PHYSICAL REVIEW D 100, 025011 (2019)

Supersymmetric Wilson loops in two dimensions and duality

Rodolfo Panerai,"”” Matteo Poggi,”*" and Domenico Seminara®

*

'Centre Jfor Research in String Theory, School of Physics and Astronomy,
Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
International School of Advanced Studies (SISSA) and INFN Sezione di Trieste,
via Bonomea 265, 34136 Trieste, Italy
3School of Physics, Korea Institute for Advanced Study (KIAS), 85 Hoegi-ro,
Dongdaemun-gu, Seoul 02455, Republic of Korea
4Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, via G. Sansone 1,
50019 Sesto Fiorentino, Italy

® (Received 28 January 2019; published 24 July 2019)

We classify bosonic N' = (2, 2) supersymmetric Wilson loops on arbitrary backgrounds with vectorlike
R-symmetry. These can be defined on any smooth contour and come in two forms which are universal
across all backgrounds. We show that these Wilson loops, due to their cohomological properties, are all
invariant under smooth deformations of their contour. At genus zero they can always be mapped to local
operators and computed exactly with supersymmetric localization. Finally, we find the precise map, under
two-dimensional Seiberg-like dualities, of correlators of supersymmetric Wilson loops.
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I. INTRODUCTION

Wilson loops are an important tool to understand the
dynamics of gauge theories: they encode how an (infinitely
massive) elementary excitation localized along the loop
responds to the presence of a dynamical gauge field. They
provide an efficient and operative way to characterize the
confinement or deconfinement phases of the theory accord-
ing to whether their expectation value increases with the
area (area law) or, respectively, with the perimeter of the
loop (perimeter law) [1].

In supersymmetric theories, a special role is played by
the so-called supersymmetric or BPS Wilson loops. These
observables are annihilated by a subsector of the super-
charges of theory, and they are often amenable to exact
evaluation through localization techniques. The first and
probably most famous example is the Maldacena-Wilson
loop along a circular path in AN =4 super Yang-Mills
(SYM) in four dimensions. It preserves half of the original
supercharges, and its expectation value is given by a
Gaussian matrix model whose form was originally con-
jectured in [2] and then rigorously derived by Pestun in [3].
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According to the AdS/CFT correspondence, the very same
quantity can be computed at strong coupling by a semi-
classical string computation, the actual matching at leading
[2] and subleading [4—6] order being in striking support for
the gauge/gravity paradigm.

This initial success has prompted an intensive search for
other examples, both in N’ =4 SYM in four dimensions
and in other theories with a different number of super-
symmetries or dimensions. In [7], Zarembo constructed
entire families of BPS Wilson loops in N' =4 SYM that
preserve 1, & or ; of the supersymmetry depending on the
subspace spanned by the contour supporting the loop. The
shape of the contour is not relevant for the existence of
unbroken supercharges. Unfortunately, the expectation
value of these observable does not receive quantum
correction, and it is one to all orders in the coupling
constant. Nonetheless, this triviality carries significant
information about the dynamics of the theory, especially
in the context of the AdS/CFT correspondence: the
associated family of minimal surfaces in AdSs x S°> must
have zero regularized area independently of the shape of the
boundary [8].

On the other hand, generic contours on an S embedded
in R* and preserving at least two supercharges were
constructed in [9]. Restricting the loop on $2, the authors
conjectured that this can be computed in terms of the zero-
instanton sector of similar observables in purely bosonic
Yang-Mills in two dimensions on the sphere. This con-
jecture was first verified perturbatively up to two loops
in [10,11], and later an (almost) complete proof using
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localization techniques was given in [12] (see also [13]).
The study of this family of Wilson loops has led to
exact results for correlators of Wilson loops [14-17],
correlators of Wilson loops and primary operators
and theories living on one-dimensional defects [18-20].
The defect approach was also crucial in relating
circular Wilson loops to the energy emitted by an accel-
erating particle, captured by the so-called bremsstrahlung
function [21].

In the N = 2 case, the original analysis by Pestun carries
over, and the %—BPS circular Wilson loop has been studied:
the relevant matrix model is much more complicated, and
the eigenvalue measure also depends on instanton contri-
butions. The large-N limit, where instantons decouple, has
been thoroughly studied and successfully compared with
AdS/CFT predictions [22-24]. Furthermore, also in this
case, an exact prediction for the bremsstrahlung function
has been put forward [25,26].

In three dimensions the situation is more intricate,
especially when considering superconformal theories.
One can construct bosonic Wilson loops, whose structure
mimics the behavior in four dimensions: the connection
appearing in the holonomy is built by adding to the
gauge field a suitable bilinear in the scalars of the theory.
These loops are supersymmetric only for a suitable choice
of the contour (for instance, circles and straight lines)
[27,28]. The expectation value of the circular bosonic
Wilson loop can again be evaluated with a localization
procedure, developed by Kapustin, Willett and Yaakov
[29], and can, in principle, be computed for a very general
class of A = 2 theories on S> (see [30] for extensions on
more general three-dimensional manifolds) through com-
plicated matrix models.

In the superconformal case of ABJ(M) theories, the
above Wilson loop has been explicitly evaluated by a
tractable matrix model, which is closely related to that
describing topological Chern-Simons theory on lens
space [31,32]. However, in the context of the AdS/CFT
correspondence, these bosonic loops are not dual to the
fundamental strings since, in general, they possess the
wrong residual symmetries. The holographic dual for
the case of the straight line and the circle in ABJ(M)
theories was constructed by Drukker and Trancanelli in
[33] and quite surprisingly couples, in addition to the gauge
and scalar fields of the theory, also to the fermions in the
bifundamental representation of the U(N) x U(M) gauge
group. In other words, the usual connection is replaced by a
superconnection built out of the fundamental fields and
living in the superalgebra U(N|M). The presence of
fermionic couplings naturally allows for a larger number
of preserved supersymmetries. These loops were extended
to more general contours in [34] and to theories with less
supersymmetries in [35-39]. They also allowed, as in four
dimensions, for the exact computation of the bremsstrah-
lung function [40-43].

In two dimensions the situation is expected to be
somewhat simpler, but it is still much less explored none-
theless. Interestingly, exact and very nontrivial results
can be obtained even for Wilson loops in nonsupersym-
metric models, when the theory is defined on compact
two-dimensional manifolds. For instance, in pure Yang-
Mills a generic Wilson loop can be evaluated on any
Riemann surface by exploiting either lattice [44] or
localization [45] techniques. At large N, they exhibit a
stringy behavior [46,47]; different scalings chart the phase
structure [48] and admit explicit solutions of the Migdal-
Makeenko equations [49,50].

