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Even though little is known about the quantum entropy cone for N ≥ 4 subsystems, holographic
techniques allow one to get a handle on the subspace of entropy vectors corresponding to states with gravity
duals. For static spacetimes and N boundary subsystems, this space is a convex polyhedral cone known as
the holographic entropy cone CN for N regions. While an explicit description of CN was accomplished for
all N ≤ 4 in the initial study, the information given about larger N was only partial already for C5. This
paper provides a complete construction of C5 by exhibiting graph models for every extreme ray orbit
generating the cone defined by all proven holographic entropy inequalities for N ¼ 5. The question of
whether there exist additional inequalities for five parties is thus settled with a negative answer. The
conjecture that C5 coincides with the analogous cone for dynamical spacetimes is also supported by
demonstrating that the information quantities defining its facets are primitive.
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I. INTRODUCTION

The most broadly studied limit of the AdS=CFT corre-
spondence conjectures a holographic duality between cer-
tain strongly coupled gauge theories and classical gravity
[1,2]. More explicitly, for a pair of gauge-gravity dual
theories, the AdS/CFT dictionary poses a specific spacetime
geometry as the gravitational counterpart of a given state in
the Hilbert space of the quantum theory. On grounds of such
a duality, it is of interest to determine which quantum states
are dual to classical bulk geometries. A remarkable finding
from the study of holographic entanglement is that, regard-
less of the theory, quantum states with particular patterns of
correlations do not admit smooth geometric duals [3,4].
At the heart of this result lies the Ryu-Takayanagi (RT)

proposal, which states that for static bulk geometries the
entanglement entropy SA of a spatial region A of the
boundary conformal field theory is given by [5–7]

SA ¼ min
A

areaA
4GN

; ð1Þ

where the minimization is performed over all bulk
codimension-2 surfaces homologous to A and such that
∂A ¼ ∂A. TheHubeny-Rangamani-Takayanagi (HRT) pre-
scription gives the covariant generalization of RT that

applies to arbitrary dynamical spacetimes [7,8]. That the
RT formula should reproduce the results of the von
Neumann entropy for arbitrary partitions of a quantum state
establishes a necessary condition for the existence of a
smooth bulk dual. The discovery that there exist valid
holographic entropy inequalities which are not true in
quantum theory means that this necessary condition is not
met by arbitrary quantum states. In particular, this is the case
for the inequality known as monogamy of mutual informa-
tion (MMI) [3],

I2ðA∶BCÞ ≥ I2ðA∶BÞ þ I2ðA∶CÞ; ð2Þ

defined here in terms of the mutual information I2ðA∶BÞ ¼
SA þ SB − SAB, and where A, B and C stand for three
disjoint regions. This inequality has been proven true
holographically for arbitrary dynamical spacetimes [3,9],
yet is easily violated quantum mechanically (e.g., by the
Greenberger-Horne-Zeilinger state).
It follows that characterizing entanglement properties via

entropy inequalities provides a powerful criterion to deter-
mine whether a quantum state can possibly be geometric
(i.e., whether it can be holographically dual to a classical
geometry). The formalization of this idea was carried out in
Ref. [10], which introduced what is known as the holo-
graphic entropy cone to parametrize the space of allowed
entropies for geometric states. The purpose of this work is to
continue the systematic study and enumeration of holo-
graphic entropy inequalities. The picture for four and fewer
regions was completed in Ref. [10], where partial results
were also found for five regions. Building on this previous
work, the complete construction of the holographic entropy
cone for five regions is produced here. A direct corollary is
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that no additional entropy inequalities are needed for the
completion of the five-party cone.

II. FRAMEWORK AND APPROACH

Let Σ be a spacelike slice of the spacetime manifold of a
quantum field theory in a state which admits a holographic
description in terms of a smooth bulk geometry. Consider
N ∈ Zþ arbitrary nonempty codimension-1 disjoint sub-
sets Xi ⊂ Σ, where i ∈ ½N�≡ f1;…; Ng. Any such Xi will
be referred to as a monochromatic region of color i. One
also defines the set of polychromatic indices ℘N as the
power set of [N] with the empty set removed. The latter has
cardinalityD ¼ 2N − 1 and its elements I ∈ ℘N are used to
label polychromatic regions XI ≡⋃i∈IXi. Denoting the
entanglement entropy of each region XI by SI, one may
construct aD-tuple S⃗≡ fSIjI ∈ ℘Ng. Canonically ordering
its entries by increasing cardinality of I and then lexico-
graphically, S⃗ ∈ RD defines an entropy vector.
Every entropy SI of a collection of regions can be

