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In a recent paper, we introduced a new discretization scheme for gravity in 2þ 1 dimensions. Starting
from the continuum theory, this new scheme allowed us to rigorously obtain the discrete phase space of
loop gravity, coupled to particlelike “edge mode” degrees of freedom. In this work, we expand on that result
by considering the most general choice of integration during the discretization process. We obtain a family
of polarizations of the discrete phase space. In particular, one member of this family corresponds to the
usual loop gravity phase space, while another corresponds to a new polarization, dual to the usual one in
several ways. We study its properties, including the relevant constraints and the symmetries they generate.
Furthermore, we motivate a relation between the dual polarization and teleparallel gravity.
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I. INTRODUCTION

The theory of general relativity famously describes
gravity as a result of the curvature of spacetime itself.
Furthermore, the geometry of spacetime is assumed to be
torsionless by employing the Levi-Civita connection,
which is torsionless by definition. While this is the most
popular formulation, there exists an alternative but math-
ematically equivalent formulation called teleparallel gravity
[1–3], differing from general relativity only by a boundary
term. In this formulation, one instead uses the Weitzenböck
connection, which is flat by definition. The gravitational
degrees of freedom (d.o.f.) are then encoded in the torsion
of the spacetime geometry.
Loop quantum gravity [4] is a popular approach

towards the formulation of a consistent and physically
relevant theory of quantum gravity. In the canonical version
of the theory [5], one starts by rewriting general relativity
in the Hamiltonian formulation and quantizing using
the familiar Dirac procedure [6]. One finds a fully con-
strained system, that is, the Hamiltonian is simply a sum of
constraints.
In 2þ 1 spacetime dimensions, where gravity is topo-

logical [7], there are two such constraints:
(i) the Gauss (or torsion) constraint, which imposes

zero torsion everywhere, and
(ii) the curvature (or flatness) constraint, which imposes

zero curvature everywhere.
In the classical theory, it does not matter which constraint
is imposed first. However, in the quantum theory, it does
matter, since the Hilbert space is defined in terms of
representations of the symmetries generated by the con-
straints. The first constraint that we impose is used to

define the kinematics of the theory, while the second
constraint will encode the dynamics. Thus, it seems
natural to identify general relativity with the quantization
in which the Gauss constraint is imposed first, and
teleparallel gravity with that in which the curvature
constraint is imposed first.
Indeed, in loop quantum gravity, which is a quantization

of general relativity, the Gauss constraint is imposed first.
This is done by selecting, as the basis for the kinematical
Hilbert space, the spin network basis [8] of rotation-
invariant states. Then, the curvature constraint is imposed
at the dynamical level in order to obtain the Hilbert space of
physical states.
In [9], an alternative choice was suggested where the

order of constraints is reversed. The curvature constraint is
imposed first by employing the group network basis of
translation-invariant states, and the Gauss constraint is the
one which encodes the dynamics. This dual loop quantum
gravity quantization is the quantum counterpart of tele-
parallel gravity, and could be used to study the dual vacua
proposed in [10,11].
In this paper, we will only deal with the classical theory.

We will explore a family of discretizations which includes,
in particular, three cases of interest:

(i) The loop gravity phase space, which is the classical
version of the spin network basis [12]. This case was
studied in detail in our paper [13] and is related to
2þ 1D general relativity. We will provide a more
rigorous derivation of some results, in particular the
discrete curvature constraint, and additional subtle
details which were missing in our initial treatment.
The phase space obtained in this case contains the
phase space of spin networks, plus curvature and
torsion excitations corresponding to edge modes
which do not cancel.*bshoshany@perimeterinstitute.ca
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(ii) Dual loop gravity, which is the classical version of
the group network basis. This case was first studied
in [14] in the simple case where there are no
curvature or torsion excitations. It is intuitively
related to teleparallel gravity. Here, we will study
this case carefully, incorporating the edge modes as
was done in [13] for the loop gravity case. We will
rigorously derive the discrete constraints and the
symmetry transformations they generate. The result-
ing phase space will contain the phase space of
group networks, plus the same curvature and torsion
obtained in the previous case.

(iii) A mixed phase space, containing both loop gravity
and its dual, which is intuitively related to Chern-
Simons theory [15], as we will motivate below. In
this case our formalism should be related to existing
results [16–22].

Crucial to our formalism is the separation of discretization
into two steps. This procedure was first utilized, in the
3þ 1-dimensional case, in [23,24], but without considering
any curvature and torsion. The steps are as follows:
(1) Subdivision, or decomposition into subsystems.

More precisely, we define a cellular decomposition1

on our 2-dimensional spatial manifold. This struc-
ture has a dual structure, which as we will see, will
be the spin network graph.

(2) Truncation, or coarse-graining of the subsystems. In
this step, we assume that there is arbitrary curvature
and torsion inside each loop of the spin network. We
then “compress” the information about the geometry
into a single point, or vertex, inside the loop. Since
the only way to probe the geometry is by looking at
the holonomies and fluxes on the loops of the spin
network, the observables before and after this
truncation are the same.

The edge modes, mentioned earlier, are the final piece of
our formalism. When discretizing gauge theories, and
gravity in particular, a major problem is preserving gauge
invariance despite the discreteness of the resulting theory.
The presence of boundaries can be shown to introduce new
d.o.f., called edge modes [25–27],2 which may be used to
dress observables and make them gauge invariant. These
edge modes are associated to new boundary symmetries,
which transform them and control the gluing map between
subsystems.
As we will see below, the edge modes at the boundaries

of the cells in our cellular decomposition will mostly cancel
with the edge modes on the boundaries of the adjacent cells.
However, there will also be edge modes at the vertices of
the cells, which will not have anything to cancel with.
These d.o.f. will survive the discretization process, and

introduce a particlelike phase space [32,33] for the curva-
ture and torsion, which we then interpret as mass and spin
respectively.
One might expect that the geometry will be encoded in

the constraints alone, by imposing that a loop of holon-
omies sees the curvature inside it and a loop of fluxes sees
the torsion inside it. As we will see, while the constraints do
indeed encode the geometry, the presence of the edge
modes enforces the inclusion of the curvature and torsion
themselves as additional phase space variables.

A. Basic definitions and notation

Consider a group G ⋉ g� ≅ T�G, which is3 a generali-
zation of the Euclidean or Poincaré group. One possible
option is

ISUð2Þ ≅ SUð2Þ ⋉ R3; ð1Þ

but we will keep it general. The algebra for this group is
given by

½Pi;Pj� ¼ 0; ½Ji;Jj� ¼ fijkJk; ½Ji;Pj� ¼ fijkPk; ð2Þ

where fijk are the structure constants.
4 The algebra indices

i, j, k go from 1 to dim g, which is e.g., 3 for suð2Þ. The
generators Ji are the rotation generators, and they corre-
spond to a non-Abelian group G, while the generators Pi
are the translation generators, and they correspond to an
Abelian normal subgroup g�.
Notation-wise, all Lie algebra elements and Lie-algebra-

valued forms will be written in bold font to distinguish
them from Lie group element or Lie-group-valued forms.
Furthermore, we will use calligraphic font for G ⋉ g� or
g ⊕ g�-valued forms (which will rarely be of interest) and
Roman font for G, g or g�-valued forms.
Given any two Lie-algebra-valued formsA,B of degrees

degA and degB respectively, we define the graded
commutator:

½A;B�≡A ∧ B − ð−1ÞdegA degBB ∧ A: ð3Þ

We also define a dot (inner) product, also known as the
Killing form, on the generators as follows:

Ji · Pj ¼ δij; Ji · Jj ¼ Pi · Pj ¼ 0: ð4Þ

Given two Lie-algebra-valued forms, the dot product is
defined to include a wedge product. Thus, if A≡ AiJi is a

1The cells in this decomposition can take any shape.
2See also [28] for a more intuitive discussion and [29–31] for

the case of 3þ 1-dimensional gravity.

3The notation T�G signifies the cotangent bundle of G.
4They satisfy antisymmetry fijk ¼ −fijk and the Jacobi

identity f½ijlfk�lm ¼ 0. For suð2Þ we have fijk ¼ ϵij
k where

ϵij
k is the Levi-Civita symbol.
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pure rotation and B≡ BiPi is a pure translation, which will
usually be the case,5 we have

A · B≡ Ai ∧ Bi: ð6Þ

Finally, in addition to the exterior derivative d and the
interior product ι on spacetime, we introduce a variational
exterior derivative δ and a variational interior product I on
field space. These operators act analogously to d and ι, and
in particular they are nilpotent, e.g., δ2 ¼ 0, and satisfy the
graded Leibniz rule. Degrees of differential forms are
counted with respect to spacetime and field space sepa-
rately; for example, if f is a 0-form then dδf is a 1-form on
spacetime, due to d, and independently also a 1-form on
field space, due to δ. The dot product defined above also
includes an implicit wedge product with respect to field-
space forms, such that e.g., δf · δg ¼ −δg · δf if f and g are
0-forms.

B. The Chern-Simons action and 2 + 1D gravity

Let M be a 2þ 1-dimensional spacetime manifold and
let Σ be a 2-dimensional spatial manifold such that M ¼
Σ ×R where R represents time. Let us also define the
Chern-Simons connection 1-form A, valued in g ⊕ g�:

A ≡AþE≡ AiJi þ EiPi; ð7Þ

where A≡ AiJi is the g-valued connection 1-form and
E≡ EiPi is the g�-valued frame field 1-form. The
g ⊕ g�-valued curvature 2-form F is then defined as

F ≡ dA þ 1

2
½A;A�; ð8Þ

and it may be split into

F ≡ Fþ T≡ FiJi þ TiPi; ð9Þ

where F≡ FiJi is the g-valued curvature 2-form and T≡
TiPi is the g�-valued torsion 2-form, and they are defined in
terms of A and E as

F≡ dAþ 1

2
½A;A�; T≡ dAE≡ dEþ ½A;E�; ð10Þ

where dA ≡ dþ ½A; ·� is the covariant exterior derivative.

In our notation, the Chern-Simons action is given by

S½A� ¼ 1

2

Z
M
A ·

�
dA þ 1

3
½A;A�

�
; ð11Þ

and its variation is

δS½A� ¼
Z
M

�
F · δA −

1

2
dðA · δAÞ

�
: ð12Þ

From this we can read the equation of motion

F ¼ 0; ð13Þ

and, from the boundary term, the symplectic potential

Θ½A�≡ −
1

2

Z
Σ
A · δA; ð14Þ

which gives us the symplectic form

Ω½A�≡ δΘ½A� ¼ −
1

2

Z
Σ
δA · δA: ð15Þ

Furthermore, we can write the action6 in terms of A and E:

S½A;E� ¼
Z
M

�
E · F −

1

2
dðA · EÞ

�
: ð17Þ

This is the action for 2þ 1D gravity, with an additional
boundary term (which is usually disregarded by assuming
M has no boundary). Using the identity δF ¼ dAδA, we
find the variation of the action is

δS½A;E� ¼
Z
M

�
F · δEþT · δA−

1

2
dðE · δAþA · δEÞ

�
;

ð18Þ

and thus we see that the equations of motion are

F ¼ 0; T ¼ 0; ð19Þ

and the symplectic potential is

Θ½A;E�≡ −
1

2

Z
Σ
ðE · δAþA · δEÞ: ð20Þ

Of course, (19) and (20) may be easily derived from (13)
and (14).5In the general case, which will only be relevant for our

discussion of Chern-Simons theory in the next subsection, for
g ⊕ g�-valued forms A ≡Ai

JJi þAi
PPi and B≡ Bi

JJi þ Bi
PPi

we have

A ·B ¼ δijðAi
J ∧ Bj

P þAi
P ∧ Bj

JÞ: ð5Þ

6Here we use the following identities, derived from the
properties of the dot product (4) and the graded commutator:

A · dA ¼ E · dE ¼ ½E;E� ¼ A · ½A;A� ¼ E · ½A;E� ¼ 0: ð16Þ
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C. Phase space polarizations and teleparallel gravity

The symplectic potential (20) results in the symplectic
form

Ω≡ δΘ ¼ −
Z
Σ
δE · δA: ð21Þ

In fact, one may obtain the same symplectic form using a
family of potentials of the form

Θλ ¼ −
Z
Σ
ðð1 − λÞE · δAþ λA · δEÞ; ð22Þ

where the parameter λ ∈ ½0; 1� determines the polarization
of the phase space. This potential may be obtained from a
family of actions of the form

Sλ ¼
Z
M
ðE · F − λdðA · EÞÞ; ð23Þ

where the difference lies only in the boundary term and thus
does not affect the physics. Hence the choice of polariza-
tion does not matter in the continuum, but it will be very
important in the discrete theory, as we will see below.
The equations of motion for any action of the form (23)

(or constraints, in the Hamiltonian formulation) are, as we
have seen, as follows:

(i) the torsion (or Gauss) constraint T ¼ 0, and
(ii) the curvature constraint F ¼ 0.

Now, recall that general relativity is formulated using the
Levi-Civita connection, which is torsionless by definition.
Thus, the torsion constraint T ¼ 0 can really be seen as
defining the connection A to be torsionless, and thus
selecting the theory to be general relativity. In this case,
F ¼ 0 is the true equation of motion, describing the
dynamics of the theory.
In the teleparallel formulation of gravity we instead use

the Weitzenböck connection, which is defined to be flat but
not necessarily torsionless. In this formulation, we interpret
the curvature constraint F ¼ 0 as defining the connectionA
to be flat, while T ¼ 0 is the true equation of motion.
There are three cases of interest when considering the

choice of the parameter λ. The case λ ¼ 0 is the one most
suitable for 2þ 1D general relativity:

Sλ¼0 ¼
Z
M
E · F; Θλ¼0 ¼ −

Z
Σ
E · δA; ð24Þ

since it indeed produces the familiar action for 2þ 1D
gravity. The case λ ¼ 1=2 is one most suitable for 2þ 1D
Chern-Simons theory:

Sλ¼1
2
¼

Z
M

�
E · F −

1

2
dðA ·EÞ

�
;

Θλ¼1
2
¼ −

1

2

Z
Σ
ðE · δAþA · δEÞ; ð25Þ

since it corresponds to the Chern-Simons action (17).
Finally, the case λ ¼ 1 is one most suitable for 2þ 1D
teleparallel gravity:

Sλ¼1¼
Z
M
ðE ·F−dðA ·EÞÞ; Θλ¼1 ¼−

Z
Σ
A ·δE; ð26Þ

as explained in [34].
Further details about the different polarizations may be

found in [14]. However, the discretization procedure in that
paper did not take into account possible curvature and
torsion d.o.f. In the rest of this paper, we will include these
d.o.f. in the discussion by generalizing our results in [13] to
include all possible polarizations of the phase space.

