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We extend Derrick’s theorem to the case of a generic irrotational curved spacetime adopting a strategy
similar to the original proof. We show that a static relativistic star made of real scalar fields is never possible
regardless of the geometrical properties of the (static) spacetimes. The generalized theorem offers a tool that
can be used to check the stability of localized solutions of a number of types of scalar field models as well
as of compact objects of theories of gravity with a nonminimally coupled scalar degree of freedom.
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I. INTRODUCTION

Derrick’s theorem [1] constitutes one of the most impor-
tant results on localized solutions of the Klein-Gordon in
Minkowski spacetime. The theorem was developed origi-
nally as an attempt to build a model for nonpointlike
elementary particles [2,3] based on the now well-known
concept of a “quasiparticle.”Wheeler was the first to suggest
the idea of an electromagnetic quasiparticlewhich he called a
geon. In spite of the fact that Wheeler’s geons do not really
exist, other models were proposed (and are still studied) in
which geons are composed of other fields in various settings.
There are even (time dependent) formulations of this idea
which are based on gravitational waves [4].
It is clear that, in the exploration of the idea that

fundamental particles could be some form of geons, a
crucial problem is to infer the stability of the geon itself.
Derrick’s theorem deals specifically with the stability of
geons made of scalar fields. In particular, Derrick found
that, in flat spacetimes, the Klein-Gordon equation cannot
have a static solution with finite energy [5].
In relativistic astrophysics, Derrick’s theorem has pro-

found consequences: its proof implies that no stable boson
star can be constructed with real scalar fields, and therefore
that the existence of these objects requires more complex
fields. Indeed the term boson stars nowadays is largely
used to refer to complex scalar field stars, which are also
called Q balls [6].
The consequences of Derrick’s result span many differ-

ent field of physics, from low energy phenomena to QCD,
to nonlinear phenomena, to pure mathematics (see, e.g., the
list of papers citing Ref. [1]). This is due to the fact that
Derrick’s results is related to a very general property of a
class of differential equations called “Euclidean scalar field

equations” to which the static Klein-Gordon equation
belongs. In particular, Derrick’s theorem is a direct con-
sequence of the so-called Pohozaev identity [7,8]. This
identity is akin to the well-known virial theorem as it relates
the kinetic and potential energy of a localized scalar field
configuration.
The original Derrick’s theorem is limited to the case of

flat spacetime, and since its publication a number of works
have been published considering particular cases, metrics,
or matter fields (see, e.g., Refs. [9–15]). However, no
general proof of this theorem in curved spacetime and
backreaction has been given. The purpose of this work is to
provide such a generalization. The proof is based on the use
of the 1þ 1þ 2 covariant approach [16–18]. With this
tool, we will be able to extend Derrick’s results to the case
of a curved spacetime. We will also discuss the conse-
quences of such results on compact objects in some types of
modifications of general relativity.
The paper is organized as follows: In Sec. II, we will

describe briefly the 1þ 1þ 2 formalism which will be the
main tool of our proof. In Sec. III, we will use the 1þ 1þ 2
formalism to prove Derrick’s theorem in flat spacetime. In
Sec. IV, we will extend this theorem to curved spacetimes.
In Sec. V, we will analyze the effect of backreaction on the
results of Sec IV. Section VI explores the effect that scalar
field coupling might have on the proof of the extended
Derrick theorem. Section VII is dedicated to the application
of the generalized Pohozaev identity to different relevant
models of scalar fields. Section VIII concerns the applica-
tion of Derrick’s theorem to nonminimally coupled theories
of gravity. Finally Sec. IX is dedicated to the conclusions.
Unless otherwise specified, natural units (ℏ ¼ c ¼

kB ¼ 8πG ¼ 1) will be used throughout this paper and
Latin indices run from 0 to 3. The symbol ∇ represents the
usual covariant derivative, and a comma corresponds to
partial differentiation. We use the −;þ;þ;þ signature, and
the Riemann tensor is defined by
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Ra
bcd ¼ Γa

bd;c − Γa
bc;d þ Γe

bdΓa
ce − Γe

bcΓa
de; ð1Þ

where the Γa
bd are the Christoffel symbols (i.e., they are

symmetric in the lower indices) defined by

Γa
bd ¼

1

2
gaeðgbe;d þ ged;b − gbd;eÞ; ð2Þ

and gab is the metric tensor. The Ricci tensor is obtained by
contracting the first and the third indices

Rab ¼ gcdRacbd: ð3Þ

Finally, round brackets around indices of a given tensor
represent symmetrization of these indices, whereas square
brackets represent antisymmetization:

XðabÞ ¼
1

2
ðXab þ XbaÞ;

X½ab� ¼
1

2
ðXab − XbaÞ: ð4Þ

II. SOME ELEMENTS OF THE 1+ 1+ 2
COVARIANT FORMALISM

In what follows, we will make use of the 1þ 1þ 2
covariant formalism [16–18] to construct a proof of
Derrick’s theorem in curved spacetime and in the context
of modified gravity.
In the 1þ 1þ 2 formalism, a generic spacetime is foli-

ated in two surfaces, which we will callϒ, by the definition
of a timelike and a spacelike congruence represented by the
vectors ua and ea, respectively. The metric tensor can then
be decomposed as

gab ¼ −uaub þ eaeb þ Nab; ð5Þ

where Nab is, at the same time, a projector operator and the
metric of ϒ. It will be useful also to define a three surface
W with metric hab ¼ eaeb þ Nab.
In line with the above decomposition, we can define

three differential operators: a dot ð_Þ represents the projec-
tion of the covariant derivative along ua, e.g.,

_Xa::b
c::d ¼ ue∇eXa::b

c::d; ð6Þ

a hat ð̂ Þ denotes the projection of the covariant derivative
along ea, e.g.,

X̂a::b
c::d ≡ efDfXa::b

c::d; ð7Þ

and δa represents the covariant derivative projected with
Nab, e.g.,

δlXa::b
c::d ≡ Na

f…Nb
gNh

c…Ni
dNl

jDjXf::g
h::i: ð8Þ

At this point, the kinematics and dynamics of any
spacetime can be described via the definition of some
specific quantities constructed with the derivatives of ua,
ea, and Nab.
If one considers a spacetime endowed with a local

rotational symmetry (LRS)—i.e., a spacetime in which a
multiply transitive isometry group acting on the spacetime
manifold—the 1þ 1þ 2 formalism allows one to write the
equations in terms only of scalar quantities. In our case,
only the quantities

