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In a recent paper, we introduced a new discretization scheme for gravity in 2 + 1 dimensions. Starting
from the continuum theory, this new scheme allowed us to rigorously obtain the discrete phase space of
loop gravity, coupled to particlelike “edge mode” degrees of freedom. In this work, we expand on that result
by considering the most general choice of integration during the discretization process. We obtain a family
of polarizations of the discrete phase space. In particular, one member of this family corresponds to the
usual loop gravity phase space, while another corresponds to a new polarization, dual to the usual one in
several ways. We study its properties, including the relevant constraints and the symmetries they generate.
Furthermore, we motivate a relation between the dual polarization and teleparallel gravity.
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I. INTRODUCTION

The theory of general relativity famously describes
gravity as a result of the curvature of spacetime itself.
Furthermore, the geometry of spacetime is assumed to be
torsionless by employing the Levi-Civita connection,
which is torsionless by definition. While this is the most
popular formulation, there exists an alternative but math-
ematically equivalent formulation called teleparallel gravity
[1-3], differing from general relativity only by a boundary
term. In this formulation, one instead uses the Weitzenbock
connection, which is flat by definition. The gravitational
degrees of freedom (d.o.f.) are then encoded in the torsion
of the spacetime geometry.

Loop quantum gravity [4] is a popular approach
towards the formulation of a consistent and physically
relevant theory of quantum gravity. In the canonical version
of the theory [5], one starts by rewriting general relativity
in the Hamiltonian formulation and quantizing using
the familiar Dirac procedure [6]. One finds a fully con-
strained system, that is, the Hamiltonian is simply a sum of
constraints.

In 2 + 1 spacetime dimensions, where gravity is topo-
logical [7], there are two such constraints:

(i) the Gauss (or torsion) constraint, which imposes

zero torsion everywhere, and

(i1) the curvature (or flatness) constraint, which imposes

zero curvature everywhere.
In the classical theory, it does not matter which constraint
is imposed first. However, in the quantum theory, it does
matter, since the Hilbert space is defined in terms of
representations of the symmetries generated by the con-
straints. The first constraint that we impose is used to
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define the kinematics of the theory, while the second
constraint will encode the dynamics. Thus, it seems
natural to identify general relativity with the quantization
in which the Gauss constraint is imposed first, and
teleparallel gravity with that in which the curvature
constraint is imposed first.

Indeed, in loop quantum gravity, which is a quantization
of general relativity, the Gauss constraint is imposed first.
This is done by selecting, as the basis for the kinematical
Hilbert space, the spin network basis [8] of rotation-
invariant states. Then, the curvature constraint is imposed
at the dynamical level in order to obtain the Hilbert space of
physical states.

In [9], an alternative choice was suggested where the
order of constraints is reversed. The curvature constraint is
imposed first by employing the group network basis of
translation-invariant states, and the Gauss constraint is the
one which encodes the dynamics. This dual loop quantum
gravity quantization is the quantum counterpart of tele-
parallel gravity, and could be used to study the dual vacua
proposed in [10,11].

In this paper, we will only deal with the classical theory.
We will explore a family of discretizations which includes,
in particular, three cases of interest:

(i) The loop gravity phase space, which is the classical
version of the spin network basis [12]. This case was
studied in detail in our paper [13] and is related to
2 4+ 1D general relativity. We will provide a more
rigorous derivation of some results, in particular the
discrete curvature constraint, and additional subtle
details which were missing in our initial treatment.
The phase space obtained in this case contains the
phase space of spin networks, plus curvature and
torsion excitations corresponding to edge modes
which do not cancel.
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(i) Dual loop gravity, which is the classical version of
the group network basis. This case was first studied
in [14] in the simple case where there are no
curvature or torsion excitations. It is intuitively
related to teleparallel gravity. Here, we will study
this case carefully, incorporating the edge modes as
was done in [13] for the loop gravity case. We will
rigorously derive the discrete constraints and the
symmetry transformations they generate. The result-
ing phase space will contain the phase space of
group networks, plus the same curvature and torsion
obtained in the previous case.

(iii) A mixed phase space, containing both loop gravity
and its dual, which is intuitively related to Chern-
Simons theory [15], as we will motivate below. In
this case our formalism should be related to existing
results [16-22].

Crucial to our formalism is the separation of discretization
into two steps. This procedure was first utilized, in the
3 + 1-dimensional case, in [23,24], but without considering
any curvature and torsion. The steps are as follows:

(1) Subdivision, or decomposition into subsystems.
More precisely, we define a cellular decomposition1
on our 2-dimensional spatial manifold. This struc-
ture has a dual structure, which as we will see, will
be the spin network graph.

(2) Truncation, or coarse-graining of the subsystems. In
this step, we assume that there is arbitrary curvature
and torsion inside each loop of the spin network. We
then “compress” the information about the geometry
into a single point, or vertex, inside the loop. Since
the only way to probe the geometry is by looking at
the holonomies and fluxes on the loops of the spin
network, the observables before and after this
truncation are the same.

The edge modes, mentioned earlier, are the final piece of
our formalism. When discretizing gauge theories, and
gravity in particular, a major problem is preserving gauge
invariance despite the discreteness of the resulting theory.
The presence of boundaries can be shown to introduce new
d.o.f., called edge modes [25-27],> which may be used to
dress observables and make them gauge invariant. These
edge modes are associated to new boundary symmetries,
which transform them and control the gluing map between
subsystems.

As we will see below, the edge modes at the boundaries
of the cells in our cellular decomposition will mostly cancel
with the edge modes on the boundaries of the adjacent cells.
However, there will also be edge modes at the vertices of
the cells, which will not have anything to cancel with.
These d.o.f. will survive the discretization process, and

"The cells in this decomposition can take any shape.
2See also [28] for a more intuitive discussion and [29-31] for
the case of 3 + 1-dimensional gravity.

introduce a particlelike phase space [32,33] for the curva-
ture and torsion, which we then interpret as mass and spin
respectively.

One might expect that the geometry will be encoded in
the constraints alone, by imposing that a loop of holon-
omies sees the curvature inside it and a loop of fluxes sees
the torsion inside it. As we will see, while the constraints do
indeed encode the geometry, the presence of the edge
modes enforces the inclusion of the curvature and torsion
themselves as additional phase space variables.

A. Basic definitions and notation

Consider a group G X g* = T*G, which is’ a generali-
zation of the Euclidean or Poincaré group. One possible
option is

ISU(2) = SU(2) X R3, (1)

but we will keep it general. The algebra for this group is
given by

[P,.P] =0,

i Lj [Jin]j] :fijk-]kv [Ji’Pj] :fijkka (2)
where f; jk are the structure constants. The algebra indices
i, j, k go from 1 to dim g, which is e.g., 3 for 8u(2). The
generators J; are the rotation generators, and they corre-
spond to a non-Abelian group G, while the generators P;
are the translation generators, and they correspond to an
Abelian normal subgroup g*.

Notation-wise, all Lie algebra elements and Lie-algebra-
valued forms will be written in bold font to distinguish
them from Lie group element or Lie-group-valued forms.
Furthermore, we will use calligraphic font for G X ¢* or
g @ g"-valued forms (which will rarely be of interest) and
Roman font for G, g or g*-valued forms.

Given any two Lie-algebra-valued forms A, B of degrees
deg A and degB respectively, we define the graded
commutator:

[A,B]=A AB—(—1)keAdeBR A A (3)

We also define a dot (inner) product, also known as the
Killing form, on the generators as follows:

Ji-P; =4, Ji-Jj=P;-P;=0. (4)

Given two Lie-algebra-valued forms, the dot product is
defined to include a wedge product. Thus, if A = A'J; is a

3The notation 7*G signifies the cotangent bundle of G.

4They satisfy antisymmetry f ,-J-" =—f ,-_,-k and the Jacobi
identity f|;;'f;/™ = 0. For 8u(2) we have f;;* =¢;* where
e,-jk is the Levi-Civita symbol.
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pure rotation and B = B'P; is a pure translation, which will
usually be the case,” we have

A-B=A A B, (6)

Finally, in addition to the exterior derivative d and the
interior product z on spacetime, we introduce a variational
exterior derivative ¢ and a variational interior product / on
field space. These operators act analogously to d and , and
in particular they are nilpotent, e.g., 5 = 0, and satisfy the
graded Leibniz rule. Degrees of differential forms are
counted with respect to spacetime and field space sepa-
rately; for example, if f is a O-form then déf is a 1-form on
spacetime, due to d, and independently also a 1-form on
field space, due to 6. The dot product defined above also
includes an implicit wedge product with respect to field-
space forms, such thate.g., of - 6g = —g - 6f if f and g are
O-forms.

B. The Chern-Simons action and 2 + 1D gravity

Let M be a 2 + 1-dimensional spacetime manifold and
let £ be a 2-dimensional spatial manifold such that M =
2 xR where R represents time. Let us also define the
Chern-Simons connection 1-form A, valued in g @ g*:

A=A+E=AJ, + EP, (7)

where A = A']J; is the g-valued connection 1-form and
E = E'P; is the g*-valued frame field 1-form. The
g @ g¢*-valued curvature 2-form F is then defined as

1
]:EdAJrE[A,.A], (8)
and it may be split into
fEF—’—TEFiJi—f—TiPi, (9)

where F = F'J; is the g-valued curvature 2-form and T =
T'P; is the g*-valued torsion 2-form, and they are defined in
terms of A and E as

1
FEdA+E[A,A], T=d,E=dE + [A,E|, (10)

where dy =d + [A, ] is the covariant exterior derivative.

°In the general case, which will only be relevant for our
discussion of Chern-Simons theory in the next subsection, for
g @ g*-valued forms A = A}J;, + ALP; and B = BiJ; + BLP;
we have

A -B=68;(A) A B+ Ay A B)). (5)

In our notation, the Chern-Simons action is given by

S[A] :%A/ct <dA+%[A,A]>, (11)

and its variation is

5S[A]:A<T-5A—%d(A-5A)). (12)

From this we can read the equation of motion
F =0, (13)

and, from the boundary term, the symplectic potential
1
OlA] = _5/ A-GA. (14)
b

which gives us the symplectic form

QLA = 50[A] —%/25,4-5,4. (15)

Furthermore, we can write the action® in terms of A and E:

S[A.E] = A <E-F—%d(A-E)>. (17)

This is the action for 2 4+ 1D gravity, with an additional
boundary term (which is usually disregarded by assuming
M has no boundary). Using the identity oF = d,J0A, we
find the variation of the action is

1
5S[A,E]—/ (F-éE+T-5A—§d(E-6A+A-5E)>,
M

(18)
and thus we see that the equations of motion are
F=0, T =0, (19)
and the symplectic potential is
1
@[A,E]E—E/(E-5A+A-5E). (20)
b

Of course, (19) and (20) may be easily derived from (13)
and (14).

®Here we use the following identities, derived from the
properties of the dot product (4) and the graded commutator:

A-dAA=E-dE=[E.E|=A-[A,A]=E-[A.E]=0. (16)
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C. Phase space polarizations and teleparallel gravity

The symplectic potential (20) results in the symplectic
form

QE&@z—/éE-éA. (21)
z

In fact, one may obtain the same symplectic form using a
family of potentials of the form

@i:—é((l—ﬂ)EﬁAJmlA-éE), (22)

where the parameter 1 € [0, 1] determines the polarization
of the phase space. This potential may be obtained from a
family of actions of the form

S,l—/w(E-F—/ld(A~E)), (23)

where the difference lies only in the boundary term and thus
does not affect the physics. Hence the choice of polariza-
tion does not matter in the continuum, but it will be very
important in the discrete theory, as we will see below.