It is quite natural therefore to wonder if a similar
variety of phenomena is shared by the supersymmetric
analogue of the “canonical” Wilson loops of two-
dimensional Yang-Mills. More generally, one would like
to classify and, hopefully, compute new gauge invariant
observables in two-dimensional supersymmetric theories
that could be useful in checking the AdS/CFT correspon-
dence, testing nonperturbative dualities and constructing
defect field theories. We focus, in particular, on N = (2, 2)
gauge theories with vector R-symmetry. Backgrounds for
such theories on arbitrary Riemann surfaces were recently
studied in [51,52]. More specifically, we would like to
classify all bosonic Wilson loops built from the gauge
supermultiplet which preserve some supersymmetries inde-
pendently of the shape of the closed contour, realizing a
sort of two-dimensional version of the Zarembo’s charting
in four dimensions [7]. We find two families of BPS
observables:

W. = trPexp / i(A? + f36 + f35)i2dt,
Wz = trPexp / (A2 + f26 + f35)x2d1, (1)

where ¢ and & are the scalar fields in the gauge super-
multiplet and the couplings £ and f? are defined in (9) and
(10). These loops are %—BPS, and the analysis of the
preserved supersymmetries extends to the case of a general
Riemann surface. For both classes of Wilson loops, we find
that the associated field strength is Q-exact. This, in turn,
implies that the quantum expectation value of a generic
non-self-intersecting loop does not change under smooth
deformations of its contour, thus signaling a topological
character of the observable.

We then proceed to extract exact expectation values and
correlators of these Wilson loops. For ' = (2,2) gauge
theories, exact results on various backgrounds have been
computed in recent years using localization. On the sphere
[53,54], these can be represented both as a sum over
topological sectors of a matrix integral over the Cartan
subalgebra of the gauge group (the so-called Coulomb-
branch representation) and as the product of a vortex times
an antivortex partition function, weighted by semiclassical
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factors and summed over isolated points on the Higgs
branch. This dual representation is reminiscent of the
nonsupersymmetric case, where the exact partition function
can be expressed both as a sum over the irreducible
representations of the gauge group [44] and as a weighted
sum over instanton solutions [45]. Fayet-Iliopoulos and
theta terms for the Abelian factors of the gauge group and
twisted masses and background fluxes for the chiral
multiplets can also be added, enriching the parametric
dependence of the results. In this theory a one-parameter
family of Wilson loops with contours lying on latitudes of
the round two-sphere were already considered in [53]: on
the maximal circle the dimensionally reduced %—BPS
Wilson loop of three-dimensional N =2 theories is
recovered, and the quantum expectation value of the whole
family is independent from the latitude angle.

These are recovered in our construction as the limit case
in which the two Wilson loops in (1) coincide and the
preserved supersymmetry is enhanced to %—BPS. It is only
in this case that the matrix model of [53,54] can be directly
applied to perform exact computations. Our cohomological
argument outlined earlier, however, ensures that the result
can be extended to encompass Wilson loops on arbitrary
contours. The final result can be expressed both in the
Coulomb branch representation and in the Higgs branch
representation: the nontriviality of the vacuum expectation
value is ensured by the presence of twisted masses or
background fluxes.

Two-dimensional gauge theories with N = (2, 2) super-
symmetry admit dual descriptions in the infrared regime,
first described by Hori and Tong [55,56], analogously to the
case of four-dimensional A/ = 1 Seiberg duality [57]. For
unitary and special-unitary groups, the duality has been
explicitly checked, at the level of the partition functions,
using results from localization [53,54]. More recently, the
duality has been tested against correlators of Coulomb-
branch operators for topologically twisted theories [58].
Here, we show that the dictionary for unitary groups can be
extended to include correlators of the Wilson loop oper-
ators in (1), similarly to what has been done in [59] for
three-dimensional A/ = 2 theories. We find that a single
operator insertion is mapped to a combination of Wilson
loops in different representations.

The structure of the paper is the following: in Sec. II we
discuss the general construction of supersymmetric Wilson
lines for two-dimensional N = (2,2) supersymmetric
gauge theories with U(1)g vector R-symmetry on orient-
able Riemann surfaces. We derive the explicit form of the
scalar couplings in term of the relevant Killing spinors,
and we are able to associate to a generic curve two A—IL-BPS
Wilson lines. By further constraining the contours we
observe a collapse of the two solutions into a single
%—BPS Wilson line. We then look at specific backgrounds
and derive the explicit form of these %—BPS lines. Section IIT
concerns Wilson loops, and the main result of the paper is

presented: non-self-intersecting Wilson loops whose paths
are homotopically equivalent are Q-cohomologous. In
other words, the vacuum expectation value of our ;{-BPS
observables does not change under smooth deformations
of their contour. We will prove this property by showing
that the effect of an infinitesimal deformation results in a
Q-exact quantity. In Sec. IV we specialize to a squashed
background on S? and find exact results for the value of any
of these Wilson loops and their correlators, using super-
symmetric localization. We then discuss the dependence
on geometrical data and external parameters. Finally, in
Sec. V we determine how correlators of Wilson loops are
mapped under Seiber-like dualities and provide explicit
examples.

II. WILSON LINES
A. N =(2,2) supersymmetry

Let us consider two-dimensional A = (2,2) supersym-
metric gauge theories with U(1)g vector R-symmetry on
some orientable Riemann surface M. Any supersymmetric
background for such theories can be understood as a
background off-shell supergravity multiplet as in the
approach of [60]. In addition to the metric g, the multiplet
contains, as bosonic degrees of freedom, a gauge field B,
which couples to the R-symmetry current, and gravipho-
tons C and C, which couple to the central-charge currents.
The Killing spinor equations for the generators of rigid
supersymmetry are obtained by imposing the variation of
the gravitini to be vanishing. This gives

1 -
(V—iB)e = —Eea‘ya(HP+ + HP_)e,
1 -
(V+iB)e = —Eeaya(HP+ + HP_)g, (2)

where H and H are the dual field strengths of the
graviphotons

i - i .

H= Z*dC, H= 2>z<dC. (3)
The various backgrounds induced by the solutions of the
above equation on an arbitrary M have been studied
and classified in [51,52]. The only backgrounds that
apply to any genus g are the topological A- and A-twist
[61,62], which preserve up to two supercharges of opposite
R-charge. All other possible backgrounds apply to the case
of g < 2. For g = 1 one can adopt a flat background as on
the complex plane C. Finally, the case of g =0 admits
various rigid supersymmetry realizations preserving a
different number of supercharges. We refer the reader to
[51,52] for more detail. In this paper, we will pay particular
attention to the maximally supersymmetric round sphere
and its squashing.
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While still keeping the supersymmetric background
generic, let us look at N'=(2,2) vector multiplets. Here
we denote with G the gauge group and with g its associated
Lie algebra. In the Wess-Zumino gauge the multiplet
consists of g-valued fields (A, 4, 1,0, 6,D), where A is
the gauge vector field, A and 1 are gaugini, o and & are
scalars, and D is an auxiliary scalar field. The U(1)g-
charges for the component fields are given by

A AT A" it A c D
0 +1 +1 -1 -1 0 0 0

Qe

In general, the axial R-symmetry is explicitly broken. The
supersymmetric variations for the component fields are
given in Appendix B.