computed holographically to leading order in the central
charge of the boundary theory using the HRT prescription
[8]. For static bulk geometries for which this construct
reduces to the RT formula (1) [5], the space CN ⊂ RD of all
physically realizable holographic entropy vectors S⃗ ∈ RD

is known as the holographic entropy cone CN forN regions.
It was shown in Ref. [10] that this space is indeed a convex
cone which is closed, rational and polyhedral. The Farkas-
Minkowski-Weyl theorem recasts polyhedrality into the
existence of two dual representations of such convex
cones [11]:
(1) Facet representation: CN can be constructed as the

intersection of a finite number of half-spaces speci-
fied by entropy inequalities of the form S⃗ · Q⃗j ≥ 0,

where Q⃗j ∈ RD. The minimal collection fQ⃗j ∈ RDg
of such vectors is unique and geometrically defines
the support hyperplanes or facets of the cone.

(2) Extreme ray representation: CN can be finitely
generated as the conical hull of a set of vectors.
The minimal collection of such vectors is unique and
consists of the extreme rays fe⃗k ∈ CNg of the cone,
i.e., the vectors in CN which cannot be conically
spanned by other vectors in CN .

Importantly, since CN is closed, for every extreme ray
e⃗k ∈ CN there exists a bulk geometry and a choice of
boundary regions such that their corresponding entropy
vector S⃗ ∝ e⃗k [10]. Also, by virtue of being rational, the
facet vectors and extreme rays of CN can be written with
integer coordinates. In particular, by the non-negativity of
entanglement entropy, every e⃗k has non-negative integer
entries, as will be seen.
Constructing the holographic entropy cone CN for N

regions amounts to finding a representation of it. A
collection of proven entropy inequalities for N parties does

not necessarily provide a complete representation of CN .
More specifically, supposing that such a collection of
inequalities represents a cone C̃N , that they are true entropy
inequalities only guarantees that CN ⊆ C̃N . Proving that the
facets of the two cones in fact coincide is better done in the
dual description in terms of extreme rays. In particular, if
for every extreme ray of C̃N one is able to find a geometry
whose entropy vector lies on it, then convexity immediately
implies that CN ¼ C̃N .
This strategy was implemented in Ref. [10] to construct

the holographic entropy cones for N ≤ 4. For N ¼ 5, the
authors successfully found and proved by contraction five
new entropy inequalities, but left as an open question
whether this set was complete. A thorough understanding
of C5 has thus been lacking. In this work, the complete
representation of the holographic entropy cone C5 for five
regions is provided by explicit construction of its extreme
rays. One of the outcomes is that there are no new
holographic inequalities for five parties, so that the facets
of C5 are precisely certain upliftings of known inequalities
for N ≤ 3 and the five new ones proven in Ref. [10].
The construction of the extreme rays of C5 is given

here in terms of graph models as introduced in Ref. [10].
The key theorem behind this combinatorial approach is that
S⃗ ∈ CN if and only if there exists a graph model that realizes
S⃗. In other words, the holographic entropy cone and the
analogously defined graph-model entropy cone are iden-
tical. A graph model for N parties is an undirected graph
ðV; EÞ with V vertices and E edges, where a subset ∂V ⊆ V
is colored by a map c∶∂V → ½N�. As the nomenclature
suggests, a vertex colored by i stands as the graph
representative of the monochromatic region Xi in the
boundary theory. The elements of ∂V are thus called
boundary vertices, while those in the complement Vn∂V
are called bulk vertices. Edges are assigned non-negative
edge capacities by a weight map E → R≥0. Then, the
entropy SI of a polychromatic subset of boundary vertices
∂VI ≡ c−1½I� ⊂ ∂V is given by the maximum flow between
multisources VI and multitargets ∂Vn∂VI which respects
the edge capacities. By the max-flow min-cut theorem, this
is equivalent to the prescription that defines SI as the total
weight in the minimum cut which disconnects source from
sink. Physically, the latter is equivalent to the RT pre-
scription, while the former corresponds to the bit-thread
formulation of entanglement [12].