The equations of motion for any action of the form (23)
(or constraints, in the Hamiltonian formulation) are, as we
have seen, as follows:

(i) the torsion (or Gauss) constraint T = 0, and

(ii) the curvature constraint F = 0.

Now, recall that general relativity is formulated using the
Levi-Civita connection, which is torsionless by definition.
Thus, the torsion constraint T = 0 can really be seen as
defining the connection A to be torsionless, and thus
selecting the theory to be general relativity. In this case,
F =0 is the true equation of motion, describing the
dynamics of the theory.

In the teleparallel formulation of gravity we instead use
the Weitzenbdck connection, which is defined to be flat but
not necessarily torsionless. In this formulation, we interpret
the curvature constraint F = 0 as defining the connection A
to be flat, while T = 0 is the true equation of motion.

There are three cases of interest when considering the
choice of the parameter A. The case 4 = 0 is the one most
suitable for 2 + 1D general relativity:

SﬁOI/E'F,
M

since it indeed produces the familiar action for 2 + 1D
gravity. The case A = 1/2 is one most suitable for 2 + 1D
Chern-Simons theory:

SAZ%Z[W(E-F—%d(A-E))

:_%/E(E.5A+A-5E), (25)

®A:0 - —/ E . 6A, (24)
z

®;

1
2

since it corresponds to the Chern-Simons action (17).
Finally, the case 4 =1 is one most suitable for 2 4+ 1D
teleparallel gravity:

SH:/ (E-F—d(A-E)), @,1:1:—/A-5E, (26)

as explained in [34].

Further details about the different polarizations may be
found in [14]. However, the discretization procedure in that
paper did not take into account possible curvature and
torsion d.o.f. In the rest of this paper, we will include these
d.o.f. in the discussion by generalizing our results in [13] to
include all possible polarizations of the phase space.

II. THE DISCRETE GEOMETRY

A. The cellular decomposition and its dual

We embed a cellular decomposition A and a dual
cellular decomposition A* in our 2-dimensional spatial
manifold X. These structures consist of the following
elements, where each element of A is uniquely dual to
an element of A*:

A A*

0-cells (vertices) v dual to 2-cells (faces) f,
1-cells (edges) e dual to 1-cells (links) e*
2-cells (cells) ¢ dual to 0-cells (nodes) c*

The 1-skeleton graph I" C A is the set of all vertices and
edges of A. Its dual is the spin network graph I'* C A*, the
set of all nodes and links of A*. Both graphs are oriented,
and we write e = (v2’) to indicate that the edge e starts at
the vertex v and ends at v/, and ¢* = (cc’)* to indicate that
the link e* starts at the node ¢* and ends at ¢’*. Furthermore,
since edges are where two cells intersect, we write e =
(cc’) =0c ndc’ to denote that the edge e is the inter-
section of the boundaries dc¢ and ¢’ of the cells ¢ and ¢’
respectively. If the link e* is dual to the edge e, then we
have that e = (cc’) and e* = (cc’)*; therefore the notation
is consistent. This construction is illustrated in Fig. 1 (taken
from [13]).

For the purpose of doing calculations, it will prove useful
to introduce disks D, around each vertex v. The disks have
aradius R, small enough that the entire disk D,, is inside the
face f, for every v. We also define punctured disks »*,
which are obtained from the full disks D,, by removing the
vertex v, which is at the center, and a cut C,, connecting v
to an arbitrary point vy on the boundary 0D,. Thus

v =D\{r}uC,). (27)
The punctured disks are equipped with a cylindrical

coordinate system (r,,¢,) such that r, € (0,R) and
¢, € (a, —%,av + %) note that ¢, is scaled by 2z, so it
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FIG. 1. A simple piece of the cellular decomposition A, in
black, and its dual spin network I'*, in blue. The vertices v of the
1-skeleton I' C A are shown as black circles, while the nodes ¢*
of I'* are shown as blue squares. The edges e € I' are shown as
black solid lines, while the links e¢* € I'* are shown as blue
dashed lines. In particular, two nodes ¢* and ¢’*, connected by a
link e* = (cc’)*, are labeled, as well as two vertices v and 7/,
connected by an edge e = (vv') = (cc’) = ¢ N ¢/, which is dual
to the link e*. There is one face in the illustration, f,, which is the
triangle enclosed by the three blue links at the center.

has a period of 1, for notational brevity. The boundary of
the punctured disk is such that

ov* = 0yv* U C, U Oxv™, (28)

where dyv* is the inner boundary at r, = 0, C,, is the cut at
¢, =a,— % and Jpv* is the outer boundary at r, = R, and
the point where the cut meets the outer boundary is
vo = (R, a, —%). Note that Ogv* = dD,. The punctured

disk is illustrated in Fig. 2 (taken from [13]).
The outer boundary dgv* of each disk is composed of

arcs (vc;) such that
N,

opv* = U (vey), (29)

i=1

where N, is the number of cells around » and the cells are
enumerated ¢, ..., cy, . Similarly, the boundary dc of the
cell ¢ is composed of edges (cc;) and arcs (cv;) such that

((cei) U (cvy)), (30)

where N, is the number of cells adjacent to ¢ or,
equivalently, the number of vertices around c¢. We will
use these decompositions during the discretization process.

aRU*

FIG. 2. The punctured disk v*. The figure shows the vertex v,
cut C,, inner boundary d,v*, outer boundary 0xv*, and reference
point .

B. Truncating the geometry to the vertices

1. Motivation

Before the equations of motion (i.e., the curvature and
torsion constraints F = T = 0) are applied, the geometry
on X can have arbitrary curvature and torsion. We would
like to capture the “essence” of the curvature and torsion
and encode them on codimension 2 defects.

For this purpose, we can imagine looking at every
possible loop on the spin network graph I'* and taking a
holonomy in G X g* around it. This holonomy will have a
part valued in g, which will encode the curvature, and a part
valued in ¢*, which will encode the torsion.

A loop of the spin network is the boundary Jf, of a face
f.- Since the face is dual to a vertex v, the natural place to
encode the geometry would be at the vertex. Thus, we will
place the defects at the vertices, and give them the
appropriate values in g @ g* obtained by the holonomies.

The disks D, defined above are in a 1-to-1 correspon-
dence with the faces f,. In fact, we can imagine deforming
the disks such that they cover the faces, and their bounda-
ries 0D, are exactly the loops df,. Thus, we may perform
calculations on the disks instead on the faces.

This intuitive and qualitative motivation will be made
precise in the following subsections.

2. The Chern-Simons connection on the disks

We define the Chern-Simons’ connection on the punc-
tured disk v* as follows:

"Recall that we use calligraphic font to denote forms valued in
the double G X ¢*, and bold calligraphic font for forms valued in
its Lie algebra g & g*.
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o —1 o
Al =H, dH, = H;'dH, + H;' M, H,dp,. (31)

where

o

(1) 'H, is a nonperiodic G X g*-valued O-form defined

as H, = eMPH,,
(i) H,is a periodic8 g @ g*-valued 0-form,
(iii) M, is a constant element of the Cartan subalgebra
HhOh of g @ g".
Note that this connection is related by a gauge trans-
formation of the form A, — H;'dH, + H;' AyH, to a
connection A defined as follows:

The connection A, satisfies [A, A,] = 0, so its curvature
is F, = d.A,. This curvature vanishes everywhere on the
punctured disk (which excludes the point v), since
d?¢, = 0. However, at the origin of our coordinate system,
i.e., the vertex v, ¢, is not well defined, so we cannot
guarantee that F, vanishes at v itself.

In fact, we can show that it must not vanish there. If we
integrate the curvature on the full disk D, using Stokes’
theorem, we get

[Fo-f A-mif ap-rm. o
D, oD, oD,

where faD d¢p, = 1 since we are using coordinates scaled
v

by 2z, and we used the fact that M, is constant. We
conclude that, since F, vanishes everywhere on v*, and yet
it integrates to a finite value at D,,, the curvature J must
take the form of a Dirac delta function centered at v:

Fo= Mv‘s(v)’ (34)

where §(v) is a distributional 2-form such that for any
0-form f,

/E £8(0) = (). (35)

The final step is to gauge-transform back from .4, to the
initial connection A defined in (31). The curvature trans-
forms in the usual way, F, — H;' FoH, = F, so we get

"F.lDl, = H;leHb(s(’U) = ,Pvé(v)’ (36)
where we defined

By “periodic” we mean that, under ¢ > ¢ + 1, the non-

periodic variable H, gets an additional factor of e due to the
term eM% while the periodic variable H, is invariant. (Recall
that we are scaling ¢ by 2z, so the period is 1 and not 2x.)

P, =H:' MH,. (37)

Note again that, while F |, (on the full disk) does not
vanish, |, (on the punctured disk) does vanish.

3. The connection and frame field on the disks

Now that we have defined the Chern-Simons connection
1-form A and found its curvature F on the disks, we split
A into a g-valued connection 1-form A and a g*-valued
frame field 1-form E as defined in (7). Similarly, we split F
into a g-valued curvature 2-form F and a g*-valued torsion
2-form T as defined in (9).

From (7) we get

o—]1 o o—1 o

E|L* = hL dXv;lw (38)

where .
(i) h, is a nonperiodic G-valued O-form and x, is a
nonperiodic g*-valued O-form such that’

hy=eMdeh, x, =M (x, +8,4,)e ™M,

(39)

(ii) h, is a periodic G-valued O-form,

(iii) x, is a periodic g*-valued O-form,

(iv) M, is a constant element of the Cartan subalgebra [
of g, such that M, = M, J,; where J; is the Cartan
generator,

(v) S, is a constant element of the Cartan subalgebra §*
of g, such that S, = S,P; where P, is the Cartan
generator, and

(vi) by construction [M,,S,] = 0.

The full expressions for A and E on v* in terms of &, and
x, are as follows:

A
E

v h;ldhL + hlevhvdd’w
= hyldx,h, + By NS, + M, x,])h,dg,.  (40)

Furthermore, from (9) we get

Flp, =p.,6(v),  Tlp, = j,o(v), (41)

where p,, j, represent the momentum and angular momen-
tum respectively:

This notation differs from the one we used in [13]. For the
periodic variables, we used 4 and y in [13]. Here, we still use £,
but instead of y we use x due to this variable’s relation to the flux
X, as shown below. For the nonperiodic variables, we used u and

w in [13]. Here we use & and X in order to avoid introducing
additional letters, which might be confusing. The circle above the
letter conveys that it involves the angular variable ¢ and is thus
nonperiodic.
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P, = h;lehU, = hgl(sv + [Mm Xv])hv' (42)

In terms of p,, and j,, we may write A and E on the disk as
follows:

A

vt T hgldhv + p1)d¢1/" E

v hgldxvhv + jzdd)v
(43)

It is clear that the first term in each definition is flat and
torsionless, while the second term (involving p, and j,
respectively) is the one which contributes to the curvature
and torsion at v. Since the punctured disk v* does not
include v itself, the curvature and torsion vanish every-
where on it:

F

,=0, T

=0, (44)

As before, while F and T do not vanish on the full disk D,
they do vanish on »*. We call this tyPe of geometry a
piecewise flat and torsionless geometry. % Given a particu-
lar spin network I'*, and assuming that information about
the curvature and torsion may only be obtained by taking
holonomies along the loops of this spin network, the
piecewise flat and torsionless geometry carries, at least
intuitively, the exact same information as the arbitrary
geometry we had before.