A ¼ eaub∇bua ¼ ea _ua;

ϕ ¼ Nab∇bea ¼ δaea;

Ab ¼ Nab _ua;

ab ¼ êb;

ζab ¼
�
NcðaNbÞd −

1

2
NabNcd

�
∇ced ð9Þ

will be necessary.
Notice that our treatment will not involve vorticity, as

vortical spacetimes are inherently stationary and we are
interested here only in static spacetimes. In the following,
for the sake of simplicity, we will call such general
irrotational spacetimes “curved.”
It is important to clarify the limits of the approach that

we will follow to extend Derrick’s idea. We first assume
that our curved spacetime is such that, at any point, the
quantities ua, ea, and Nab can be defined as Cð1Þ tensor
fields. In other words, the spacetime must be regular
enough to be consistent with those fields.

III. COVARIANT DERRICK THEOREM
IN FLAT SPACETIME

The equation of motion for a real scalar field φ
minimally coupled to gravity is a Klein-Gordon equation
of the form

❑φ − V;φ ¼ 0; ð10Þ

where ❑ ¼ ∇a∇a is the d’Alembert operator, ∇a is the
covariant derivative with respect to the metric gab, V ¼
VðφÞ is the scalar field potential, and Vφ denotes a
derivative with respect to the scalar field φ.
In Ref. [1], to explore stability, one expresses the

variation of the action deforming the spatial coordinates
with a constant parameter λ in the Klein-Gordon action.
We will use here the properties of the covariant approach
to perform an equivalent operation. For simplicity, let us
consider first the spherically symmetric case in a
Minkowski spacetime. In the covariant language, a defor-
mation like the one used by Derrick in Ref. [1] can be
represented by the quasiconformal transformation
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ua ⇒ ūa ¼ ua;

ea ⇒ ēa ¼
1

λ
ea;

Nab ⇒ N̄ab ¼
1

λ2
Nab; ð11Þ

where λ is assumed to be a generic positive function. Under
Eq. (11), the d’Alembertian of φ

❑φ ¼ 1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi
−g

p
gabφ;bÞ;a ð12Þ

transforms as

❑φ ⇒ λ2❑φ − λλ;aφ;a; ð13Þ

which in static flat spacetime can be written as

❑φ ⇒ λ2φ;qq − λλ;qφ;q; ð14Þ

where q is a parameter associated with the congruence ea.
Using the relation above, Eq. (10) becomes

λ2φ;qq − λλ;qφ;q − Vφ ¼ 0: ð15Þ

Equations of this type do not satisfy, in general, the
Helmholtz conditions [19], and therefore they cannot be
directly obtained as the Euler-Lagrange equations of any
Lagrangian. However, Darboux showed [20–22] that, in
one dimension, there is an equivalent second-order equa-
tion for which a variational principle can be found, namely,

eΦðλ2φ;qq − λλ;qφ;q − VφÞ ¼ 0; ð16Þ

where eΦ is known as the integrator multiplier. The form of
the integrator multiplier in the case of an equation with the
structure of Eq. (16) can be found via the relation

d
dφ;q

Q −
d
dq

�
d

dφ;qq
Q
�
¼ 0; ð17Þ

where Q represents Eq. (16) and we have assumed that Φ
does not depend on the derivatives of φ. In our case, it turns
out that Φ ¼ −3 ln λþΦ0, where Φ0 is a constant. We will
choose here Φ0 ¼ 0 so that Φ ¼ 0 for λ ¼ 1, and we
recover the original action. With this choice, the action for
Eq. (15) is given by

SðλÞ ¼ −
1

2

Z
1

λ3
½λ2φ2

;q þ 2VðφÞ�dq: ð18Þ

If the solution of Eq. (17) is localized, this integral will be
well defined and finite. Derrick’s deformation is given by

λ ¼ const; ð19Þ

which implies that Eq. (18) can be written as

SðλÞ ¼ −
1

2

�
I1
λ
þ I2
λ3

�
; ð20Þ

where

I1 ¼
Z

φ2
;qdq;

I2 ¼ 2

Z
V½φðqÞ�dq: ð21Þ

Following Ref. [1], we now impose that Eq. (10) corre-
sponds to an extremum of the action requiring that

∂SðλÞ
∂λ ¼ 0 →

I1
λ2

þ 3
I2
λ4

¼ 0: ð22Þ

Setting λ ¼ 1, we obtain that

I2 ¼ −
I1
3
; ð23Þ

i.e., the Pohozaev identity. This relation tells us that the
Klein-Gordon equation can be an extremum of action (20)
only if the integral of the potential is negative. This implies
that, for example, a mass potential, which is defined
positive, would never lead to an equilibrium.
We can determine the character of the extremum by

considering the second-order derivative of SðλÞ:

∂2SðλÞ
∂λ2 ¼ −

I1
λ3

− 6
I2
λ5

: ð24Þ

Substituting in Eq. (23) and setting λ ¼ 1, we obtain

∂2SðλÞ
∂λ2 ¼ I1 > 0: ð25Þ

Hence Eq. (10) is a minimum for the action provided that
the integral of the potential V is negative.
Now, in the static case, the energy function (as defined in

Ref. [23]) of φ can be related to the action via the relation1

E ¼ −2S; ð26Þ

which implies

∂2EðλÞ
∂λ2

����
λ¼1

¼ −2I1 < 0: ð27Þ

1This relation can be easily verified by calculating directly the
(0,0) of the stress energy density for the scalar field which
corresponds to the Hamiltonian or, more precisely, to the
Lagrangian energy.
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Therefore a minimum of the action corresponds to a
maximum of the energy, and a localized solution φðqÞ
of Eq. (10) must be unstable.
We can generalize this reasoning to the nonspherically

symmetric case in which δ derivatives also appear. From
Eq. (12), using the parameters w2 and w3 to map the two
surface ϒ, the d’Alembertian can be written as

