equating this result with the
holographic computation of Fisher information metric from
the relative entropy. This has been done for the pure black
brane as well as the boosted black brane. The fidelity
susceptibility has also been obtained by using the proposal
in [51]. It is observed that the expressions for the Fisher
information metric and the fidelity susceptibility are not
related to each other [40]. This is one of the main results in
this paper and shows a remarkable dissimilarity with the
results present in the quantum information literature where it
is known that the two distances may be related in general. It
would be interesting to investigate in what bulk limit or
approximation the fidelity susceptibility gets related to the
Fisher information metric.
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APPENDIX A: LIST OF BETA FUNCTION
IDENTITIES

In this Appendix, we give some useful beta function
integrals which we have used in the paper.
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b0 ¼
Z

1

0

dttd−1
1ffiffiffiffi
R

p ¼ 1

2ðd − 1ÞB
�

d
2d − 2

;
1

2

�
¼

ffiffiffi
π

p
Γð d

2d−2Þ
Γð 1

2ðd−1ÞÞ

b1 ¼
Z

1

0

dtt2d−1
1ffiffiffiffi
R

p ¼ 1

2ðd − 1ÞB
�

d
d − 1

;
1

2

�
¼

ffiffiffi
π

p
Γð d

d−1Þ
ðdþ 1ÞΓð1

2
þ 1

d−1Þ

b2 ¼
Z

1

0

dtt3d−1
1ffiffiffiffi
R

p ¼ 1

2ðd − 1ÞB
�

3d
2d − 2

;
1

2

�

Il ¼
Z

1

0

dttd−1ð1 − tdÞ 1

R
3
2

¼ dþ 1

d − 1
b1 −

1

d − 1
b0

c0 ¼
Z

1

0

dt
tdffiffiffiffi
R

p ¼ 1

2ðd − 1ÞB
�

dþ 1

2ðd − 1Þ ;
1

2

�
¼ π

2ðd2 − 1Þb1
c1 ¼

Z
1

0

dt
t2dffiffiffiffi
R

p ¼ 1

2ðd − 1ÞB
�

2dþ 1

2ðd − 1Þ ;
1

2

�
¼ π

2ð2dþ 1Þðd − 1Þb2
c2 ¼

Z
1

0

dt
ð1 − tdÞ

R
3
2

¼ 2

d − 1
c0 þ

d − 2

2ðd − 1Þ2 B
�

1

2ðd − 1Þ ;
1

2

�
¼ π

ðdþ 1Þðd − 1Þ2b1
þ πðd − 2Þ
2ðd − 1Þ2b0

c3 ¼
Z

1

0

dt
tdð1 − tdÞ

R
3
2

¼ 2

d − 1
c0 þ

dþ 2

d − 1
c1

Z
1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2ðd−1Þ

p ¼ π

2ðd − 1Þb0
Jl ¼

Z
1

0

dttd−1
�
β2γ2

4
td þ β4γ4

�
3ð1 − tdÞ

8ð1 − t2ðd−1ÞÞ −
1

2

�� ð1 − tdÞ
R

3
2

¼ β2γ2J1 þ β4γ4J2

Kl ¼
Z

1

0

dt

�
β2γ2

4
td þ β4γ4

�
3ð1 − tdÞ

8ð1 − t2ðd−1ÞÞ −
1

2

�� ð1 − tdÞ
R

3
2

¼ β2γ2K1 − β4γ4K2; ðA1Þ

with

J1 ¼
1

4ðd − 1Þ ðð2dþ 1Þb2 − ðdþ 1Þb1Þ

J2 ¼
1

8ðd − 1Þ2 ðð3 − 2dÞb0 − 2ðdþ 1Þð3 − dÞb1 þ 3ð2dþ 1Þb2Þ −
Il
2

K1 ¼
1

2ðd − 1Þ c0 þ
dþ 2

4ðd − 1Þ c1

K2 ¼ −
d − 4

4ðd − 1Þ2 c0 þ
ðdþ 2Þðd − 4Þ

8ðd − 1Þ2 c1 þ
d

8ðd − 1Þ c2; ðA2Þ

where Bðm; nÞ ¼ ΓðmÞΓðnÞ
ΓðmþnÞ are the beta functions and we have used the identity Bðx; 1