4. The connection and frame field on the cells

Now that we have defined A and E on the punctured
disks v*, defining them on the cells c is a piece of cake. The
geometry inside the cells is flat and torsionless everywhere,
not distributional. Thus, the expressions for A and E on ¢
are analogous to the first term in each of the expressions in
(40), which is the flat and torsionless term:

Al =h'dh.  E| =h'dxh.  (45)
where &, is a G-valued O-form and x, is a g*-valued 0-
form. Of course, by construction, the curvature and torsion

associated to this connection and frame field vanish every-
where on the cell:

F|,=0, T|. =0. (46)
C. Dressed holonomies and edge modes

Consider the definition A|. = hz'dh, for A in terms of
h.. Note that A is invariant under the left action trans-
formation h, + g.h. for some constant g. € G. Thus,
inverting the definition A|, = hZ'dh, to find h, in terms
of A, we get

'"The question of whether the geometry we have defined here
has a notion of a “continuum limit”, e.g., by shrinking the loops
to points such that the discrete defects at the vertices become
continuous curvature and torsion, is left for future work.

h(x) = ho(c")ep / “AL (47)

c*

where exp is a path-ordered exponential, and 4 (c*) is a
new d.o.f. which does not exist in A. The notation suggests
that it is the holonomy “from c* to itself,” but it is in general
not the identity. The notation /. (c*) is just a placeholder for
the edge mode which “dresses” the holonomy.

For the “undressed” holonomy—which is simply the
path-ordered exponential from the node ¢* to some point
x—we thus have

& [ A = he!()ho). (49)

Similarly, the definition A|,. = h;'dh, + h;'M,h,d¢, is
invariant under 4, — g,h,, butonly if g, is in H, the Cartan
subgroup of G, since it must commute with M. Inverting

o—]1 o

the relation A|,- = h, dh,, we get

hy(x) = hy (v) &5 / “Al (49)

v

where again the edge mode h,(v) is a new d.o.f. The
undressed holonomy is then

P / CA = 1 (0)hy (x) = By ()M DR, (x). (50)

From (48) and (50), we may construct general path-ordered
exponentials from some point x to another point y by
breaking the path from x to y such that it passes through an
intermediate point. If that point is the node c¢*, then we get

SIRSCTICTRY
= (h'(x)he(c*)) (R (") he(y))
= h' (X)he(y). (51)
and if it’s the vertex v, we similarly get
[y N Y
exp/ A= (exp/ A) <exp/ A)
= ;' (x)eMB =D (). (52)
Furthermore, we may use the continuity relations (101) and
(102) (to be discussed later) to obtain a relation between the

path-ordered integrals and the holonomies 4. and h,,. If
y € (cc’) then we can write

=3 / YA = 7 (o (y). (53)

and if y € (cv) then we can write
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a)p /y A - hzl(x)hévill}(y) = hLTl('x)hCUeML(ﬁL(y)hU(y)'

(54)
Note that, in particular,
&6 [ A= o) (59)

A similar discussion applies to the translational holonomies
x. and x,, and one finds two new d.o.f., x.(c*) and x,(v).

II1. DISCRETIZING THE
SYMPLECTIC POTENTIAL

A. The choice of polarization

Recall that there is a family of symplectic potential given
by (22)

@A:—L((l —)E-SA+1A-SE).  (56)

We would like to replace A and E by their discretized
expressions given by (45) and (38). Before we do this for
each cell and disk individually, let us consider a toy model
where we simply take A = h~'dh and E = h~'dxh for
some G-valued O-form & and g*-valued O-form x over the
entire manifold . We begin by calculating the variations of
these expressions, obtaining

SA = 8(h~'dh) = h~'(dAh)h, (57)
SE = 5(h~'dxh) = h~'(dx + [dx, Ak))h,  (58)

where we have defined the notation Ah = Shh~! for the
Maurer-Cartan form on field space. Thus, we have

0, = _L (1= 2)dx - dAK + Adhh~ - (dox + [dx, AR])),
(59)

where we used the cyclicity of the dot product to cancel
some group elements. Now, the first term is very simple; in
fact, it is clearly an exact 2-form, and thus may be easily
integrated. However, the second term is complicated, and it
is unclear if it can be integrated. Nevertheless, we know that
every choice of A leads to the same symplectic form:

Q =60, = —/5E-5A = —/ (dox + [dx, Ah)) - dAA.
z z
(60)

Furthermore, we have seen from (23) that the difference
between different polarizations amounts to the addition of a

boundary term and is equivalent to an integration by parts.
Thus, we employ the following trick. First we take A = 0 in
©;, so that it becomes the 2 + 1D gravity polarization:

®:—/E-5A. (61)
b
Then, in the discretization process, we obtain
e = —/ dx - dAh. (62)
b

The integrand in an exact 2-form, and thus may be
integrated in two equivalent ways:

dx - dAh = d(x - dAR) = —d(dx - AR).  (63)

Note that the 1-forms x - dA/ and dx - Ak differ only by a
boundary term of the form d(x - Ah), and they may be
obtained from each other with integration by parts, just as
for the different polarizations. In fact, we may write

E-5A =dx-dAh=id(x-dAh) — (1—A)d(dx-Ah). (64)

We claim that, even though technically both options are
equivalent discretizations of the 4 = 0 polarization in (56),
there is in fact reason to believe that the choice of A in (56)
corresponds to the same choice of A in (64). We will
motivate this by showing that the choice 4 = 0 corresponds
to the usual loop gravity polarization, which is associated
with usual general relativity, while the choice A =1
corresponds to a dual polarization which, as we will see,
is associated with teleparallel gravity.

B. Decomposing the spatial manifold

As we have seen, the spatial manifold X is decomposed
into cells ¢ and disks v*. The whole manifold £ may be
recovered by taking the union of the cells with the closures
of the disks (recall that the vertices » are not in v*, they are
on their boundaries):

= <Uc> U (LUJU* U 81}*). (65)

c

Here, we are assuming that the cells and punctured disks
are disjoint; the disks “eat into” the cells. We can thus split
O into contributions from each cell ¢ and punctured disk v*:

0=> 0.+ 0, (66)

where

®C_—/E~5A, @1,*_—/E-5A. (67)
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Given the discretizations (45) and (38), we replace %, X in

(64) with h,, x, or h,, §U respectively, and then integrate
using Stokes’s theorem to obtain:

0, = / (1= A)dx, - Ah, — Ax, - dAh,),  (68)
dc

0, :/ (1= A)dx, - Ah, — 2%, - dAR,). (69)
ov*

In the next few subsections, we will manipulate these
expressions so that they can be integrated once again to
obtain truly discrete symplectic potentials.

C. The vertex and cut contributions

The boundary Ov* splits into three contributions: one
from the inner boundary dyv* (which is the vertex v), one
from the cut C,, and one from the outer boundary Jzv*.
Thus we have

®L‘* = _G)aov* - ®C,,. + ®3Rv*’ (70)

where the minus sign comes from the fact that orientation
of the outer boundary is opposite to that of the inner
boundary. Here we will discuss the first two terms, while
the contribution from the outer boundary Jdzv* will be
calculated in Sec. III E.

Writing the terms in the integrand explicitly in terms of
X,, h, using (39), and making use of the identities

dx, = Mo (dx, + (S, + [M,. x,])dg, )™M (71)
Ah, = Mt (5M, g, + Ah,)e M, 72)
dAh, = M (AAR, + (SM, + [M,. Ah,])dg, )Mo,
(73)
we get

dx, - Ah, = (dx, + (S, + [M,.x,])dg,) - (M, + Ah,),
(74)

X,-dAR, = (X, +S,¢,) - (dAR, + (6M, + [M,,Ah,))dd, ).
(75)

The integral on the inner boundary dyv* is easily calcu-
lated, since x,, and £, obtain the constant values x,(v) and
h,(v) on the inner boundary. Hence dx, (v) =dAh,(v) =0,
and these expressions simplify to

"Here we used the identity [A,B]-C =A -[B.C] to get
M,.x,|-6M, =x,-[6M,,M,] =0 and S, -[M,, Ah,]=
Ahl/ ' [Sv* Mz:} =0.

d;(v 'A;lv|<’)ov*
= (¢vsv oM, + (Sv + [MU’XU(U)D : Ahv(v))d¢1n (76)

X, - dAh, |y,
= (4,8, - M, + x,(v) - (M, + [M,,, Ah,(v)]))dé, .
(77)

To evaluate the contribution from the inner boundary, we
integrate from ¢, =a, —1/2 to ¢, =a, + 1/2. Then

since
a,+1/2 a,+1/2
[ =1 [T gdg = 08)

—1/2 ,—1/2
we get
®y, = (1 =24)a,8S, - M,
+ (1 _’1)<Sv + [Mv» er(v)}) ' Ahv(v)
—x,(v) - (M, + [M,, Ak, (v))). (79)
which may be simplified to

Oy = (1=20)a,S, - M, + (1 = 2)S, - Ah,(v)
- /1X1)(1J) oM, + [Mm X@,(U)} ’ Ahv(”)' (80)

Next, we have the cut C,. Since d¢, = 0 on the cut, we
have a significant simplification:

dX, - Ah|c =dx, - (5M,$, + Ah,),  (81)

;20 ’ dA;lb'Cl = (XU + Sv¢v) : dAhv~ (82)

In fact, the cut has two sides: one at ¢, = a, — 1/2 and
another at ¢, = a, + 1/2, with opposite orientation. Let us
label them C;, and C; respectively. Any term that does not
depend explicitly on ¢, will vanish when we take the
difference between both sides of the cut, since they only
differ by the value of ¢,. Thus only the terms dx, - 6M,¢,
and S, - dAh,¢, survive. The relevant contribution from
each side of the cut is therefore

R
Oc: = [ ((1-2)dx, oM., 18, -0Ah )
! r=0 ¢,=a,+1/2

1 R R
= (a“:lz—> ((l—ﬂ)éMv-/ dxv—ﬂSE-/ dAhb.>
2 r=0 r=0

= (avi;> ((1=2)8M,, - (x,(vg) —x,(v))
—78, - (Ah,(vg) —Ah,(v))).
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where the point at » = 0 is the vertex v, and the point at
r =R and ¢, = a, = 1/2 is labeled v,. Taking the differ-
ence between both sides of the cut, we thus get the total
contribution:

G)Cr - @Cj _®C;

— (@42 ) = (=2 )) (1=2) (s (00) = x, (1)) -5M,
((#3)-(=-3)

_ASL(Ahb(’UO)_AhL(’U)))
:(1_/1)(XU(UO)_XU(U>)'5MU
=S, (Ah,(vg)—Ah,(v)).
Adding up the contributions from the inner boundary

and the cut, we obtain the vertex symplectic potential
®L' = _(68011* + ®C,,):

0, = —(1-21)a,S, - M, =S, - (Ah,(v) — JAh,(v,))
(83)

