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In this paper, we study the implications of unitary completion of quantum gravity on the low energy
spectrums, through an infinite set of unitarity bounds on the forward-limit scattering amplitudes. In three
dimensions, we find that light states with charge-to-mass ratio z greater than 1 can only be consistent if
there exists other light states, preferably neutral.
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I. INTRODUCTION

Quantum consistency of scattering amplitudes such as
unitarity and analyticity provides stringent constraints on the
particle contents and interactions of a theory. For example,
unitarity requires that amplitudes should not blow up at high
energy, which has been used as a consistency condition to
predict new particles at high energy. Together with analy-
ticity, it also implies nontrivial conditions on the low-energy
effective field theory (EFT). It has been known that Wilson
coefficients have to respect certain positivity bounds [1].
More recently, a new infinite set of positivity bounds on
these coefficients was discovered in [2]. In this paper we
explore implications of the new positivity bounds on the
charged (and neutral) state spectrum in quantum gravity,
motivated by the weak gravity conjecture (WGC) [3].
The WGC states that quantum gravity has to contain a

charged state with a dimensionless charge-to-mass ratio z
bigger than unity [3]. It has a wide range of phenomeno-
logical applications from cosmology to particle physics,
hence it has been studied toward its proof from various
perspectives, e.g., based on signs of Wilson coefficients
[4–9]. In particular, [6] explored a possible connection
between the WGC and the positivity bounds of [1] on
four-photon amplitudes by studying one-loop corrections

from charged particles. Under several assumptions, it was
argued that a bound on the charge-to-mass ratio [10],

jzj > z�; ð1Þ

similar to the WGC bound is obtained from positivity of the
leading higher derivative correction to the Einstein-Maxwell
theory.
It is then natural to ask what are the implications of the

stronger positivity bounds of [2] to the charge-to-mass
ratio. As we explain shortly, the unitarity in the ultraviolet
(UV) implies a positive determinant of the ðnþ2

4
Þ × ðnþ2

4
Þ

Hankel matrix, constructed from the low-energy coeffi-
cients up to 2n derivatives (n ¼ 2 corresponds to the
ordinary positivity bound used in [6]). Interestingly, in
three dimensions, for an isolated light charge state this
implies a bound of the form

0 ≤ jzj < a or b < jzj; ð2Þ

where the values of a, b depend on the size of the matrix,

and z ¼ qḡ
ffiffiffiffiffiffi
Mpl

p
m is the dimensionless charge-to-mass

ratio in d ¼ 3. Here q and m are the charge and mass,
respectively, whereas ḡ is the gauge coupling, and Mpl is
the three-dimensional Plank mass. We find that b linearly
grows up as we increase the matrix size, whereas a
approaches to some value close to unity. It suggests
that the bound is reduced to jzj < Oð1Þ in the large-n
limit, which is surprisingly opposite to the WGC bound
jzj > Oð1Þ. We interpret this observation as follows:
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(i) In quantum gravity, a charged particle cannot have
a charge-to-mass ratio jzj > Oð1Þ without being
accompanied by other particles with jzj < Oð1Þ.

Note that jzj < Oð1Þ essentially means vanishing charge
so long as the gauge coupling is much bigger than the
gravitational one. This motivates us to analyze the inclusion
of light new neutral states, for which we show that for given
jzj > Oð1Þ, there exists a lower bound on the charged/
neutral state mass ratio. In other words, if the spectrum
contains a charged state with jzj > Oð1Þ, there is a need for
other light states with an upper bound on its mass.

II. THE WGC FROM WEAKLY
INTERACTING MATTER

To motivate the plausibility of the constraints discussed
above, let us consider the four-photon amplitude generated
solely by weakly interacting states with at most minimal
coupling to the photon. In this case, the amplitudes are
dominated by the one-loop effect, which we construct
utilizing unitarity cuts [11], building loop integrands from
tree amplitudes. Note that while gravitons have no on-shell
degrees of freedom in three dimensions, the tree-level two-
photon-two-matter amplitude due to graviton exchange is
nonzero. This does not contradict with the usual statement
that gravity does not produce long range force in three
dimensions, since the residue of this amplitude vanishes
much like that in Chern-Simons matter theory. The result-
ing one-loop amplitudes are expressed as