❑φ ⇒ λ2φ;qq − λλ;qφ;q

þ
X3
i¼2

ðλ2φ;wiwi
− λλ;wi

φ;wi
Þ: ð28Þ

Hence the Klein-Gordon equation is

λ2φ;qq−λλ;qφ;qþ
X3
i¼2

ðλ2φ;wiwi
−λλ;wi

φ;wi
Þ−Vφ ¼ 0: ð29Þ

Considering the equivalent equation

eΦ
�
λ2φ;qq−λλ;qφ;qþ

X3
i¼2

ðλ2φ;wiwi
−λλ;wi

φ;wi
Þ−Vφ

�
¼ 0;

ð30Þ

the integrator multiplier can be calculated using a condition
similar to Eq. (17)2:

X3
i¼1

�
d

dφ;pi

Q −
d
dpi

�
d

dφ;pipi

Q
�	

¼ 0; ð31Þ

where pi ¼ ð0; q; w2; w3Þ, Q is Eq. (30), and we have
assumed again that Φ does not depend on the derivatives of
φ. This relation amounts to the partial differential equation

X3
i¼1

�
Φ;pi

þ 3
λ;pi

λ

�
¼ 0: ð32Þ

Using the method of the characteristics, we can find the
solutions

Φ ¼ −3 ln λþ Cðw2 − q; w3 − qÞ: ð33Þ

Since we want to return to the standard action eΦ ¼ 1 for
λ ¼ 1, we can set C ¼ 0. Thus the action can be written as

S ¼ −
1

2

Z
1

λ3

�
λ2φ2

;q þ λ2
X3
i¼2

φ2
;wi

þ 2VðφÞ
�
dΩ; ð34Þ

where the dΩ ¼ Q
3
a¼1 dpi. Repeating the procedure above,

we obtain

SðλÞ ¼ −
1

2

�
I1
λ
þ I2
λ3

�
; ð35Þ

where

I1 ¼
Z �

φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
V½φðqÞ�dΩ; ð36Þ

which implies

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → I1 ¼ −3I2;

∂2EðλÞ
∂λ2

����
λ¼1

¼ −2I1 < 0; ð37Þ

and shows that the solution φ is unstable.
This result is called in the literature Derrick’s theorem,

and it is the main reason why localized solutions of real
scalar fields are generally considered unphysical. In the
next sections, we will give a generalization of this result in
the case of irrotational LRS spacetimes and explore its
validity in more general spacetimes and in the context of
modified gravity.

IV. COVARIANT DERRICK THEOREM
IN CURVED SPACETIMES

Let us now prove Derrick’s theorem in curved space-
times. As before, for simplicity, we will start with the
spherically symmetric case and then we will consider more
complex cases.

A. Spherically symmetric spacetimes

Decomposing Eq. (10) in the 1þ 1þ 2 variables and
considering spherically symmetric LRSII spacetimes, the
transformed Klein-Gordon equation reads

λ2φ;qq − λλ;qφ;q þ ½AðλÞ þ ϕðλÞ�λφ;q − Vφ ¼ 0: ð38Þ

The above equation can be generated by the action

SðλÞ ¼ −
1

2

Z
eΦðλÞ½λ2φ2

;q þ 2VðφÞ�dq; ð39Þ

where

2Here we appear to force the original approach by Darboux,
which works only for one-dimensional actions. However, we will
show in the Appendix and in the following sections that the
integrator multiplier can be associated with the volume form for
the scalar field action, and therefore it can be determined with the
Darboux procedure also in multidimensional actions (at least in
our specific case). Indeed it will become clear that the form of the
integrator multiplier is actually irrelevant for our purposes
because its transformation properties can be deduced in general.
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ΦðλÞ ¼
Z �

1

λ
½AðλÞ þ ϕðλÞ� − 3

λ;q
λ

	
dq: ð40Þ

The integral (40) can be simplified by remembering that,
under transformation (14), we have

AðλÞ ¼ λea _ua ¼ λA; ϕðλÞ ¼ λδaea ¼ λϕ: ð41Þ

This means that

ΦðλÞ −Φ0 ¼
Z

½Aþ ϕ�dq − 3 ln λ; ð42Þ

which yields

eΦðλÞ ⇒
eΦ

λ3
; ð43Þ

where we have chosen Φ0 ¼ 0 so that λ ¼ 1 implies
eΦðλÞ ¼ eΦ. In this way, Eq. (38) can be derived from
the action

S ¼ −
1

2

Z
eΦ

λ3
½λ2φ2

;q þ 2VðφÞ�dq: ð44Þ

The above expression is consistent with the interpretation
of eΦ as the volume form for action (39) of Eq. (38) (see the
Appendix for details). In this perspective, the choice that
we made for Φ0 corresponds to a choice of the asymptotic
properties of the metric. This fact can be understood by
bearing in mind that, by definition, A and ϕ are identically
zero when the spacetime is Minkowskian [24]. As we
consider localized solutions for φ, it is only natural to
choose an “asymptotically flat” Φ by choosing Φ0 ¼ 0.
Setting λ ¼ const, we can write

SðλÞ ¼ −
1

2

�
I1
λ
þ I2
λ3

�
; ð45Þ

where this time

I1 ¼
Z

eΦφ2
;qdq;

I2 ¼ 2

Z
eΦV½φðqÞ�dq: ð46Þ

Action (45) is the same as Eq. (18) and leads to the same
conditions. This implies that Derrick’s theorem is valid also
in the curved spherically symmetric case.
It is important to stress that the Darboux procedure we

have used so far to deduce the action is valid only if the
integrator multiplier is other than zero. One can prove [24]
that this condition implies that the spacetime we are
considering does not contain a perfect or Killing horizon.

Such a constraint excludes the case of spacetimes describ-
ing black holes, trapped surfaces, etc.