II. THE DISCRETE GEOMETRY

A. The cellular decomposition and its dual

We embed a cellular decomposition Δ and a dual
cellular decomposition Δ� in our 2-dimensional spatial
manifold Σ. These structures consist of the following
elements, where each element of Δ is uniquely dual to
an element of Δ�:

Δ Δ�

0-cells (vertices) v dual to 2-cells (faces) fv
1-cells (edges) e dual to 1-cells (links) e�
2-cells (cells) c dual to 0-cells (nodes) c�

The 1-skeleton graph Γ ⊂ Δ is the set of all vertices and
edges of Δ. Its dual is the spin network graph Γ� ⊂ Δ�, the
set of all nodes and links of Δ�. Both graphs are oriented,
and we write e ¼ ðvv0Þ to indicate that the edge e starts at
the vertex v and ends at v0, and e� ¼ ðcc0Þ� to indicate that
the link e� starts at the node c� and ends at c0�. Furthermore,
since edges are where two cells intersect, we write e ¼
ðcc0Þ≡ ∂c ∩ ∂c0 to denote that the edge e is the inter-
section of the boundaries ∂c and ∂c0 of the cells c and c0
respectively. If the link e� is dual to the edge e, then we
have that e ¼ ðcc0Þ and e� ¼ ðcc0Þ�; therefore the notation
is consistent. This construction is illustrated in Fig. 1 (taken
from [13]).
For the purpose of doing calculations, it will prove useful

to introduce disks Dv around each vertex v. The disks have
a radius R, small enough that the entire diskDv is inside the
face fv for every v. We also define punctured disks v�,
which are obtained from the full disks Dv by removing the
vertex v, which is at the center, and a cut Cv, connecting v
to an arbitrary point v0 on the boundary ∂Dv. Thus

v� ≡Dvnðfvg ∪ CvÞ: ð27Þ

The punctured disks are equipped with a cylindrical
coordinate system ðrv;ϕvÞ such that rv ∈ ð0; RÞ and
ϕv ∈ ðαv − 1

2
; αv þ 1

2
Þ; note that ϕv is scaled by 2π, so it
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has a period of 1, for notational brevity. The boundary of
the punctured disk is such that

∂v� ¼ ∂0v� ∪ Cv ∪ ∂Rv�; ð28Þ

where ∂0v� is the inner boundary at rv ¼ 0, Cv is the cut at
ϕv ¼ αv − 1

2
, and ∂Rv� is the outer boundary at rv ¼ R, and

the point where the cut meets the outer boundary is
v0 ≡ ðR; αv − 1

2
Þ. Note that ∂Rv� ¼ ∂Dv. The punctured

disk is illustrated in Fig. 2 (taken from [13]).
The outer boundary ∂Rv� of each disk is composed of

arcs (vci) such that

∂Rv� ¼ ⋃
Nv

i¼1

ðvciÞ; ð29Þ

where Nv is the number of cells around v and the cells are
enumerated c1;…; cNv

. Similarly, the boundary ∂c of the
cell c is composed of edges (cci) and arcs (cvi) such that

∂c ¼ ⋃
Nc

i¼1

ððcciÞ ∪ ðcviÞÞ; ð30Þ

where Nc is the number of cells adjacent to c or,
equivalently, the number of vertices around c. We will
use these decompositions during the discretization process.

B. Truncating the geometry to the vertices

1. Motivation

Before the equations of motion (i.e., the curvature and
torsion constraints F ¼ T ¼ 0) are applied, the geometry
on Σ can have arbitrary curvature and torsion. We would
like to capture the “essence” of the curvature and torsion
and encode them on codimension 2 defects.
For this purpose, we can imagine looking at every

possible loop on the spin network graph Γ� and taking a
holonomy in G ⋉ g� around it. This holonomy will have a
part valued in g, which will encode the curvature, and a part
valued in g�, which will encode the torsion.
A loop of the spin network is the boundary ∂fv of a face

fv. Since the face is dual to a vertex v, the natural place to
encode the geometry would be at the vertex. Thus, we will
place the defects at the vertices, and give them the
appropriate values in g ⊕ g� obtained by the holonomies.
The disks Dv defined above are in a 1-to-1 correspon-

dence with the faces fv. In fact, we can imagine deforming
the disks such that they cover the faces, and their bounda-
ries ∂Dv are exactly the loops ∂fv. Thus, we may perform
calculations on the disks instead on the faces.
This intuitive and qualitative motivation will be made

precise in the following subsections.

2. The Chern-Simons connection on the disks

We define the Chern-Simons7 connection on the punc-
tured disk v� as follows:

FIG. 2. The punctured disk v�. The figure shows the vertex v,
cut Cv, inner boundary ∂0v�, outer boundary ∂Rv�, and reference
point v0.

FIG. 1. A simple piece of the cellular decomposition Δ, in
black, and its dual spin network Γ�, in blue. The vertices v of the
1-skeleton Γ ⊂ Δ are shown as black circles, while the nodes c�
of Γ� are shown as blue squares. The edges e ∈ Γ are shown as
black solid lines, while the links e� ∈ Γ� are shown as blue
dashed lines. In particular, two nodes c� and c0�, connected by a
link e� ¼ ðcc0Þ�, are labeled, as well as two vertices v and v0,
connected by an edge e ¼ ðvv0Þ ¼ ðcc0Þ ¼ c ∩ c0, which is dual
to the link e�. There is one face in the illustration, fv, which is the
triangle enclosed by the three blue links at the center.

7Recall that we use calligraphic font to denote forms valued in
the double G ⋉ g�, and bold calligraphic font for forms valued in
its Lie algebra g ⊕ g�.
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Ajv� ≡H
∘ −1
v dH

∘
v ≡H−1

v dHv þH−1
v MvHvdϕv; ð31Þ

where
(i) H

∘
v is a nonperiodic G ⋉ g�-valued 0-form defined

as H
∘
v ≡ eMvϕvHv,

(ii) Hv is a periodic8 g ⊕ g�-valued 0-form,
(iii) Mv is a constant element of the Cartan subalgebra

h ⊕ h� of g ⊕ g�.
Note that this connection is related by a gauge trans-
formation of the form A0 ↦ H−1

v dHv þH−1
v A0Hv to a

connection A0 defined as follows:

A0 ≡Mvdϕv: ð32Þ

The connectionA0 satisfies ½A0;A0� ¼ 0, so its curvature
is F 0 ≡ dA0. This curvature vanishes everywhere on the
punctured disk (which excludes the point v), since
d2ϕv ¼ 0. However, at the origin of our coordinate system,
i.e., the vertex v, ϕv is not well defined, so we cannot
guarantee that F 0 vanishes at v itself.
In fact, we can show that it must not vanish there. If we

integrate the curvature on the full disk Dv using Stokes’
theorem, we get

Z
Dv

F 0 ¼
I
∂Dv

A0 ¼ Mv

I
∂Dv

dϕv ¼ Mv; ð33Þ

where
H
∂Dv

dϕv ¼ 1 since we are using coordinates scaled
by 2π, and we used the fact that Mv is constant. We
conclude that, sinceF 0 vanishes everywhere on v�, and yet
it integrates to a finite value at Dv, the curvature F 0 must
take the form of a Dirac delta function centered at v:

F 0 ¼ MvδðvÞ; ð34Þ

where δðvÞ is a distributional 2-form such that for any
0-form f,

Z
Σ
fδðvÞ≡ fðvÞ: ð35Þ

The final step is to gauge-transform back from A0 to the
initial connection A defined in (31). The curvature trans-
forms in the usual way, F 0 ↦ H−1

v F 0Hv ≡F , so we get

F jDv
¼ H−1

v MvHvδðvÞ≡PvδðvÞ; ð36Þ

where we defined

Pv ≡H−1
v MvHv: ð37Þ

Note again that, while F jDv
(on the full disk) does not

vanish, F jv� (on the punctured disk) does vanish.

3. The connection and frame field on the disks

Now that we have defined the Chern-Simons connection
1-form A and found its curvature F on the disks, we split
A into a g-valued connection 1-form A and a g�-valued
frame field 1-formE as defined in (7). Similarly, we splitF
into a g-valued curvature 2-form F and a g�-valued torsion
2-form T as defined in (9).
From (7) we get

Ajv� ¼ h
∘−1
v dh

∘
v; Ejv� ¼ h

∘−1
v dx

∘
vh
∘
v; ð38Þ

where
(i) h

∘
v is a nonperiodic G-valued 0-form and x

∘
v is a

nonperiodic g�-valued 0-form such that9

h
∘
v ≡ eMvϕvhv; x

∘
v ≡ eMvϕvðxv þ SvϕvÞe−Mvϕv ;

ð39Þ

(ii) hv is a periodic G-valued 0-form,
(iii) xv is a periodic g�-valued 0-form,
(iv) Mv is a constant element of the Cartan subalgebra h

of g, such that Mv ≡MvJ1 where J1 is the Cartan
generator,

(v) Sv is a constant element of the Cartan subalgebra h�
of g�, such that Sv ≡ SvP1 where P1 is the Cartan
generator, and

(vi) by construction ½Mv;Sv� ¼ 0.
The full expressions for A and E on v� in terms of hv and
xv are as follows:

Ajv� ¼ h−1v dhv þ h−1v Mvhvdϕv;

Ejv� ¼ h−1v dxvhv þ h−1v ðSv þ ½Mv;xv�Þhvdϕv: ð40Þ

Furthermore, from (9) we get

FjDv
¼ pvδðvÞ; TjDv

¼ jvδðvÞ; ð41Þ

where pv, jv represent the momentum and angular momen-
tum respectively:

8By “periodic” we mean that, under ϕ ↦ ϕþ 1, the non-

periodic variable H
∘
v gets an additional factor of eMv due to the

term eMvϕv , while the periodic variable Hv is invariant. (Recall
that we are scaling ϕ by 2π, so the period is 1 and not 2π.)

9This notation differs from the one we used in [13]. For the
periodic variables, we used h and y in [13]. Here, we still use h,
but instead of y we use x due to this variable’s relation to the flux
X, as shown below. For the nonperiodic variables, we used u and

w in [13]. Here we use h
∘
and x

∘
in order to avoid introducing

additional letters, which might be confusing. The circle above the
letter conveys that it involves the angular variable ϕ and is thus
nonperiodic.
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pv ≡ h−1v Mvhv; jv ≡ h−1v ðSv þ ½Mv;xv�Þhv: ð42Þ

In terms of pv and jv, we may writeA and E on the disk as
follows:

Ajv� ¼ h−1v dhv þ pvdϕv; Ejv� ¼ h−1v dxvhv þ jvdϕv:

ð43Þ

It is clear that the first term in each definition is flat and
torsionless, while the second term (involving pv and jv
respectively) is the one which contributes to the curvature
and torsion at v. Since the punctured disk v� does not
include v itself, the curvature and torsion vanish every-
where on it:

Fjv� ¼ 0; Tjv� ¼ 0: ð44Þ

As before, while F and T do not vanish on the full diskDv,
they do vanish on v�. We call this type of geometry a
piecewise flat and torsionless geometry.10 Given a particu-
lar spin network Γ�, and assuming that information about
the curvature and torsion may only be obtained by taking
holonomies along the loops of this spin network, the
piecewise flat and torsionless geometry carries, at least
intuitively, the exact same information as the arbitrary
geometry we had before.

4. The connection and frame field on the cells

Now that we have defined A and E on the punctured
disks v�, defining them on the cells c is a piece of cake. The
geometry inside the cells is flat and torsionless everywhere,
not distributional. Thus, the expressions for A and E on c
are analogous to the first term in each of the expressions in
(40), which is the flat and torsionless term:

Ajc ¼ h−1c dhc; Ejc ¼ h−1c dxchc; ð45Þ

where hc is a G-valued 0-form and xc is a g�-valued 0-
form. Of course, by construction, the curvature and torsion
associated to this connection and frame field vanish every-
where on the cell:

Fjc ¼ 0; Tjc ¼ 0: ð46Þ
C. Dressed holonomies and edge modes

Consider the definition Ajc ¼ h−1c dhc for A in terms of
hc. Note that A is invariant under the left action trans-
formation hc ↦ gchc for some constant gc ∈ G. Thus,
inverting the definition Ajc ¼ h−1c dhc to find hc in terms
of A, we get

hcðxÞ ¼ hcðc�Þexp�! Z
x

c�
A; ð47Þ

where exp�! is a path-ordered exponential, and hcðc�Þ is a
new d.o.f. which does not exist in A. The notation suggests
that it is the holonomy “from c� to itself,” but it is in general
not the identity. The notation hcðc�Þ is just a placeholder for
the edge mode which “dresses” the holonomy.
For the “undressed” holonomy—which is simply the

path-ordered exponential from the node c� to some point
x—we thus have

exp�!Z
x

c�
A ¼ h−1c ðc�ÞhcðxÞ: ð48Þ

Similarly, the definition Ajv� ¼ h−1v dhv þ h−1v Mvhvdϕv is
invariant under hv ↦ gvhv, but only if gv is inH, the Cartan
subgroup of G, since it must commute with Mv. Inverting

the relation Ajv� ¼ h
∘−1
v dh

∘
v, we get

h
∘
vðxÞ ¼ hvðvÞexp�!Z

x

v
A; ð49Þ

where again the edge mode hvðvÞ is a new d.o.f. The
undressed holonomy is then

exp�! Z
x

v
A ¼ h−1v ðvÞh

∘
vðxÞ ¼ h−1v ðvÞeMvϕvðxÞhvðxÞ: ð50Þ

From (48) and (50), we may construct general path-ordered
exponentials from some point x to another point y by
breaking the path from x to y such that it passes through an
intermediate point. If that point is the node c�, then we get

exp�!Z
y

x
A ¼

�
exp�!Z

c�

x
A

��
exp�! Z

y

c�
A

�

¼ ðh−1c ðxÞhcðc�ÞÞðh−1c ðc�ÞhcðyÞÞ
¼ h−1c ðxÞhcðyÞ; ð51Þ

and if it’s the vertex v, we similarly get

exp�! Z
y

x
A ¼

�
exp�! Z

v

x
A

��
exp�!Z

y

v
A

�

¼ h−1v ðxÞeMvðϕvðyÞ−ϕvðxÞÞhvðyÞ: ð52Þ

Furthermore, we may use the continuity relations (101) and
(102) (to be discussed later) to obtain a relation between the
path-ordered integrals and the holonomies hcc0 and hcv. If
y ∈ ðcc0Þ then we can write

exp�! Z
y

x
A ¼ h−1c ðxÞhcc0hc0 ðyÞ; ð53Þ

and if y ∈ ðcvÞ then we can write

10The question of whether the geometry we have defined here
has a notion of a “continuum limit”, e.g., by shrinking the loops
to points such that the discrete defects at the vertices become
continuous curvature and torsion, is left for future work.
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exp�! Z
y

x
A ¼ h−1c ðxÞhcvh

∘
vðyÞ ¼ h−1c ðxÞhcveMvϕvðyÞhvðyÞ:

ð54Þ

Note that, in particular,

exp�! Z
c0�

c�
A ¼ h−1c ðc�Þhcc0hc0 ðc0�Þ: ð55Þ

A similar discussion applies to the translational holonomies
xc and xv, and one finds two new d.o.f., xcðc�Þ and xvðvÞ.