B. Supersymmetric connections

We are now ready to introduce a generic Wilson line of
the form

W= Pexp/ iA, (4)
r

where I':(0,1) - M is some smooth path and A is a
G-connection defined as some combination of fields from
the vector multiplet. In coordinates, we denote I' as the
embedding x(7).

Since we are interested in bosonic deformations of the
nonsupersymmetric Wilson line defined with A4 = A, we
write

A=A+ fo+f5, (5)

for some one-forms f and f.

We want to find the choices of f and f for which W is
annihilated by some supercharge. For this, we need the
explicit expression of the supersymmetric variation of the
fields A, o and &. Interestingly, these fields are precisely
those whose variations are insensitive to the particular
realization of supersymmetry considered, as can be seen
from (B1).

When acting with a supersymmetry variation on
A = A2¢?, one finds

SA? = eM?) + eM?), (6)
where
M = 427+ [P, + P,
M = —2p + fP_+ J°P.. (7)

From this, one can immediately obtain the variation of
the integrand .A42x?, i.e., of the pullback of .4 on the path T".

The kernels of both M2%2 and M?3x? are nontrivial for any
choice of x(t) if

PR =pP=- PP =0 ®

When these conditions are satisfied, one can find solutions
for f and f such that the Wilson line is annihilated by either
Q =¢Q for

1€ 1

L de s 7 o_ ;2
f€—+2€_(e +1ie°), f€—+2€+(e ie), (9)
orbyQ:éQfor
oo e h o 8 i) (o)
¢T ot ’ ‘T ToE ’

for any choice of the path I'.

Notice how the above are well defined: the ratios of spin
components are single-valued on M and, under a frame
change, transform with a phase that cancels the opposite
phase coming from the (anti)holomorphic combinations of
zweibein elements.

To summarize our discussion so far, given a generic path
x(r) we have defined two ;-BPS Wilson lines, namely

W, :Pexp/i.Aﬁicadt, A2 = A%+ feo 4+ f25,  (11)

W. = Pexp / iAZindr, A2 =A% 4 f20 4 25, (12)

annihilated, respectively, by Q and Q. We want to stress
that the above construction is fully general and, following
from our previous discussion, holds for any supersymmet-
ric background, provided that this preserves the selected
supercharge Q or Q.

For certain choices of I', the two Wilson lines may
coincide. This happens when x(7) obeys the differential
equation

i+ ix2
S (13)

€ €
etet

i -k
On such paths, we obtain a unique Wilson line which is
%—BPS, as it is annihilated both by Q and Q From (13), a
necessary condition on the supercharges is imposed,
namely,

2
=1. (14)

€ €
€+ g:+

The Killing spinor equations fix the action of the exterior
derivative of f and f. From (2), in fact, follow
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1 1
det = —EH(€1 —ie?)e” — (5

a)12—|—iB>e+,

_ 1. 1 ) 1 12 . _

de :—EH(e +1ie%)et + 7@ —1iB e,

det = —llfl(e1 —ie?)e — Lot _ig)er

2 2 ’

- Lo 2y [P o
de :—EH(e +ie%)et + 7@ +iB |é. (15)

When using the above with (9) and (10), the dependence on
w and B drops, and one is left with

1
df. =df: = +§He1 A €2,
-~ ~ 1.
df, = df; = —EH& N (16)

Starting from the supersymmetric connections .4, and
A, we can introduce the associated field strengths

F=dA-iAA A (17)
The dual forms read
xF = *F —ie® faf%(5, 5] + £2°(f°D% + f°D?5)
+xdfo + +df 5. (18)
Here we have used the fact that A, o and & are uncharged

with respect to R-symmetry.
One crucial property of F,. and F; is that they are,

respectively, Q- and Q-exact. In particular,

Q(ed) Q(e7)

=- = . 1
*Fe 2ete™’ WFe= 2eTE (19)
The above can be obtained by using the identities
.eP_y?e b cb .€P_y%e bb
Taee —OI Tigae =ee
EP, y2€ b b .EP_y3¢ b b
A I
and
.€P_y8D% &P, y?D%
— — fry *d L= *d Z
1 2€+€_ 2€‘+€'_ fe fe
.€P_y2D%  EP_y2D% ~ .
i =i = *df, = xdf. (21)

This fact will play a prominent role in Sec. IIL.
In the remainder of this section we will look at some
specific backgrounds.

C. Flat backgrounds

We begin by studying Wilson lines on manifolds that
admit a flat background, i.e., the plane, the cylinder and the
torus. On a flat background, Killing spinors are constant.
This, in turn, implies that f@ and ]‘a are constant for both
choices of Wilson lines W, and W;. The paths associated
with %—BPS Wilson lines are straight lines, as it can be seen
by solving (13) for constant ¢ and €.

D. The round sphere

Let us now consider the case of M ~ S? equipped with
the round metric. We denote the radius of the sphere with r
and use spherical coordinates 6 € [0, z] and ¢ € [0, 27) in
terms of which the zweibein reads

e! = rdo,
e? = rsinfdg. (22)

We follow [54] and consider the supersymmetry algebra
generated by Killing spinors obeying (2) with
B =0, H=H=-i/r. (23)

A generic solution is of the form

~ 9! i%y3 ~
E=¢e" g, (24)

for some constant spinors €, and &.
It will prove to be useful to also work in terms of the
complex stereographic projection

0 .
z=2rtan=e'?,
2

z= 2rtan§e‘i‘/’. (25)

With this choice of variables, we find
i 2z \ "' 2ref +i€pz
=414+ -=) ——=d
Je +2< +4r2> 2rey +iegz :

- i 22\ "' 2rey +iefz _
=4 (1+5) 9= "0tgy,

Je < 4r2> 2ref + i€y ¢
.

2

i “12rgy +18)z
=1+ = =0 024z,
fe 2 < +4r ) 2re +iépz2
- i 2z \ 7' 2rg5 + i85z
L= (14 ) 20 TR0ty 26
fe==3 ( +4r2> s +iegz (26)

We see that f. has a unique singular point at z,; =
2irey /ey and a unique zero at z., = —2iré; /€. The same
is true for f,, but the locations of the singularity and the
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zero are swapped. Moreover, the fact that z, 7., = —4r?
implies that the two points on S? are antipodal. Notice how
here the components of ¢, play the role of homogeneous
coordinates.