B. General irrotational spacetimes

What about more complex spacetimes? If vorticity is
zero, upon the transformations (14), the Klein-Gordon
equation reads

λ2φ;qq − λλ;qφ;q þ ½AðλÞ þ ϕðλÞ�λφ;q

þ
X3
b¼2

½λ2φ;wiwi
þ λλ;wi

φ;wi
þAbðλÞλ2φ;wi

þ abðλÞλ2φ;wi
� − Vφ ¼ 0: ð47Þ

It is clear that in nonspherical irrotational LRS spacetimes
where Ab and ab are identically zero (which still belong to
the LRSII class), Derrick’s theorem holds. We have

SðλÞ ¼ −
1

2

�
I1
λ
þ I2
λ3

�
; ð48Þ

where

I1 ¼
Z

eΦ
�
φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
eΦV½φ�dΩ; ð49Þ

and Φ is given by Eq. (40) for λ ¼ const.
If we consider more general spacetimes (Ab ≠ 0 and

ab ≠ 0), we have to explore the transformation of the
acceleration vectors under Eq. (11). We have

AbðλÞ ¼ Nb
c _uc ¼ Ab;

abðλÞ ¼ Nb
cêc ¼ Nb

cλ
d�ec
λ

�
¼ ab: ð50Þ

Defining the four-vector

Va ¼ ðAþ ϕÞea þ ðAc þ acÞNc
b; ð51Þ

condition (31) for this case takes the form of the partial
differential equation involving the components of Va,

X3
i¼1

�
Φ;pi

þ 3
λ;pi

λ
þ Vi

�
¼ 0: ð52Þ

We can use the method of characteristics to solve the
above equation and, as in all partial differential equations,
the existence and properties of the solutions will depend
critically on the boundary conditions. As we have seen in
the spherically symmetric case (see also the Appendix), the
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boundary conditions are strictly related to the asymptotic
properties of the specific metric which one is considering.
Since we have assumed that the scalar field is localized, it is
natural to assume asymptotic flatness. However, as far as it
generates the correct field equation, the exact form of Φ is
irrelevant for our purposes. We only need to determine the
transformation of the quantity (53) under Eq. (11). From
Eq. (52), it is evident that Φ will transform such that

ΦðλÞ ¼ Φ − 3 ln λ: ð53Þ

Using the above result, we obtain the action

SðλÞ ¼ −
1

2

�
I1
λ
þ I2
λ3

�
; ð54Þ

where

I1 ¼
Z

eΦ
�
φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
eΦV½φ�dΩ: ð55Þ

This is the same result obtained in the flat case.

V. INTRODUCING BACKREACTION

In the previous section, we have made the tacit
assumption that the mass of the confined scalar field
solution would not perturb the assigned metric of the
spacetime. In other words, we have neglected backreaction.
Is it possible to generalize the strategy above to the case

in which the localized scalar field solution also contributes
to the spacetime metric? In this case, one should add the
Hilbert-Einstein term to the action for the scalar field

S ¼ 1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½R −∇aφ∇aφ − 2VðφÞ� ð56Þ

and derive its transformation under Eq. (11).
It should be pointed out that, at present, there is no

general consensus on the definition of the energy of the
gravitational field. One should ask, then, if it makes sense
to extend Derrick’s results also to the backreaction case. A
positive answer can be provided thinking that we are
considering a very special case. First of all, in order to
keep finite the action/energy integral, we have to assume an
asymptotically flat background. In addition, since our
choice of the vector field ua corresponds to a timelike
Killing field for the spacetimes we consider, the class of
observers we consider is static.
From the results of Ref. [25], we have that, in stationary

spacetimes, the energy of the gravitation field can be
written as the scalar

EG ¼
Z ffiffiffiffiffiffi

−g
p ðtmnun þ σ½mn�

p∂nupÞumdΩ; ð57Þ

where tmn is the Einstein pseudotensor and σ½mn�
p is Freud’s

complex [26] given by

σ½mn�
p ¼ 1

g
gprðggr½mgn�sÞ;s: ð58Þ

Equation (57) can be written, in our assumptions, as

EG ¼ −
1

2

Z ffiffiffiffiffiffi
−g

p
Lð3Þ
Γ̄ Γ̄dΩ; ð59Þ

where

Lð3Þ
Γ̄ Γ̄ ¼ habðΓ̄ad

cΓ̄cb
d − Γ̄ab

cΓ̄cd
dÞ; ð60Þ

the Γ̄ being the Christoffel symbols of the three surface W.
Now, starting from the Hilbert-Einstein action in the static
case, we can write

SG ¼ 1

2

Z ffiffiffiffiffiffi
−g

p
RdtdΩ ¼ T0

2

Z ffiffiffiffiffiffi
−g

p
RdΩ; ð61Þ

where T0 is a constant, which we can set to 1 without loss
of generality. Using the contracted Gauss-Codazzi equa-
tion, we have

SG ¼ 1

2

Z ffiffiffiffiffiffi
−g

p ðRð3Þ þK2 −Ka
bKa

b þ∇a½ _ua þ uaK�ÞdΩ;

ð62Þ

where Rð3Þ is the Ricci scalar for submanifold W,

Kab ¼ hachbd∇cud; ð63Þ

is the second fundamental form of W and K ¼ Ka
a. Using

the Gauss theorem, we can integrate out the last factor in
Eq. (62). In addition, in static irrotational spacetimes the
terms associated with the extrinsic curvature are identically
zero. Now, Rð3Þ can be decomposed in a similar way as R in
Eq. (62), employing the extrinsic curvature of ϒ.
Integrating out the second (projected) derivatives and
rewriting the expression in terms of the Christoffel sym-
bols, we arrive at

SG ¼ S0 þ
1

2

Z ffiffiffiffiffiffi
−g

p
Lð3Þ
Γ̄ Γ̄dΩ ¼ −

E0

2
− EG; ð64Þ

where S0 is a constant and we have defined E0 ¼ −2S0.
Thus in our case (and only in this case), modulus an
irrelevant constant, the energy of the gravitational field can
be linked to the Hilbert-Einstein action
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EG ¼ −
E0

2
−
1

2

Z
eΦRdΩ: ð65Þ

Here, using the derivation of the Appendix, we have
connected the volume form to eΦ.
The next task is to evaluate how EG transforms under

Eq. (11). Using the Gauss-Codazzi equation also on Rð3Þ
gives, in static irrotational spacetimes,

R ¼ Rð2Þ − 2ϕ̂ −
3

2
ϕ2 − 2ζ2 − 2abab þ 2δbab: ð66Þ

Now, since

Rð2Þ ¼ 2KG; ð67Þ

where KG is the Gaussian curvature, the Brioschi formula
implies that, under Eq. (11),