III. DISCRETIZING THE
SYMPLECTIC POTENTIAL

A. The choice of polarization

Recall that there is a family of symplectic potential given
by (22)

Θλ ¼ −
Z
Σ
ðð1 − λÞE · δAþ λA · δEÞ: ð56Þ

We would like to replace A and E by their discretized
expressions given by (45) and (38). Before we do this for
each cell and disk individually, let us consider a toy model
where we simply take A ¼ h−1dh and E ¼ h−1dxh for
some G-valued 0-form h and g�-valued 0-form x over the
entire manifold Σ. We begin by calculating the variations of
these expressions, obtaining

δA ¼ δðh−1dhÞ ¼ h−1ðdΔhÞh; ð57Þ

δE ¼ δðh−1dxhÞ ¼ h−1ðdδxþ ½dx;Δh�Þh; ð58Þ

where we have defined the notation Δh≡ δhh−1 for the
Maurer-Cartan form on field space. Thus, we have

Θλ ¼ −
Z
Σ
ðð1 − λÞdx · dΔhþ λdhh−1 · ðdδxþ ½dx;Δh�ÞÞ;

ð59Þ

where we used the cyclicity of the dot product to cancel
some group elements. Now, the first term is very simple; in
fact, it is clearly an exact 2-form, and thus may be easily
integrated. However, the second term is complicated, and it
is unclear if it can be integrated. Nevertheless, we know that
every choice of λ leads to the same symplectic form:

Ω ¼ δΘλ ¼ −
Z
Σ
δE · δA ¼ −

Z
Σ
ðdδxþ ½dx;Δh�Þ · dΔh:

ð60Þ

Furthermore, we have seen from (23) that the difference
between different polarizations amounts to the addition of a

boundary term and is equivalent to an integration by parts.
Thus, we employ the following trick. First we take λ ¼ 0 in
Θλ, so that it becomes the 2þ 1D gravity polarization:

Θ ¼ −
Z
Σ
E · δA: ð61Þ

Then, in the discretization process, we obtain

Θ ¼ −
Z
Σ
dx · dΔh: ð62Þ

The integrand in an exact 2-form, and thus may be
integrated in two equivalent ways:

dx · dΔh ¼ dðx · dΔhÞ ¼ −dðdx · ΔhÞ: ð63Þ

Note that the 1-forms x · dΔh and dx · Δh differ only by a
boundary term of the form dðx · ΔhÞ, and they may be
obtained from each other with integration by parts, just as
for the different polarizations. In fact, we may write

E ·δA¼ dx · dΔh¼ λdðx · dΔhÞ− ð1−λÞdðdx ·ΔhÞ: ð64Þ

We claim that, even though technically both options are
equivalent discretizations of the λ ¼ 0 polarization in (56),
there is in fact reason to believe that the choice of λ in (56)
corresponds to the same choice of λ in (64). We will
motivate this by showing that the choice λ ¼ 0 corresponds
to the usual loop gravity polarization, which is associated
with usual general relativity, while the choice λ ¼ 1
corresponds to a dual polarization which, as we will see,
is associated with teleparallel gravity.

B. Decomposing the spatial manifold

As we have seen, the spatial manifold Σ is decomposed
into cells c and disks v�. The whole manifold Σ may be
recovered by taking the union of the cells with the closures
of the disks (recall that the vertices v are not in v�, they are
on their boundaries):

Σ ¼
�
⋃
c
c
�
∪
�
⋃
v
v� ∪ ∂v�

�
: ð65Þ

Here, we are assuming that the cells and punctured disks
are disjoint; the disks “eat into” the cells. We can thus split
Θ into contributions from each cell c and punctured disk v�:

Θ ¼
X
c

Θc þ
X
v

Θv� ; ð66Þ

where

Θc ¼ −
Z
c
E · δA; Θv� ¼ −

Z
v�
E · δA: ð67Þ
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Given the discretizations (45) and (38), we replace h, x in

(64) with hc, xc or h
∘
v;x

∘
v respectively, and then integrate

using Stokes’s theorem to obtain:

Θc ¼
Z
∂c
ðð1 − λÞdxc · Δhc − λxc · dΔhcÞ; ð68Þ

Θv� ¼
Z
∂v�

ðð1 − λÞdx∘ v · Δh
∘
v − λx

∘
v · dΔh

∘
vÞ: ð69Þ

In the next few subsections, we will manipulate these
expressions so that they can be integrated once again to
obtain truly discrete symplectic potentials.

C. The vertex and cut contributions

The boundary ∂v� splits into three contributions: one
from the inner boundary ∂0v� (which is the vertex v), one
from the cut Cv, and one from the outer boundary ∂Rv�.
Thus we have

Θv� ¼ −Θ∂0v� − ΘCv
þ Θ∂Rv� ; ð70Þ

where the minus sign comes from the fact that orientation
of the outer boundary is opposite to that of the inner
boundary. Here we will discuss the first two terms, while
the contribution from the outer boundary ∂Rv� will be
calculated in Sec. III E.
Writing the terms in the integrand explicitly in terms of

xv, hv using (39), and making use of the identities

dx
∘
v ¼ eMvϕvðdxv þ ðSv þ ½Mv;xv�ÞdϕvÞe−Mvϕv ; ð71Þ

Δh
∘
v ¼ eMvϕvðδMvϕv þ ΔhvÞe−Mvϕv ; ð72Þ

dΔh
∘
v ¼ eMvϕvðdΔhv þ ðδMv þ ½Mv;Δhv�ÞdϕvÞe−Mvϕv ;

ð73Þ
we get

dx
∘
v ·Δh

∘
v ¼ðdxvþðSvþ½Mv;xv�ÞdϕvÞ · ðδMvϕvþΔhvÞ;

ð74Þ

x
∘
v ·dΔh

∘
v¼ðxvþSvϕvÞ ·ðdΔhvþðδMvþ½Mv;Δhv�ÞdϕvÞ:

ð75Þ
The integral on the inner boundary ∂0v� is easily calcu-
lated, since xv and hv obtain the constant values xvðvÞ and
hvðvÞ on the inner boundary. Hence dxvðvÞ¼dΔhvðvÞ¼0,
and these expressions simplify to11

dx
∘
v ·Δh

∘
vj∂0v�

¼ ðϕvSv ·δMvþðSvþ½Mv;xvðvÞ�Þ ·ΔhvðvÞÞdϕv; ð76Þ

x
∘
v · dΔh

∘
vj∂0v�

¼ ðϕvSv · δMv þ xvðvÞ · ðδMv þ ½Mv;ΔhvðvÞ�ÞÞdϕv:

ð77Þ

To evaluate the contribution from the inner boundary, we
integrate from ϕv ¼ αv − 1=2 to ϕv ¼ αv þ 1=2. Then
since

Z
αvþ1=2

αv−1=2
dϕv ¼ 1;

Z
αvþ1=2

αv−1=2
ϕvdϕv ¼ αv; ð78Þ

we get

Θ∂0v� ¼ ð1 − 2λÞαvSv · δMv

þ ð1 − λÞðSv þ ½Mv;xvðvÞ�Þ · ΔhvðvÞ
− λxvðvÞ · ðδMv þ ½Mv;ΔhvðvÞ�Þ; ð79Þ

which may be simplified to

Θ∂0v� ¼ ð1 − 2λÞαvSv · δMv þ ð1 − λÞSv · ΔhvðvÞ
− λxvðvÞ · δMv þ ½Mv;xvðvÞ� · ΔhvðvÞ: ð80Þ

Next, we have the cut Cv. Since dϕv ¼ 0 on the cut, we
have a significant simplification:

dx
∘
v · Δh

∘
vjCv

¼ dxv · ðδMvϕv þ ΔhvÞ; ð81Þ

x
∘
v · dΔh

∘
vjCv

¼ ðxv þ SvϕvÞ · dΔhv: ð82Þ

In fact, the cut has two sides: one at ϕv ¼ αv − 1=2 and
another at ϕv ¼ αv þ 1=2, with opposite orientation. Let us
label them C−

v and Cþ
v respectively. Any term that does not

depend explicitly on ϕv will vanish when we take the
difference between both sides of the cut, since they only
differ by the value of ϕv. Thus only the terms dxv · δMvϕv
and Sv · dΔhvϕv survive. The relevant contribution from
each side of the cut is therefore

ΘC�
v
¼
Z

R

r¼0

ðð1−λÞdxv ·δMvϕv−λSv · dΔhvϕvÞ
����
ϕv¼αv�1=2

¼
�
αv�

1

2

��
ð1−λÞδMv ·

Z
R

r¼0

dxv−λSv ·
Z

R

r¼0

dΔhv

�

¼
�
αv�

1

2

�
ðð1−λÞδMv · ðxvðv0Þ−xvðvÞÞ

−λSv · ðΔhvðv0Þ−ΔhvðvÞÞÞ;
11Here we used the identity ½A;B� ·C ¼ A · ½B;C� to get

½Mv;xv� · δMv ¼ xv · ½δMv;Mv� ¼ 0 and Sv · ½Mv;Δhv� ¼
Δhv · ½Sv;Mv� ¼ 0.
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where the point at r ¼ 0 is the vertex v, and the point at
r ¼ R and ϕv ¼ αv � 1=2 is labeled v0. Taking the differ-
ence between both sides of the cut, we thus get the total
contribution:

ΘCv
¼ΘCþ

v
−ΘC−

v

¼
��

αvþ
1

2

�
−
�
αv−

1

2

��
ðð1−λÞðxvðv0Þ−xvðvÞÞ ·δMv

−λSv ·ðΔhvðv0Þ−ΔhvðvÞÞÞ
¼ð1−λÞðxvðv0Þ−xvðvÞÞ ·δMv

−λSv ·ðΔhvðv0Þ−ΔhvðvÞÞ:

Adding up the contributions from the inner boundary
and the cut, we obtain the vertex symplectic potential
Θv ≡ −ðΘ∂0v� þ ΘCv

Þ:

Θv ¼ −ð1 − 2λÞαvSv · δMv − Sv · ðΔhvðvÞ − λΔhvðv0ÞÞ
ð83Þ

þ ðxvðvÞ − ð1 − λÞxvðv0ÞÞ · δMv

− ½Mv;xvðvÞ� · ΔhvðvÞ: ð84Þ

D. The “particle” potential

Let xk
vðv0Þ be the component of xvðv0Þ parallel to Sv:

xvðv0Þ≡ xk
vðv0Þ þ x⊥

v ðv0Þ; xk
vðv0Þ≡ ðxvðv0Þ · J1ÞP1;

ð85Þ

where J1 and P1 are the Cartan generator of rotations and
translations respectively, and we remind the reader that
the dot product is defined in (4) as Ji · Pj ¼ δij and
Ji · Jj ¼ Pi · Pj ¼ 0. Similarly, let Δkhvðv0Þ be the com-
ponent of Δhvðv0Þ parallel to Mv:

Δhvðv0Þ≡ Δkhvðv0Þ þ Δ⊥hvðv0Þ;
Δkhvðv0Þ≡ ðΔhvðv0Þ · P1ÞJ1: ð86Þ

Let us now define a g-valued 0-form ΔHv, which is a
1-form on field space (i.e., a variation12):

ΔHv ≡ ΔhvðvÞ − λΔkhvðv0Þ; ð87Þ

and a g�-valued 0-form Xv called the vertex flux:

Xv ≡ xvðvÞ − ð1 − λÞxk
vðv0Þ − ð1 − 2λÞαvSv: ð88Þ

Then since Sv · Δhvðv0Þ ¼ Sv · Δkhvðv0Þ we have

Sv · ðΔhvðvÞ − λΔhvðv0ÞÞ ¼ Sv · ΔHv; ð89Þ

and since xvðv0Þ · δMv ¼ xk
vðv0Þ · δMv we have

ðxvðvÞ− ð1− λÞxvðv0Þ− ð1− 2λÞαvSvÞ · δMv ¼Xv · δMv:

ð90Þ

Furthermore, since ½Mv;x
k
vðv0Þ� ¼ ½Mv;Sv� ¼ 0 and

½Mv;Xv� · Δkhvðv0Þ ¼ 0 we have

½Mv;xvðvÞ� · ΔhvðvÞ ¼ ½Mv;Xv� · ΔHv: ð91Þ

Therefore (83) becomes

Θv ¼ Xv · δMv − ðSv þ ½Mv;Xv�Þ · ΔHv: ð92Þ

This potential resembles that of a point particle with mass
Mv and spin Sv. Note that the free parameter λ has been
absorbed into Xv and ΔHv, so this potential is obtained
independently of the value of λ and thus the choice of
polarization.