+ (x,(v) = (1 = A)x,(vg)) - 6M,,
- {Mv’ XL'(U)] : Ahv(v)' (84)

D. The “particle” potential

Let x‘l‘;(vo) be the component of x,(v,) parallel to S,:

X1 (1) = (x,(vp) - J1)Py.
(85)

X, (o) = X(vo) + X2 (v),

where J; and P, are the Cartan generator of rotations and
translations respectively, and we remind the reader that
the dot product is defined in (4) as J;-P; =4;; and
J;-J; =P;-P; = 0. Similarly, let Alx,(vy) be the com-
ponent of Ah,(vy) parallel to M,

Ahy(vo) = Alh, (vy) + Ak, (),
A”hv(v()) = (Ahv(UO) : Pl)Jl- (86)

Let us now define a g-valued O-form AH,, which is a
1-form on field space (i.e., a Variationlz):

AH, = Ah,(v) — 24l (), (87)

Despite the suggestive notation, in principle AH, need not be
of the form 6H,H; "' for some G-valued O-form H . It can instead
be of the form Sh, for some g-valued O-form h,,. Its precise form
is left implicit, and we merely assume that there is a solution for
either H, or h, in terms of i, (v) and h,(vy).

and a g*-valued O-form X, called the vertex flux:
X, =x,(v) = (1= )xb(vy) = (1 =22)a,S,.  (88)

Then since S, - Ah,(vy) =S, - Alh,(vy) we have
S, - (Ah,(v) —AAh,(vy)) =S, - AH,, (89)

and since x,(vg) - M, = xﬁ(vo) -6M,, we have

(Xv(v) - (1 _/I)XL'(’UO) - (1 _2’1)(1st) '5Mv = Xu ' 5Mv-

(90)

Furthermore, since [M,,,X‘i‘;(vo)] =[M,,S,]=0 and
M,.X,] - Aln,(vy)) =0 we have

M,,x,(v)] - Ah,(v) = [M,,X,] - AH,. (91)
Therefore (83) becomes

0,=X,-6M,-(S,+[M,,X,])-AH,. (92)

This potential resembles that of a point particle with mass

M, and spin S,. Note that the free parameter A has been

absorbed into X, and AH,, so this potential is obtained

independently of the value of A and thus the choice of
polarization.

E. The edge and arc contributions

To summarize our progress so far, we now have
0-30.+Y 0, Y0, (o)
c v v

where

@C—/ (1= 2)dx, - Ah, — Ax, -dAh,),  (94)
dc

Oy _/ (1 = A)dx, - Ah, — X, - dAh,),  (95)
Ogv*

and ©, is given by (92). In order to simplify @y, -, we
recall from Sec. Il A that the boundary Oc of the cell ¢ is
composed of edges (cc;) and arcs (cv;) such that

au:Q«w»u@mx (%)

while the outer boundary dzv* of the disk v* is composed
of arcs (vc;) such that
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Orv* = g(vci), (97)

where N, is the number of cells around ». Importantly, in
terms of orientation, (cc’) = (c’c)™! and (cv) = (ve)™".
We thus see that each edge (cc’) is integrated over exactly
twice, once from the integral over dc and once from the
integral over Jc’ with opposite orientation, and similarly
each arc (cv) is integrated over twice, once from Oc and
once from Jxv* with opposite orientation. Hence we may
rearrange the sums and integrals as follows:

0= ZQCC/ + Z(auc + ZGU’ (98)
(cc) (ve) v

where

®cc’ = / ((1 - ’1) (dxc : Ahc - dXC/ : Ahc’)
(c¢)

— A(X, - dAh, — X, - dAh,)), (99)

©,= [ ((1-2)(dx,-Ah, —dx, - Ah,)

(
(ve)

— A(X, - dAh, — x,. - dAR,)). (100)
Next, we note that the connection A and frame field E are
defined using different variables on each cell and disk, but
overall they must be continuous on the entire spatial
manifold X. This implies that the variables from each cell
and disk, when evaluated on the edges and arcs, must be
related via continuity relations, which are, for the edges

(cc’),

hc’ = hc’chcv X = hc’c (Xc - Xg,)hcc” OI’I(CC/), (101)
and for the arcs (vc)
hc:hcv;lw Xc:hcv(;(v_xi;)hvw on(vc), (102)

where h,., h,,, x¢ and x? are all constant and satisfy

hee = h7!

cc’

— -1
hvc - hcv ’

Xg/ = _hcc’xg/hc’c’ (103)

vo__ c
Xe = _hcvxvhvc"

By plugging these relations into ®.. and ©,. and sim-
plifying, using the identities

Ahy = hyo(Ah, — AR Yhey

cec

Ahc = hcv (A;lv - Ahg)hvw (104)

where A = 6h, o h,. and AKS = 6h,.h,,, we find

FIG. 3. The intersection points (red circles) of truncated edges
and arcs along the oriented boundary Jc (blue arrows).

0. = (1 —)ARS /

dxc—zxg’-/ dAh,, (105)
(cc') (ec)

®1/c = (1 - j’)AhZ /

dx, — AXC - / dAh,.  (106)
() (v¢)

F. Holonomies and fluxes

Let us label the source and target points of the edge (cc¢’)
as 0. and 7. respectively, and the source and target points
of the arc (vc) as o, and 7, respectively, where o stands
for “source” and 7 for “target”:

(CC/) = (UL'L'/TCC/)’ (UC) = (0-1)L'T1/L')' (107)
This labeling is illustrated in Fig. 3 (taken from [13]). We
now define holonomies and fluxes on the edges and their
dual links, and on the arcs and their dual line segments.

1. Holonomies on the links and segments

The rotational'* holonomy /.., comes from the continu-
ity relations (101). Its role is relating the variables 4., X. on
the cell ¢ to the variables A4,/ X on the cell ¢/. Now, in the
relation h.(x) = h..h.(x), the holonomy on the left-hand
side is from the node ¢* to a point x on the edge (cc’).
Therefore, the holonomy on the right-hand side should also
take us from c* to x. Since A (x) is the holonomy from ¢’*
to x, we see that h.. must take us from c¢* to ¢’*. In other

PRecall that we are dealing with a generalized Euclidean or
Poincaré group G X g¢* where G represents rotations and g¢*
represents translations (or generalizations thereof). &, is valued
in G and is thus a rotational holonomy, while x¢ is valued in g*
and is thus a translational holonomy.
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words, the holonomy £, is exactly the holonomy from c*
to ¢*, along'* the link (cc’)*.
Thus we define'® holonomies along the links (cc’)*:

H. = hcc” AHEI =06H . Hy.. (108)
Similarly, the holonomy #4,. comes from the continuity
relations (102), and it takes us from the vertex v to the node
c*. We define (vc)* to be the line segment connecting v to
¢*; itis dual to the arc (vc) and its inverse is (cv)*. We then
define holonomies along the segments (vc)*:

HUC Ehb‘C’ AH; EaHDCHC’U’ (109)

The inverse holonomies follow immediately from the
relations i) = hy. and byl = h,,:

H)=H,,, H;! =H,,. (110)

2. Fluxes on the edges and arcs

From the integral in the first term of (105), we are
inspired to define fluxes along the edges (cc’):

Xg, E/ ch :Xc(ch’)_Xc(o-cc’)- (111)
(ec)

The tilde specifies that the flux X¢ is on the edge (cc’) dual
to the link (cc’)*; the flux X¢, to be defined below, is on the
link, and similarly we will define A, to be the holonomy
on the edge, while H_.. is the holonomy on the link.

The flux Xg’ is a composition of two translational
holonomies. The holonomy —x,.(c..) takes us from the
point 6. to the node ¢*, and then the holonomy X.(z..)
takes us from c* to 7... Hence, the composition of these
holonomies is a translational holonomy from o, to 7.,
that is, along'® the edge (cc’), as claimed.

To find the inverse flux we use (cc’) = (c'c)™!, 6,0 =
70, and (101):

X? = / dXLJ =X/ (TL'IC) - XC'(UC’C)
(c'c)
= hc’c<XC(0-cc’) - XC(TCC’))hCC’ = _Hc’cig/Hcc" (1 12)

Similarly, from the first integral in (106) we are inspired to
define fluxes along the arcs (vc):

“Since the geometry is flat, the actual path taken does not
matter, only that it starts at ¢* and ends at ¢’*. We may therefore
assume without loss of generality that the path taken by /... is, in
facté along the link (cc’)*.

“The change from lowercase h to uppercase H is only
symbolic here, but it will become more meaningful when we
define other holonomies and fluxes below.

16Again, since the geometry is flat, the path passing through
the node ¢* is equivalent to the path going along the edge (cc’).

o

- XU(GL'C)'

Xi= [ ax=xi(n) (113)
(ve)

Note that this time, the two translational holonomies are
composed at v. As for the inverse, we define X? as follows
and use (102) to find a relation with X¢, taking into account
the fact that (cv) = (ve)™! and 6., = 7,.:

XZ’ = / dx. = Xc(ch> - Xc(acv)
(cv)

o

= hcv(;(v (0-1)0) - Xy (Tvc))hvc = _Hcvigch” (1 14)
In conclusion, we have the relations
Xg’ = _Hc’cXg/Hcc’7 Xf = _Hcvf(f;ch" (115)

3. Holonomies on the edges and arcs
The holonomies and fluxes defined thus far will be used
in the 4 = 0 polarization. In the A = 1 (dual) polarization,
let us define holonomies along the edges (cc¢’) and
holonomies along the arcs (vc):

AAS =6H,  H,., (116)

HUC = h?) (GUC)hU(Tf)C)’ AH; = 5H7)CHC71' (1 17)
As with Xg’, the holonomy H . starts from ¢, goes to ¢*
via h7!(6,.), and then goes to 7, via h.(z.. ). Therefore it
is indeed a holonomy along the edge (cc’). Similarly, the

. -1
holonomy H . starts from o,,, goes to v via h, (o,.), and

then goes to 7,. via h,(z,.). Therefore it is indeed a
holonomy along the arc (vc).

The difference compared to X¢ is that in H,. we have
rotational instead of translational holonomies, and the
composition of holonomies is (non-Abelian) multiplication
instead of addition. As before, the tilde specifies that the
holonomy is on the edges or arcs and not the dual links or
segments.

The variations of these holonomies are

AI:IZ, = hc_l (Gcc’) (Ahc (ch’) - Ahc (Gcc’))hc(gcc/)

— (o) ( [ s Jifove) (118)
(ec’)
- o_l o o o
AHZ = h?/‘ (61)C)(Ah17 (T/UC) - Ahv (GUC))hU(G/UC)
o_] o o
— i () < / dAhU> h(0,0). (119)
(ve)

Thus, we see that they relate to the integrals in the second
terms of (105) and (106).
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Since (cc’) = (c'c)7!, it is obvious that H ! = H,,.
Furthermore, by combining (117) with (102) we may
obtain an expression for H,, in terms of A,:

HUC = hc_l (O-'l}C)hC(TUC)' (120)

If we now define

ey = 17 (00)he(zer), (121)
then using the relations o., = 7, and 7., = 0,., which
come from the fact that (vc) = (cv)~!, it is easy to see that
H;! = H,,. In conclusion, the inverses of these holono-
mies satisfy the relationships
e
H ,=H..,

;) =, (122)

4. Fluxes on the links and segments

Just as we defined the holonomies on the links and
segments from the variables /.. and h,,., which were used
in the continuity relations (101) and (102), we can similarly
define the fluxes on the links and segments from the
variables x¢ and x¢. These will, again, be used in the dual
polarization.