Rð2Þ ⇒ Rð2ÞðλÞ ¼ λ2Rð2Þ þ…; ð68Þ

where the dots represent terms which contain derivatives of
λ. In addition, from definition (9), one finds

ζab ⇒ ζabðλÞ ¼
ζab
λ

;

ζ ⇒ ζðλÞ ¼ λ2ζ: ð69Þ

Using also Eqs. (41) and (50), we arrive at

RðλÞ ¼ λ2Rþ…; ð70Þ

where, again, the dots represent additional terms which
contain derivatives of λ. As we will eventually set up λ ¼ 1,
these terms are irrelevant and can be neglected.
The total action derived from Eq. (56) transforms as

SðλÞ¼ SG
λ

þ−
1

2

Z
eΦ

λ3

�
λ2φ2

;qþλ2
X3
i¼2

φ2
;wi

þ2VðφÞ
�
dΩ: ð71Þ

In the case λ ¼ const, defining

I1 ¼
Z

eΦ
�
φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
eΦVðφÞdΩ;

I3 ¼ −E0 − 2EG; ð72Þ

one can write

EðλÞ ¼ −2SðλÞ ¼
�
I1
λ
−
I3
λ
þ I2
λ3

�
: ð73Þ

Since, as we have seen, relation (26) between the energy
and the action is still valid, we can examine the stability
of the backreacting solution with the same strategy as the
previous section. We have

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → I3 ¼ I1 þ 3I2;

∂2EðλÞ
∂λ2

����
λ¼1

¼ 6I2: ð74Þ

Now the trace of the field equations provides another
relation that should be taken into consideration. We have

R ¼ ∇aφ∇aφþ 4V; ð75Þ

i.e., upon integration,

I3 ¼ I1 þ 2I2: ð76Þ

Combining the above results with the first line of Eq. (74)
gives I2 ¼ 0. This yields

∂2EðλÞ
∂λ2

����
λ¼1

¼ 8I2 ¼ 0: ð77Þ

Since the above quantity has opposite signs if we consider
I2 → I2 � ϵ, where ϵ is a small constant, we have an
inflection. Hence the presence of gravity has weakened the
instability but cannot eliminate it completely.
The weakest point of the reasoning given above is,

undoubtedly, the definition of the gravitational energy of
the system. One might object that, even with our specific
assumptions, the definition of energy we have used might
miss some crucial aspect of the physics of these systems.
We can argue here that this is not the case going around the
problem of the definition of EG by eliminating the Hilbert-
Einstein term from the action using the field equations, i.e.,
considering the on shell action.
For example, using relation (75), we have

EtotðλÞ ¼ −2
Z

eΦ

λ3
VðφÞdΩ; ð78Þ

which immediately implies the result (77). This result
shows that our previous argument is correct and, at the
same time, suggests an easy shortcut to prove Derrick’s
theorem with backreaction. In the following, we will make
ample use of this shortcut, especially in dealing with more
complex settings.
We can use the on shell action to probe further in the

validity of Derrick’s theorem, by considering, for example,
the case in which the scalar field backreacts with a
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spacetime with nonzero cosmological constant Λ.
Equation (73) now reads

EðλÞ ¼
�
I1
λ
−
I3
λ
þ I2
λ3

þ 2I4
λ3

�
; ð79Þ

where

I4 ¼ Λ
Z

eΦdΩ: ð80Þ

We obtain, on shell,

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → I3 ¼ I1 − I2;

∂2EðλÞ
∂λ2

����
λ¼1

¼ 3ðI1 þ 2I2Þ: ð81Þ

Hence in this case, stability is possible if

I2 > −
1

2
I1: ð82Þ

Therefore the presence of a cosmological constant can lead
to stable solutions. However, these solutions make sense
physically only at scales in which Λ is relevant, and they
therefore exclude microscopic or astrophysical objects. Yet,
the picture that emerges is that Derrick’s instability cannot
be avoided by minimal modifications of the model. In the
following, we will explore further the validity of Derrick’s
theorem looking at the effect of scalar field coupling,
noncanonical scalar field, and modified gravity.

VI. THE ROLE OF SCALAR FIELD COUPLINGS

Derrick’s instability is very robust. No additional stan-
dard coupling of the scalar field with matter or other fields
can prevent its appearance. A coupling with another scalar
field of the type fðφÞgðψÞ would just make more compli-
cated the definition of the integral I2. In fact, starting from
the corresponding Klein-Gordon equations

❑φ − V;φ − f;φgðψÞ ¼ 0; ð83Þ

and, proceeding as in the previous section, we obtain

SðλÞ ¼ −
1

2

�
I1
λ
þ I2
λ3

�
; ð84Þ

where

I1 ¼
Z

eΦ
�
φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
eΦfV½φ� þ f½φ�g½ψ �gdΩ: ð85Þ

It follows that we can prove Derrick’s theorem also in this
case. This conclusion is independent from the sign of the
terms appearing in the above integral. The presence of the
coupling, however, changes the physical significance of
the Pohozaev equilibrium condition. The same happens
when we introduce backreaction.
What about other types of coupling? The strategy of

the proof we have presented shows that, whatever the
coupling, the key point in the determination of the stability
of localized scalar field configurations relies on the
λ dependence of the transformation of the integrator
multiplier. If the transformation of expðΦÞ is such that
the action can be written as a combination of λ terms and
λ-independent integrals, like, e.g., in Eq. (43), there will be
a chance to prove (in)stability. In other cases, Derrick’s
approach does not lead to a definite answer.
A simple example is the case of derivative coupling of

the type aφ̂gðψÞ. For this coupling, the transformation of
the integrator multiplier is given by

Φg ¼ Φþ a
Z

φ;q
gðψÞ
λ2

dq; ð86Þ

and λ is not factorizable. This fact makes it impossible to
find a form of the action similar to Eq. (48).
Instead, considering a coupling of the type aφ̂ψ̂2 will

yield

eΦgdðλÞ ⇒
eΦgd

λ
; Φgd ¼ Φþ a

Z
φ;qðψ ;qÞ2dq; ð87Þ

which leads to an action similar to Eq. (84) and thus implies
instability.