E. The edge and arc contributions

To summarize our progress so far, we now have

Θ ¼
X
c

Θc þ
X
v

Θ∂Rv� þ
X
v

Θv; ð93Þ

where

Θc ¼
Z
∂c
ðð1 − λÞdxc · Δhc − λxc · dΔhcÞ; ð94Þ

Θ∂Rv� ¼
Z
∂Rv�

ðð1 − λÞdx∘ v · Δh
∘
v − λx

∘
v · dΔh

∘
vÞ; ð95Þ

and Θv is given by (92). In order to simplify Θ∂Rv�, we
recall from Sec. II A that the boundary ∂c of the cell c is
composed of edges (cci) and arcs (cvi) such that

∂c ¼ ⋃
Nc

i¼1

ððcciÞ ∪ ðcviÞÞ; ð96Þ

while the outer boundary ∂Rv� of the disk v� is composed
of arcs ðvciÞ such that

12Despite the suggestive notation, in principle ΔHv need not be
of the form δHvH−1

v for some G-valued 0-form Hv. It can instead
be of the form δhv for some g-valued 0-form hv. Its precise form
is left implicit, and we merely assume that there is a solution for
either Hv or hv in terms of hvðvÞ and hvðv0Þ.
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∂Rv� ¼ ⋃
Nv

i¼1

ðvciÞ; ð97Þ

where Nv is the number of cells around v. Importantly, in
terms of orientation, ðcc0Þ ¼ ðc0cÞ−1 and ðcvÞ ¼ ðvcÞ−1.
We thus see that each edge ðcc0Þ is integrated over exactly
twice, once from the integral over ∂c and once from the
integral over ∂c0 with opposite orientation, and similarly
each arc ðcvÞ is integrated over twice, once from ∂c and
once from ∂Rv� with opposite orientation. Hence we may
rearrange the sums and integrals as follows:

Θ ¼
X
ðcc0Þ

Θcc0 þ
X
ðvcÞ

Θvc þ
X
v

Θv; ð98Þ

where

Θcc0 ≡
Z
ðcc0Þ

ðð1 − λÞðdxc · Δhc − dxc0 · Δhc0 Þ

− λðxc · dΔhc − xc0 · dΔhc0 ÞÞ; ð99Þ

Θvc ≡
Z
ðvcÞ

ðð1 − λÞðdx∘ v · Δh
∘
v − dxc · ΔhcÞ

− λðx∘ v · dΔh
∘
v − xc · dΔhcÞÞ: ð100Þ

Next, we note that the connection A and frame field E are
defined using different variables on each cell and disk, but
overall they must be continuous on the entire spatial
manifold Σ. This implies that the variables from each cell
and disk, when evaluated on the edges and arcs, must be
related via continuity relations, which are, for the edges
ðcc0Þ,

hc0 ¼ hc0chc; xc0 ¼ hc0cðxc−xc0
c Þhcc0 ; onðcc0Þ; ð101Þ

and for the arcs ðvcÞ

hc ¼ hcvh
∘
v; xc ¼ hcvðx∘ v−xc

vÞhvc; onðvcÞ; ð102Þ

where hcc0 , hcv, xc0
c and xv

c are all constant and satisfy

hcc0 ¼ h−1c0c; hvc ¼ h−1cv ;

xc0
c ¼ −hcc0xc

c0hc0c; xv
c ¼ −hcvxc

vhvc: ð103Þ

By plugging these relations into Θcc0 and Θvc and sim-
plifying, using the identities

Δhc0 ¼ hc0cðΔhc − Δhc0c Þhcc0 ;
Δhc ¼ hcvðΔh

∘
v − ΔhcvÞhvc; ð104Þ

where Δhc0c ≡ δhcc0hc0c and Δhcv ≡ δhvchcv, we find

Θcc0 ¼ ð1 − λÞΔhc0c ·
Z
ðcc0Þ

dxc − λxc0
c ·

Z
ðcc0Þ

dΔhc; ð105Þ

Θvc ¼ ð1 − λÞΔhcv ·
Z
ðvcÞ

dx
∘
v − λxc

v ·
Z
ðvcÞ

dΔh
∘
v: ð106Þ

F. Holonomies and fluxes

Let us label the source and target points of the edge ðcc0Þ
as σcc0 and τcc0 respectively, and the source and target points
of the arc ðvcÞ as σvc and τvc respectively, where σ stands
for “source” and τ for “target”:

ðcc0Þ≡ ðσcc0τcc0 Þ; ðvcÞ≡ ðσvcτvcÞ: ð107Þ

This labeling is illustrated in Fig. 3 (taken from [13]). We
now define holonomies and fluxes on the edges and their
dual links, and on the arcs and their dual line segments.

1. Holonomies on the links and segments

The rotational13 holonomy hcc0 comes from the continu-
ity relations (101). Its role is relating the variables hc, xc on
the cell c to the variables hc0 ;xc0 on the cell c0. Now, in the
relation hcðxÞ ¼ hcc0hc0 ðxÞ, the holonomy on the left-hand
side is from the node c� to a point x on the edge ðcc0Þ.
Therefore, the holonomy on the right-hand side should also
take us from c� to x. Since hc0 ðxÞ is the holonomy from c0�
to x, we see that hcc0 must take us from c� to c0�. In other

FIG. 3. The intersection points (red circles) of truncated edges
and arcs along the oriented boundary ∂c (blue arrows).

13Recall that we are dealing with a generalized Euclidean or
Poincaré group G ⋉ g� where G represents rotations and g�
represents translations (or generalizations thereof). hcc0 is valued
in G and is thus a rotational holonomy, while xc0

c is valued in g�
and is thus a translational holonomy.
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words, the holonomy hcc0 is exactly the holonomy from c�
to c0�, along14 the link ðcc0Þ�.
Thus we define15 holonomies along the links ðcc0Þ�:

Hcc0 ≡ hcc0 ; ΔHc0
c ≡ δHcc0Hc0c: ð108Þ

Similarly, the holonomy hvc comes from the continuity
relations (102), and it takes us from the vertex v to the node
c�. We define ðvcÞ� to be the line segment connecting v to
c�; it is dual to the arc ðvcÞ and its inverse is ðcvÞ�. We then
define holonomies along the segments ðvcÞ�:

Hvc ≡ hvc; ΔHc
v ≡ δHvcHcv: ð109Þ

The inverse holonomies follow immediately from the
relations h−1cc0 ¼ hc0c and h−1vc ¼ hcv:

H−1
cc0 ¼ Hc0c; H−1

vc ¼ Hcv: ð110Þ
2. Fluxes on the edges and arcs

From the integral in the first term of (105), we are
inspired to define fluxes along the edges ðcc0Þ:

X̃c0
c ≡

Z
ðcc0Þ

dxc ¼ xcðτcc0 Þ − xcðσcc0 Þ: ð111Þ

The tilde specifies that the flux X̃c0
c is on the edge ðcc0Þ dual

to the link ðcc0Þ�; the fluxXc0
c , to be defined below, is on the

link, and similarly we will define H̃cc0 to be the holonomy
on the edge, while Hcc0 is the holonomy on the link.
The flux X̃c0

c is a composition of two translational
holonomies. The holonomy −xcðσcc0 Þ takes us from the
point σcc0 to the node c�, and then the holonomy xcðτcc0 Þ
takes us from c� to τcc0 . Hence, the composition of these
holonomies is a translational holonomy from σcc0 to τcc0 ,
that is, along16 the edge ðcc0Þ, as claimed.
To find the inverse flux we use ðcc0Þ ¼ ðc0cÞ−1, σcc0 ¼

τc0c and (101):

X̃c
c0 ≡

Z
ðc0cÞ

dxc0 ¼xc0 ðτc0cÞ−xc0 ðσc0cÞ

¼ hc0cðxcðσcc0 Þ−xcðτcc0 ÞÞhcc0 ¼−Hc0cX̃
c0
c Hcc0 : ð112Þ

Similarly, from the first integral in (106) we are inspired to
define fluxes along the arcs ðvcÞ:

X̃c
v ≡

Z
ðvcÞ

dx
∘
v ¼ x

∘
vðτvcÞ − x

∘
vðσvcÞ: ð113Þ

Note that this time, the two translational holonomies are
composed at v. As for the inverse, we define X̃v

c as follows
and use (102) to find a relation with X̃c

v, taking into account
the fact that ðcvÞ ¼ ðvcÞ−1 and σcv ¼ τvc:

X̃v
c ≡

Z
ðcvÞ

dxc ¼ xcðτcvÞ − xcðσcvÞ

¼ hcvðx∘ vðσvcÞ − x
∘
vðτvcÞÞhvc ¼ −HcvX̃

c
vHvc: ð114Þ

In conclusion, we have the relations

X̃c
c0 ¼ −Hc0cX̃

c0
c Hcc0 ; X̃v

c ¼ −HcvX̃
c
vHvc: ð115Þ

3. Holonomies on the edges and arcs

The holonomies and fluxes defined thus far will be used
in the λ ¼ 0 polarization. In the λ ¼ 1 (dual) polarization,
let us define holonomies along the edges ðcc0Þ and
holonomies along the arcs ðvcÞ:

H̃cc0 ≡ h−1c ðσcc0 Þhcðτcc0 Þ; ΔH̃c0
c ≡ δH̃cc0H̃c0c; ð116Þ

H̃vc ≡ h
∘−1
v ðσvcÞh

∘
vðτvcÞ; ΔH̃c

v ≡ δH̃vcH̃cv: ð117Þ

As with X̃c0
c , the holonomy H̃cc0 starts from σcc0 , goes to c�

via h−1c ðσcc0 Þ, and then goes to τcc0 via hcðτcc0 Þ. Therefore it
is indeed a holonomy along the edge ðcc0Þ. Similarly, the

holonomy H̃vc starts from σvc, goes to v via h
∘−1
v ðσvcÞ, and

then goes to τvc via h
∘
vðτvcÞ. Therefore it is indeed a

holonomy along the arc ðvcÞ.
The difference compared to X̃c0

c is that in H̃cc0 we have
rotational instead of translational holonomies, and the
composition of holonomies is (non-Abelian) multiplication
instead of addition. As before, the tilde specifies that the
holonomy is on the edges or arcs and not the dual links or
segments.
The variations of these holonomies are

ΔH̃c0
c ¼ h−1c ðσcc0 ÞðΔhcðτcc0 Þ − Δhcðσcc0 ÞÞhcðσcc0 Þ

¼ h−1c ðσcc0 Þ
�Z

ðcc0Þ
dΔhc

�
hcðσcc0 Þ; ð118Þ

ΔH̃c
v ¼ h

∘−1
v ðσvcÞðΔh

∘
vðτvcÞ − Δh

∘
vðσvcÞÞh

∘
vðσvcÞ

¼ h
∘−1
v ðσvcÞ

�Z
ðvcÞ

dΔh
∘
v

�
h
∘
vðσvcÞ: ð119Þ

Thus, we see that they relate to the integrals in the second
terms of (105) and (106).

14Since the geometry is flat, the actual path taken does not
matter, only that it starts at c� and ends at c0�. We may therefore
assume without loss of generality that the path taken by hcc0 is, in
fact, along the link ðcc0Þ�.

15The change from lowercase h to uppercase H is only
symbolic here, but it will become more meaningful when we
define other holonomies and fluxes below.

16Again, since the geometry is flat, the path passing through
the node c� is equivalent to the path going along the edge ðcc0Þ.
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Since ðcc0Þ ¼ ðc0cÞ−1, it is obvious that H̃−1
cc0 ¼ H̃c0c.

Furthermore, by combining (117) with (102) we may
obtain an expression for H̃vc in terms of hc:

H̃vc ¼ h−1c ðσvcÞhcðτvcÞ: ð120Þ

If we now define

H̃cv ≡ h−1c ðσcvÞhcðτcvÞ; ð121Þ

then using the relations σcv ¼ τvc and τcv ¼ σvc, which
come from the fact that ðvcÞ ¼ ðcvÞ−1, it is easy to see that
H̃−1

vc ¼ H̃cv. In conclusion, the inverses of these holono-
mies satisfy the relationships

H̃−1
cc0 ¼ H̃c0c; H̃−1

vc ¼ H̃cv: ð122Þ
4. Fluxes on the links and segments

Just as we defined the holonomies on the links and
segments from the variables hcc0 and hvc, which were used
in the continuity relations (101) and (102), we can similarly
define the fluxes on the links and segments from the
variables xc0

c and xc
v. These will, again, be used in the dual

polarization.
Let us define fluxes along the links ðcc0Þ� and segments

ðvcÞ�:

Xc0
c ≡ h−1c ðσcc0 Þxc0

c hcðσcc0 Þ; Xc
v ≡ h

∘−1
v ðσvcÞxc

vh
∘
vðσvcÞ:
ð123Þ

The factors of hcðσcc0 Þ and h
∘
vðσvcÞ are needed because they

appear alongside the integrals in the variations (118) and
(119). Thus, if we want the second terms in (105) and (106)
to look like we want them to, we must include these extra
factors in the definition of the fluxes. The fluxes are still
translational holonomies between two cells (in the case of
xc0
c ) or a cell and a disk (in the case of xc

v), but they contain
an extra rotation at the starting point.
The inverse link flux Xc

c0 follows from (101), (103)
and σcc0 ¼ τc0c, while the inverse segment flux Xv

c ≡
h−1c ðσcvÞxv

chcðσcvÞ follows from (102), (103) and
σcv ¼ τvc:

Xc
c0 ¼ −H̃−1

cc0X
c0
c H̃cc0 ; Xv

c ¼ −H̃−1
vcXc

vH̃vc: ð124Þ

5. The symplectic potential in terms
of the holonomies and fluxes

With the holonomies and fluxes defined above, we find
that we can write the symplectic potential on the edges and
arcs, (105) and (106), as

Θcc0 ¼ ð1 − λÞX̃c0
c · ΔHc0

c − λXc0
c · ΔH̃c0

c ; ð125Þ

Θvc ¼ ð1 − λÞX̃c
v · ΔHc

v − λXc
v · ΔH̃c

v: ð126Þ

The full symplectic potential becomes

Θ ¼
X
ðcc0Þ

ðð1 − λÞX̃c0
c · ΔHc0

c − λXc0
c · ΔH̃c0

c Þ

þ
X
ðvcÞ

ðð1 − λÞX̃c
v · ΔHc

v − λXc
v · ΔH̃c

vÞ

þ
X
v

ðXv · δMv − ðSv þ ½Mv;Xv�Þ · ΔHvÞ:

Notice how the holonomies and fluxes are always dual to
each other: one with tilde (on the edges/arcs) and one
without tilde (on the links/segments). For the λ ¼ 0
polarization, the holonomies are on the links ðcc0Þ� and
segments ðvcÞ� and the fluxes are on their dual edges ðcc0Þ
and arcs ðvcÞ. This is the polarization considered in [13],
and corresponds to the usual loop gravity picture. For the
λ ¼ 1 (dual) polarization, we have the opposite case:
the fluxes are on the links ðcc0Þ� and segments ðvcÞ�
and the holonomies are on their dual edges ðcc0Þ and arcs
ðvcÞ. For any other choice of λ, we have a combination of
both polarizations.
The phase space corresponding to X · ΔH for some flux

X and holonomy H is called the holonomy-flux phase
space, and it is the classical phase space of the spin
networks which appear in loop quantum gravity.