2
ÞBðxþ 1

2
; 1
2
Þ ¼ π

x. Further integrals are

a0 ¼
Z

1

0

dtt−dþ1
1ffiffiffiffi
R

p ¼ 1

2ðd − 1ÞB
�
1 − d=2
d − 1

;
1

2

�

a1 ¼
Z

1

0

dtt−dþ1
tdffiffiffiffi
R

p ¼ 1

2ðd − 1ÞB
�

1

d − 1
;
1

2

�

a2 ¼
Z

1

0

dtt−dþ1
t2dffiffiffiffi
R

p ¼ 1

2ðd − 1ÞB
�
1þ d=2
d − 1

;
1

2

�

Ia ¼
Z

1

0

dttd−1ð1 − t2dÞ 1

R3=2 ¼
2dþ 1

d − 1
b2 −

1

d − 1
b0: ðA3Þ

Some identities we have used are

b0 ¼ ð2 − dÞa0; b1 ¼
2

dþ 1
a1; b2 ¼

2þ d
2dþ 1

a2: ðA4Þ
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APPENDIX B: RELATION BETWEEN QUANTUM
FISHER INFORMATION AND THE

BURES METRIC

Here we will review the relation between the Bures
metric and the quantum Fisher information metric. Our
discussion here will follow that of [38–40]. The Bures
distance is a measure of distinguishability between two
quantum states ρ1 and ρ2 and is defined as

DBðρ1; ρ2Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fðρ1; ρ2Þ

p
;

where Fðρ1; ρ2Þ is the fidelity between the two states and is
defined as

Fðρ1; ρ2Þ ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

pq
: ðB1Þ

Now the Bures metric [61] is defined as

ds2B ¼ gijdλidλj ¼ DBðρ; ρþ λρÞ2: ðB2Þ

If ρ and σ are both pure states, then the Bures metric
reduces to Eq. (67).
Another important metric on the state space is the

quantum Fisher information metric [62]. It is a symmetric
positive or positive semidefinite metric given by

Hij ¼
1

2
Tr½ðLiLj þ LjLiÞρ�; ðB3Þ

where Li is the symmetric logarithmic derivative and is
defined as the operator solution to the equation

1

2
ðLiρþ ρLiÞ ¼ ∂iρ:

Using the spectral decomposition of the density matrix as
ρ ¼ P

kpkjkihkj, one can rewrite Eq. (B3) as

Hij ¼ 2
X

pkþpl>0

Reðhkj∂iρjlihlj∂jρjkiÞ
pk þ pl

; ðB4Þ

where Re denotes the real part. The statistical equivalent
distance of this metric is obtained by maximizing the mixed
state generalization of the Fisher information over all
possible quantum measurements [36]. Now in order to
find a relation between the two metrics we need to calculate

the Bures distance between two infinitesimally close states
ρ1 ¼ ρ0 and ρ2 ¼ ρ0 þ λδρ. In order to calculate this, we
need to first obtain an expression for Fðρ0; ρ0 þ λδρÞ. Let
us consider the expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0

p ðρ0 þ λδρÞ ffiffiffiffiffi
ρ0

pq
¼ ρ0 þ X þ Y; ðB5Þ

where X and Y are the first- and second-order terms in λ.
Now squaring the above equation and equating terms at
each order in λ gives

ffiffiffiffiffi
ρ0

p
δρ

ffiffiffiffiffi
ρ0

p ¼ Xρ0 þ ρ0X; −X2 ¼ Yρ0 þ ρ0Y:

One can write the above expression in a diagonal basis of ρ
with eigenvalues pk > 0 as

hkjXjli ¼ p
1
2

kp
1
2

l

ðpk þ plÞ
hkjδρjli; hkjYjli ¼ −hkjX2jli

ðpk þ plÞ
:

Since Trρ ¼ 1, thus Tr¼δρ¼0. This implies that TrX ¼ 0
and hence the only contribution comes from the second-
order term. The trace of the second-order term is

TrY ¼ −
1

4

X
pkþpl>0

jhkjδρjlij2
ðpk þ plÞ

: ðB6Þ

Now from Eqs. (B1) and (B5), we can write the fidelity as

Fðρ0; ρ0 þ λδρÞ ¼ Trρ0 þ TrX þ TrY ¼ 1þ TrY: ðB7Þ

Thus, the Bures distance from Eq. (B2) is given by

ds2B¼gijdλidλj¼DBðρ0;ρ0þλδρÞ2¼2ð1−Fðρ0;ρ0þλδρÞÞ;

and thus by using Eqs. (B4), (B6), and (B7), we get

gij ¼
1

2

X
pkþpl>0

Reðhkj∂iρjlihlj∂jρjkiÞ
ðpk þ plÞ

¼ 1

4
Hij: ðB8Þ

The above expression gives the relation between Bures and
quantum Fisher information metric. It is important to note
that the expression (B8) was obtained by considering only
first-order terms in the density matrix perturbation. On
accounting for second-order perturbation, Eq. (B8) will
receive contributions from ρ and its derivatives [40].
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