VII. NONCANONICAL SCALAR FIELDS

In the context of cosmology and in particular when
dealing with the problem of dark energy, a number of
noncanonical scalar fields have been introduced. Using the
strategy above, we can extend Derrick’s theorem to these
cases. In the following, we will consider the cases of
phantom fields [27], quintom fields [28], and k-essence
[29]. In these models, as in the ones of the next section, for
the sake of brevity, we will make Derrick’s deformation
directly in the action rather than proving that the trans-
formed action comes from the modified Klein-Gordon
equation. This connection is, however, always valid. We
will also consider only the case of LRSII spacetimes, as the
generalization to more complicated geometries can be
derived easily from the considerations above.
Phantom fields are scalar fields whose action contains

a kinetic term with opposite sign with respect to the
canonical one:

S ¼ 1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½Rþ∇aφ∇aφ − 2VðφÞ�: ð88Þ
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Excluding backreaction, we have

EðλÞ ¼ −
�
I1
λ
−
I2
λ3

�
; ð89Þ

where

I1 ¼
Z

eΦ
�
φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
eΦV½φ�dΩ: ð90Þ

Equation (89) yields

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → I1 ¼ 3I2;

∂2EðλÞ
∂λ2

����
λ¼1

¼ 2I1 > 0; ð91Þ

which implies that a localized solution of phantom fields is
actually stable. This result reveals that a key element of
Derrick’s instability is the sign of the scalar field kinetic
terms.
The inclusion of backreaction, however, introduces

instability. On shell, the energy can be written as

EðλÞ ¼ I2
λ3

; ð92Þ

and we obtain, as in the standard case,

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → −3I2 ¼ 0;

∂2EðλÞ
∂λ2

����
λ¼1

¼ 12I2 ¼ 0; ð93Þ

which is again an inflection.
In the case of quintom fields, we have two interacting

fields: one canonical and the other noncanonical. The
action reads

S ¼ 1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½R −∇aφ∇aφ

þ∇aψ∇aψ − 2Vðφ;ψÞ�: ð94Þ

Excluding backreaction, the energy function associated
with Eq. (94), this action transforms under Eq. (11) as

EðλÞ ¼
�
I1
λ
−
I4
λ
þ I2
λ3

�
; ð95Þ

where

I1 ¼
Z

eΦ
�
φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
eΦV½φ�dΩ;

I4 ¼
Z

eΦ
�
ψ2
;q þ

X3
i¼2

ψ2
;wi

�
dΩ: ð96Þ

This leads to

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → I4 ¼ 3I2 þ I1;

∂2EðλÞ
∂λ2

����
λ¼1

¼ 6I2 > 0; ð97Þ

which, as in the case of the phantom field, can be stable if I2
is positive. Again, using the trace of the gravitational field
equations to include backreaction, we can write the action
above on shell,

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p
Vðφ;ψÞ; ð98Þ

which leads to instability. This was an expected result,
which confirms the general conclusions that we have drawn
in Sec. VI: a multifield system becomes unstable if one of
its components presents instability.
In the case of k-essence, the action is generalized as

S ¼ 1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½Rþ Pðφ; XÞ�; ð99Þ

where X ¼ ∇aφ∇aφ. Using the fact that, for λ ¼ 1,
P;λ ¼ 2XP;X, under Eq. (11) and without backreaction,
one has

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → 2X∂XP − 3P ¼ 0; ð100Þ

which means that

P ¼ P0ðφÞX3=2: ð101Þ

With this result, one obtains

∂2EðλÞ
∂λ2

����
λ¼1

¼ 0: ð102Þ

In other words, we always have instability.
Considering backreaction, we have

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → X∂XP − P ¼ 0; ð103Þ
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which implies another inflection,

∂2EðλÞ
∂λ2 ¼ 0; ð104Þ

and therefore again instability.
On top of its intrinsic value, this result shows that

conditions of Derrick’s theorem can be used to constrain
modifications of general relativity in which undetermined
functions are present. In the next section, we will look at
some interesting examples of such constraints.

VIII. SCALAR TENSOR GRAVITY

Using the results from the previous sections, we can
proceed to the generalization of Derrick’s theorem to
nonminimal couplings. Let us consider, for example, the
case of scalar tensor theories. This class of theories of
gravity is characterized by

S ¼ 1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½FðφÞR −∇aφ∇aφ − 2VðφÞ�; ð105Þ

whose variation gives the field equations

FGab ¼ ∇aφ∇bφ − gab

�
1

2
∇aφ∇aφþ VðφÞ

�
þ∇a∇bF − gab❑F; ð106Þ

and the Klein-Gordon equation

❑φþ 1

2
RF;φ − V;φ ¼ 0; ð107Þ

where F represents the nonminimal coupling of the
geometry (the Ricci scalar) with the field φ.
Notice that, since the Ricci scalar naturally enters in

Eq. (107), there is no need to add by hand backreaction. We
will then treat the full case by writing the action on shell.
Using the trace of the gravitational field equations and

the Klein-Gordon equation, Eq. (105) can be written as

S ¼ 1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½KðφÞ∇aφ∇aφþWðφÞ�; ð108Þ

where

KðφÞ ¼ −
3ðF2

;φ − 2FF;φφÞ
2F þ 3F2

;φ
;

WðφÞ ¼ VF2
;φ − FF;φVφ − 2FV

2F þ 3F2
;φ

: ð109Þ

At this point, defining the integrals

I1 ¼
Z

eΦKðφÞ
�
φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
eΦWðφÞdΩ; ð110Þ

we can write

EðλÞ ¼
�
I1
λ
þ I2
λ3

�
; ð111Þ

which leads to

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → I1 þ 3I2 ¼ 0;

∂2EðλÞ
∂λ2

����
λ¼1

¼ 2I1; ð112Þ

therefore stability with a nonminimal coupling is possible if
I1 > 0 and I2 < 0. This result allows us to give some limits
on the functions F and V. In particular,

−
1

6
φ2 < F ≤

β2

4α
φ2 þ βφþ α ð113Þ

and

V0φ
4 < V ≤ V0

�
φ −

2α

β

�
2− 4α

3β2 ; ð114Þ

where V0 < 0, α > 0, and β can be chosen freely.
Notice that Eq. (108) can be used only if we exclude the

coupling

FC ¼ −
1

6
φ2: ð115Þ

In order to also obtain a result in this case, we can construct
an action on shell using the Klein-Gordon equation only.
We obtain