IV. THE GAUSS AND CURVATURE
CONSTRAINTS

We have seen that, in the continuum, the constraints are
F ¼ T ¼ 0. Let us see how they translate to constraints on
the discrete phase space. There will be two types of
constraints: the curvature constraints which corresponds
to F ¼ 0, and the Gauss constraints which correspond to
T ¼ 0. The constraints will be localized in three different
types of places: on the cells, on the disks, and on the faces.
After deriving all of the constraints and showing that they
are identically satisfied in our construction, we will
summarize and interpret them. The reader who is not
interested in the details of the calculation may wish to skip
to Sec. IV D.

A. Derivation of the constraints on the cells

1. The Gauss constraint on the cells

The cell Gauss constraint Gc will impose the torsion-
lessness condition T≡ dAE ¼ 0 inside the cells:

0 ¼ Gc ≡
Z
c
hcðdAEÞh−1c ¼

Z
c
dðhcEh−1c Þ

¼
Z
∂c
hcEh−1c ¼

Z
∂c
dxc: ð127Þ
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As we have seen, ∂c is composed of edges ðcciÞ and arcs
ðcviÞ such that

∂c ¼ ⋃
Nc

i¼1

ððcciÞ ∪ ðcviÞÞ: ð128Þ

Therefore we can split the integral as follows:

Gc ¼
X
c0∋c

Z
ðcc0Þ

dxc þ
X
v∋c

Z
ðcvÞ

dxc; ð129Þ

where c0 ∋ c means “all cells c0 adjacent to c” and v ∋ c
means “all vertices v adjacent to c.”
Using the fluxes defined in (111) and (114), we get17

Gc ¼
X
c0∋c

X̃c0
c þ

X
v∋c

X̃v
c ¼ 0: ð130Þ

This constraint is satisfied identically in our construction.
Indeed, from (111) and (114) we have

X̃c0
c ¼ xcðτcc0 Þ − xcðσcc0 Þ; X̃v

c ¼ xcðτcvÞ − xcðσcvÞ:
ð131Þ

Since τcci ¼ σcvi and τcvi ¼ σcciþ1
(the end of an edge is the

beginning of an arc and the end of an arc is the beginning of
an edge), and τcvNc

¼ σcc1 (the end of the last arc is the
beginning of the first edge), it is easy to see that the sumP

c0∋cX̃
c0
c þP

v∋cX̃
v
c evaluates to zero.

2. The curvature constraint on the cells

The cell curvature constraint Fc will impose that F≡
dAþ 1

2
½A;A� ¼ 0 inside the cells. An equivalent condition

is that the holonomy around the cell evaluates to the
identity:

1 ¼ Fc ≡ exp
⟶

Z
∂c
A: ð132Þ

Since ∂c ¼ ⋃Nc
i¼1 ððcciÞ ∪ ðcviÞÞ, we may decompose this

as a product of path-ordered exponentials over edges and
arcs:

Fc ¼
YNc

i¼1

�
exp
⟶

Z
ðcciÞ

A

��
exp
⟶

Z
ðcviÞ

A

�
: ð133Þ

Furthermore, since the geometry is flat, we may deform the
paths so that instead of going along the edges and arcs, it
passes through the node c�. From (48) we have that

exp
⟶

Z
x

c�
A ¼ h−1c ðc�ÞhcðxÞ; ð134Þ

so

exp
⟶

Z
ðcciÞ

A ¼ exp
⟶

Z
τcci

σcci

A

¼
�
exp
⟶

Z
c�

σcci

A

��
exp
⟶

Z
τcci

c�
A

�

¼ h−1c ðσcciÞhcðτcciÞ ¼ H̃cci ; ð135Þ

where we used the definition (116) of the holonomy on the
edge. Note that the contribution from hcðc�Þ cancels.
Similarly, we find

exp
⟶

Z
ðcviÞ

A ¼ h−1c ðσcviÞhcðτcviÞ ¼ H̃cvi ; ð136Þ

where we used (121). Hence we obtain

Fc ¼
YNc

i¼1

H̃cci H̃cvi ¼ 1: ð137Þ

This is the curvature constraint on the cells. It is easy to
show that it is satisfied identically in our construction.
Indeed, using again the relations τcci ¼ σcvi , τcvi ¼ σcciþ1

and τcvNc
¼ σcc1 , we immediately see that

YNc

i¼1

H̃cci H̃cvi ¼
YNc

i¼1

ðh−1c ðσcciÞhcðτcciÞÞðh−1c ðσcviÞhcðτcviÞÞ

¼ 1; ð138Þ

as desired.

B. Derivation of the constraints on the disks

Since we have places the curvature and torsion excita-
tions inside the disks, the constraints on the disks must
involve these excitations—namely, Mv and Sv. We will
now see that this is indeed the case.

1. The Gauss constraint on the disks

The disk Gauss constraint Gv will impose the torsion-
lessness condition T≡ dAE ¼ 0 inside the punctured18

disks:

17Note that in [13] we used a different convention for Xv
c. This

resulted in a relative minus sign between the two terms, which
does not appear in this paper.

18As we have seen, we only have T ¼ 0 inside the punctured
disk v�; at the vertex v itself there is torsion, but v is not part of v�.
Instead, it is on its (inner) boundary. As can be seen from Fig. 2,
the path we take here, as given by (140), does not enclose the
vertex, and therefore the interior of the path is indeed torsionless.
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0 ¼ Gv ≡
Z
v�
h
∘
vðdAEÞh

∘−1
v ¼

Z
v�
dðh

∘
vEh

∘−1
v Þ

¼
Z
∂v�

h
∘
vEh

∘−1
v ¼

Z
∂v�

dx
∘
v: ð139Þ

The boundary ∂v� is composed of the inner boundary ∂0v�,
the outer boundary ∂Rv�, and the cut Cv:

∂v� ¼ ∂0v� ∪ ∂Rv� ∪ Cv: ð140Þ

Hence

Gv ¼
Z
∂Rv�

dx
∘
v −

Z
∂0v�

dx
∘
v −

Z
Cv

dx
∘
v; ð141Þ

where the minus signs represent the relative orientations of
each piece. On the inner boundary ∂0v�, we use the fact that
xv takes the constant value xvðvÞ to obtain

Z
∂0v�

dx
∘
v¼eMvϕvðxvðvÞþSvϕvÞe−Mvϕv jαvþ1

2

ϕv¼αv−1
2

¼SvþeMvðαv−1
2
ÞðeMvxvðvÞe−Mv−xvðvÞÞe−Mvðαv−1

2
Þ:

The outer boundary ∂Rv� splits into arcs, and we use the
definition (113) of the flux:

Z
∂Rv�

dx
∘
v ¼

X
c∈v

Z
ðvcÞ

dx
∘
v ¼

X
c∈v

X̃c
v: ð142Þ

On the cut Cv, we have contributions from both sides, one
at ϕv ¼ αv − 1

2
and another at ϕv ¼ αv þ 1

2
with opposite

orientation. Since dϕv ¼ 0 on the cut, we have

dx
∘
vjCv

¼ eMvϕvdxve−Mvϕv ; ð143Þ

and thus

Z
Cv

dx
∘
v ¼

Z
R

r¼0

�
eMvϕvdxve−Mvϕv

���ϕv¼αvþ1
2

ϕv¼αv−1
2

�

¼ eMvðαv−1
2
ÞðeMvðxvðv0Þ − xvðvÞÞe−Mv

− ðxvðv0Þ − xvðvÞÞÞe−Mvðαv−1
2
Þ;

since xv has the value xvðv0Þ at r ¼ R and xvðvÞ at r ¼ 0
on the cut.
Adding up the integrals, we find that the Gauss con-

straint on the disk is

Gv ¼
X
c∈v

X̃c
v − Sv

− eMvðαv−1
2
ÞðeMvxvðv0Þe−Mv − xvðv0ÞÞe−Mvðαv−1

2
Þ ¼ 0:

ð144Þ

In fact, since this constraint is used as a generator of
symmetries (as we will see below), it automatically comes
dotted with a Cartan element βv, which commutes with
eMv . Therefore, the last term may be ignored, and the
constraint simplifies to

βv ·Gv ¼ βv ·

�X
c∈v

X̃c
v − Sv

�
¼ 0: ð145Þ

Thus it may also be written

X
c∈v

X̃c
v ¼ Sv: ð146Þ

To see that this constraint is satisfied identically in our
construction, let us combine (113) with (39) to obtain

X̃c
v ¼ Svðτvc − σvcÞ þ eMvτvcxvðτvcÞe−Mvτvc

− eMvσvcxvðσvcÞe−Mvσvc ; ð147Þ

where we used a slight abuse of notation by using σvc and
τvc to denote the corresponding angles, σvc ≡ ϕvðσvcÞ and
τvc ≡ ϕvðτvcÞ. Let us now sum over the fluxes for each arc.
Since τvci ¼ σvciþ1

(each arc ends where the next one starts)
and τvcNv

¼ σvc1 þ 1 (the last arc ends a full circle after the
first arc began19), we get

XNv

i¼1

X̃ci
v ¼SvþeMvσvc1 ðeMvxvðσvc1Þe−Mv−xvðσvc1ÞÞe−Mvσvc1 :

ð148Þ

Choosing without loss of generality the point v0 to be at the
beginning of the first edge, v0 ¼ σvc1 , and recalling that this
point corresponds to the angle ϕv ¼ αv − 1

2
, we indeed

obtain precisely the constraint (144).

2. The curvature constraint on the disks

The disk curvature constraint Fv will impose that F≡
dAþ 1

2
½A;A� ¼ 0 inside the punctured disks.20 An equiv-

alent condition is that the holonomy around the punctured
disk evaluates to the identity:

19Recall that we are using scaled angles such that a full circle
corresponds to 1 instead of 2π.

20Again, we only have F ¼ 0 inside the punctured disk v�; at
the vertex v itself, there is curvature. However, the path of
integration does not enclose the vertex, and therefore the interior
of the path is indeed flat.
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1 ¼ Fv ≡ exp
⟶

Z
∂v�

A

¼ exp
⟶

�Z
C−
v

A

�
exp
⟶

�Z
∂Rv�

A

�

× exp
⟶

�Z
Cþ
v

A

�
exp
⟶

�Z
∂0v�

A

�
: ð149Þ

Let us describe the path of integration step by step, referring
to Fig. 2:

(i) We start at v, at the polar coordinates rv ¼ 0
and ϕv ¼ αv − 1=2.

(ii) We take the path C−
v along the cut at ϕv ¼ αv − 1=2

from rv ¼ 0 to rv ¼ R.
(iii) We go around the outer boundary ∂Rv� of the disk at

rv ¼ R from ϕv ¼ αv − 1=2 to ϕv ¼ αv þ 1=2.
(iv) We take the path Cþ

v along the cut at ϕv ¼ αv þ 1=2
from rv ¼ R to rv ¼ 0.

(v) Finally, we go around the inner boundary ∂0v�
of the disk at rv ¼ 0 from ϕv ¼ αv þ 1=2 to
ϕv ¼ αv − 1=2, back to our starting point.

Let us evaluate each term individually. On C−
v and Cþ

v we
have21 from (50)

exp
⟶

�Z
C−
v

A

�
¼ exp

⟶
Z

v0

v
A ¼ h−1v ðvÞhvðv0Þ; ð150Þ

exp
⟶

�Z
Cþ
v

A

�
¼ exp

⟶
Z

v

v0

A ¼ h−1v ðv0ÞhvðvÞ: ð151Þ

On the inner boundary we have, again using (50),

exp
⟶

Z
∂0v�

A ¼ exp
⟶

Z
vðϕv¼αv−1=2Þ

vðϕv¼αvþ1=2Þ
A ¼ h−1v ðvÞe−MvhvðvÞ;

ð152Þ

since hv is periodic. The minus sign comes from the fact
that we are going from a larger angle to a smaller angle.
Finally, on the outer boundary we have, splitting into arcs
and then using (136) and ðvcÞ ¼ ðcvÞ−1,

exp
⟶

Z
∂Rv�

A ¼
Y
c∈v

�
exp
⟶

Z
ðvcÞ

A

�
¼

Y
c∈v

H̃vc: ð153Þ

In conclusion, the curvature constraint on the disks is

Fv ¼ h−1v ðvÞhvðv0Þ
�Y

c∈v
H̃vc

�
h−1v ðv0Þe−MvhvðvÞ ¼ 1:

ð154Þ

In fact, we can multiply both sides by h−1v ðv0ÞhvðvÞ from
the left and h−1v ðvÞhvðv0Þ and obtain, after redefining Fv,

Fv ≡
�Y

c∈v
H̃vc

�
h−1v ðv0Þe−Mvhvðv0Þ ¼ 1: ð155Þ

This may be written more suggestively as

Y
c∈v

H̃vc ¼ h−1v ðv0ÞeMvhvðv0Þ: ð156Þ

Let us now show that this constraint is satisfied identically
in our construction. From (117) we have

H̃vc ≡ h
∘−1
v ðσvcÞh

∘
vðτvcÞ; ð157Þ

and using the definition h
∘
v ≡ eMvϕvhv from (39) we get

H̃vc ¼ h−1v ðσvcÞeMvðϕvðτvcÞ−ϕvðσvcÞÞhvðτvcÞ: ð158Þ

Now, consider the product

Y
c∈v

H̃vc ¼
YNv

i¼1

h−1v ðσvciÞeMvðϕvðτvci Þ−ϕvðσvci ÞÞhvðτvciÞ: ð159Þ

This is a telescoping product; the term hvðτvciÞ always
cancels the term h−1v ðσvciþ1

Þ in the next factor in the
product. After the cancellations take place, we are left
only with h−1v ðσvc1Þ, the product of exponents

YNv

i¼1

eMvðϕvðτvci Þ−ϕvðσvci ÞÞ ¼ eMv ; ð160Þ

where we used the fact that the angles sum to 1, and
hvðτvcNv

Þ ¼ hvðσvc1Þ. In conclusion,

Y
c∈v

H̃vc ¼ h−1v ðσvc1ÞeMvhvðσvc1Þ: ð161Þ

If we then choose, without loss of generality, the point v0
(which defines the cut Cv) to be at σvc1 (where c1 is an
arbitrarily chosen cell), we get

Y
c∈v

H̃vc ¼ h−1v ðv0ÞeMvhvðv0Þ; ð162Þ

and we see that the constraint is indeed identically satisfied.