The case of f; and f; is completely analogous: f has a

singularity at z; | = —2iré; /&, and a zero at the antipodal
point z;, = 2iré; /&, whether or not the converse is true
for f.

The paths z(z) over which the Wilson line becomes
%—BPS satisfy, according to (13),

F4
 (2reg +iegz)(2rE; +iég2)

Z
(2reg +ieyz) (2re] +i€5z)

(27)

Suppose that det(eyéy) # 0; then we can recast (27) as

ilo 2rey +i€5rz Zréar +i&;zZ
dr ¢ 2rey 4 iefz 2ref + i€z

) =0, (28

so the differential equation reduces to a rational one. In
particular, given the condition on the determinant, we can
always find a Mobius transformation that brings the above
to an equation of the form

az+b
cz+d’

z= (29)
When the coefficients allow for solutions of the above, the
corresponding paths on the sphere are circles. The situation

is analogous for det(eyéy) = 0. In that case one can recast
(27) into

d/1 1 1 1
iy - —0. (30
dr <e§ €5z — 2irey N € €7 — 2ire§> (30)

which, again, reduces to a rational equation of the form
(29). Here we are assuming that certain components of ¢,
and &, are nonvanishing; other corner cases do not
introduce solutions which are qualitatively different from
the one discussed above.

So far we have concluded that (27) admits solutions only
for certain choices of €, and &, and these solutions can only
be circles. Now, instead of deriving the explicit form of a
generic solution of (27), without loss of generality we will
focus only on those circles which are centered in z = 0, i.e.,
latitudes. Any other solution can be mapped into this
restricted class by a suitable SU(2) transformation.

When substituting the ansatz z(t) = pel?(), (27) is
satisfied for either

ef =& =0. (31)

In both cases one finds

oowea( D)

sin @

i.e., that the Killing vector defined by the two spinors
generates the U(1) isometry whose orbits on the sphere are
the paths of the %—BPS Wilson line considered. At the same
time, the fixed points of the action of such isometry are the
north and the south poles, where f and f have their zeros
and their singularities.

As anticipated, these conclusions are fully general. In fact,
one can proceed the other way around and consider any
%—BPS Wilson line on S?. This will run along the action
of some U(1) isometry induced by the supercharges anni-
hilating the Wilson line. The fixed points of the isometry
will be precisely the antipodal points where f and f become
singular. One can then identify the two points with north and
south poles and choose appropriate spherical coordinates in
terms of which the 1-BPS paths have ¢ fixed. For any value
of 6, one finds that there are actually two Wilson lines
annihilated by two different pairs of supercharges Q = e¢Q
and Q = & Q. The first one takes the form

® 0 0
W, = Pexp/ ] [iAq, - r<cosz—o + sinz—ﬁﬂ do,
Po 2 2

(33)
with
4 isin? 4 cos?
€, = € e/ ( ;) L & =etir? ( . 2) ,
cos 3 ising
(34)
while the second reads
@ 0 0
Wy = Pexp/ l [iA(p + r(sin2_a + 0052_5>] do,
7 2 2
(35)
with
. cos? . isin?
eb:€5e+1‘/’/2<_ ) 29>, ébzéare_“/’ﬂ( 02>
ising cos 3
(36)

Notice how, since at the poles either f or f is singular,
the integrals do not vanish in the limits @ — 0 and 8 — 7. In
these limits the Wilson lines reduce to the local operators

limW, = P )5"9:”’
O—rx

limW,, = e’ (?1=20)3lo=0 limW, = e’ (?1=%0)0lo-s (37)
-0 0—n

IimW, = er((ﬂo_(/’l )oloo
a ’
0—-0
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These limits will be important for our analysis in the next
sections.

E. The squashed sphere

The round sphere can be seen as a special case of a more
general supersymmetric background. This is the squashed
sphere, whose geometry is given by

el =re(6)do,
e? = rsindeg, (38)

for some smooth #(6) > 0 with £(0) = £¢(z) = 1.
This supersymmetric background, studied in [63], takes
the form

1 1 ~ i
B_—5<1—T9))d¢, H=H=-—0 (39)

A generic £(6) preserves only a U(1) isometry group and
two supercharges associated with the Killing spinors in
(34), which, in turn, generate the residual isometry.
Inverting the sign of B leads to a different background
in which the preserved supercharges are the ones in (36).
Here the only %—BPS Wilson lines are the ones running
along the action of the preserved U(1), and are of the form
we denoted with W, (or Wy, for a different sign in B).

III. WILSON LOOPS

In this section we will focus on Wilson loops; i.e., we
will consider the gauge-invariant observables obtained by
taking the trace, in some representation R of G, of a Wilson
line defined on a closed path T,

Lz (T) = trgPexp 7{ iA. (40)
r

For simplicity, we will consider only non-self-intersecting
Wilson loops. We will also mainly focus on Wilson loops
annihilated by Q, although what we will say will extend
straightforwardly to those annihilated by Q.

The fact that the field strength F associated with the
supersymmetric connection .4 is Q-exact has the important
consequence that a Wilson loop is invariant under a smooth
deformation of T". It is possible to show, in fact, that two
Wilson loops whose paths are homotopically equivalent are
Q-cohomologous. We will prove this by showing that their
difference is a Q-exact quantity.

We start by considering the Wilson line

13

W(s;to, 1) = Pexp/ dr'iA(s, 1) (41)
)

defined on a homotopy of paths I'(s;#), where s and ¢

parametrize, respectively, the homotopy and the path.

We also introduce the components

A, = A20,x2, A, = 202, F,, = FP9,x20,x°.
(42)
Using the variation formula
1
O, W(s:0,1) = i / ArW(s; 7. 1), A (s: )W (550, 7).
0
(43)

it is possible to show [64] that
O W(s;0,1) =i[A;(s; 1)W(s;0,1) — W(s;0,1).A,(s;0)]
+i A AW (s ) F (53 )W (530, 7).
(44)

Notice that if we are dealing with a closed loop, i.e., if
I'(s;0) =T(s;1), the first term in the right-hand side of
(44) becomes a commutator. Therefore

1
0Ly = itrg / AW (s: 0 ) F o (s:0)W(s:0.0). (45
0
It follows from (19) that
1
OsLg . = Qtry / dr'e29,x3 (1) 0,xP (')
0

xWe(s;t’,l){— el_}We(s;O,t’). (46)

2e¢te

Likewise, the variation of the Wilson loop annihilated by
Q is Q-exact and reads

- 1
O, = Qtry / dr'e00,x2 (1)9,2° ()
0

3

X WAS;t’,l)LF#] We(s;0,¢).  (47)

For a finite homotopy one can integrate both sides of (46)
and show that the difference between two homotopic
Wilson loops is indeed Q-exact. Crucially, in extending
our argument to a finite deformation of I', one should be
careful to avoid singularities of (46), at which our argument
breaks down. These singularities come from the zeros of e™
and e~, which are also the sources of singularities for f, and
f.. In general, one should consider not just the homotopy of
M but rather the homotopy of M with punctures corre-
sponding to the points in which the components of € vanish.