M4ðs; tÞ ¼ 4Cð34; 1; 2ÞItriðs;m2Þ þ Cð12; 34ÞIbubðs;m2Þ
þ ðs ↔ tÞ þ ðs ↔ uÞ; ð3Þ

where Ibubðs;m2Þ; Itriðs;m2Þ are the scalar bubble and
triangle integrals (with massive propagators) which con-
stitute the integral basis in three dimensions. The explicit
expressions of integral coefficients Cð34; 1; 2Þ; Cð12; 34Þ
for amplitudes of Einstein-Maxwell theory coupled with
massive scalar or fermion are given in the Appendix.
As s → ∞, in the forward limit we find

scalar∶
1 − z2

3840πmM2
pl

s2 þOðs32Þ; ð4Þ

fermion∶
1 − z2

2560πmM2
pl

s2 þOðs32Þ: ð5Þ

Note that the QED contribution, which would be propor-
tional to z4, is subdominant to the gravitational effects
which behave as s2 at high energy.
We assume gravity is UV completed while weakly

coupled. This means that we require the amplitudes enjoy
improved high energy behavior, at least<s2, order by order
in Mpl. Since the coefficient for s2 is always positive for

jzj < 1 and negative for jzj > 1, we immediately see that
the spectrum must contain states that on both sides of the
jzj ¼ 1 border, in particular jzj > 1. This is precisely the
content of the WGC.
Next, consider a spectrum that contains a light charged

particle, with jzj > Oð1Þ. This leads to a large negative
contribution to the coefficient of s2, which then requires
states with even lighter masses and jzj < 1 to compensate,
preferably a neutral state. Thus in this tentative example,
we see that the UV completion of quantum gravity leads to
correlation between charged states and light neutral states.
In the next sections we will prove this connection in a more
general setup.
The same analysis can also be applied to the case with

multi-Uð1Þ gauge theories coupled with gravity. In this
case, the photons can carry indices of different Uð1Þ’s. It is
convenient to consider a crossing-symmetric combination
of amplitudes by multiplying them with auxiliary real unit
vectors u, v [8],

M4ðs; t; u; vÞ ¼
X
i;j;k;l

uivjvkulM4ð1i; 2j; 3k; 4lÞ; ð6Þ

where subscripts i, j, k, l are theUð1Þ indices. We now find
that in the large-s limit, the one-loop amplitudes behave as

scalar∶
2 − jz⃗ · uj2 − jz⃗ · vj2

3840πmM2
pl

s2 þOðs32Þ; ð7Þ

fermion∶
2 − jz⃗ · uj2 − jz⃗ · vj2

2560πmM2
pl

s2 þOðs32Þ: ð8Þ

The same arguments of the single-Uð1Þ case (under the
same assumptions) now imply that there must exist some
state which satisfies

jz⃗ · uj2 þ jz⃗ · vj2 > 2: ð9Þ

Choose the unit vectors to be equal, u ¼ v, the above
condition implies the three-dimensional version of the
convex-hull constraints jz⃗ · uj2 > 1 [12].

III. UNITARITY BOUNDS ON THE
FORWARD AMPLITUDE

As we discussed, we will be interested in the four-point
amplitudes in the forward limit, namely M4ðs; θÞ with
θ ¼ 0 [13]. The amplitudes are analytic functions on the
complex plane except for poles and branch cuts on the
real s-axes. Again we assume gravity is weakly coupled
when it is UV completed. In practice, what this means
is that we can sensibly talk about the amplitudes as
perturbative series in Mpl. In string theory, this would
correspond to the case where Mstring ≪ Mpl. The low
energy effective theory is given by a theory of photons,
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with higher-dimensional operators generated by virtual
gravitons and integrating away massive states.
This motivates us to parametrize the low energy forward

photon amplitudes at OðM−2
pl Þ as

M4ðs; 0Þjs=m2
i≪1 ¼ c0

s
3
2

M2
pl

þ
X
i;n

ðcn;4z4i þ cn;2z2i þ cn;0Þ
m2n−3

i M2
pl

sn;

ð10Þ

where n ¼ 2; 4; 6;…, and i labels the massive states
that were integrated out to obtain the EFT. The explicit
coefficients can be computed from the one-loop amplitudes
given in Eq. (3) by expanding the massive loop integrals in
the large mass limit, see e.g., [14]. For a single scalar we
obtain

cn;4 ¼
ðn2 þ nþ 1Þ

22nþ4ðnþ 2Þðnþ 1Þð2nþ 1Þπ ;

cn;2 ¼
( 1

3840π if n ¼ 2

ðnþ1Þ
22nþ7ð2nþ3Þð2nþ5Þπ if n > 2;

cn;0 ¼
( 1

1280π if n ¼ 2

ðn=2þ1Þðnþ1Þ
22nþ7ð2nþ1Þð2nþ3Þð2nþ5Þπ if n > 2:

ð11Þ

As for a single fermion, we have

cn;4 ¼
ð5n2 þ 5nþ 2Þ

22nþ5nðnþ 2Þðnþ 1Þð2nþ 1Þπ ;

cn;2 ¼
(
− 1

3840π if n ¼ 2

ðnþ1Þ
22nþ8ðnþ2Þð2nþ3Þð2nþ5Þπ if n > 2;

cn;0 ¼
( 1

1920π if n ¼ 2

ðnþ1Þ
22nþ9ð2nþ1Þð2nþ3Þð2nþ5Þπ if n > 2:

ð12Þ

The results for n ¼ 2 matches with those computed using
the heat kernel method in [8,15,16].
The leading term in Eq. (10) contains the massless

cut from internal massless states such as photons. Here,
we will simply work with the subtracted amplitude

M̃4 ¼ M4 − c0 s
3
2

M2
pl
such that the low energy coefficients

are well defined:

M̃4ðs; 0Þjs=m2
i≪1 ¼

X
n∈even

gnsn: ð13Þ

As pointed out in [1], the low-energy coefficients are
related to the UV physics through the analyticity of the
S-matrix. This is exploited by considering the following
integral:

In ¼
Z
∞

ds
snþ1

M̃4; ð14Þ

where the integration contour encircles the infinity. We
assume that M̃4 is bounded as <s2 in high energy, which is
the case, e.g., when (10) is bounded by the Froissart bound
jMðs; 0Þj ≤ s log s [17,18]. This implies that for a unitary
completed theory, In ¼ 0 for n ≥ 2. Then Eq. (14) leads to
the conclusion that the contribution to the integral from the
origin and those from the poles and discontinuities must
cancel. In other words we have

gn ¼
X
τ

ητ
m2nþ2

a
þ
X
ρ

Z
4m2

ρ

ds
snþ1

Im½M̃4�; ð15Þ

where τ and ρ label all possible UV states that enter via
tree-level exchange and loops, respectively. Importantly ητ,
which is the square of three-point couplings, and Im½M̃4�,
which is proportional to the cross section, are both positive.
The equality in Eq. (15) can be translated into a geo-

metric constraint [2]: the coefficients gn must reside in the
convex hull points on a half moment curve, i.e.,0

BBBBB@

g2
g4
g6

..

.

1
CCCCCA ¼

X
i

ai

0
BBBBB@

xi
x2i
x3i

..

.

1
CCCCCA; ai ≥ 0; ð16Þ

where xi ∈ Rþ. Organize the coefficients into a symmetric
Hankel matrix:

Kn ¼

0
BBBBBB@

g2 g4 g6 � � �
g4 g6 g8 � � �
g6 g8 g10 � � �
..
. ..

. ..
. ..

.

� � � � � � � � � gn

1
CCCCCCA
; ð17Þ

it is straightforward to show (e.g., [2]) Eq. (16) implies that
det½Kn� ≥ 0 for all n ¼ 4N þ 2. We will now explore what
this positivity implies for the allowed values of zi for the
amplitudes we computed in Eq. (3).
Note that there are three scales involved, Mpl ≫ Λ ≫

mi, where Λ represents the cutoff for which gravity is UV
completed. Unlike the corresponding analysis in four
dimensions, where Eq. (10) would be parametrized by
zi’s and Mpl only (see e.g., [6]), in three dimensions the
contributions from the physics above Λ would enter into
Eq. (10) by replacing mi → Λ and thus are negligible.
The reader might wonder why there is any constraint at

all, given that low energy polynomial amplitude has a UV
completion, the one-loop massive amplitude. The non-
triviality comes in that the one-loop massive amplitude
behaves as s2 in the high energy due to the gravitational
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effects, as shown previously. Thus the fact that Eq. (16)
involving g2 requires that the Froissart bound to hold, and
therefore the condition that gravity is UV completed is
incorporated [19].