21Note that the angle ϕvðxÞ in the term eMvϕvðxÞ in (50) refers to
the difference in angles between the starting point and the final
point; therefore, it vanishes in this case since the path along the
cut is purely radial.
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C. Derivation of the constraints on the faces

We have seen that the Gauss constraints, as we have
defined them, involve the fluxes on the edges and arcs.
Since these fluxes are not part of the phase space for λ ¼ 1,
these constraints cannot be imposed in that case. Similarly,
the curvature constraints involve the holonomies on the
edges and arcs and therefore will not work for the case
λ ¼ 0. This is a result of formulating both constraints on the
cells and disks, which then requires us to use the holon-
omies and fluxes on the edges and arcs which are on their
boundaries.
Alternatively, instead of demanding that the torsion and

curvature vanish on the cells and disks, we may demand
that they vanish on the faces fv created by the spin network
links. Since the (closures of the) faces cover the entire
spatial manifold Σ, this is entirely equivalent.
This alternative form is obtained by deforming (or

expanding) the disks such that they coincide with the
faces. The inner boundary ∂0v� → ∂0fv is still the vertex v.
The outer boundary ∂Rv� → ∂Rfv now consists of links
ðciciþ1Þ�, where i ∈ f1;…; Nvg and cNvþ1 ≡ c1. The point
v0 on the outer boundary can now be identified, without
loss of generality, with the node c�1. Thus, the cut Cv → Cfv
now extends from v to c�1.
Since the spatial manifold Σ is now composed solely of

the union of the closures of the faces, and not cells and
disks, we only need one type of Gauss constraint and one
type of curvature constraint. Let us derive them now.

1. The Gauss constraint on the faces

The face Gauss constraint Gfv will impose the torsion-
lessness condition T≡ dAE ¼ 0 inside the faces:

0 ¼ Gfv ≡
Z
fv

h
∘
vðdAEÞh

∘−1
v ¼

Z
fv

d
�
h
∘
vEh

∘−1
v

�

¼
Z
∂fv

h
∘
vEh

∘−1
v ¼

Z
∂fv

dx
∘
v: ð163Þ

The boundary ∂fv is composed of the inner boundary ∂0fv,
the outer boundary ∂Rfv, and the cut Cfv :

Gfv ¼
Z
∂Rfv

dx
∘
v −

Z
∂0fv

dx
∘
v −

Z
Cfv

dx
∘
v; ð164Þ

where the minus signs represent the relative orientations of
each piece. On the inner boundary ∂0fv, we use the fact that
xv takes the constant value xvðvÞ to obtain as for ∂0v�
above:

Z
∂0fv

dx
∘
v ¼ Sv þ eMvðαv−1

2
ÞðeMvxvðvÞe−Mv − xvðvÞÞ

× e−Mvðαv−1
2
Þ: ð165Þ

On the cut Cv, we have as before

Z
Cv

dx
∘
v ¼ eMvðαv−1

2
ÞðeMvðxvðv0Þ − xvðvÞÞe−Mv

− ðxvðv0Þ − xvðvÞÞÞe−Mvðαv−1
2
Þ: ð166Þ

The outer boundary ∂Rfv splits into links:

Z
∂Rfv

dx
∘
v ¼

XNv

i¼1

Z
c�iþ1

c�i

dx
∘
v ¼

XNv

i¼1

ðx∘ vðc�iþ1Þ − x
∘
vðc�i ÞÞ:

ð167Þ

Now, (102) can be inverted22 to get

x
∘
v ¼ hvcxchcv þ xc

v: ð168Þ

Plugging into (167), we get

Z
∂Rfv

dx
∘
v ¼

XNv

i¼1

ðhvciþ1
xciþ1

ðc�iþ1Þhciþ1v

− hvcixciðc�i Þhciv þ xciþ1
v − xci

v Þ: ð169Þ

In fact, we can get rid of the first two terms, since the sum is
telescoping: each term of the from hvcixciðc�i Þhciv for i ¼ j
is canceled23 by a term of the form hvciþ1

xciþ1
ðc�iþ1Þhciþ1v

for i ¼ j − 1. Thus we get

Z
∂Rfv

dx
∘
v ¼

XNv

i¼1

ðxciþ1
v − xci

v Þ: ð170Þ

Next, we note that from (101) we have

hcc0 ¼ hch−1c0 ; xc0
c ¼ xc − hcc0xc0hc0c; ð171Þ

and if we plug in (102) for hc, hc0 , xc and xc0 we get

hcc0 ¼ hcvhvc0 ; ð172Þ

xc0
c ¼ hcvðx∘ v − xc

vÞhvc − hcc0hc0vðx∘ v − xc0
v Þhvc0hc0c: ð173Þ

From (172) we see that hcc0hc0v ¼ hcv. Plugging this into
(173), we get the simplified expression

xc0
c ¼ hcvðxc0

v − xc
vÞhvc: ð174Þ

22Note that (102) is only valid on the arc ðvcÞ, which is the
boundary between c and v�. However, since we have expanded
the disks, the arcs now coincide with the links, with every arc
ðvcÞ intersecting the two links connected to the node c�. Thus the
equation is still valid at c� itself.

23Of course, xciþ1
v and xci

v also cancel each other, but we choose
to leave them.
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Therefore, we may rewrite (170) as

Z
∂Rfv

dx
∘
v ¼

XNv

i¼1

hvcix
ciþ1
ci hciv: ð175Þ

Finally, we recall from (123) the definition of the fluxes on
the links:

Xc0
c ≡ h−1c ðσcc0 Þxc0

c hcðσcc0 Þ ¼ h−1c ðv0Þxc0
c hcðv0Þ: ð176Þ

In the second equality we use the fact that, since we have
deformed the disks, the source point σcc0 of the edge ðcc0Þ
lies on the spin network itself, and we can further deform
the edge such that σcc0 ¼ v0. Plugging into (175), we obtain

Z
∂Rfv

dx
∘
v ¼

XNv

i¼1

hvcihciðv0ÞXciþ1
ci h−1ci ðv0Þhciv: ð177Þ

Finally, from (102) we have hvchc ¼ h
∘
v, and we get

Z
∂Rfv

dx
∘
v ¼ h

∘
vðv0Þ

�XNv

i¼1

Xciþ1
ci

�
h
∘−1
v ðv0Þ: ð178Þ

Adding up the integrals in (164), we obtain the Gauss
constraint on the faces:

Gfv ¼ h
∘
vðv0Þ

�XNv

i¼1

Xciþ1
ci

�
h
∘−1
v ðv0Þ−Sv

− eMvðαv−1
2
ÞðeMvxvðv0Þe−Mv −xvðv0ÞÞe−Mvðαv−1

2
Þ ¼ 0:

ð179Þ

Just like the Gauss constraint on the disks, this can be
simplified by noting that the constraint comes dotted with
an element βfv of the Cartan subalgebra, which commutes
with Mv:

βfv ·Gfv ¼ βfv ·

�
hvðv0Þ

�XNv

i¼1

Xciþ1
ci

�
h−1v ðv0Þ − Sv

�
¼ 0;

ð180Þ

where we used the fact that h
∘
v ¼ eMvϕvhv and the eMvϕv

part commutes with βfv . Thus, Gauss constraint on the
faces may be rewritten in a simplified way:

Gfv ≡
XNv

i¼1

Xciþ1
ci − h−1v ðv0ÞSvhvðv0Þ ¼ 0: ð181Þ

Let us now show that this constraint is satisfied identically.

We have from the definition of x
∘
v:

Z
∂Rfv

dx
∘
v ¼

XNv

i¼1

Z
c�iþ1

c�i

dx
∘
v ¼

XNv

i¼1

ðx∘ vðc�iþ1Þ − x
∘
vðc�i ÞÞ

¼
XNv

i¼1

ðeMvϕvðc�iþ1
Þxvðc�iþ1Þe−Mvϕvðc�iþ1

Þ

− eMvϕvðc�i Þxvðc�i Þe−Mvϕvðc�i Þ

þ Svðϕvðc�iþ1Þ − ϕvðc�i ÞÞÞ:

The sum is telescoping, and every term cancels the previous
one. However, in the term with i ¼ Nv, we have

ϕvðc�Nvþ1Þ ¼ ϕvðc�1Þ þ 1; ð182Þ

since ϕv, unlike xv, is not periodic. Therefore, the first and
last terms do not cancel each other. If we furthermore
choose v0 ≡ c�1, we get

Z
∂Rfv

dx
∘
v ¼ Sv þ eMvϕvðv0ÞðeMvxvðv0Þe−Mv − xvðv0ÞÞ

× e−Mvϕvðv0Þ: ð183Þ

Then, using (178) we immediately obtain (179), as desired.

2. The curvature constraint on the faces

The face curvature constraint Ffv will impose that F≡
dAþ 1

2
½A;A� ¼ 0 inside the faces. As before, an equiv-

alent condition is that the holonomy around the face
evaluates to the identity:

1 ¼ Ffv ≡ exp
⟶

Z
∂fv

A

¼ exp
⟶

�Z
C−
v

A

�
exp
⟶

�Z
∂Rfv

A

�

× exp
⟶

�Z
Cþ
v

A

�
exp
⟶

�Z
∂0fv

A

�
: ð184Þ

On C−
v and Cþ

v we have as before

exp
⟶

�Z
C−
v

A

�
¼ exp

⟶
Z

v0

v
A ¼ h−1v ðvÞhvðv0Þ; ð185Þ

exp
⟶

�Z
Cþ
v

A

�
¼ exp

⟶
Z

v

v0

A ¼ h−1v ðv0ÞhvðvÞ: ð186Þ

On the inner boundary we have

exp
⟶

Z
∂0fv

A ¼ exp
⟶

Z
vðϕv¼αv−1=2Þ

vðϕv¼αvþ1=2Þ
A ¼ h−1v ðvÞe−MvhvðvÞ:

ð187Þ
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Finally, we decompose the outer boundary (which is now a
loop on the spin network) into links:

exp
⟶

Z
∂Rfv

A ¼
YNv

i¼1

�
exp
⟶

Z
c�iþ1

c�i

A

�
: ð188Þ

From (55) we know that

exp
⟶

Z
c0�

c�
A ¼ h−1c ðc�Þhcc0hc0 ðc0�Þ; ð189Þ

and therefore

exp
⟶

Z
∂Rfv

A ¼
YNv

i¼1

h−1ci ðc�i Þhciciþ1
hciþ1

ðc�iþ1Þ

¼ h−1c1 ðv0Þ
�YNv

i¼1

hciciþ1

�
hc1ðv0Þ; ð190Þ

where we used the choice v0 ≡ c�1 and the fact that the
product is telescoping, that is, each term hciþ1

ðc�iþ1Þ cancels
the term h−1ciþ1

ðc�iþ1Þ which follows it, except the first and
last terms, which have nothing to cancel with.
Joining the integrals, we get

h−1v ðvÞhvðv0Þh−1c1 ðv0Þ
�YNv

i¼1

hciciþ1

�
hc1ðv0Þh−1v ðv0Þ

× e−MvhvðvÞ ¼ 1: ð191Þ

From (102) we find that

hc1ðv0Þh−1v ðv0Þ ¼ hc1v; ð192Þ

and thus

h−1v ðvÞhvc1
�YNv

i¼1

hciciþ1

�
hc1ve

−MvhvðvÞ ¼ 1: ð193Þ

For the last step, since we have the identity on the right-
hand side, we may cycle the group elements and rewrite the
constraint as follows:

Ffv ≡
�YNv

i¼1

hciciþ1

�
hc1ve

−Mvhvc1 ¼ 1: ð194Þ

Switching to the notation of (108) and (109), we rewrite
this as

Ffv ≡
�YNv

i¼1

Hciciþ1

�
Hc1ve

−MvHvc1 ¼ 1: ð195Þ

An even nicer form of this constraint is

YNv

i¼1

Hciciþ1
¼ Hc1ve

MvHvc1 : ð196Þ

In other words, the loop of holonomies on the left-hand side
would be the identity if there is no curvature, that
is, Mv ¼ 0.
To show that this constraint is satisfied identically, we

use (52) with x ¼ c� and y ¼ c0�:

exp
⟶

Z
c0�

c�
A ¼ h−1v ðc�ÞeMvðϕvðc0�Þ−ϕvðc�ÞÞhvðc0�Þ: ð197Þ

Comparing with (55), we see that

h−1c ðc�Þhcc0hc0 ðc0�Þ ¼ h−1v ðc�ÞeMvðϕvðc0�Þ−ϕvðc�ÞÞhvðc0�Þ;
ð198Þ

and therefore

hcc0 ¼ hcveMvðϕvðc0�Þ−ϕvðc�ÞÞhvc0 : ð199Þ

We now use this to rewrite the left-hand side of (196) as
follows:

YNv

i¼1

hciciþ1
¼

YNv

i¼1

hcive
Mvðϕvðc�iþ1

Þ−ϕvðc�i ÞÞhvciþ1
: ð200Þ

Again, we have a telescoping product, and after canceling
terms we are left with

YNv

i¼1

hciciþ1
¼ hc1ve

Mvhvc1 ; ð201Þ

which is exactly (196) after using (108) and (109).