This property is already important at genus zero. In fact,
because of homotopic invariance, one might be tempted to
conclude that, at genus zero, all Wilson loops are neces-
sarily trivial. However, while this is true for the Euclidean
plane, this turns out not to be the case for the squashed
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(@ (b)

FIG. 1. In (a) the Wilson loop can be mapped to local operators
by shrinking its contour around the poles. In (b) the 0-homotopic
Wilson loop can be mapped to trl.

sphere, despite the fact that 7, (S?) = 0. This is precisely
because, as noted in Sec. II D, for our choice of super-
charges, the Killing spinors are singular at the north and
south poles. When these two points are removed, different
contours, which are homotopically inequivalent, lead to
inequivalent Wilson loops as depicted in Fig. 1.

IV. LOCALIZATION AT GENUS ZERO

The aim of this section is to find an exact expression for
supersymmetric Wilson loops on the squashed sphere, and
their correlators. Exact results for A" = (2,2) gauge the-
ories have been derived in recent years through super-
symmetric localization [53,54,63]. All these results are
obtained with a choice of localizing supercharge Q which is
a combination of Q and Q. Since a generic Wilson loop
defined as in either (11) or (12) is only annihilated by one
chiral supercharge, one cannot directly apply the recipe of
[53,54,63] to compute the expectation value of such a
Wilson loop. However, the conclusions of the previous
section come to the rescue, as one can use the invariance
under homotopy to map a generic Wilson loop to a local
%—BPS operator. If we consider, for instance, a Wilson loop
of the kind depicted in Fig. 1(a), one can compute its
expectation value by simply considering the associated
local operator inserted at the pole obtained by shrinking the
contour as in (37). Specifically, for a Wilson loop annihi-
lated by Q = ¢,Q and wrapping the north pole anticlock-
wise, one finds

(Lg) = (rge=>77). (48)
A change in orientation will result in a simple sign flip in

the exponent. In a similar fashion, one can recast a
correlator of n Wilson loops annihilated by the same Q as

(Lg,(T))...Lg,(T,)) = ] dimR;
I;€[0]

X < H tere—2ﬂm|9:0 H trRke+2”’”00>, (49)
]

rell Tel-1]

where [n] is the homotopy class of paths that wind n times
around the north pole.

What is crucial for the success of this approach is that
these local operators are annihilated by two supercharges,
as noted in Sec. II D. In particular, they are annihilated by
@, and as such, are amenable to localization. Here we get to
the final result by effectively using two cohomological
arguments. The first, with respect to the supercharge Q,
uses the invariance under a variation of the homotopy
parameter s to map any Wilson loop to a %—BPS local
operator. The second, with respect to the supercharge Q,
uses the invariance under a smooth variation of the gauge
coupling (and possibly other parameters) to reduce the
path integral to a Coulomb-branch matrix model as in
[53,54,63]. We will now briefly summarize the setup for the
computation.

Let us consider a theory of a vector multiplet and chiral
multiplets, with gauge group G. The Lagrangian for the
vector multiplet is given by

1 c—o6\2 1
=tr|= («F-i—2) +-(D
Lves r[z ( lzrfw)) *2(

1 1 i~
+ 3 DasD% — 3 [6,5]* — %lyaDa/l

LA
2rt(0)

~ 3P, [o.] =5 7P_[a. z}] : (50)

For every generator in the center of g, we can add a
topological and a Fayet-Iliopoulus term, namely

L :i%tr*F—i(ftrD. (51)

In the following we will rely on the presence of such a term.
The chiral multiplet has components (¢, v, F), while the
antichiral has components (g;ﬁ,y?, F). The Lagrangian for
the matter content is

_ il mapa s 190 +6)  q(2—q)
Emac = d’[ DID% 80+ 2y T aree)|?
+ iy [—yaDa +oP_ 4P, + 2r;q( 9)} "
+ WAp — iy (52)

This can be complemented by the introduction of super-
potential interactions L. The choice of the superpotential
will determine the R-charge assignments for the matter
fields. Finally, if the theory has some flavor group Gg, we
can gauge it by introducing a nondynamical vector multi-
plet and turning on background values for its bosonic
component fields along the Cartan [53,54,65]. These will
introduce twisted masses 7;/r and background monopole
charges n;, where i = 1, ..., rkGg.
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It is possible to localize this theory [53,54] with respect
to a charge

Q= Q|eg=1 + Q|éa=—i' (53)

In Coulomb-branch localization one uses the fact that
Lyeer L and Lo are all Q-exact. This implies that the
expectation value of Q-closed observables will not depend
on the couplings appearing in the action for the vector and
the chiral multiplet, or on parameters in the superpotential.
The result will depend, instead, on the parameters 9 and £ in
the Fayet-Iliopoulus action and on the background flavor
gauge multiplet through z; and n,.
The BPS locus is spanned by the field configurations

A= % (k — cos 0)dg,

2y —im
o= ,
2r
. 2y+im
6= ,
2r
y
D=-5, 54
% (54)

aligned with the Cartan. Here y € R*G, m € Z*C are
monopole charges, and « is chosen to be +1 in a coordinate
patch that covers the north pole, and —1 in one covering the
south pole. The one-loop determinant associated with the
vector multiplet reads

a(m)?

Zuetmy) = T[(“GF +a02). 69
aeG

where the product is over the roots a of G. Then consider a

chiral multiplet with R-charge ¢ in a representation R, of

G and in a representation of Gy with charges h'. Its one-

loop determinant is given by

Zmat(m7 y; n’ T)

Tt i
e T(1=3q +ip(y) +ih'e; —5p(m) =3 h'n;)”

(56)

where the product is over the weight p of R. The
contribution associated with the classical action comes
from Lg;. This, evaluated on the locus, gives

ch(m,y> — e~ 4midtry—idum. (57)

When putting things together, Coulomb-branch localiza-
tion gives rise to the matrix model

rkG
yr
/H cl m, y)Zvec(m y)Zmat(m yn, T)

mez*G

(58)

One can compute the expectation value of a Q-closed
operator O through the above matrix model simply by
considering the insertion of O evaluated on the BPS locus
(54). The expectation value in (48), in particular, corre-
sponds to the insertion of

Ze—2ﬂA(y)+inA(m)_ (59)

AeR

-2 —
trre m‘BPS locus —

In the following we will consider theories with unitary
gauge groups.