III. THE HOLOGRAPHIC ENTROPY
CONE FOR FIVE REGIONS

The action of the symmetric group SN which relabels the
regions Xi clearly leaves CN invariant. This symmetry
extends to an SNþ1 symmetry which implements the
exchange of any Xi with the purifier O≡ Σn⋃i∈½N�Xi.
Henceforth, statements about symmetries refer to the
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extended symmetry group SNþ1. The following subsections
detail the description of C5 in its two representations.

A. Facets

The starting point of the strategy described above is a set
of true inequalities for N ¼ 5 which is to be proven
complete. This set consists of 372 inequalities, which
reduce to just eight when quotiented by symmetry.
Table I shows a representative inequality for each sym-
metry orbit [13]. The first three are upliftings of well-
known inequalities for N ≤ 3, whereas the last five are new
to N ¼ 5. Inequality 1 is the trivial uplifting of subaddi-
tivity, whose orbit includes instances of the Araki-Lieb
inequality too. Inequalities 2 and 3 are two different
upliftings of MMI, which can be more compactly written
in terms of the tripartite information as I3ðA∶B∶CÞ ≤ 0 and
I3ðA∶BC∶DEÞ ≤ 0, respectively. Inequality 4 is the five-
region instance of an infinite family of cyclic entropy
inequalities [10,14]. Like inequality 4, the remaining four
were proven by contraction for the RT case in Ref. [10].
This set of inequalities defines a cone in entropy space
which will be shown to be precisely the holographic
entropy cone C5 for five regions in the next section. A
natural question, however, is how to arrive at these inequal-
ities, in particular the last five, in the first place. As for now,
only Ref. [15] succeeded in algebraically deriving these as

TABLE I. Representatives for each of the eight inequality orbits
of the holographic entropy cone C5 for five regions. Respectively,
their orbit lengths are 15, 20, 45, 72, 10, 60, 60 and 90, thus
defining 372 facets for C5 in a 31-dimensional entropy space.

1. SA þ SB ≥ SAB
2. SAB þ SAC þ SBC ≥ SA þ SB þ SC þ SABC
3. SABC þ SADE þ SBCDE ≥ SA þ SBC þ SDE þ SABCDE
4. SABC þ SABD þ SACE þ SBDE þ SCDE ≥ SAB þ SAC þ SBD þ
SCE þ SDE þ SABCDE

5. SABC þ SABD þ SABE þ SACD þ SACE þ SADE þ SBCE þ
SBDE þ SCDE ≥ SAB þ SAC þ SAD þ SBE þ SCE þ SDE þ
SBCD þ SABCE þ SABDE þ SACDE

6. 3SABC þ 3SABD þ SABE þ SACD þ 3SACE þ SADE þ SBCD þ
SBCE þ SBDE þ SCDE ≥ 2SAB þ 2SAC þ SAD þ SAE þ SBC þ
2SBD þ 2SCE þ SDE þ 2SABCD þ 2SABCE þ SABDE þ SACDE

7. 2SABC þ SABD þ SABE þ SACD þ SADE þ SBCE þ SBDE ≥
SAB þ SAC þ SAD þ SBC þ SBE þ SDE þ SABCD þ SABCEþ
SABDE

8. SAD þ SBC þ SABE þ SACE þ SADE þ SBDE þ SCDE ≥ SAþ
SB þ SC þ SD þ SAE þ SDE þ SBCE þ SABDE þ SACDE

TABLE III. Representatives for each of the 19 extreme ray
orbits of the holographic entropy cone C5 for five regions.

1. (1 0 0 0 0; 1 1 1 1 0 0 0 0 0 0; 1 1 1 1 1 1 0 0 0 0; 1 1 1 1 0; 1)

2. (1 1 1 0 0; 2 2 1 1 2 1 1 1 1 0; 1 2 2 2 2 1 2 2 1 1; 1 1 2 2 2; 1)

3. (1 1 1 1 0; 2 2 2 1 2 2 1 2 1 1; 3 3 2 3 2 2 3 2 2 2; 2 3 3 3 3; 2)

4. (1 1 1 1 1; 2 2 2 2 2 2 2 2 2 2; 3 3 3 3 3 3 3 3 3 3; 2 2 2 2 2; 1)

5. (1 1 1 1 1; 2 2 2 2 2 2 2 2 2 2; 3 3 3 3 3 3 3 3 3 3; 4 4 4 4 4; 3)

6. (1 1 1 1 2; 2 2 2 3 2 2 3 2 3 3; 3 3 4 3 4 4 3 4 4 4; 4 3 3 3 3; 2)