IV. CONSTRAINTS ON LIGHT STATES

Let us study the implications of the Hankel matrix
constraints, by beginning with the case where the spectrum
contains an isolated charged state that is light, therefore it
dominates the contribution to gn. In this case gn takes the
following form:

gn ¼
cn;4z4 þ cn;2z2 þ cn;0

m2n−3M2
pl

; ð18Þ

where the cn’s are given in Eqs. (11) and (12) depending on
whether the light state is a fermion or a scalar. Here, we will
present the analysis for an isolated fermion. The corre-
sponding results for a scalar are qualitatively the same. The
positivity of det½Kn� now becomes a constraint on the z of
this light state. For example positivity of det½K206� implies

0 < jzj < 1.02; or jzj > 34.82: ð19Þ

In general as the size of the Hankel matrix increases,
Kn → Knþ4, one finds new bounds that are subsets of
previous ones. Thus the exact bound is given by
det½K∞� > 0. There are two regions of viability which
we denote as jzj < a and jzj > b. As it is difficult at this
stage to obtain the bound from det½K∞� > 0, we instead
extrapolate how a, b behaves with respect to n as shown
in Figs. 1 and 2. We see that a is asymptotically approach-
ing a fixed point somewhere above 1, while b is simply
rising linearly. Extrapolating to infinity, we arrive at the
conclusion that jzj simply cannot be greater than 1 [20].
We see that a spectrum containing a light state with

jzj > Oð1Þ is inconsistent with unitarity. This appears to be

the opposite of the weak gravity conjecture, where any
spectrum with jzj > Oð1Þ satisfies the conjecture. In the
next subsection we will see that the inclusion of other light
states does alleviate this tension. Again as stressed pre-
viously, this is a reflection of the low energy amplitude
being parametrized by both fzi; mig, as opposed to just zi
in the analysis for the four-dimensional theories [6].
We have also performed analogue analysis for the cases

with multiple-Uð1Þ gauge theories coupled with gravity
by considering the low-energy expansion on the crossing
symmetric amplitudes as defined in Eq. (6), and similar
results have been found, see the discussion at [21].

A. The addition of light state me
m0

> 1

We now consider the inclusion of a light neutral state
along with a charged state. We introduce β≡ me

m0
, para-

metrizing the mass ratio of the charged me to neutral state
m0. In this case gn takes the form

gn ¼
cn;4z4 þ cn;2z2 þ ð1þ β2n−3Þcn;0

m2n−3
e M2

pl

: ð20Þ

Plotting ða; bÞ against the number of derivatives with
respect to a fixed β, we find that for β ≤ 1 the plot for
a, b is near identical to that without the neutral state as one
can compare with the orange plots (β ¼ 1

4
) with the blue

plots (β ¼ 0) in Figs. 1 and 2. For β > 1 the upper bound a
increases as one raises β, while the slope for the linear
rising of b decreases. This shows that the tension for
isolated jzj > Oð1Þ states and unitarity is alleviated with
the inclusion of a light neutral state with β > 1 [22].
Given that the constraints always come in the pair ða; bÞ,

if we assume that the observed trend of linear rise with
respect to n persists to n → ∞, we would conclude that the
allowed region for z will be solely determined by the
asymptotic value of a for a fixed β, denoted as aasympðβÞ:

FIG. 1. The plot of b with respect to different values of charged
to neutral state mass ratio β, with β ¼ ð0; 1

4
; 5
4
; 9
4
; 13
4
Þ from top to

bottom. Note that β ¼ 0 corresponds to the case where one has an
isolated charged state.

FIG. 2. The plot of a with respect to different values of charged
to neutral state mass ratio β, increasing from bottom to top. We
see that at sufficiently large n it asymptotes to a fixed value,
denoted as aasympðβÞ.
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0 < jzj ≤ aasympðβÞ: ð21Þ

From the plots in Fig. 2, we see that at n ∼ 400, the value
of a is stabilized, and gives a good approximation to
aasympðβÞ. We find

aasympð0Þ ¼ 1.01; aasymp

�
1

4

�
¼ 1.14;

aasymp

�
5

4

�
¼ 1.52; aasymp

�
9

4

�
¼ 1.84: ð22Þ

We can also consider the case where the additional light
state is charged. In this case the low energy couplings gn are
parametrized by

cn;4ðz4 þ β2n−3z04Þ þ cn;2ðz2 þ β2n−3z02Þ þ ð1þ β2n−3Þcn;0
m2n−3

e M2
pl

;

ð23Þ

where z0 is the charge-to-mass ratio of the additional state.
It is straightforward to check that for fixed β, as one
increases in z0, ða; 1bÞ decrease with the maximum given by
z0 ¼ 0, i.e., the neutral state.