Let us define fluxes along the links (cc’)* and segments
(ve)*:

o—] o
h'l} (UT)C)X%h’U (0-1/‘6) °

(123)

X¢ = (o )xho(oe), XS

The factors of h.(o..) and h,(c,.) are needed because they
appear alongside the integrals in the variations (118) and
(119). Thus, if we want the second terms in (105) and (106)
to look like we want them to, we must include these extra
factors in the definition of the fluxes. The fluxes are still
translational holonomies between two cells (in the case of
xgl) or a cell and a disk (in the case of x¢), but they contain
an extra rotation at the starting point.

The inverse link flux X¢, follows from (101), (103)
and o, =7, while the inverse segment flux X! =
h:'(6.,)x h.(c.,) follows from (102), (103) and
Ocy = Tyet

X¢ =-H)XSH,., X! = -H;'X¢H,.. (124)

5. The symplectic potential in terms
of the holonomies and fluxes

With the holonomies and fluxes defined above, we find
that we can write the symplectic potential on the edges and
arcs, (105) and (106), as

O, = (1 =X -AHS —2X¢ - AHS,  (125)

0, = (1 =)XS-AHS — XS - AHS.  (126)

The full symplectic potential becomes

0 => ((1-)XS - AHS —IX¢ - AH)
(cc)
+ D (1= XS - AHS - IXS - AH)
(ve)

+ Z(Xv . 5Mv - (Sv + [MU’ X1:]) : AHU)'

Notice how the holonomies and fluxes are always dual to
each other: one with tilde (on the edges/arcs) and one
without tilde (on the links/segments). For the A =0
polarization, the holonomies are on the links (cc¢’)* and
segments (vc)* and the fluxes are on their dual edges (cc’)
and arcs (vc). This is the polarization considered in [13],
and corresponds to the usual loop gravity picture. For the
A =1 (dual) polarization, we have the opposite case:
the fluxes are on the links (cc’)* and segments (vc)*
and the holonomies are on their dual edges (cc’) and arcs
(vc). For any other choice of A, we have a combination of
both polarizations.

The phase space corresponding to X - AH for some flux
X and holonomy H is called the holonomy-flux phase
space, and it is the classical phase space of the spin
networks which appear in loop quantum gravity.

IV. THE GAUSS AND CURVATURE
CONSTRAINTS

We have seen that, in the continuum, the constraints are
F =T = 0. Let us see how they translate to constraints on
the discrete phase space. There will be two types of
constraints: the curvature constraints which corresponds
to F =0, and the Gauss constraints which correspond to
T = 0. The constraints will be localized in three different
types of places: on the cells, on the disks, and on the faces.
After deriving all of the constraints and showing that they
are identically satisfied in our construction, we will
summarize and interpret them. The reader who is not
interested in the details of the calculation may wish to skip
to Sec. IV D.

A. Derivation of the constraints on the cells

1. The Gauss constraint on the cells

The cell Gauss constraint G, will impose the torsion-
lessness condition T = dy E = 0 inside the cells:

0=G.= [ h(sBpn = [ dlhEn:)

—/ thhgl—/ dx,.
dc dc

(127)
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As we have seen, Oc is composed of edges (cc;) and arcs
(cv;) such that

N(
dc = U ((cc;) U (cvy)). (128)
i=1
Therefore we can split the integral as follows:
Go=3 [ ax+X [ e ()
EEVRACEY voc Y (cv)

where ¢’ 3 ¢ means “all cells ¢’ adjacent to ¢” and v S ¢
means “all vertices v adjacent to c.”
Using the fluxes defined in (111) and (114), we get17

G, =) X{+> Xr=o.

=Te ¢

(130)

This constraint is satisfied identically in our construction.
Indeed, from (111) and (114) we have

Xg, = XC(TCC’) — X (Gcc’)v Xg = X¢ (ch) — X (ch)‘

(131)

Since 7., = o, and 7, = o,,, (the end of an edge is the
beginning of an arc and the end of an arc is the beginning of
an edge), and 7., = 6., (the end of the last arc is the
beginning of the first edge), it is easy to see that the sum
S s XS+ 0, XY evaluates to zero.

2. The curvature constraint on the cells

The cell curvature constraint . will impose that F =
dA +1[A, A] = 0 inside the cells. An equivalent condition
is that the holonomy around the cell evaluates to the
identity:

1—F656§f)/ A. (132)
dc

Since dc = |JY*, ((cc;) U (cv;)), we may decompose this
as a product of path-ordered exponentials over edges and

arcs:
N,
F,= H <exp/ A) <exp/ A). (133)
i=1 (cci) (cv;)

Furthermore, since the geometry is flat, we may deform the
paths so that instead of going along the edges and arcs, it
passes through the node c*. From (48) we have that

"Note that in [13] we used a different convention for X?. This
resulted in a relative minus sign between the two terms, which
does not appear in this paper.

& ["A =17 nl) (134)
SO
op | A=éxp | A
- hC_l (GL'L'i)hC(TCCi) = HL‘L'i’ (135)

where we used the definition (116) of the holonomy on the
edge. Note that the contribution from #.(c*) cancels.
Similarly, we find

6;13/ A= hc_] (ch,-)hc (1617,») = Hcv,»’ (136)
(en)

where we used (121). Hence we obtain

NL‘
Fo=]]HeHe, = 1. (137)
i=1

This is the curvature constraint on the cells. It is easy to
show that it is satisfied identically in our construction.
Indeed, using again the relations ..., =
and 7

Ocvps Tew; = Oceyy
coy, = Oce;» W immediately see that

N,

ﬁccil:lcv,» = H (hc_l (Gcc,-)hc (ch,-))(h;l (chi)hc (Tc1>i))
i=1

—=

1

(138)

as desired.

B. Derivation of the constraints on the disks

Since we have places the curvature and torsion excita-
tions inside the disks, the constraints on the disks must
involve these excitations—namely, M, and S,. We will
now see that this is indeed the case.

1. The Gauss constraint on the disks

The disk Gauss constraint G, will impose the torsion-
lessness condition T = d,E = 0 inside the punctured18
disks:

"®As we have seen, we only have T = 0 inside the punctured
disk v*; at the vertex v itself there is torsion, but v is not part of v*.
Instead, it is on its (inner) boundary. As can be seen from Fig. 2,
the path we take here, as given by (140), does not enclose the
vertex, and therefore the interior of the path is indeed torsionless.
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o o—1 [e] o—1
O:GEE/ b, (dAE)h, :/ d(h,ER,)

© °—1 o
_/ h,Eh, _/ dx,.

The boundary dv* is composed of the inner boundary dyv*,
the outer boundary 0zv*, and the cut C,:

(139)

Ov* = Jyv* U Ogv* U C,,. (140)

Hence

(141)

o o o
G, = dx,, —/ dx, —/ dx,,
Ogv* pv* C,

where the minus signs represent the relative orientations of
each piece. On the inner boundary 9,v*, we use the fact that
x, takes the constant value x,(v) to obtain

=a, —7

/ dx, =eM4: (x, (1) +8,p, Je M0
801* ¢
_Sv_‘_e

The outer boundary dzv* splits into arcs, and we use the
definition (113) of the flux:

/ dx g / dx Xe¢.
RV cev V (vc) CGL

On the cut C,, we have contributions from both sides, one
at ¢, = a, —% and another at ¢, = «, +% with opposite
orientation. Since d¢, = 0 on the cut, we have

(142)

dx, |, = eMrdx, e M, (143)
and thus
/ dx, / eMvdudx, e~Mid /)' a’+2)
= M (e, () =, (1))

— (X,(vg) = X,(v)))e M (@),
since X, has the value x,(vy) at r = R and x,(v) at r =0
on the cut.

Adding up the integrals, we find that the Gauss con-
straint on the disk is

G, =) X{-
cEeV

M, (a M, _ x, (p))eMe(@=d) = 0.

(144)

— eMi(@=) (eMix (pg)e~

o=y (eMrx, (v)e™> —X@,(U))Q_Mv(%—%)_

In fact, since this constraint is used as a generator of
symmetries (as we will see below), it automatically comes
dotted with a Cartan element #,, which commutes with
eM:. Therefore, the last term may be ignored, and the
constraint simplifies to

CEV
Thus it may also be written
> Xg =5, (146)

To see that this constraint is satisfied identically in our
construction, let us combine (113) with (39) to obtain

X, = Sv(Tvc

— eMervaU (GUC‘

- O-l/'C> =+ eMvTL‘CXv(Tvc

)e_Mvo-bc s

)e_MrTbc

(147)

where we used a slight abuse of notation by using o, and
7, to denote the corresponding angles, o,. = ¢,(o,.) and
Tpe = ¢,(7,.). Let us now sum over the fluxes for each arc.
Since 7,., = 0,,,, (each arc ends where the next one starts)
and 7, oy, = ,,C] + 1 (the last arc ends a full circle after the

first arc began %), we get

M, — X'U<O-vcl ))e_Mﬁo—Nl :

N,
E X;l:SL _'_eMvom (eMl‘XU(Gvcl )e
=1

(148)

Choosing without loss of generality the point v, to be at the
beginning of the first edge, vy = o, , and recalling that this

1

point corresponds to the angle ¢, = a, —5, we indeed

obtain precisely the constraint (144).

2. The curvature constraint on the disks

The disk curvature constraint £, will impose that F =
dA +1[A,A] = 0 inside the punctured disks.”” An equiv-
alent cond1t10n is that the holonomy around the punctured
disk evaluates to the identity:

"Recall that we are using scaled angles such that a full circle
corresponds to 1 instead of 2z.

Again, we only have F = 0 inside the punctured disk »*; at
the vertex o itself, there is curvature. However, the path of
integration does not enclose the vertex, and therefore the interior
of the path is indeed flat.
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(149)

Let us describe the path of integration step by step, referring

to Fig. 2:
(i) We start at v, at the polar coordinates r, =0
and ¢, = a, — 1/2.

(ii)) We take the path C; along the cut at ¢, = a,, — 1/2
from r, =0 to r, = R.

(iii) We go around the outer boundary dpv* of the disk at
r, =R from ¢, =a,—1/2 to ¢, =a, + 1/2.

(iv) We take the path C; along the cut at ¢, = a, + 1/2
from r, = R to r, = 0.

(v) Finally, we go around the inner boundary Jyv*
of the disk at r,=0 from ¢,=a,+ 1/2 to
¢, = a, — 1/2, back to our starting point.

Let us evaluate each term individually. On C; and C;} we
have?' from (50)

ol )
?( L A) =& [" A= o (0. 15

On the inner boundary we have, again using (50),

o ()hy(vo).  (150)

— —_— 1}(¢1,:(l,,—1/2> 1 M
exp A =exp A =nyl(v)e ™Moh,(v),
Dyv* v(¢,=a,+1/2)

(152)

since A, is periodic. The minus sign comes from the fact
that we are going from a larger angle to a smaller angle.
Finally, on the outer boundary we have, splitting into arcs
and then using (136) and (vc) = (cv)™!,

(153)

s [ A=TI( [ )T
Ogv* cev cev

In conclusion, the curvature constraint on the disks is

*'Note that the angle ¢, (x) in the term eM:#:(*) in (50) refers to
the difference in angles between the starting point and the final
point; therefore, it vanishes in this case since the path along the
cut is purely radial.