A. U(1) gauge theory with matter

We will start by considering a theory of gauge group
U(1) with the N; chiral multiplets of charge 41 and twisted
masses 7y, N, chiral multiplets of charge —1 and twisted
masses 7,, and vanishing background flavor fluxes. The
matrix model resulting from Coulomb-branch localization

reads
(5 19 7, ‘L' / —4ni.fy—im8
meZ

Xﬁ [(—iy —it; —m/2)
(1 +iy +iry — m/2)

R

N, -
o I(iy 2
% l‘l.'f+m/ ) (60)
(1 —iy+i7, + m/2)"

a=1

The R-charge contributions can be reabsorbed by giving an
imaginary part to the twisted masses, as can be seen in (56).

Without loss of generality we will assume that Ny > N,,
or that Ny = N, and £ > 0. The other cases can be obtained
by charge conjugation.

The issue about the convergence of the above matrix
model with the insertion of the Wilson loop operator can be
simply addressed by using the fact that the partition
function is analytic in & and 9 (see [54]). In the Abelian
case, then, the insertion of the local operator (59) corre-
sponds to a shift in the parameters 9 and m. In particular,

Zy)(E= AL, 9 = Am; 7, %)
ZU(])(&, 19’ T, %) ’

where A is the weight of R, i.e., an integer labeling the
Wilson-loop representation. The integral representation in
(60) can be recast into the “Higgs-branch” formula [53,54]

Zyy(&.9;7.7)

N
e
=1

<e—27rm>U(l) —

(61)

NZW (20,820 (z0. 7). (62)
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2méE—i8 2mE+id

where we set z = e~ and Z = e~ , and the func-
tional determinants can be written in terms of hypergeo-
metric functions as

{—iMfz}gil
. N
{1 +iMEYEE

l b4 pa -
ng) (Z; T, T) = NaFNf_l ( (—1>Nuz> ,

(65)

Ne T(—iML) Neor(—imf! where ML =7, — 7, and M}, =7, + 7,.
(= f (—iMy) P =Tt
Z ’ - . = ) 63
l-loop(T T) HF(I—Q—IM})EF(l—i—iMé) ( )
i B. U(N) gauge theory with matter
We now want to generalize the result above to the case of
0 ~ {-i[f/[’a}g;l v a U(N) gauge group with matter in the fundamental and
2y (577 = y,Fy {1+ im0 (=D)%z ), antifundamental representations. To avoid supersymmetry
Fif=ti# breaking we consider theories with N < N;. Coulomb
(64) branch localization leads to the matrix model
|
dy, e~ 4mi&y,~im,9 1 2 2
wletied = S [T[reomme ] )+ (5= 3)
mezV 1<t<s<N
1 [H F(-iy, — ity —m,/2) ﬁ [(iy, —i7, +m,/2) ] (66)
r=1 ler(1+1yr+17f_ r/2) (1_1yr+i%a+mr/2) .
|
We notice that it is possible to obtain Zyy) by acting witha  Following [54], we introduce new coordinates
differential operator A on N copies of Zy ). Namely,
[ ,
uw) (€957, 7) :mAHZU(U(fr,&r;T,%) o (67) wy = —logz, = 2n¢, +18, (70)
o=l 9r=9
where
and their complex conjugates w,.. For the partition function,
A H [_1(6_8)_1(6_8)} we have
v I 08, 09, 16z \O&,  O&
(68)

Similarly, the insertion of (59) is obtained by evaluating

(& 957,7)] 7!

X ZAHZU (&,9,51,%)

AER r=l1

(trre™)uv) = [Zuw

Er=¢— /\rl/7
9,=9—A,

(69)
|

l ~
2yl = | ]

1<t<s<N

Z(Vl)(w;r,%): H (1—
1<t<s<N

)
W= I (1-22%)] -
I<r<s<N L st =

8,—6\) & (1,) ]
- | |Zv' e VT, T ,

Z oAmié Z 7,

1€C(Ny.N)

(1)
Xleoop

Z (N)(g’ 19;1', %) =

(2.9) 2V (wi . 7) 28 (w3 7. 7).
(71)

where [ = (I, ..., ly) is a combination C of N elements out
of N¢, and the functional determinants are

N
Ir
H Zi—leop:| ’ (72)

r=1

(73)

Lr=1 dIw,=w

(74)
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here we use 9, = 3/0w, and 0, = 0/0Ww,. Notice that the vortex and the antivortex functional determinants can be written

in a nicer form as

20wy 1,7) =

HN“l(—iMZ)z,

S (= 1)k T T

keNN rel erl le

28 (wyr,7) =
keNN

where |k|
variables w and w, we have

1

(trre )y = [Zuw (& 957, 7)) m

N
r=1

1<t<s<N

N

1<t<s<N r=1

The last line of (77) suppresses the [’s containing repeated
indices. As before, this gives a sum over [ € C(Ny, N).
Keeping into account that

EODRIEA — Q2@ WD,y (78)

w,=w=2miA, T

we finally arrive at the expression

(trre™ ") yny = Corr (e - X0 )N (79)
where with {O)) we denote the insertion of O in the Higgs-
branch formula (71). Here, we have defined x; = e>*".
We notice that an analogous conclusion could be
obtained, perhaps more directly, by using Higgs branch
localization as in [53,54]. In this case, the localization
locus for the bottom components of the vector multiplet is
given by
c=6=-1/r. (80)
Interestingly, in order to perform Higgs branch localization,
one has to assume the presence of a Fayet-Iliopoulus term,
which in our case is crucial for the convergence of the
matrix model.
When N = N; there is only one / in the sum, and the
result takes the simple form
(trRe'z””’>U(Nf> :)('R(Xl, ...,.XNf). (81)
At this point we have everything in place to address the
original aim of this section, namely, to give a quantitative

2 Tlyer(—iM1 (73)

Hfzvil (—iMy).