V. OUTLOOK

By studying the infinite set of positivity constraints on
the Hankel matrices, we find that an isolated light charged
state with jzj > Oð1Þ is inconsistent with unitarity, unless
there exists another state whose mass is lighter than the one
with jzj > Oð1Þ. If the state is neutral, then there is an
upper bound on the charged to neutral mass ratio β, given
by the solution to

z ¼ asympðβÞ: ð24Þ
This provides an interesting connectionbetween thepattern of
light states in the spectrum and UV completion of quantum
gravity. An immediate task would be to consider the
compactification of the standard model to three dimensions.
The new feature would be the presence of dilaton and
graviphoton exchange between the photons and the matter
fields. A detailed study of the constraints of the light spectrum
may provide theoretical bounds on the neutrino mass.
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APPENDIX: EXTRACTING INTEGRAL
COEFFICIENTS IN THREE DIMENSIONS

In three dimensions, a loop momentum can be fixed
completely by imposing three on-shell conditions, which
reflects that an one-loop integral can be represented on the
basis of triangle, bubble and tadpole scalar integrals. Here
we present a method to extract integral coefficients for
scattering amplitudes in three dimensions. It resembles that
developed in four dimensions [23].
We are interested in the four-photon one-loop amplitudes

in Einstein-Maxwell theory with massive fermionic or
scalar matters in the loop. The tadpole will be ignored
in our discussion because its contribution is proportional to
m (simply by power counting), therefore it is irrelevant to
the discussion of large-mass expansion in the main text of
the article. Moreover, “massless bubble,” the bubble dia-
gram with single massless leg on one side, is also ignored.
Massless bubble gives a nonlocal contribution, but that just
means the nonlocal pieces from the large mass expansion of
triangles and bubbles need to be removed, such that the
principle of EFT is at work. Therefore for our purpose, we
will focus on bubble and triangle coefficients which can be
extracted by considering loop integrals on cuts, which can
be done by Feynman diagrams with cut conditions imposed
or taking a product of on-shell tree amplitudes, as shown
in Fig. 3.
Adapt the convention in [24], the four external momenta

are represented as pαβ
i ¼ λαi λ

β
i with i ¼ 1, 2, 3, 4 and the

loop momentum l1 is parametrized by two parameters
x1 and x2 as

lαβ
1 ¼ x1λα1λ

β
1 þ ð1 − x1Þλα2λβ2 þ x2ðλα1λβ2 þ λα2λ

β
1Þ; ðA1Þ

where α is the SL(2) spinor index. The relevant four-point
amplitude for two-photons and two massive scalars are
given as

(a) (b)

FIG. 3. The cut diagrams for the extraction of triangle and
bubble coefficients: (a) triple cut; (b) double cut. All exposed
lines are put on shell.
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Mtree
qedð1γ2γ3ϕ4ϕÞ ¼

z2m2

Mpl

�
sm2

ðt −m2Þðu −m2Þ −
1

2

�
;

Mtree
gravð1γ2γ3ϕ4ϕÞ ¼

1

4Mpl

ðt −m2Þðu −m2Þ
s

; ðA2Þ

where the subscript indicates the first is the QED process
while the second is due to graviton exchange. It is
instructive to see that the graviton exchange,

does not have a residue. For s ¼ 0, p2
1 ¼ p2

2 ¼ p1 · p2 ¼ 0

and hence p1, p2 are collinear in three dimensions even
for complex momenta. On the other side ðp − p3Þ2 ¼ p2

4,
where p ¼ −p1 − p2, leads to p · p3 ¼ p · p4 ¼ 0 at
s ¼ 0. Thus in the s-channel on-shell kinematics (with
p1 þ p2 ≠ 0)

ðt −m2Þjs¼0 ¼ 2ðp2 · p3Þjs¼0 ∼ p · p3 ¼ 0: ðA3Þ
Thus one concludes that the s-channel residue for the
graviton exchange vanishes. On the other hand, the
amplitude does have a singularity in the zero-momentum
graviton exchange, namely when p1 þ p2 ¼ 0. Therefore,
the amplitude cannot be expressed as contact terms.
The triangle coefficient Cð34; 1; 2Þ can be obtained by

taking the triple cut [as in Fig. 3(a)]. First of all, the triple-
cut condition requires ðx1; x2Þ ¼ ðxs1; x�2 Þ, where