F,= hv _M"hv(v) =1L

o

CcEV

(154)

In fact, we can multiply both sides by h;!(vg)h,(v) from
the left and h;'(v)h,(vy) and obtain, after redefining F,,

F, = <HH> (v)e™Meh, (vg) = 1. (155)
cev
This may be written more suggestively as
I14.. = Mo p (). (156)

CcCEV

Let us now show that this constraint is satisfied identically
in our construction. From (117) we have

-1

H’UC = ;ll} (GZ}C)IC;I?<TUC)’ (157)

and using the definition ;zv = eM9 1, from (39) we get

I:IUC — h;l (Ul;c)eMv ((/)1,(7:“.)—(/)1,(61 r:)) hu (TUC)‘ (158)
Now, consider the product
HH1 ¢ H hv Oy, /(% <T"C" )= (”m:’. 2 hv (Tvc,» ) . ( 159)

cev

This is a telescoping product; the term £,(7,.,) always
cancels the term h;l(awiﬂ) in the next factor in the
product. After the cancellations take place, we are left
only with h;!(,,, ), the product of exponents

N,
| | l Tlc,

where we used the fact that the angles sum to 1, and
hv(Tchv) = h,(6,,). In conclusion,

HHZ)L - v vcl)

cev

$u(00e) — M, | (160)

eMin,(o,,). (161)

If we then choose, without loss of generality, the point v
(which defines the cut C),) to be at 5, (where ¢; is an
arbitrarily chosen cell), we get

HHm =

CcEV

UO € th(UO) (162)

and we see that the constraint is indeed identically satisfied.
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C. Derivation of the constraints on the faces

We have seen that the Gauss constraints, as we have
defined them, involve the fluxes on the edges and arcs.
Since these fluxes are not part of the phase space for 4 = 1,
these constraints cannot be imposed in that case. Similarly,
the curvature constraints involve the holonomies on the
edges and arcs and therefore will not work for the case
A = 0. This is a result of formulating both constraints on the
cells and disks, which then requires us to use the holon-
omies and fluxes on the edges and arcs which are on their
boundaries.

Alternatively, instead of demanding that the torsion and
curvature vanish on the cells and disks, we may demand
that they vanish on the faces f, created by the spin network
links. Since the (closures of the) faces cover the entire
spatial manifold Z, this is entirely equivalent.

This alternative form is obtained by deforming (or
expanding) the disks such that they coincide with the
faces. The inner boundary 0yv* — 0, f, is still the vertex v.
The outer boundary Ogxv* — Jgf, now consists of links
(ciciv1)* wherei € {1,...,N,} and cy ;| = c;. The point
vy on the outer boundary can now be identified, without
loss of generality, with the node ¢7. Thus, the cut C,, - Cy,
now extends from v to cj.

Since the spatial manifold X is now composed solely of
the union of the closures of the faces, and not cells and
disks, we only need one type of Gauss constraint and one
type of curvature constraint. Let us derive them now.

1. The Gauss constraint on the faces

The face Gauss constraint G, will impose the torsion-
lessness condition T = d,E = 0 inside the faces:

o o_] o o_l
o—GfLE/ h,(d,E)h, —/ d(hl,EhD)
' fo 1o
o o—1 o
- / hEh, — / dx,.
of, of,

The boundary 0f, is composed of the inner boundary 9, f,,
the outer boundary Ogf,, and the cut Cy :

Gy, :/ d§y—/ dﬁéy—/ dx,, (164)
‘ Orfo Oof C

v

(163)

where the minus signs represent the relative orientations of
each piece. On the inner boundary 9, f,, we use the fact that
x, takes the constant value x,(v) to obtain as for dyv*
above:

/ d;(v =S, + eMv(%_%) (eerv(v)e_Mr - Xv(v))
(‘)Ofr

X e_ML (au_%) .

(165)

On the cut C,, we have as before

/ d;(v - eMz;(!lp—%) (eMv(XD(UO) - X?)(U))C_Mv
C7)
- (Xv(UO) -

The outer boundary Oy f, splits into links:

X, (v)))e M (@), (166)

NL

[ S e

Now, (102) can be inverted*

x,(c)).
(167)
to get
= hvcxchcv + x5 (168)
Plugging into (167), we get
N,
/ dX,, = Z(huciﬂxc,-ﬂ (C;L])hc,-ﬂu
8Rfu i=1

— hye X, (¢])he,, + Xy = X5). (169)

In fact, we can get rid of the first two terms, since the sum is
telescoplng each term of the from £, x. (¢})h,,, fori = j
is canceled” by a term of the form h,,. " c,+1( S he
for i = j — 1. Thus we get

N,
/ dx, =y (xy" = x7)). (170)
Orfo i—1
Next, we note that from (101) we have
hcc’ = hchz’l’ Xg/ =X, = hcc’x ’hc’c’ (171)

and if we plug in (102) for A, h., X. and x. we get

hcc/ = hc1)hvc" (172)

/

Xg = hcv(;(v - Xi‘)hvc - hcc’hc’v(;(v - Xg/)hvc’hc’c- (173)

From (172) we see that h..h., = h,,. Plugging this into
(173), we get the simplified expression
X(C" = hCU(Xz/

- X;)hvc" (174)

“Note that (102) is only valid on the arc (vc), which is the
boundary between ¢ and v*. However, since we have expanded
the disks, the arcs now coincide with the links, with every arc
(ve) intersecting the two links connected to the node ¢*. Thus the
quatlon is still valid at c itself.

‘of course, x,/*' and x¢ also cancel each other, but we choose
to leave them.
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Therefore, we may rewrite (170) as

/ dxv - Z th XC'Hhc iU
Dsz

Finally, we recall from (123) the definition of the fluxes on
the links:

(175)

/

X¢ =i (000 )X he(0ce) = he' (v0)XE he(vg).  (176)

In the second equality we use the fact that, since we have
deformed the disks, the source point .. of the edge (cc’)

lies on the spin network itself, and we can further deform
the edge such that 6. = v,. Plugging into (175), we obtain

N,
/ d;(L = Z //lvc,-hc,-(UO))(giJrl hc_,l (Uﬂ)hciv'
aRfl: i=1

(177)

Finally, from (102) we have h,.h. = h,, and we get

/akf, %, = (1) <ZX'*‘> (). (178)

Adding up the integrals in (164), we obtain the Gauss
constraint on the faces:

o N7’ e o—1
G, = h, (o) (Z x) B (ve) =S,
i=1

—_ eMw(an_%) (eML' Xy(vo)e_Mw — XZ} (/UO) )e_M1r (an_%) — O

(179)

Just like the Gauss constraint on the disks, this can be
simplified by noting that the constraint comes dotted with
an element § of the Cartan subalgebra, which commutes

with M
pe (e ()i

where we used the fact that 4, = eM? 1, and the eM:%
part commutes with ;. Thus, Gauss constraint on the
faces may be rewritten in a simplified way:

G, _ZX”‘—

Let us now show that this constraint is satisfied identically.

Br, -Gy, =

(180)

(v9)S,h,(vy) = 0.  (181)

We have from the definition of §y:

Z i) = X,(c}))

( M1.¢v(C?+1)X1;(CT+1)
i=1

—_ eMr¢v(C?)

I
Mz

/ dx, /
aRfI} 1 c;

i

=

e_Mv‘ﬁv(Cﬁl )

X, (cf)e M)
+ Sv(¢b<cj+l> - ¢D(C7)))

The sum is telescoping, and every term cancels the previous
one. However, in the term with i = N,, we have

¢1/(C;ﬁ\l1,+l) = ¢17(CT) + 1 (182)

since ¢,,, unlike x,, is not periodic. Therefore, the first and

last terms do not cancel each other. If we furthermore
choose vy = ¢}, we get

/ dx, =8, 4 M (00) (Mo, (vg)e ™ — x,, (1))
aRfv
X e_Mr(/)I (1}0). (183)

Then, using (178) we immediately obtain (179), as desired.
2. The curvature constraint on the faces

The face curvature constraint 'y will impose that F =

dA +3[A.A] =0 inside the faces. As before, an equiv-

alent condmon is that the holonomy around the face
evaluates to the identity:

of,
(],
v Orfo
{ [ s, )
cy Oof v

On C; and C; we have as before

o [ ; A)=a ["A=h ). (189
s [ : A)=aw | A h ). (156)

On the inner boundary we have

(184)

— — v(p,=a,~1/2) _ -M
xp [ A=exp A = b7 ()Mo, (1),
Oof v v(p,=a,+1/2)
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Finally, we decompose the outer boundary (which is now a
loop on the spin network) into links:

e;f)/ A= H(exp/ " ) (188)
DRfL
From (55) we know that
&xp / C A= (heoho(e). (189)
and therefore
exp A H hcl C Cr+1 Ciyl (CTJFI)
Orfo
N
= hc_ll(vO <H c; c,+1> cy UO (190)

where we used the choice vy = ¢} and the fact that the
product is telescoping, that is, each term &, | (¢}, ) cancels

the term h;! (cj,,) which follows it, except the first and

last terms, Wthh have nothing to cancel with.
Joining the integrals, we get

NL

(o) (v0) 2 () (H hc,.c,.ﬂ)hc,wo)h ()

i=1

xeMp, (v) =1. (191)
From (102) we find that
hcl (UO)h 1(1}0) hclvv (192)

and thus

N,

W ()he, (H hcic,.+l>hclf;e-Mlvh@<v> =1 (193)

i=1

For the last step, since we have the identity on the right-
hand side, we may cycle the group elements and rewrite the
constraint as follows:

N,
Fy, = <H hCiCiH)hCl”e_M[ythl =L (194)
i=1

Switching to the notation of (108) and (109), we rewrite
this as

N,
Ffv = (HHC:'C:'+1>H01D6 rH”Cl =1

i=1

(195)

An even nicer form of this constraint is

H HCiCH»l = H(,'[L’eMrHvC] * (196)

i=1

In other words, the loop of holonomies on the left-hand side
would be the identity if there is no curvature, that
is, M, = 0.

To show that this constraint is satisfied identically, we
use (52) with x = ¢* and y = ¢’*:

exp / A = ' (c*)eM Bl p (). (197)
Comparing with (55), we see that
(o () = I ()M D ),
(198)
and therefore
oo = he, @M DR, (199)

We now use this to rewrite the left-hand side of (196) as
follows:

Nl

=

T Ml )b
CiCit Civ Uity

1

(200)

i=1

Again, we have a telescoping product, and after canceling
terms we are left with

NL

thl+l: C]D

i=1

Moy, (201)

which is exactly (196) after using (108) and (109).