S ¼ −
1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½φ❑φþ∇aφ∇aφþ 2WCðφÞ�; ð116Þ

where

WCðφÞ ¼ V − φV;φ: ð117Þ

The above is, in principle, a noncanonical action. However,
it can be converted into a canonical one by integrating by
parts the higher-order term. Indeed

φ❑φ ¼ ∇aðφ∇aφÞ −∇aφ∇aφ: ð118Þ

Thus the action on shell can be written as
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S ¼ −
1

2

Z
dx4

ffiffiffiffiffiffi
−g

p ½2∇aφ∇aφþWCðφÞ�: ð119Þ

In this way, we can employ the usual procedure to explore
this case. We have

EðλÞ ¼
�
2
I1
λ
þ I2
λ3

�
; ð120Þ

with

I1 ¼
Z

eΦ
�
φ2
;q þ

X3
i¼2

φ2
;wi

�
dΩ;

I2 ¼ 2

Z
eΦWCðφÞdΩ; ð121Þ

which leads to

∂EðλÞ
∂λ

����
λ¼1

¼ 0 → 2I1 þ 3I2 ¼ 0;

∂2EðλÞ
∂λ2

����
λ¼1

¼ −4I1 < 0 ð122Þ

and implies instability. All in all, therefore only very
specific combination of coupling and potential can lead
to stable scalar field configurations.
It is widely believed today that the most general model

with a single additional scalar degree of freedom (d.o.f.)
and second-order field equations is given by the so-called
Horndeski theory [30]. This theory has been proved to be
equivalent to the curved spacetime generalization of a
scalar field theory with Galilean shift symmetry in flat
spacetime [31,32]. We will now apply the equilibrium and
stability conditions we have derived above to this class of
theories.
It is useful for our purposes to write their action in the

form

S ¼
X4
i¼1

Z
d4x

ffiffiffiffiffiffi
−g

p
Li; ð123Þ

where

L1 ¼ G1; ð124Þ

L2 ¼ −G2❑φ; ð125Þ

L3 ¼ G3Rþ G3;X½ð❑φÞ2 − φ;mnφ
;mn�; ð126Þ

L4 ¼ G4Gmnφ
;mn −

G4;X

6
½ð❑φÞ3 ð127Þ

þ2φ;mnφ
;m

;aφ
;an − 3φ;mnφ

;mn❑φ�: ð128Þ

Here Gmn is the Einstein tensor, and Gi are functions of X
and φ. Under Eq. (11), we have, together with Eq. (70),

❑φ ⇒ λ2❑φþ…;

φ;mn ⇒ φ;mn þ…;

Gmnφ
;mn ⇒ λ6Gmnφ

;mn þ…; ð129Þ

where, as before, the dots represent additional terms which
contain derivatives of λ and therefore are irrelevant in
our case.
Before proceeding, we should point out that this theory

has a noncanonical Lagrangian, and therefore the energy
function is not the standard one. However, the Ostrogradski
approach [33] can be used to show that in this case one can
also define a function that has the characteristics of the
energy of the system (i.e., it is conserved and generates a
time evolution).
The transformed action, in the static case and assuming,

for brevity, λ ¼ const, can be written as

SðλÞ ¼
Z

d4x
ffiffiffiffiffiffi−gp
λ3

½L1 þ λ2L2 þ λ4L3 þ λ6L4�; ð130Þ

where Li ¼ LiðλÞ.
The Pohozaev identity for λ ¼ 1 reads

2XL1;X − 3L1 þ 2XL2;X − L2

þ 2XL3;X þ L3 þ 2XL4;X þ 3L4 ¼ 0: ð131Þ

Equation (131) contains derivatives of the scalar field, and
therefore, without further assumptions, it cannot be used to
obtain general constraints of the functions Gi, as we did in
the previous section.
When such assumptions are provided, one can find a

number of different combinations of these functions which
can lead to stability. The trivial ones are the ones corre-
sponding to general relativity (G1 ¼ − 1

2
X − V, G2 ¼ 0,

G3;X ¼ 0, and G4 ¼ 0) and scalar tensor gravity [G1 ¼
− 1

2
C1ðφÞX − V, G2 ¼ 0, G3 ¼ C3ðφÞ, and G4 ¼ 0]. A

more general analytical condition can be obtained, for
example, assuming only G4 ¼ 0. In this case, stability is
possible for

G2 ¼ C2;1ðφÞX1=2 þ C2;2ðφÞX;
G3 ¼ C3;1ðφÞX3=2 þ C3;2ðφÞ; ð132Þ

and G1 within the functions

G�
1 ¼ C1;1ðφÞX5=2 þ C1;2ðφÞX3=2 þ C1;3ðφÞX;

G�
2 ¼ C1;5X3=2 þ C1;6ðφÞX þ C1;4ðφÞ lnX;

þ C1;7ðφÞ: ð133Þ
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Note that this is only a particular solution for the Gi.
Obtaining a general solution would require the resolution
of a nonlinear third-order differential equation for G3,
which cannot be achieved in general.
As we said, there are a number of other combinations of

forms of the function Gi which can lead to stability. The
fact that such a big number of different conditions is
possible is to be ascribed to the high level of generality of
this class of theories. Members of the Horndeski group of
theories can have a wildly different physical behavior and,
this is reflected also in the stability of the localized solution
of their scalar d.o.f.