- Zr)Z ’

-

(=1)(N+Na=Ni=DIK] p=itlK - | (76)
Z H erz(—le - Zr)Z,HfEl(_le - Zr)z,

rel

=Y, k.,and Z, = z,, with p such that /, = r. The computation of the operator insertion is similar: with the new

Z{ﬁ: ﬁ: (H Z (T %))

eR V=1 Iy=1 \r=l

w,=w=2miA,

w,:w}' (77)

|
description of the correlator in (49). Because of the
isomorphism between the representation ring and the
character ring of any compact G, a correlator can always
be recast as a single Wilson loop insertion associated with a
product of representations. These are the representations
(or their conjugates, according to the path orientation) of
homotopically nontrivial I"’s in the correlator. Namely,

(Lg,(T))- Ly, (T = [ dimR;
I;€l0]

x1,))- (82)

<t & r o 7
FjE[l] ryel-1]

Again, for N = N¢, one simply obtains

(Lg,(T'1).- Lz, (T0))uwy
:,’{/ QR ® ﬁk(xl""’fo) H dlle (83)
I';€(0]

riel] 'reel)

V. DUALITIES

Two-dimensional N' = (2,2) gauge theories enjoy a set
of dualities [55,56] which are reminiscent of Seiberg
duality in four dimensions [57]. For models with unitary
gauge groups, the ones we are interested in, the duality,
suggested by the brane construction in [66], relates a U(N')
theory with Ny > N chiral multiplets in the fundamental
representation with a U(N; — N) theory with the same
matter content, under the following identification of
parameters:
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LD =¢ 90 = 9 — Ny, P =—7z. (84)

In the absence of antifundamental multiplets, the
flavor symmetry group Gg is SU(N;), which implies that
277 =0 and, in turn, that [[,x, = 1.

In this section we provide additional evidence for
such dualities by extending their dictionary with the
supersymmetric Wilson loops defined in the present work.
What we find is that a single Wilson loop in a given
representation of U(N) is mapped, under duality, to a linear
combination of Wilson loops in different representations of
U(N; — N), similarly to what was found in [59] for theories
in three dimensions.

Without loss of generality, we will write down the duality
map for a single Wilson loop in an irreducible representa-
tion of U(N). An irreducible representation R is uniquely
determined by its highest weight A, so in the remainder
of this section we will use the two interchangeably. We
refer the reader to Appendix C, where we provide details
about U(N) characters along with relevant mathematical
identities.

In the Higgs branch formula (71), one has to sum over
combinations /. Every / € C(Ny, N) has a natural dual
[P € C(Ng, Ny = N), such that [ n[° =@. Indeed, as
proven in [53,54], the duality is realized in (71) at the
level of individual terms in the sum, where a term labeled
by a certain [ is equal to the term of the dual theory labeled
by the dual [P, with the correct identification of parameters
as in (84).

As it turns out, this property also holds when extending
the duality to Wilson loops. In fact, we can construct the
dictionary for such operators by matching, term by term in
the sum, both sides of the duality. Explicitly, one starts from
the identity

U(N)
(Xp0evnxyy) = E Cu(Xy, . xy,)

4\

X X PR

Moxp.xp ). (85)

-

and finds, after applying the map (92) that prescribes
xP = x1
|

Py (X1, X2, X3) p oy (x3)
P(—l)(xl»x27x3)l7(1)(x3)
Pa.-1) (x1, X2, X3)

Putting everything together we find

U2
)((ls_)])(xl»XZ)

™ ey, >>ch_,l xR
x (o >(x1?3,...’x}% - (86)

N¢-N

The coefficients ¢, are symmetric in all x’s. This, in
particular, means that they do not carry a dependence on
[ and, as such, are taken out of the sum over / in the Higgs-
branch formula. The duality dictionary is fully specified by
the explicit expression of the coefficients c,.

The algorithm to determine the c¢,’s consists of
three main steps, whose technical details are given in
Appendixes C 1, C2 and C 3, respectively.

In the first step one decomposes the character M( ) as a
linear combination of power sums. Particular care is needed
when A contains some negative entries, and one cannot
straightforwardly apply the Frobenius formula. In the
second step one manipulates the power sums so that they
either depend on the x’s of the dual combinations [° or on
all x’s. Finally, in the third step we decompose all the power
sums as U(N¢) and U(N; — N) characters. The former will
recombine to form the coefficients c,,.

The discussion so far has been somewhat abstract, so we
now look at a concrete example for a simple but nontrivial
case. We consider a Wilson loop in the adjoint representa-
tion of U(2) with Ny = 3. For ease of notation we fix

[ ={1,2} and [° = {3}. Following Appendix C 1 we find

U(2)

1
)((1,_1)(xlvx2) = _EP(O)(xla)Q) + P(],-l)(xhxz)- (87)

Then, as in Appendix C2 we express the power sum in
terms of dual variables and get

2
ZH(‘_)U(Xl,Xz) = p(l,—l)(xhx%x})
= Py (x5 %2, %3) p (=1 (x3)

= =1y (x1, X2, X3) P (1) (x3). (88)

Finally, following Appendix C3 we rewrite every term
using characters of U(3) and U(1), i.e

U3 U3
:)((1(,0?_1)()(] » X2, )C3) +)((0(.0?0) (xla X2, )C3)

U3 Ul
:){(1(,0?0)<XDx2,x3))((_1)(x3),
U3 U
:}((0(.0?—1)()‘17x27x3))((,(> >(x3),
:ZH(,?)?—I)(M,XLXQ —5—)(2)%)’0) (x1, X2, x3). (89)
U3 Ui u(s -
_Z(l(.o?()) (X1,X2,X3))((_(1))(X3) _)((0(,0),—1)<x1vx2,X3))((1(> >(x3). (90)
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This leads us to conclude that, under the duality,

uE)
Lo

U@3)

u) 2
= Fao-n T Y = 2000 ~Xoo0-nka) - (91)

LU0 _UB) U

Below we give the explicit dictionary for the first few representations labeled by positive highest weights:

Loy = Lig.)
LH(Z(;/.)...,O) = )(E)(Nf)o -1 LH)(MBN_)I )
Lo, o) = Ko 02 =X 0L oo + Lo ot -1y
L{YD..0) P X mto) = o0 Lo oty + L sy
Lg(.g],)....o) X g){].\.](.',)o,ﬁ) X %(NI)O—z)Lg)(M:)A? +x g)(,].\.’i)o.—l)LI({)(,].\ﬁ;)],\i)1.—1) - LI({)SIA\.ITI)],\?L—L—U’
sz(ﬁvé 0 X Ei)(,{\.[f,)o,—l.—z) - (Z%(,I,\.’i)o,—z) +x (O,..T,)O,—l.—l))LE‘(])(.].\.]:){\?I)
+x %(N‘)O_ULE)(N‘BN-Z) +x %(Nl)o—l)Lg)(N[BA?l—m - LH)(,].\.,%@L—Z) g
L:Jl(,jlv,)l,o,‘..,o) = )(Ei)(,j.\.[i)o,—l.—l,—l) - )(2)(,1.\.]1)0,—1,—1) (0,75@1) + %?357T?o,_1>L23<,{V.T5@2> - LE)?YTI)&)' (92)

The dictionary for conjugate representations can be ob-
tained by inverting all x’s.

It is immediate to check that the above maps are indeed
involutions.

One might be puzzled by the fact that the above are
written in terms of U(N;) characters, while Gg is actually
SU(Ny). However, since, as mentioned above, the sum of
all 7’s is vanishing, every yU(1) is secretly a G character
as well.