D. Summary and interpretation

In conclusion, we have obtained®* Gauss constraints
G.,G,,Gy, and curvature constraints F, F,,, F; for each
cell ¢, disk v* and face f:

N.
R R

(202)

*One might wonder about the appearance of h,(vg) in (204)
and (206), since the true phase space variable is H,, defined
implicitly in (87) as a function of %,(v) and A, (vg). It is possible
that there is an expression for these two constraints in terms of H,,
instead of h,(vy), but since we only have an implicit definition for
H, in terms of its variation AH ,, it is unclear how to obtain it. For
now, we simply assume that both H,, and A, (v,) are phase space
variables. See also footnote 12.
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Nz,v
G, =) Xi-S§,=0, (203)
i=1
ZX w1 (0g)S,hy (vg) = 0, (204)
N,
FC = I:]CC,- ~LT1, = 1’ (205)
i=1
N1
Fo= (T1 A )i e = 1. 09
i=1
N,
F; = (H Hcicl+l>Hme‘M H,, =1 (207)
i=1

(208)

3¢ LE

It tells us that the sum of fluxes along the edges and arcs
surrounding c is zero, as expected given that the interior of
c is flat. Alternatively, we may say that the sum of fluxes
along the edges is prevented from summing to zero by the
presence of the fluxes on the arcs.

The Gauss constraint on the punctured disk »* can also

be written as
D X¢ =S8,

CcEV

(209)

It tells us that the sum of fluxes on the arcs of the disk is
prevented from summing to zero due to the torsion at the
vertex v, as encoded in the parameter S,. Note that if
S, = 0, that is, there is no torsion at v, then the constraint
becomes simply > .., X6 = 0.

Importantly, notice that the sum ZUBCXg on the right-
hand side of (208) is over all the fluxes on the arcs
surrounding a particular cell ¢, while the sum > .., X
on the left-hand side of (209) is over all the fluxes on the
arcs surrounding a particular disk »*. While the sums look
alike at first sight, they are completely different and one
cannot be exchanged for the other.

The Gauss constraint on the face f, can also be written as

NL'
Z ngH = hgl(UO)Sz)h'v(”())'

i=1

(210)

It tells us that the sum of fluxes on the link forming the
boundary of the face is prevented from summing to zero
due to the torsion at the vertex v, as encoded in the
parameter S,.

The curvature constraint on the cell ¢ is

H ol =1

:1_2

(211)

It is analogous to the cell Gauss constraint, and imposes
that the product of holonomies along the boundary of the
cell is the identity.

The curvature constraint on the punctured disk v* can
also be written as

HHLC - UO ’hv(UO)’

CcEV

(212)

On the left-hand side, we have a loop of holonomies around
the vertex ». If M, = 0, that is, there is no curvature at v,
then the right-hand side becomes the identity, as we would
expect. Otherwise, it is a quantity which depends on the
curvature. The curvature constraint on the disks is thus
analogous to the Gauss constraint on the disks, with torsion
replaced by curvature.

Finally, the curvature constraint on the face f, can also
be written as

=H,,eMH,. . (213)

CiCiy1
i=1

It has the same meaning as the one on the disks, except that
the loop of holonomies around the vertex » is now
composed of links instead of arcs.

V. THE CONSTRAINTS AS GENERATORS
OF SYMMETRIES

A. The discrete symplectic form

The discrete symplectic potential we have found is
0 => ((1-)X¢ - AHS —IX¢ - AHY)
(cc)

+3 (1= )X AHS - AXS - AHS)
(ve)

+ZX - 6M,

In the second line, we can use (114), that is, Xﬁ =
-H.,X{H,., to write

— (S, + M,.X,]) - AH,).

X¢-AHS = (-H,.X!H,,) - (6H,.H.,) = X! - AH.

(214)

Thus, the labels ¢ and v may be freely exchanged. Using
the identity 6AH = 1[AH,AH], we find that the corre-
sponding symplectic form Q = d0 is
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~ ’ 1~/ / /
Q:Z<(1—2)<5X§ CAHE 45X - [AHE, AH; )

- 1o,
+;<(1—/1)<6X;-AH§+EXU-

+ Z(éxv LOM, — (88, + [M,,. X,] + [M,.6X,]) - AH

We now look for transformations™ with parameters

g.=¢eb g, =¢ePr, z. and z, such that
Iy Q x —f, - 6G,, Ig Q x —p, - 6G,, (215)
I,Qx -z, -AF,, 1, Qx~z,-AF,. (216)

We will see that the proportionality coefficients will be
A-dependent.

B. The Gauss constraints as generators of rotations

1. The Gauss constraint on the cells

Let us consider the rotation transformation with param-
eter f. defined by
Eﬂ<.Hcc’ =p.H.,

’CﬂCXE‘ - WC’ XE ]’
such that any other variables (in particular, those unrelated

to the particular ¢ of choice) are unaffected. Applying it to
Q and using the identity I/,(AHEI =1Ig AH; = f., we get

HCL :ﬂchw

'Cﬁ(Xg = WUXQ’ (217)

I, Q= (1-A)([p..XE]- AHS
CBC
- 55{0[ 'ﬂc + Xc’ : WC’AHg,])
+ > (1=2)([B. X!] - AH!
3¢

However, the first and last triple products in each line
cancel each other, and we are left with

Iy Q=—(1-2)B, <Z§Xg’ + Zaig)

=14 v3c

—(1=2)B, - 6G,.

»The transformations will be given by the action of the Lie
derivative L, = 1,6 + 61, where I, is the variational interior
product with respect to a. In the literature the notation §, is often
used instead, but we avoid it in order to prevent confusion with
the variational exterior derivative J.

]
[AH&AH@]) -

/ ~ 1 ’ ~ ~
—A(axg (AH 45 X¢ -[AHg,AHg]))
- 1 - -
/1<5X,€ (AH; + X (A, AH;}))

1
» _E(S” +[M,, X,]) - [AH,D,AHH}).

|
Hence this transformation is generated by the cell Gauss
constraint G, given by (202), as long as 4 # 1.

2. The Gauss constraint on the disks

Next we consider the rotation transformation with
parameter B, defined by

‘Cﬂ,,ch :ﬂUHUC’ 'C'ﬁ Xc
'Cﬂ,Hv:(l_ﬂ)ﬁv v 'Cﬂl,

.. X5],
v (1 _X)WWXV]’

such that any other variables (in particular, those unrelated
to the particular v of choice) are unaffected. Importantly,
we choose the O-form f, to be valued in the Cartan
subalgebra, so it commutes with M, and S,. Applying
the transformation to € and using the identities /g AH{ =
p,and Iy AH, = (1 = 1)B,, we get

(218)

I5,Q=(1-1)> (18, X¢]- AHS - 65X B, + X¢ - [, AHS))

+(1 _;L)(WD’Xb] '5Mv_ [Mﬂ’ wy’XvH 'AHU)
+ (1 _’1)((58 ,+ [5M1/"X1J + [Mv’éxv]) 'ﬂv
—(S,+M,.X,])-[,.AH,]).

Isolating f8, and using the fact that it commutes with M,
and S,, we see that most terms cancel,”® and we get

2B, - <25X‘ 55) —(1=2)B,-G,.

CcEV

Iy, Q=
(220)

Hence this transformation is generated by the disk Gauss
constraint G,, given by (203), as long as 1 # 1.

3. The Gauss constraint on the faces

Lastly, we consider the rotation transformation with
parameter f8; defined by

T this calculation, we make use of the Jacobi identity:

Ww [Mw Xb” + [Mvv [X’vvﬂv]] = _[Xw Ww MDH =0. (219)

026003-21



BARAK SHOSHANY

PHYS. REV. D 100, 026003 (2019)

Ly, Heo = =Py, Hee.
Ly H, = H,,

‘Cﬂn Xt = _wfv’ Xl

Ly, X, =B, X,).  (221)

such that any other variables (in particular, those unrelated
to the particular » of choice) are unaffected, and such that

Br, = hy" (vo)By, (o). (222)

where ﬁf is valued in the Cartan subalgebra. Applying the
transformation to 2, we get after a calculation analogous to
the one we did for the disks,

Iy, Q= -A (ﬁfﬁ : Zéxg’ = 5sv>
cec

=<y (SO = 008 00) ).

cec
The variation of the Gauss constraint (204) is
N,
5GfL. = Z 5XE:‘+] - hl_)1<1)0)(5su + {Sm Ahﬂ(UO)DhU(UO)’

! (223)

butsincef, isinthe Cartanwehavef; - [S,, Ah,(vy)] =0,
so this simplifies to

N,
ﬂf1 : 6va = ﬂﬂ ' <Z (3X$:+] - hl_'l(v())ésvhv(v())) .
i=1
(224)
Thus, in conclusion,

Iy, Q= =My, - 6Gy,, (225)

and this transformation is generated by the face Gauss
constraint G,, given by (204), as long as 1 # 0.

C. The curvature constraints as generators
of translations
1. The curvature constraint on the cells

For the curvature constraint on the cells, we would like to
find a translation transformation with parameter z,. such that

1, Q=—z.-AF,. (226)
First, we should calculate AF .. Recall that
N
FC = HHCCiHC1?i = 1' (227)
i=1

To simplify the calculation, let us define K; = I:Icc,.l:lm,
such that we may write

N
Fo=]]k: =K Ky (228)
i=1

where we omit the subscript ¢ on N, for brevity. Then

6F.=6K\K, - Ky + K 6K;K5-- Ky + -+
+K;- Ky 20Ky 1 Ky+ K- Ky_16Ky
=AK\K\K,-- Ky +KAK, K Ky Ky +---
+Ki Ky AKy_ 1Ky 1Ky + K- Ky_|AKy Ky,

where AK; = 5K,;K;!. Hence

AF, = 6F,F;
= AK,| + K\ AK KT + -+
+ (K- Kyp)AKy_ (K- Ky)™!
+ (Ky - Ky )AKy(Ky - Kyoy) ™!

N
= Z(Kl oK )AK(Ky - Ki) T

i=1

where K --- K;,_; = 1 for i = 1. For conciseness, we may
define y; such that y; =1 and, for i > 1,

ZiEK]"'Ki—l :Hccch@]"'Hcc,»_lH (229)

Vi1

and write

N
AF. =Y pidKyi.
i=1

(230)

Plugging in K; = H cc,»Hcv,» back, and using the identity

AK; = AH + H, AHUH, (231)
we get
N ~ ~ ~ ~
AFC = Z}(,(AH? +Hcc,»AHgiHc,-c))(i_l' (232)
i=1

Now, if we transform only the dual fluxes X¢ and X? (for a
particular c), then we get

NL‘

I,Q=-1> (L, X AHS + L, X - AH{).

c

(233)

i=1

Comparing with (232), we see that if we take

026003-22



DUAL 2 + 1D LOOP QUANTUM GRAVITY ON THE EDGE

PHYS. REV. D 100, 026003 (2019)

EZ(Xii :)(i_lzc)(iv ‘Czcxgi :Hc,-c)(i_lzc)(iljlcc,-y (234)

we will obtain
1,Q=—lz.-AF,, (235)
as required. Hence this transformation is generated by

the cell curvature constraint F., given by (205), as long
as A #0.