7. (1 1 1 2 2; 2 2 3 3 2 3 3 3 3 4; 3 4 4 4 4 5 4 4 5 5; 5 5 4 4 4; 3)

8. (1 1 1 1 1; 2 2 2 2 2 2 2 2 2 2; 3 3 3 3 3 3 3 3 3 1; 2 2 2 2 2; 1)

9. (1 1 1 1 2; 2 2 2 32 2 3 2 3 3; 3 3 4 3 4 4 3 4 4 2; 4 3 3 3 3; 2)

10. (1 1 1 1 1; 2 2 2 2 2 2 2 2 2 2; 2 3 3 3 3 3 2 3 3 2; 2 2 2 2 2; 1)

1 1. (1 1 2 2 2; 2 3 3 3 3 3 3 4 4 4; 4 4 4 5 5 3 5 3 5 4; 4 4 4 3 3; 2)

12. (1 1 1 1 1; 2 2 2 2 2 2 2 2 2 2; 3 3 2 3 3 2 3 2 3 2; 2 2 2 2 2; 1)

13. (1 1 1 1 1; 2 2 2 2 2 2 2 2 2 2; 32 3 3 3 3 3 2 3 2; 2 2 2 2 2; 1)

14. (2 2 2 2 3; 4 4 4 5 4 4 5 4 5 5; 6 4 7 6 7 7 6 5 7 5; 6 5 5 5 5; 3)

15. (3 3 3 3 3; 6 6 6 6 6 6 6 6 6 6; 7 7 5 9 7 7 9 9 9 9; 6 6 6 6 6; 3)

16. (1 1 1 1 1; 2 2 2 2 2 2 2 2 2 2; 3 3 2 2 3 3 2 2 3 3; 2 2 2 2 2; 1)

17. (2 2 2 2 3; 4 4 4 5 4 4 5 4 5 5; 4 6 5 6 7 5 6 7 7 7; 6 5 5 5 5; 3)

18. (3 3 3 3 3; 6 6 6 6 6 6 6 6 6 6; 5 9 7 9 9 7 7 9 9 7; 6 6 6 6 6; 3)

19. (3 3 3 3 3; 6 6 6 6 6 6 6 6 6 6; 7 9 5 7 9 7 9 9 9 7; 6 6 6 6 6; 3)

TABLE II. Representatives for each of the eight proto-entropic
configurations which generate the information quantities asso-
ciated to each respective inequality orbit as a primitive of the
holographic entropy cone C5 for five regions.

a Here, k̄≡ ½5�nfkg
for k ∈ ½5� and Ī ≡ ½5�nI for I ⊂ ½5�. The notation for building
blocks is adapted from Ref. [15]: C∘½I� denotes the canonical
building block with a connected surface computing the entropy of
I, whereas C�½IðJÞ� and C⊛½IðJÞ� refer to the noncanonical
building blocks constructed in Sec. 6 of Ref. [15] with and
without a connected surface for J, respectively (see Figs. 5(a), 5
(c) and 5(d) in Ref. [15] for respective examples of C∘, C� and
C⊛).

1. ⨆
I∈℘NnfABg

C∘½I�

2. ⨆
I∈℘NnfABCg

C∘½I�

3. ⨆
k∈fB;C;D;Eg

C⊛
5 ½kðk̄Þ� ⊔ C�

4½BðBEÞ� ⊔ C�
4½BðBDÞ�

4. ⨆
k∈½5�

C⊛
5 ½kðk̄Þ� ⊔ C�

4½AðAEÞ� ⊔ C�
4½AðADÞ� ⊔ C�

4½BðBCÞ�

5. ⨆
k∈fA;B;C;Dg

C⊛
5 ½kðk̄Þ� ⊔ C�

4½BðBDÞ�

6. ⨆
k∈½5�

C⊛
5 ½kðk̄Þ� ⊔ C�

4½BðBEÞ� ⊔ C�
4½CðCDÞ�

7. ⨆
k∈½5�

C⊛
5 ½kðk̄Þ� ⊔ C�

4½AðAEÞ�

8. C⊛
5 ½EðĒÞ� ⊔ C�

4½BðBCÞ� ⊔ C�
4½CðBCÞ�

aFor inequalities 3–8 in Table I, the necessary canonical
building blocks required to reach rank D − 1 can be
straightforwardly obtained by completing the span of the
orthogonal complement of the associated information quantity
and are thus omitted for clarity.
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candidate inequalities using the formalism of the holo-
graphic entropy arrangement [15,16].
It is worth remarking that, as defined, CN is the space of