xs1 ¼ 1; x�2 ¼ � im
h12i ; ðA4Þ

and h12i ¼ λα1λ
β
2ϵαβ. Substitute the solutions into the cut, it

gives the triangle coefficient,

Cð34; 1; 2Þ ¼ 1

2

X
x1¼xs
x2¼x�

2

½Iðx1; x2Þjtriple−cut�: ðA5Þ

Similarly, we extract the bubble coefficient by considering
the double cut [as in Fig. 3(b)]. The solutions to double-cut
conditions are

x1 ¼ x�1 ; with x�1 ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
m2

s
− x22

r
: ðA6Þ

Use the solutions, the integrand on the double cut can be
expressed as a function of x2, which contains poles at
x2 ¼ x�2 relevant to the triangle coefficient. In order to
avoid the poles, we expand the double-cut result at x1 ¼ x�1
around x2 ¼ ∞,

Cð12; 34Þ ¼ 1

2

X
x1¼x�

1

½Iðx1; x2Þjdouble−cut�j series
expansion
at x2¼∞

¼
Xk
i¼0

bi

Z
dx2Jx2x

i
2; ðA7Þ

where bi’s are some coefficients from the expansion and Jx2
is the Jacobian from the change of variables. To perform the
integration of x2, we will use a procedure which is similar to
that in [23]. First we utilize the results from Veltman-
Passarino reduction,Z

d3l1

ð2πÞ3
½λa1ðl1Þbaλ2;b�n

½l2
1 −m2�½ðl1 − p1 − p2Þ2 −m2�

¼ 2n−1ðs2 − 4sm2Þn2ðn − 1Þ!!n!!½1þ ð−1Þn�Ibubðs;mÞ;
ðA8Þ

where Ibubðs;mÞ is the scalar bubble integral,

Ibubðs;mÞ¼
Z

d3l1

ð2πÞ3
1

ðl2
1−m2Þðl2

2−m2Þ ðseeFig:3ðbÞÞ:

ðA9Þ
Let us now impose the double-cut conditions l2

1¼l2
2¼0

on both sides of Eq. (A8). The double-cut of the lhs can be
obtained by substituting the loop momentum Eq. (A1) into
the numerator of the integrand, which equals the cut results
on the rhs. From that, we find the x2 integration gives the
following results:Z

dx2Jx2x
n
2¼

ð1−4m2=sÞn=2ðn−1Þ!!
2nþ1n!!

½1þð−1Þn�: ðA10Þ

Use the results of Eqs. (A5), (A7) and (A10), we can now
obtain the triangle and bubble coefficients for the four-
photon amplitudes at one loop. Beginning with the case of a
massive scalar in the loop, we find

Cð34; 1; 2Þ

¼ −
z2m4tuð4m2 þ sÞ

4s2M2
pl

−
z4m6ð4m2 − sÞ½2m2ðt2 þ u2Þ þ stu�

2ð4m2uþ stÞð4m2tþ suÞM2
pl

;

Cð12; 34Þ

¼ 8z4s2m4 þ z2m2½4m2ð3s2 − 32tuÞ − s3�
32s2M2

pl

þ ð16m4 þ s2Þð3s2 − 8tuÞ − 8m2ðt3 þ u3 − 11stuÞ
2048s2M2

pl

:

ðA11Þ
Similarly, for the one-loop amplitude with an internal
massive fermion, we have
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Cð34;1;2Þ

¼ z2m4ð16m2tuþ3stuþ t3þu3Þ
16s2M2

pl

þz4m6½32m4ðt2þu2Þþ8m2ðt3þu3Þ−s2ðs2þ2tuÞ�
8ð4m2uþstÞð4m2tþsuÞM2

pl

;

Cð12;34Þ

¼ð4m2−sÞ½4m2ð8tu−3s2Þþ5stuþ t3þu3�
2048s2M2

pl

þ8z4s2m4þz2m2½4m2ð32tu−3s2Þþ5stuþ t3þu3�
32s2M2

pl

:

ðA12Þ

Finally, the complete result of the loop amplitudes is
given by

M4ðs; tÞ ¼ 4Cð34; 1; 2ÞItriðs;m2Þ þ Cð12; 34ÞIbubðs;m2Þ
þ ðs ↔ tÞ þ ðs ↔ uÞ; ðA13Þ

where the bubble scalar integral Ibubðs2; mÞ is defined in
Eq. (A9), and the triangle integral is given by

Itriðs2; mÞ ¼
Z

d3l1

ð2πÞ3
1

ðl2
1 −m2Þðl2

2 −m2Þðl2
3 −m2Þ

× ðsee Fig: 3ðaÞÞ: ðA14Þ
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