2. The curvature constraint on the disks

As in the cell case, we would like to find a translation
transformation with parameter z, such that
1,Q=-z,-AF,, (236)

where

Fo= (T1 A )i e o) = 1. 39
i=1

First, we should calculate AF',. Let us define, omitting the
subscript » on N, for brevity,

K;=H,. ie{l,....N}, (238)
Ky iy = hy' (vg)e™ by (vp), (239)

and
=1 xi=Kp--- K. (240)

Then we may calculate similarly to the previous subsection

N+1 N+1
Fo=[]Ki=AF, =) xiaky

i=1 i=1

(241)

Note that for i = N + 1 we have

= F,h;" (vg)eM b, (vy),
(242)

INy1 =K Ky = FDKXIIH

and since we are imposing F, = 1, we get simply
anr =yt (vo)eMrhy (v). (243)

Furthermore, using the fact that

AKNJrl = hEI(UO)(e_MWAhv(UO)eM” - Ahv(UO) - 5Mv)
2 hv(”O)’ (244)

we see that

)(N+1AKN+1ZXI1+1 = ;' (v9)(Ah,(vo)

— eMoAR, (vg)e ™ — 5M,), (vp).
(245)

Therefore, we finally obtain the result

N

AF, =Y ydHiyi + hy' (vo)
i=1

X (Ahv(UO) - eMvAhv('UO)e_MP - 5M1})hv(vO)'
(246)

Now, let us take

z,= h;l (UO)zvhv(UO)’ (247)

where Z, is a O-form valued in the Cartan subalgebra, and
calculate z, - AF,. We find that, since [z,, M,] = 0, the
terms Ah,(vy) —eMrAh,(vy)e™ cancel out and we are
left with

N’l
2, - AF,=1z,- <Z)55Al:lii)(i‘l - h;l(vo)éMﬂhv(yO))
i1
(248)

We may now derive the appropriate transformation. If we
transform only the segment flux X¢ and the vertex flux X,
(for a particular v), then we get

N,
1,Q=-1) L, X" AH, + L, X, (6M,+[M,,AH,]).

=1
(249)

Comparing with (248), we see that if we take
‘Cz1,X;i = )(1_1 Z,Xi ﬁll,Xﬂ = j’zv’ (250)

we will obtain, since zZ, - [M,,AH,] =0,

N,
IzL‘Q = _lzv : (Z}(ZAI:I?/YI_I - hl_fl(vO)(sthv(UO))
i=1

= —Jz, - AF,, (251)

as required. Hence this transformation is generated by the
disk curvature constraint F,, given by (206), as long
as 1 #0.

3. The curvature constraint on the faces

We would now like to find a translation transformation
with parameter z; such that
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(252)

where

(253)

N,
Ffzr = (HHC:'CHI)HC]Ue_MrH”Cl =1

i=1

As before, to calculate AF; we define, omitting the
subscript » on N, for brevity,

Ki=H,, . ie{l,...N}, (254)
KN+1 = Hclve_Ml HL’C]’ (255)
n=lL  xn=K--K. (256)

Then a similar calculation to the previous section gives

AFy, = %:ZAH??')({I
i=1
+ HC[ v (AH;I - eM"'AHf}l eM" - 5M7;)H1;C| ’ (257)
and if we take
Zf, EHCIWifDHvCV (258)

where z; is a O-form valued in the Cartan subalgebra, we
get

N,
2, -AF; =1z, - (Z HAHS 7' = H, ,0M,H,. > .
i=1
(259)
We may now derive the appropriate transformation. If we

transform only the edge flux X¢ and the vertex flux X, (for
a particular v), then we get

N,
o= (-0 L, X an
i=1

+L,, X, (SM, + M, AH,]).

(260)
Comparing with (259), we see that if we take
£y, RS = a0 L0 X,
= (1 _A)chlzvaCﬂ" (261)

we will obtain

N,
]vaQ = _(1 - /l)zfp ’ <2XiAHg;+1)(i_l - HclvéMvch‘])
=

=—(1-2)z;, - AFy,, (262)
as required. Hence this transformation is generated by the
face curvature constraint F,, given by (206), as long
as A #0.

D. Conclusions
We have found that the Gauss constraints GC,G,/,,GfI
and curvature constraints F,, F,, Fy for each cell ¢, disk
v* and face f,, given by (202)-(207), generate trans-

formations with rotation parameters f§.,f,,B, and trans-
lations parameters z,., z,, zs, as follows:

Iﬂ(:Q = _(1 - l)ﬂc : éGc’ Iﬂ1Q = _(1 - A)ﬁv : 6G1}9

Iy, Q= =Py, - 6Gy,, (263)
1, Q=—lz.-AF, 1, Q= —lz, AF,,
I, Q=—(1-2)z, - AF;,. (264)

The Gauss constraint on the cell ¢ generates rotations of the
holonomies on the links (c¢’)* and segments (cv)* con-
nected to the node ¢* and the fluxes on the edges (cc’) and
arcs (cv) surrounding c:

[’ﬁchc’ =p.H.o,
‘Cﬂcig/ = wcv Xg,]v

Eﬂl.Hcv = ﬁchvv

£y X0 = 8. X2, (265)
where f, is a g*-valued O-form.

The Gauss constraint on the disk v* generates rotations
of the holonomies on the segments (vc)* connected to the
vertex v and the fluxes on the arcs (vc) surrounding v*, as
well as the holonomy and flux on the vertex v itself:

Lﬁ,,ch :ﬂvch’ mei = LHV’ X%]?

Lﬂl.Hv:(l_A)ﬂva Eﬂvxv:(l_l)WlHXv]’ (266)
where f, is a O-form valued in the Cartan subalgebra b*
of g*.

The Gauss constraint on the face f, generates rotations
of the fluxes on the links (cc’)* surrounding f, and the
holonomies on their dual edges (cc’), as well as the
holonomy and flux on the vertex v itself:

L:ﬂfm HCC/ = _ﬂfl,l’:lcc” ﬁﬁ

L XC = =By, X,
[’ﬂh Hv = Aﬁf,,va ‘Cﬂfly_ Xv = ﬂw.f,;’ Xv]? (267)

where f§ ¢ is a 0-form valued in the Cartan subalgebra §* of
g" and B, = hy' (v9)By, h,(vo).
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The curvature constraint on the cell ¢ generates trans-
lations®” of the fluxes on the links (cc’)* and segments
(cv)* connected to the node c¢*:

‘CZ(X? :)(i_lzc)(iv Ezc Xil = Hc[c)(i_lzc)(il:]cc[ , (268)
where
=1 Xi= ﬁcclﬁcv] T I:]cc,-_|Hcv,-_| ’ (269)

and z, is a g-valued O-form.

The curvature constraint on the disk »* generates trans-
lations of the fluxes on the segments (vc)* connected to the
vertex v, as well as the flux on the vertex v itself:

(270)

EZLX;‘J :){i_lzl}/l/i’ £Z7,XL' = izb’

where

)(151’ ZiEch,»"'chi_]’ (271)
Z, is a O-form valued in the Cartan subalgebra § of g,
and z, = hZI(UO)ivhv(UO)'

The curvature constraint on the face f, generates trans-
lations of the fluxes on the edges (cc¢’) dual to the links
surrounding the face f,, as well as the flux on the vertex v
itself:

ﬁzfv Xgﬂ = _)(i_lzf,/}z,l" ‘CZ,;XU = (1 - j')I{I/‘C]Zf,,[—lclva

(272)
where

n=1L (273)

Xi= Hclcz o 'Hc,-,lc,w
and z; is a O-form valued in the Cartan subalgebra }) of g.

Importantly, in the case 4 = 0, the usual loop gravity
polarization, the curvature constraints on the cells and
disks do not generate any transformations since
1, Q =1, Q=0. Similarly, for the case 1 =1, the dual
polarization, the Gauss constraints on the cells and disks do
not generate any transformations since Iz Q = Iz Q = 0.
Of course, the reason for this is that, as we noted earlier,
these constraints are formulated in the first place in terms of
holonomies and fluxes which only exist in a particular
polarization. Thus for 4 =0 we must instead use the
curvature constraint on the faces,28 and for A = 1 we must
instead use the Gauss constraint on the faces.

In the hybrid polarization with A= 1/2, all of the
discrete variables exist: there are holonomies and fluxes
on both the links/edges and the arcs/segments. Therefore, in

“’Note that the curvature constraints do not transform any
holonomies, since the holonomies are unaffected by translations.
*Which is indeed what we did in [13].

this polarization all six types of constraints may be
consistently formulated using the available variables, and
all of them generate transformations.

VI. SUMMARY AND OUTLOOK

In this paper, we generalized the work of [13] to include
the most general possible discretization. We discovered a
family of polarizations of the discrete phase space, given by
different values of the parameter A. Of these, the three cases
of interest are A =0, A =1 and 1 = 1/2.

In the A = 0 case, which is the one we discussed in [13],
the holonomies are on the links (and segments) and the
fluxes are on their corresponding edges (and arcs), as in
the familiar case of loop gravity. The Gauss constraints on
the cells and disks generate rotations for all of the discrete
variables, while the curvature constraints on the faces
generate translations only for the fluxes on the edges and
vertices.

In the 4 =1 case, the positions of the holonomies and
fluxes are reversed. The holonomies are on the edges
(and arcs) and the fluxes are on their corresponding links
(and segments). The curvature constraints on the cells and
disks generate translations for all of the fluxes, while the
Gauss constraints on the faces generate rotations only for
the fluxes on the links, holonomies on the edges, and fluxes
and holonomies on the vertices.

Finally, in the 1 = 1/2 case, we have the variables for
both polarizations simultaneously. All six types of con-
straints exist, and each of them generates its associated
transformations.

Intuitively, we may now conclude that the 4 = 0 polari-
zation corresponds to usual 2 4+ 1D general relativity, while
A =1 (the dual polarization) corresponds to teleparallel
gravity. This intuition is motivated by the fact that, as we
have seen, in the 4 = 1 polarization the holonomies and
fluxes switch places, and thus the curvature and torsion
(and their respective constraints) also switch places.

Since 2 + 1D general relativity has curvature but zero
torsion, and teleparallel gravity has torsion but zero
curvature, it makes sense to claim that these polarizations
are related. Indeed, this is why we used the same parameter
A in both (22) and (56). Since the choice A = 1/2 in (22)
corresponds to Chern-Simons theory, we may further claim
that the A = 1/2 polarization in the discrete case is a
discretization of Chern-Simons theory. Thus,

(i) the polarization A = 0 corresponds to 2 4 1D gen-

eral relativity,

(ii) the polarization 4 = 1/2 corresponds to Chern-

Simons theory, and
(iii) the polarization 4 =1 corresponds to teleparallel
gravity.
A discussion of quantization in different polarizations is
provided in [9]. There, it is shown that in the 4 = 0 case, the
Gauss constraint is imposed at the kinematical level while
the curvature constraint encodes the dynamics. In the
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A =1, the roles of the constraints are reversed. This again
motivates a relation between the 4 = 1 case and teleparallel
gravity. The relation of the 4 = 1/2 case to Chern-Simons
theory is motivated in [14]. We leave a more in-depth
discussion and analysis of the relations between the 1 = 1
case and teleparallel gravity, and between the A = 1/2 case
and Chern-Simons theory, to future work.

Following our exhaustive study of discretization of
2 4+ 1D gravity, it is our goal to adapt this discretization
scheme to the physically relevant case of 3 + 1D gravity.
While in the 2 + 1D case there is only one place where an
integration may be performed in two different ways, in
the 3 4 1D case there are two such integrations, since we
have one more dimension. We expect to find both 3 + 1D
general relativity and 3 4 1D teleparallel gravity as

different polarizations of the discrete phase space. The
discretization in 3 + 1D dimensions will be presented in an
upcoming paper [35].
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