IX. CONCLUSION

In this paper, we have presented a complete proof of
Derrick’s theorem in curved spacetime. The proof follows
the same strategy of the original paper by Derrick, but it has
the advantage of being completely covariant and not
requiring any assumption on the potential for the scalar
field or on the underlying geometry (other than the absence
of vorticity). This is made possible by combining the
1þ 1þ 2 covariant formalism and a technique first
developed by Darboux which allows one to write down
Lagrangians for dissipative systems.
For scalar fields in a fixed background, i.e., nonback-

reacting, we have been able to prove that no stable localized
solution of the Klein-Gordon equation is possible. In
addition, we found that the coupling of the scalar field
with other types of matter can change only the conditions
necessary to achieve equilibrium.
The results we have obtained can be understood by

recognizing that a scalar field can be represented macro-
scopically as an effective fluid with negative pressure
(tension). Such fluids will tend naturally to collapse in
flat spacetime. In the nonflat case, if the energy of the scalar
field is not enough to appreciably influence the curvature of
spacetime (i.e., without backreaction), a localized solution
will again be unstable. When couplings are considered,
the interaction influences the tension of the scalar field,
changing its magnitude.
In the case of real scalar field stars, as the metric of these

compact objects is determined by its matter distribution,
backreaction cannot be neglected. Our generalization of
Derrick’s theorem, therefore, implies that, in curved space-
times, stable relativistic stars made of real scalar fields
cannot exist, even when considering couplings. Indeed the
introduction of gravity “mitigates” the instability in the
sense that the maximum of the energy of the scalar field
solution is turned into an inflection point.
In terms of the fluid interpretation, this is also clear: if the

scalar field is able to influence the spacetime in which it is
embedded, its tension will induce a repulsion, much in the
same way as dark energy. As a result, the configuration is
less unstable and, in principle, with enough tension stability
could be possible. Our result suggests, however, that no

sufficient level of tension can be achieved to support a
localized solution.
It should be remarked, however, that full stability is not a

necessary condition for physical validity. In order to be able
to consider scalar field stars as possible astrophysical
objects, one can require the weaker conditions of “long-
term” stability (e.g., longer/comparable to the age of the
Universe). It is not possible with solely the tools of
Derrick’s proof to evaluate this aspect of the stability of
scalar field stars. Its study will be the topic of future works.
Unlike full stability, the equilibrium condition still

constitutes a strong physical constraint. Its application in
the context of a noncanonical scalar field and some classes
of modified gravity reveals that the extended Pohozaev
identity can be used to select potentials and classes of
theories which present an equilibrium. This is particularly
relevant in the case of modified gravity, as for these theories
all compact stars are also real scalar field stars in which the
scalar field coincides with the gravitational scalar d.o.f. We
found some very stringent criteria for scalar tensor gravity
and Horndeski-type theories. Also, in this case, coupling
with other fields as well as standard matter might be able to
modify these constraints.
We conclude by pointing out that our analysis was

performed in a purely classical setting: we have neglected
completely the quantum nature of the scalar field and the
corresponding modification to its action. These corrections,
which are necessary to build more realistic models of scalar
field stars, could lead to modifications of the equilibrium
conditions we have derived, and even to stability. Future
studies will be dedicated to the analysis of these cases.
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APPENDIX: CONNECTING
ffiffiffiffiffiffiffi− gp

AND eΦ

Let us start with the covariant divergence of the vector
ua. It is well known that

∇aua ¼
1ffiffiffiffiffiffi−gp ∂að

ffiffiffiffiffiffi
−g

p
uaÞ: ðA1Þ

On the other hand, by definition, ∇aua ¼ Θ, i.e., the
left-hand side is the expansion. In this way, one can
write

ua∂a ln jgj ¼ 2ðΘ − ∂auaÞ: ðA2Þ
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The same procedure can be applied to the quantity ∇aea to
obtain

ea∂a ln jgj ¼ 2ðAþ ϕ − ∂aeaÞ; ðA3Þ

Instead, for Nca∇bNab, since

∇bNab ¼ 1ffiffiffiffiffiffi−gp ∂bð
ffiffiffiffiffiffi
−g

p
NabÞ þ Γa

bcN
bc; ðA4Þ

we have

Nc
a∂a ln jgj ¼ 2ðAc þ acÞ þ Nc

b∂b lnN; ðA5Þ

where we call N the determinant of the nonzero minor of
Nab. In this way, we have

∂a ln jgj ¼ 2fð∂cuc − ΘÞua þ ðAþ ϕ − ∂cecÞea
þ ðAc þ acÞNc

ag þ Na
b∂b lnN: ðA6Þ

Let us now define

Va ¼ −Θua þ ðAþ ϕÞea þ ðAc þ acÞNc
a;

Wa ¼ −ð∂bubÞua þ ð∂bebÞea þ Na
b∂b ln

ffiffiffiffi
N

p
ðA7Þ

so that

∂a ln jgj ¼ 2ðVa −WaÞ: ðA8Þ

The partial differential equation (A6) is equivalent to the
one we have encountered in the main text to determine Φ
[see Eq. (42) for λ ¼ 1].
In the case of a static and spherically symmetric

spacetime and choosing ea normalized to 1, we have
Θ ¼ 0, Ac ¼ 0, ac ¼ 0, and ∂aua ¼ 0. Inserting this result
into Eq. (A8) and integrating out the total divergences in
Wa, we obtain

ffiffiffiffiffi
jgj

p
¼ g0 exp

�Z
ðAþ ϕÞdq

�
; ðA9Þ

i.e., modulus an irrelevant constant, Eq. (40). This suggests
that we can write, in a ð−;þ;þ;þÞ signature,

eΦ ¼ ffiffiffiffiffiffi
−g

p
: ðA10Þ

In more general spacetimes, Eq. (A8) is a system of partial
differential equations which one must solve in order to find
the expression of the volume form. As in the case of
Eq. (52), we can use the method of characteristics to obtain
some solutions, but we need an accurate description of the
boundary conditions to determine a solution. However, as
discussed for Φ, the exact form of the metric tensor is
irrelevant to our discussion, the only important thing is the
transformation of

ffiffiffiffiffiffi−gp
.

Let us then look at the transformation of g. It is easy to
see that, under a conformal transformation gabðλÞ ¼ λgab,
one has

VaðλÞ ¼ Va;

WaðλÞ ¼ Wa þ ∂a ln λ; ðA11Þ
and this implies

ΦðλÞ ¼ Φ − 4 ln λ; ðA12Þ

gðλÞ ¼ g
λ4

; ðA13Þ

which is consistent with the known conformal transforma-
tion of a tensor density.
Under Eq. (11), one has, again,

VaðλÞ ¼ Va;

WaðλÞ ¼ Wa þ ∂a ln λ: ðA14Þ
However, the above results imply

ΦðλÞ ¼ Φ − 3 ln λ;

gðλÞ ¼ g
λ3

; ðA15Þ

i.e., the same transformation for Φ obtained in Eq. (42).
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