The maps in (92) suggest that a more direct interpre-
tation on the duality could be obtained by considering
Wilson loops associated with supersymmetric connections
including matter fields. Operators of this kind have been
considered in relation to theories with boundaries [67,68].
Also, correspondence of such boundary supersymmetric
connections under Seiberg-like dualities has been studied
in [69,70].
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APPENDIX A: GEOMETRY

1. Flat-space conventions

In two-dimensional Euclidean space we introduce Dirac

Spinor S
"4

In this representation, the Clifford algebra is generated by
gamma matrices

= () o) (] o) @

They obey the identity

(A1)

(r2y°), = 806, +1e°(r) %, (A3)

where ¢'2 = 1 and y? is the chirality matrix given by

ra=(y ) (A49)
r)e = 0o -1/
The charge conjugation matrix
Cab = (72)ab (AS)
defines the invariant Majorana product
vy =w'Cr = war* = wCapi”. (A6)
Since
Clr')C =", (A7)
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it follows that, for anticommuting spinors,

wy' = ()", (A8)
where the i’s run from 1 to 3.
We also define the chiral projectors
! 3
P =5y (A9)

2. Curved-space conventions

Frame indices (a = 1, 2) are denoted with a sans serif
font and always appear as raised indices. The metric tensor
g is written in terms of a zweibein €2 as

g=e*Q ¢, (A10)
while the spin connection @ satisfies
de? + @ A e =0. (A11)

5A2 = %eya;l - %E}/a/l,
86 = eP, ]+ eP_),

66 = eP_]+ &P, A,

The action of the covariant derivative on spinors is
defined as

1
V=d+ gwab[ya, 7°)

1
—dt-—w'23
+2a) y

APPENDIX B: SUPERSYMMETRY

(A12)

The Killing spinors ¢ and € generating rigid supersym-
metry are defined as Grassmann even and satisfy the
Killing spinor equations (2).

Since we are working in FEuclidean signature, the
supersymmetry algebra and all the fields are complexified.
In quantizing a theory, one specifies reality conditions for
all bosonic fields. Spinor fields are defined as complex
Dirac spinors, and their product is taken as in (A6), where
the complex-conjugate components do not appear.

The supersymmetric variations on a generic background
for components of the vector multiplet introduced in
Sec. I A read

1
54 = —eD +iy’e (*F +3 o, 5']) +iP_y®D?%(eo) + iP, y?D?(e5),

6D = — % (D2(e727) + D2(¢724) + [eP_] — &P, A, 6] + [eP, ] — EP_A, 5]).

Here, the covariant derivative acting on a field of R-charge
q is defined as

D=V-—ilA,]—igB. (B2)

Notice how the coupling with background graviphotons is
absent since the vector multiplet has vanishing central
charges.

APPENDIX C: CHARACTERS

Irreducible representations of U(N) are labeled by a set
of N integers

M>h> .. >y (C1)

which form the highest weight A of the representation.

1
S = —&D — iy’ (*F ~3 o, 5]) +iP,y?D?(é0) + iP_y®D?(€5),

(BI)

The character of such a representation is given by

UN

)(7»( >(-x1,...,XN)
_ A 4+N=11+N=-2,..., AN)(Xh o Xy) (C2)
A(N-1,N-2,..., 0)(xls xy)
where
Afgy..ron) (X1, s xy) = detfx{]V,_ (C3)

When all A’s are non-negative the character reduces to a
Schur polynomial s (x1, ..., xy).

Given an integer k we define the power sum
Xy) = x4+ xk

prlxp, ... (C4)

Analogously, for any set of ordered integers A, we define
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(X1, s Xy) :HPA,-<X1,-~-,XN)- (CS)
Power sums enjoy two simple properties,
PuPv = Ppuvs (Co)
Pa(¥fs s Xy) = Pralxis o ) (C7)
In the following we will use the notation
=D A (C8)

and define Ao and A_ to be, respectively, the set of non-
negative and negative entries of A.

1. From characters to power sums

When A_q # @, the associated U(N) character )(;XN) is
not a Schur polynomial, but rather some homogeneous
rational function in the x’s. This can be split as

U(N)<

20 (s e xy) = (X)W s (g, e xy), (C9)

in terms of a pure power and the Schur polynomial
associated with the partition & = (4; — Ay, ..., Ay_1 — Ay).

A given Schur polynomial can be decomposed in terms
of positive power sums by means of the Frobenius formula

su(x1s e xy) = Zz;lg?zp"(xl,...,xN), (C10)
Inl=[2|
where f(’{ is the coefficient of the monomial
x’}‘*N _]x’}ﬁN _2...xf{,v in the expansion of
Py(X1, s Xy) H (x; = x;), (C11)

1<i<j<N

and z, =[], n“a,!, with a, the number of times that n
appears 1.

One can similarly decompose a generic U(N) character
as a linear combination of power sums, simply by using the
split as in (C9) and by noting that

An AN

ﬂN:S(l ’’’’’ 1)()(1 ,...,XN)-

(xq...xy) (C12)
One can in fact apply (C10) twice, together with (C7)
and (C6).

Power sums of a finite number of variables are not
all linearly independent, which means that the above

decomposition is, in general, not unique. One can impose
additional constraints in the kind of power sums that can
appear. In particular, it turns out to be more convenient to
require that dim(s7) < N, |A_g| > NAy.

2. Manipulating power sums

Given two disjoint sets {x, ...xyx }, {y1, ..., Yar } > One has
the trivial identity

7xN) = pk(xlv <o XNH Vs ’yM)

—Pk(y17~-~7yM)-

pr(xp, ...
(C13)

The above can be extended to products of power sums with

palxrs ) = Y (=Dl (y1yw)
M=\,

X P, (X0 oo XN V1 e V) (C14)

3. From power sums to characters

When A_y = @, the associated power sum p, can be
written as a linear combination of Schur polynomials
through the inverse Frobenius formula

pa(xi, . xy) = Z;?Z;sn(xl, cnxy).  (C15)
In|=12

For every A; € A_ we can write, as in (C6),

i = Py | [ P (C16)
with
S(1...., 1,0)(x1_/1i"--’x1://1i)
Pa,-(xh e Xy) = 7 (C17)
(xp...xy) 7"

Now, the numerator of the above can be expanded in terms
of power sums with arguments xi, ..., xy by using (C10)
with (C7). Therefore we have

- Zﬂaﬂpﬂ(xl, e Xy)
(xp...xy) "Rl 7

pa(xy, .o xy) (C18)

for some coefficients a, and p_y = @. The numerator will
be some linear combination of Schur polynomial, as

implied by (C15). Therefore the above is some linear
combination of U(N) characters as in (C9).
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