D. Summary and interpretation

In conclusion, we have obtained24 Gauss constraints
Gc;Gv;Gfv and curvature constraints Fc, Fv, Ffv for each
cell c, disk v� and face fv:

Gc ≡
XNc

i¼1

ðX̃ci
c þ X̃vi

c Þ ¼ 0; ð202Þ

24One might wonder about the appearance of hvðv0Þ in (204)
and (206), since the true phase space variable is Hv, defined
implicitly in (87) as a function of hvðvÞ and hvðv0Þ. It is possible
that there is an expression for these two constraints in terms ofHv
instead of hvðv0Þ, but since we only have an implicit definition for
Hv in terms of its variation ΔHv, it is unclear how to obtain it. For
now, we simply assume that both Hv and hvðv0Þ are phase space
variables. See also footnote 12.
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Gv ≡
XNv

i¼1

X̃ci
v − Sv ¼ 0; ð203Þ

Gfv ≡
XNv

i¼1

Xciþ1
ci − h−1v ðv0ÞSvhvðv0Þ ¼ 0; ð204Þ

Fc ≡
YNc

i¼1

H̃cciH̃cvi ¼ 1; ð205Þ

Fv ≡
�YNv

i¼1

H̃vci

�
h−1v ðv0Þe−Mvhvðv0Þ ¼ 1; ð206Þ

Ffv ≡
�YNv

i¼1

Hciciþ1

�
Hc1ve

−MvHvc1 ¼ 1: ð207Þ

The Gauss constraint on the cell c can also be written asX
c0∋c

X̃c0
c ¼ −

X
v∋c

X̃v
c: ð208Þ

It tells us that the sum of fluxes along the edges and arcs
surrounding c is zero, as expected given that the interior of
c is flat. Alternatively, we may say that the sum of fluxes
along the edges is prevented from summing to zero by the
presence of the fluxes on the arcs.
The Gauss constraint on the punctured disk v� can also

be written as X
c∈v

X̃c
v ¼ Sv: ð209Þ

It tells us that the sum of fluxes on the arcs of the disk is
prevented from summing to zero due to the torsion at the
vertex v, as encoded in the parameter Sv. Note that if
Sv ¼ 0, that is, there is no torsion at v, then the constraint
becomes simply

P
c∈vX̃

c
v ¼ 0.

Importantly, notice that the sum
P

v∋cX̃
v
c on the right-

hand side of (208) is over all the fluxes on the arcs
surrounding a particular cell c, while the sum

P
c∈vX̃

c
v

on the left-hand side of (209) is over all the fluxes on the
arcs surrounding a particular disk v�. While the sums look
alike at first sight, they are completely different and one
cannot be exchanged for the other.
The Gauss constraint on the face fv can also bewritten as

XNv

i¼1

Xciþ1
ci ¼ h−1v ðv0ÞSvhvðv0Þ: ð210Þ

It tells us that the sum of fluxes on the link forming the
boundary of the face is prevented from summing to zero
due to the torsion at the vertex v, as encoded in the
parameter Sv.

The curvature constraint on the cell c is

YNc

i¼1

H̃cciH̃cvi ¼ 1: ð211Þ

It is analogous to the cell Gauss constraint, and imposes
that the product of holonomies along the boundary of the
cell is the identity.
The curvature constraint on the punctured disk v� can

also be written as

Y
c∈v

H̃vc ¼ h−1v ðv0ÞeMvhvðv0Þ: ð212Þ

On the left-hand side, we have a loop of holonomies around
the vertex v. If Mv ¼ 0, that is, there is no curvature at v,
then the right-hand side becomes the identity, as we would
expect. Otherwise, it is a quantity which depends on the
curvature. The curvature constraint on the disks is thus
analogous to the Gauss constraint on the disks, with torsion
replaced by curvature.
Finally, the curvature constraint on the face fv can also

be written as

YNv

i¼1

Hciciþ1
¼ Hc1ve

MvHvc1 : ð213Þ

It has the same meaning as the one on the disks, except that
the loop of holonomies around the vertex v is now
composed of links instead of arcs.

V. THE CONSTRAINTS AS GENERATORS
OF SYMMETRIES

A. The discrete symplectic form

The discrete symplectic potential we have found is

Θ ¼
X
ðcc0Þ

ðð1 − λÞX̃c0
c · ΔHc0

c − λXc0
c · ΔH̃c0

c Þ

þ
X
ðvcÞ

ðð1 − λÞX̃c
v · ΔHc

v − λXc
v · ΔH̃c

vÞ

þ
X
v

ðXv · δMv − ðSv þ ½Mv;Xv�Þ · ΔHvÞ:

In the second line, we can use (114), that is, X̃v
c ¼

−HcvX̃
c
vHvc, to write

X̃c
v · ΔHc

v ¼ ð−HvcX̃
v
cHcvÞ · ðδHvcHcvÞ ¼ X̃v

c · ΔHv
c:

ð214Þ
Thus, the labels c and v may be freely exchanged. Using
the identity δΔH ¼ 1

2
½ΔH;ΔH�, we find that the corre-

sponding symplectic form Ω≡ δΘ is
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Ω ¼
X
ðcc0Þ

�
ð1 − λÞ

�
δX̃c0

c · ΔHc0
c þ 1

2
X̃c0

c · ½ΔHc0
c ;ΔHc0

c �
�
− λ

�
δXc0

c · ΔH̃c0
c þ 1

2
Xc0

c · ½ΔH̃c0
c ;ΔH̃c0

c �
��

þ
X
ðvcÞ

�
ð1 − λÞ

�
δX̃c

v · ΔHc
v þ

1

2
X̃c

v · ½ΔHc
v;ΔHc

v�
�
− λ

�
δXc

v · ΔH̃c
v þ

1

2
Xc

v · ½ΔH̃c
v;ΔH̃c

v�
��

þ
X
v

�
δXv · δMv − ðδSv þ ½δMv;Xv� þ ½Mv; δXv�Þ · ΔHv −

1

2
ðSv þ ½Mv;Xv�Þ · ½ΔHv;ΔHv�

�
:

We now look for transformations25 with parameters
gc ≡ eβc ; gv ≡ eβv , zc and zv such that

IβcΩ ∝ −βc · δGc; IβvΩ ∝ −βv · δGv; ð215Þ

IzcΩ ∝ −zc · ΔFc; IzvΩ ∝ −zv · ΔFv: ð216Þ

We will see that the proportionality coefficients will be
λ-dependent.

B. The Gauss constraints as generators of rotations

1. The Gauss constraint on the cells

Let us consider the rotation transformation with param-
eter βc defined by

LβcHcc0 ¼ βcHcc0 ; LβcHcv ¼ βcHcv;

LβcX̃
c0
c ¼ ½βc; X̃c0

c �; LβcX̃
v
c ¼ ½βc; X̃v

c�; ð217Þ

such that any other variables (in particular, those unrelated
to the particular c of choice) are unaffected. Applying it to
Ω and using the identity IβcΔH

c0
c ¼ IβcΔH

v
c ¼ βc, we get

IβcΩ ¼
X
c0∋c

ð1 − λÞð½βc; X̃c0
c � · ΔHc0

c

− δX̃c0
c · βc þ X̃c0

c · ½βc;ΔHc0
c �Þ

þ
X
v∋c

ð1 − λÞð½βc; X̃v
c� · ΔHv

c

− δX̃v
c · βc þ X̃v

c · ½βc;ΔHv
c�Þ:

However, the first and last triple products in each line
cancel each other, and we are left with

IβcΩ ¼ −ð1 − λÞβc ·
�X

c0∋c

δX̃c0
c þ

X
v∋c

δX̃v
c

�

¼ −ð1 − λÞβc · δGc:

Hence this transformation is generated by the cell Gauss
constraint Gc, given by (202), as long as λ ≠ 1.

2. The Gauss constraint on the disks

Next we consider the rotation transformation with
parameter βv defined by

LβvHvc ¼ βvHvc; LβvX̃
c
v ¼ ½βv;X̃c

v�;
LβvHv ¼ð1−λÞβvHv; LβvXv ¼ð1−λÞ½βv;Xv�; ð218Þ

such that any other variables (in particular, those unrelated
to the particular v of choice) are unaffected. Importantly,
we choose the 0-form βv to be valued in the Cartan
subalgebra, so it commutes with Mv and Sv. Applying
the transformation to Ω and using the identities IβvΔH

c
v ¼

βv and IβvΔHv ¼ ð1 − λÞβv, we get

IβvΩ¼ð1−λÞ
X
c∈v

ð½βv;X̃c
v� ·ΔHc

v−δX̃c
v ·βvþX̃c

v · ½βv;ΔHc
v�Þ

þð1−λÞð½βv;Xv� ·δMv− ½Mv; ½βv;Xv�� ·ΔHvÞ
þð1−λÞððδSvþ½δMv;Xv�þ½Mv;δXv�Þ ·βv
−ðSvþ½Mv;Xv�Þ · ½βv;ΔHv�Þ:

Isolating βv and using the fact that it commutes with Mv
and Sv, we see that most terms cancel,26 and we get

IβvΩ ¼ −ð1 − λÞβv ·
�X

c∈v
δX̃c

v − δSv

�
¼ −ð1 − λÞβv ·Gv:

ð220Þ

Hence this transformation is generated by the disk Gauss
constraint Gv, given by (203), as long as λ ≠ 1.

3. The Gauss constraint on the faces

Lastly, we consider the rotation transformation with
parameter βfv defined by

25The transformations will be given by the action of the Lie
derivative La ≡ Iaδþ δIa where Ia is the variational interior
product with respect to a. In the literature the notation δa is often
used instead, but we avoid it in order to prevent confusion with
the variational exterior derivative δ.

26In this calculation, we make use of the Jacobi identity:

½βv; ½Mv;Xv�� þ ½Mv; ½Xv; βv�� ¼ −½Xv; ½βv;Mv�� ¼ 0: ð219Þ

DUAL 2þ 1D LOOP QUANTUM GRAVITY ON THE EDGE PHYS. REV. D 100, 026003 (2019)

026003-21



Lβfv
H̃cc0 ¼ −βfvH̃cc0 ; Lβfv

Xc0
c ¼ −½βfv ;Xc0

c �;
Lβfv

Hv ¼ λβ̄fvHv; Lβfv
Xv ¼ λ½β̄fv ;Xv�; ð221Þ

such that any other variables (in particular, those unrelated
to the particular v of choice) are unaffected, and such that

βfv ≡ h−1v ðv0Þβ̄fvhvðv0Þ; ð222Þ

where β̄fv is valued in the Cartan subalgebra. Applying the
transformation to Ω, we get after a calculation analogous to
the one we did for the disks,

IβfvΩ ¼ −λ
�
βfv ·

X
c0∈c

δXc0
c − β̄fv · δSv

�

¼ −λβfv ·
�X

c0∈c

δXc0
c − h−1v ðv0ÞδSvhvðv0Þ

�
:

The variation of the Gauss constraint (204) is

δGfv ¼
XNv

i¼1

δXciþ1
ci − h−1v ðv0ÞðδSv þ ½Sv;Δhvðv0Þ�Þhvðv0Þ;

ð223Þ

but since β̄fv is in theCartanwehave β̄fv · ½Sv;Δhvðv0Þ� ¼ 0,
so this simplifies to

βfv · δGfv ¼ βfv ·

�XNv

i¼1

δXciþ1
ci − h−1v ðv0ÞδSvhvðv0Þ

�
:

ð224Þ

Thus, in conclusion,

IβfvΩ ¼ −λβfv · δGfv ; ð225Þ

and this transformation is generated by the face Gauss
constraint Gv, given by (204), as long as λ ≠ 0.

C. The curvature constraints as generators
of translations

1. The curvature constraint on the cells

For the curvature constraint on the cells, we would like to
find a translation transformation with parameter zc such that

IzcΩ ¼ −zc · ΔFc: ð226Þ

First, we should calculate ΔFc. Recall that

Fc ≡
YNc

i¼1

H̃cciH̃cvi ¼ 1: ð227Þ

To simplify the calculation, let us define Ki ≡ H̃cci H̃cvi
such that we may write

Fc ¼
YN
i¼1

Ki ¼ K1 � � �KN; ð228Þ

where we omit the subscript c on Nc for brevity. Then

δFc ¼ δK1K2 � � �KN þK1δK2K3 � � �KN þ�� �
þK1 � � �KN−2δKN−1KN þK1 � � �KN−1δKN

¼ΔK1K1K2 � � �KN þK1ΔK2K2K3 � � �KN þ���
þK1 � � �KN−2ΔKN−1KN−1KN þK1 � � �KN−1ΔKNKN;

where ΔKi ≡ δKiK−1
i . Hence

ΔFc ≡ δFcF−1
c

¼ ΔK1 þ K1ΔK2K−1
1 þ � � �

þ ðK1 � � �KN−2ÞΔKN−1ðK1 � � �KN−2Þ−1
þ ðK1 � � �KN−1ÞΔKNðK1 � � �KN−1Þ−1

≡XN
i¼1

ðK1 � � �Ki−1ÞΔKiðK1 � � �Ki−1Þ−1;

where K1 � � �Ki−1 ≡ 1 for i ¼ 1. For conciseness, we may
define χi such that χ1 ≡ 1 and, for i > 1,

χi ≡ K1 � � �Ki−1 ¼ H̃cc1H̃cv1 � � � H̃cci−1H̃cvi−1 ; ð229Þ

and write

ΔFc ¼
XN
i¼1

χiΔKiχ
−1
i : ð230Þ

Plugging in Ki ≡ H̃cci H̃cvi back, and using the identity

ΔKi ¼ ΔH̃ci
c þ H̃cciΔH̃

vi
c H̃cic ð231Þ

we get

ΔFc ¼
XN
i¼1

χiðΔH̃ci
c þ H̃cciΔH̃

vi
c H̃cicÞχ−1i : ð232Þ

Now, if we transform only the dual fluxesXc0
c andXv

c (for a
particular c), then we get

IzcΩ ¼ −λ
XNc

i¼1

ðLzcX
ci
c · ΔH̃ci

c þ LzcX
vi
c · ΔH̃vi

c Þ: ð233Þ

Comparing with (232), we see that if we take
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LzcX
ci
c ¼ χ−1i zcχi; LzcX

vi
c ¼ H̃cicχ

−1
i zcχiH̃cci ; ð234Þ

we will obtain

IzcΩ ¼ −λzc · ΔFc; ð235Þ

as required. Hence this transformation is generated by
the cell curvature constraint Fc, given by (205), as long
as λ ≠ 0.