holographic entropy vectors for states with time-reflection
symmetry to which the RT prescription applies. In princi-
ple, lifting this restriction to the fully covariant HRT case
could allow for a larger space of entropy vectors, the HRT
holographic entropy cone CHRTN ⊇ CN . While the original
RT-based proof of strong subadditivity [17] was extended
to dynamical setups and proofs of MMI [3,9], it has been
argued that the same methods may not be generalizable to
nonstatic proofs for the five-party inequalities [18].
Alternative bit-thread-based proofs of MMI [19,20] may

lend themselves to generalizations to larger-N inequalities
and covariance, but this is yet to be explored. The validity
of inequalities 4–8 for dynamical spacetimes thus remains
an open question which has only been verified in specific
setups [21–23]. However, a suggestive indication that CHRTN
is no larger than CN is precisely the algebraic derivation
of these from the holographic entropy arrangement, which
is defined for arbitrary spacetimes. More importantly,
all facets of C5 can be shown to be primitive quantities
as defined in Refs. [15,16], thus corresponding to phase
transitions of entangling surfaces for arbitrary geometric
states. Explicitly, using the proto-entropic formalism and
notation for building blocks established in Ref. [15],

FIG. 1. Graph models realizing the ray representatives in Table III, corresponding to each of the 19 extreme ray orbits of the
holographic entropy cone C5 for five regions. Graphs are numbered according to the extreme ray they generate, and captioned by the
length lk of their orbit. Boundary vertices are labeled by their monochromatic index, bulk vertices by σn, with n ∈ Zþ enumerating
them, and edges are labeled by their capacity. Boundary vertices of pure regions are omitted.
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Table II provides a set of configurations which suffice to
generate the information quantities associated to inequal-
ities 1–8 as primitive, respectively. It is remarkable that,
besides canonical building blocks, only the nonadjoining
configurations C�

4 and C
⊛
5 are needed to generate all facets

of the polyhedron for N ¼ 5 up to symmetries (see Table II
for notation). Note also the necessity of considering non-
simply connected boundary topologies with enveloping, for
otherwise the In theorem would preclude the construction
of these quantities as primitive [16]. The configurations in
Table II strongly support the conjecture in Ref. [15] that the
holographic entropy cone and polyhedron are indeed the
same object.

B. Extreme rays

The cone specified above by its 372 facets admits a dual
description in terms of 2267 extreme rays. The latter can be
grouped into 19 distinct symmetry orbits, such that one
may focus on a single representative ray per orbit. Table III
shows one such choice of representatives [24], while Fig. 1
provides every graph model needed to construct the holo-
graphic entropy cone C5 for five regions [25]. The first
seven rays continue the pattern of being realizable by star
graphs, which prove sufficient to generate all extreme rays
for N ≤ 4. However, the other 12 exhibit much richer
structure, both in terms of nonplanarity and reduced
symmetry.

IV. CONCLUSION

The holographic entropy cone CN is now known for all
N ≤ 5. Besides the infinite family of cyclic inequalities, an
understanding of the general N case remains elusive. Early
explorations of N ¼ 6 reveal that C6 consists of at least 19

valid (i.e., proven by contraction), linearly independent
orbits of holographic entropy inequalities. The following
is an example of one such six-party inequality [26]: SAB þ
SABC þ SACD þ SADE þ SBCD þ SBDE þ SCDE þ SCDF þ
SDEF þ SABCE ≥ SA þ SB þ SAC þ SBC þ SCD þ 2SDE þ
SDF þ SABE þ SABCD þ SCDEF þ SABCDE.
Any constructive approach to exploring CN for larger N

must overcome the difficulty of dealing with an entropy
space of 2N − 1 dimensions. Already the dual description
problem, for which no efficient algorithm is known, can
only be feasibly solved up to symmetry [27]. Moreover,
most aspects of the problem suffer a combinatorial explo-
sion which is doubly exponential in N and any hope to
proceed constructively must be accompanied by a strategy
to tame the combinatorics. In particular, it is indispensable
to turn the tables regarding the large degree of redundancy
in the structure of CN and use its symmetry to one’s
advantage. Nevertheless, it would ultimately be desirable to
understand CN for arbitrary N. This will most likely require
reducing the problem to an algebraic question rather than a
combinatorial one, potentially along the lines of the
formalism in Ref. [15,16].
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