2. The curvature constraint on the disks

As in the cell case, we would like to find a translation
transformation with parameter zv such that

IzvΩ ¼ −zv · ΔFv; ð236Þ

where

Fv ≡
�YNv

i¼1

H̃vci

�
h−1v ðv0Þe−Mvhvðv0Þ ¼ 1: ð237Þ

First, we should calculate ΔFv. Let us define, omitting the
subscript v on Nv for brevity,

Ki ≡ H̃vci ; i ∈ f1;…; Ng; ð238Þ

KNþ1 ≡ h−1v ðv0Þe−Mvhvðv0Þ; ð239Þ

and

χ1 ≡ 1; χi ≡ K1 � � �Ki−1: ð240Þ

Then we may calculate similarly to the previous subsection

Fv ¼
YNþ1

i¼1

Ki ⇒ ΔFv ¼
XNþ1

i¼1

χiΔKiχ
−1
i : ð241Þ

Note that for i ¼ N þ 1 we have

χNþ1 ≡ K1 � � �KN ¼ FvK−1
Nþ1 ¼ Fvh−1v ðv0ÞeMvhvðv0Þ;

ð242Þ

and since we are imposing Fv ¼ 1, we get simply

χNþ1 ¼ h−1v ðv0ÞeMvhvðv0Þ: ð243Þ

Furthermore, using the fact that

ΔKNþ1 ¼ h−1v ðv0Þðe−MvΔhvðv0ÞeMv − Δhvðv0Þ − δMvÞ
× hvðv0Þ; ð244Þ

we see that

χNþ1ΔKNþ1χ
−1
Nþ1 ¼ h−1v ðv0ÞðΔhvðv0Þ

− eMvΔhvðv0Þe−Mv − δMvÞhvðv0Þ:
ð245Þ

Therefore, we finally obtain the result

ΔFv ¼
XNv

i¼1

χiΔH̃
ci
v χ−1i þ h−1v ðv0Þ

× ðΔhvðv0Þ − eMvΔhvðv0Þe−Mv − δMvÞhvðv0Þ:
ð246Þ

Now, let us take

zv ≡ h−1v ðv0Þz̄vhvðv0Þ; ð247Þ

where z̄v is a 0-form valued in the Cartan subalgebra, and
calculate zv · ΔFv. We find that, since ½z̄v;Mv� ¼ 0, the
terms Δhvðv0Þ − eMvΔhvðv0Þe−Mv cancel out and we are
left with

zv · ΔFv ¼ zv ·

�XNv

i¼1

χiΔH̃
ci
v χ−1i − h−1v ðv0ÞδMvhvðv0Þ

�
:

ð248Þ

We may now derive the appropriate transformation. If we
transform only the segment flux Xc

v and the vertex flux Xv
(for a particular v), then we get

IzvΩ¼−λ
XNv

i¼1

LzvX
ci
v ·ΔH̃ci

v þLzvXv ·ðδMvþ½Mv;ΔHv�Þ:

ð249Þ

Comparing with (248), we see that if we take

LzvX
ci
v ¼ χ−1i zvχi;LzvXv ¼ λz̄v; ð250Þ

we will obtain, since z̄v · ½Mv;ΔHv� ¼ 0,

IzvΩ ¼ −λzv ·
�XNv

i¼1

χiΔH̃
ci
v χ−1i − h−1v ðv0ÞδMvhvðv0Þ

�

¼ −λzv · ΔFv; ð251Þ

as required. Hence this transformation is generated by the
disk curvature constraint Fv, given by (206), as long
as λ ≠ 0.

3. The curvature constraint on the faces

We would now like to find a translation transformation
with parameter zfv such that
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IzfvΩ ¼ −zfv · ΔFfv; ð252Þ

where

Ffv ≡
�YNv

i¼1

Hciciþ1

�
Hc1ve

−MvHvc1 ¼ 1: ð253Þ

As before, to calculate ΔFfv we define, omitting the
subscript v on Nv for brevity,

Ki ≡Hciciþ1
; i ∈ f1;…; Ng; ð254Þ

KNþ1 ≡Hc1ve
−MvHvc1 ; ð255Þ

χ1 ≡ 1; χi ≡ K1 � � �Ki−1: ð256Þ

Then a similar calculation to the previous section gives

ΔFfv ¼
XNv

i¼1

χiΔH
ciþ1
ci χ−1i

þHc1vðΔHc1
v −eMvΔHc1

v eMv −δMvÞHvc1 ; ð257Þ

and if we take

zfv ≡Hc1vz̄fvHvc1 ; ð258Þ

where z̄fv is a 0-form valued in the Cartan subalgebra, we
get

zfv · ΔFfv ¼ zfv ·

�XNv

i¼1

χiΔH
ciþ1
ci χ−1i −Hc1vδMvHvc1

�
:

ð259Þ

We may now derive the appropriate transformation. If we
transform only the edge flux X̃c0

c and the vertex fluxXv (for
a particular v), then we get

IzfvΩ ¼ ð1 − λÞ
XNv

i¼1

Lzfv
X̃ciþ1

ci · ΔHc0
c

þ Lzfv
Xv · ðδMv þ ½Mv;ΔHv�Þ: ð260Þ

Comparing with (259), we see that if we take

Lzfv
X̃ciþ1

ci ¼ −χ−1i zfvχi;LzvXv

¼ ð1 − λÞHvc1zfvHc1v; ð261Þ

we will obtain

IzfvΩ ¼ −ð1 − λÞzfv ·
�XNv

i¼1

χiΔH
ciþ1
ci χ−1i −Hc1vδMvHvc1

�

¼ −ð1 − λÞzfv · ΔFfv; ð262Þ

as required. Hence this transformation is generated by the
face curvature constraint Fv, given by (206), as long
as λ ≠ 0.

D. Conclusions

We have found that the Gauss constraints Gc;Gv;Gfv
and curvature constraints Fc, Fv, Ffv for each cell c, disk
v� and face fv, given by (202)–(207), generate trans-
formations with rotation parameters βc; βv; βfv and trans-
lations parameters zc; zv; zfv as follows:

IβcΩ ¼ −ð1 − λÞβc · δGc; IβvΩ ¼ −ð1 − λÞβv · δGv;

IβfvΩ ¼ −λβfv · δGfv ; ð263Þ

IzcΩ ¼ −λzc · ΔFc; IzvΩ ¼ −λzv · ΔFv;

IzfvΩ ¼ −ð1 − λÞzfv · ΔFfv: ð264Þ

The Gauss constraint on the cell c generates rotations of the
holonomies on the links ðcc0Þ� and segments ðcvÞ� con-
nected to the node c� and the fluxes on the edges ðcc0Þ and
arcs ðcvÞ surrounding c:

LβcHcc0 ¼ βcHcc0 ; LβcHcv ¼ βcHcv;

LβcX̃
c0
c ¼ ½βc; X̃c0

c �; LβcX̃
v
c ¼ ½βc; X̃v

c�; ð265Þ

where βc is a g�-valued 0-form.
The Gauss constraint on the disk v� generates rotations

of the holonomies on the segments ðvcÞ� connected to the
vertex v and the fluxes on the arcs ðvcÞ surrounding v�, as
well as the holonomy and flux on the vertex v itself:

LβvHvc ¼ βvHvc; LβvX̃
c
v ¼ ½βv;X̃c

v�;
LβvHv ¼ð1−λÞβvHv; LβvXv ¼ð1−λÞ½βv;Xv�; ð266Þ

where βv is a 0-form valued in the Cartan subalgebra h�
of g�.
The Gauss constraint on the face fv generates rotations

of the fluxes on the links ðcc0Þ� surrounding fv and the
holonomies on their dual edges ðcc0Þ, as well as the
holonomy and flux on the vertex v itself:

Lβfv
H̃cc0 ¼ −βfvH̃cc0 ; Lβfv

Xc0
c ¼ −½βfv ;Xc0

c �;
Lβfv

Hv ¼ λβ̄fvHv; Lβfv
Xv ¼ λ½β̄fv ;Xv�; ð267Þ

where β̄fv is a 0-form valued in the Cartan subalgebra h� of
g� and βfv ≡ h−1v ðv0Þβ̄fvhvðv0Þ.
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The curvature constraint on the cell c generates trans-
lations27 of the fluxes on the links ðcc0Þ� and segments
ðcvÞ� connected to the node c�:

LzcX
ci
c ¼ χ−1i zcχi; LzcX

vi
c ¼ H̃cicχ

−1
i zcχiH̃cci ; ð268Þ

where

χ1 ≡ 1; χi ¼ H̃cc1H̃cv1 � � � H̃cci−1H̃cvi−1 ; ð269Þ

and zc is a g-valued 0-form.
The curvature constraint on the disk v� generates trans-

lations of the fluxes on the segments ðvcÞ� connected to the
vertex v, as well as the flux on the vertex v itself:

LzvX
ci
v ¼ χ−1i zvχi; LzvXv ¼ λz̄v; ð270Þ

where

χ1 ≡ 1; χi ≡ H̃vci � � � H̃vci−1 ; ð271Þ

z̄v is a 0-form valued in the Cartan subalgebra h of g,
and zv ≡ h−1v ðv0Þz̄vhvðv0Þ.
The curvature constraint on the face fv generates trans-

lations of the fluxes on the edges ðcc0Þ dual to the links
surrounding the face fv, as well as the flux on the vertex v
itself:

Lzfv
X̃ciþ1

ci ¼ −χ−1i zfvχi; LzvXv ¼ ð1− λÞHvc1zfvHc1v;

ð272Þ

where

χ1 ≡ 1; χi ≡Hc1c2 � � �Hci−1ci ; ð273Þ

and zfv is a 0-form valued in the Cartan subalgebra h of g.
Importantly, in the case λ ¼ 0, the usual loop gravity

polarization, the curvature constraints on the cells and
disks do not generate any transformations since
IzcΩ ¼ IzvΩ ¼ 0. Similarly, for the case λ ¼ 1, the dual
polarization, the Gauss constraints on the cells and disks do
not generate any transformations since IβcΩ ¼ IβvΩ ¼ 0.
Of course, the reason for this is that, as we noted earlier,
these constraints are formulated in the first place in terms of
holonomies and fluxes which only exist in a particular
polarization. Thus for λ ¼ 0 we must instead use the
curvature constraint on the faces,28 and for λ ¼ 1 we must
instead use the Gauss constraint on the faces.
In the hybrid polarization with λ ¼ 1=2, all of the

discrete variables exist: there are holonomies and fluxes
on both the links/edges and the arcs/segments. Therefore, in

this polarization all six types of constraints may be
consistently formulated using the available variables, and
all of them generate transformations.

VI. SUMMARY AND OUTLOOK

In this paper, we generalized the work of [13] to include
the most general possible discretization. We discovered a
family of polarizations of the discrete phase space, given by
different values of the parameter λ. Of these, the three cases
of interest are λ ¼ 0, λ ¼ 1 and λ ¼ 1=2.
In the λ ¼ 0 case, which is the one we discussed in [13],

the holonomies are on the links (and segments) and the
fluxes are on their corresponding edges (and arcs), as in
the familiar case of loop gravity. The Gauss constraints on
the cells and disks generate rotations for all of the discrete
variables, while the curvature constraints on the faces
generate translations only for the fluxes on the edges and
vertices.
In the λ ¼ 1 case, the positions of the holonomies and

fluxes are reversed. The holonomies are on the edges
(and arcs) and the fluxes are on their corresponding links
(and segments). The curvature constraints on the cells and
disks generate translations for all of the fluxes, while the
Gauss constraints on the faces generate rotations only for
the fluxes on the links, holonomies on the edges, and fluxes
and holonomies on the vertices.
Finally, in the λ ¼ 1=2 case, we have the variables for

both polarizations simultaneously. All six types of con-
straints exist, and each of them generates its associated
transformations.
Intuitively, we may now conclude that the λ ¼ 0 polari-

zation corresponds to usual 2þ 1D general relativity, while
λ ¼ 1 (the dual polarization) corresponds to teleparallel
gravity. This intuition is motivated by the fact that, as we
have seen, in the λ ¼ 1 polarization the holonomies and
fluxes switch places, and thus the curvature and torsion
(and their respective constraints) also switch places.
Since 2þ 1D general relativity has curvature but zero

torsion, and teleparallel gravity has torsion but zero
curvature, it makes sense to claim that these polarizations
are related. Indeed, this is why we used the same parameter
λ in both (22) and (56). Since the choice λ ¼ 1=2 in (22)
corresponds to Chern-Simons theory, we may further claim
that the λ ¼ 1=2 polarization in the discrete case is a
discretization of Chern-Simons theory. Thus,

(i) the polarization λ ¼ 0 corresponds to 2þ 1D gen-
eral relativity,

(ii) the polarization λ ¼ 1=2 corresponds to Chern-
Simons theory, and

(iii) the polarization λ ¼ 1 corresponds to teleparallel
gravity.

A discussion of quantization in different polarizations is
provided in [9]. There, it is shown that in the λ ¼ 0 case, the
Gauss constraint is imposed at the kinematical level while
the curvature constraint encodes the dynamics. In the

27Note that the curvature constraints do not transform any
holonomies, since the holonomies are unaffected by translations.

28Which is indeed what we did in [13].
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λ ¼ 1, the roles of the constraints are reversed. This again
motivates a relation between the λ ¼ 1 case and teleparallel
gravity. The relation of the λ ¼ 1=2 case to Chern-Simons
theory is motivated in [14]. We leave a more in-depth
discussion and analysis of the relations between the λ ¼ 1
case and teleparallel gravity, and between the λ ¼ 1=2 case
and Chern-Simons theory, to future work.
Following our exhaustive study of discretization of

2þ 1D gravity, it is our goal to adapt this discretization
scheme to the physically relevant case of 3þ 1D gravity.
While in the 2þ 1D case there is only one place where an
integration may be performed in two different ways, in
the 3þ 1D case there are two such integrations, since we
have one more dimension. We expect to find both 3þ 1D
general relativity and 3þ 1D teleparallel gravity as

different polarizations of the discrete phase space. The
discretization in 3þ 1D dimensions will be presented in an
upcoming paper [35].
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