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We present a minimal SUð2; 1Þ=SUð2Þ × Uð1Þ no-scale model that unifies modulus fixing, Starobinsky-
like inflation, an adjustable scale for supersymmetry breaking, and the possibility of a small cosmological
constant, a.k.a. dark energy.
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I. INTRODUCTION

Physics contains many hierarchies of mass scales, starting
from the Planck scaleMP ∼ 1019 GeV atwhich the effects of
quantum gravitymust become important, through the energy
scale of cosmological inflation, which is ≲1013 GeV,
through the electroweak scale ∼100 GeV, down to the
energy scale of dark energy, a.k.a. the cosmological constant,
which is∼10−3 eV.What are the origins of these hierarchies,
and how can they be stabilized in a natural way despite the
depredations of quantum corrections? Diverse origins have
been proposed, and this paper does not claim any progress in
elucidating this aspect of the hierarchies. Instead, we focus
on the question of how they can be accommodated within a
simple framework that incorporates a mechanism for stabi-
lizing hierarchies of mass scales.
That framework is provided by supersymmetry, which

could stabilize the electroweak hierarchy if the supersym-
metry-breaking scale is ≲1 TeV [1], and could also
stabilize the parameters of an inflationary scalar potential
at some scale ≪MP [2]. On the other hand, simple
supersymmetry is insufficient by itself to render natural
the small magnitude of the cosmological constant, and it
would need to be supplemented by dynamical mechanisms

to generate the hierarchies of mass scales. In the context of
cosmology, supersymmetry must be combined with general
relativity within some form of supergravity theory [3]. For
this we advocate no-scale supergravity [4,5], since it does
not have any of the deepOðM4

PÞ anti–de Sitter “holes” in the
effective potential that are endemic in other supergravity
theories with matter fields. Moreover, no-scale supergravity
appears generically in compactifications of string theory [6],
which we regard as the most promising candidate for a
quantum theory of gravity. One may anticipate that string
theory is the UV completion of the model presented below,
though our model does require specific knowledge of string
theory other than this recognition that no-scale supergravitiy
is a generic consequence of string models [6].
No-scale supergravity has been shown to yield

Starobinsky-like models of inflation [7], under suitable
conditions on the theoretical parameters [8], and we have
recently characterized general conditions under which
de Sitter (dS) vacua can be accommodated within no-scale
supergravity [9]. Upgrading such models to something
resembling the Standard Model (SM) in a more realistic
way requires a deeper discussion on how matter fields
should be incorporated, that should also include a mecha-
nism for supersymmetry breaking. Previously, this has often
been done by invoking some variant of the Polonyi model in
which supersymmetry breaking originates dynamically
within a hidden sector [10–14].
In this paper we build upon [9,15] generalizing the

characterization of dS no-scale supergravity models with
SUð2;1Þ=SUð2Þ×Uð1Þ Kähler manifolds. Without extend-
ing the field content, we introduce a mechanism that allows
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for a transition between two dS vacua, one that can
accommodate Starobinsky-like inflation and one with an
amount of vacuum energy that could be very small, like the
present cosmological constant (dark energy), without invok-
ing any external mechanism such as uplifting by fibers [16].
As we show, this class of models also allows for supersym-
metry breaking with a magnitude suitable for stabilizing the
electroweak hierarchy, without invoking any hidden sector
à la Polonyi. Additionally, a mechanism proposed previ-
ously [17,18] can be used to fix the compactification
modulus of the SUð2; 1Þ=SUð2Þ × Uð1Þ model.

II. A UNIFIED SU(2, 1)/SU(2) x U(1)
NO-SCALE MODEL

We recall that a supergravity theory is described by a
Kähler function G≡ K þ lnW þ lnW†, where K is a
Hermitian Kähler potential and W is a holomorphic super-
potential. The scalar kinetic terms of the Lagrangian are given
by Lkin¼Kij�∂μΦi∂μΦ�

j, where Kij�≡∂2K=∂μΦi∂μΦ�
j is

theKählermetric, and the effective scalar potential is given by

V ¼ eG
�∂G
∂Φi

Kij�
∂G
∂Φ�

j
− 3

�
; ð1Þ

where Kij� is the inverse of the Kähler metric.
Our model is characterized by the following Kähler

potential

K ¼ −3α ln
�
T þ T† −

ϕϕ†

3
−
XiX†

i

3

þ bðT þ T† − 2dÞ4 þ cðT − T†Þ4
�
; ð2Þ

where α is a curvature parameter (hereafter we set d ¼ 1=2
for definiteness) and the superpotentialW can be written as
follows:

W ¼ WIðT;ϕÞ þWSMðX;ϕÞ þWdSðT;ϕÞ; ð3Þ
where WI is responsible for inflation, WSM contains
Standard Model interactions (possibly with the inflaton
for reheating), and Wds will provide both supersymmetry
breaking and dark energy. More specifically, these are

WI ¼ M

�
ϕ2

2
−

ϕ3

3
ffiffiffi
3

p
�
; ð4Þ

WSM ¼ μXiXj þ λXiXjXk þ yϕXiXj; ð5Þ
and

WdS ¼ a1

�
2T −

ϕ2

3

�
n−

− a2

�
2T −

ϕ2

3

�
nþ
: ð6Þ

Equations (2)–(6) fully define our model. While inflation
based on Eq. (4) was first introduced in [8], combining this

withWSM andWdS in Eq. (3) is the key novel feature in the
model considered below. In particular, adding WdS to WI
preserves Starobinsky-like inflationary evolution while
breaking supersymmetry and leaving residual vacuum
energy suitable for dark energy today. This is accomplished
in a remarkably simple form without the necessity of
addition field content. We now preview the interpretations
of these expressions, before discussing them in more detail
in the bulk of the paper.

III. SUPERSYMMETRY BREAKING AND THE
COSMOLOGICAL CONSTANT

The complex field T can be interpreted as a volume
modulus of compactification, and ϕ as another gauge-
singlet modulus acting as the inflaton. Together they
parametrize the no-scale SUð2; 1Þ=SUð2Þ × Uð1Þ coset
manifold [15,19], while Xi represent gauge-non-singlet
matter fields such as those appearing in the SM. The quartic
terms in (2) fix T [17,18],WI in (4) fixes the inflaton ϕ and
enables Starobinsky-like inflation with an energy scale
OðMÞ (other forms for WI are also possible: see [15,18]),
and WSM in (5) contains bilinear and trilinear terms of the
generic forms appearing in SM-like superpotentials as well
as a coupling of the inflaton to matter to allow for reheating.
The novel terms in (3) are those in (6) with coefficients a1;2,
which have functional forms that are holomorphic versions
of the correspondingHermitian terms of the gauge singlets in
the Kähler potential (2). Taken alone,WdS leads to a de Sitter
solution for all real values of ϕ and T. The couplings a1 and
a2 determine themagnitudes of soft supersymmetry breaking
and the cosmological constant, which are Oða1 − a2Þ and
Oða1a2Þ, respectively. Choosing a1 ¼ Oð10−16Þ and a2 ≪
a1 (or vice versa) would yield a cosmological constant and
soft supersymmetry breaking of the desiredmagnitudes. No-
scale supergravity theories derived from string models have,
in general, additionalmoduli such as the dilaton and complex
structure moduli. For simplicity, we assume that these are
already fixed at scales above the inflationary scale.
Throughout, we work in units of the reduced Planck mass,
MP ¼ 1=ð8πGNÞ ≈ 2.4 × 1018 GeV.
We consider now in more detail the dS/dark energy

sector WdS (6). Constructions of dS vacua with multiple
moduli in SUð1; 1Þ=Uð1Þ × Uð1Þ no-scale supergravity
were discussed in [9], and can be extended to general
SUðN; 1Þ=SUðNÞ × Uð1Þ Kähler coset manifolds via the

Kähler potential K ¼ −3α ln ½T þ T† − ϕiϕ
†
i

3
�. We find that

dS vacua solutions can be obtained from a superpotential
WdS of the form (6) with ϕ → ϕi and exponents given by
n� ¼ 3

2
ðα� ffiffiffi

α
p Þ [9,20,21]. Holomorphy of the superpo-

tential requires α ≥ 1, and the no-scale case K corresponds
to α ¼ 1 [22]. We assume that the imaginary parts of the
moduli fields are fixed to hIm Ti ¼ 0 and hIm ϕii ¼ 0,
which can be realized by introducing higher-order terms in
the Kähler potential such as those in the second line
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of (2), as was shown in [17,18], or (in some cases) by the
dynamics of the potential. Specializing to the SUð2; 1Þ=
SUð2Þ × Uð1Þ no-scale case and inserting the expressions
(2) and (6) into (1), we find the following effective scalar
potential at the minimum:

V ¼ 12a1a2 ð7Þ
for all values of ReT and Reϕ, which corresponds to a de
Sitter vacuum when a1 and a2 are of the same sign. Thus
the dS/dark energy superpotential WdS yields a cosmologi-
cal constant (7) following the end of inflation.
Combining WdS with a suitable inflationary superpoten-

tial WI, we can incorporate soft supersymmetry breaking
without adding an additional Polonyi sector [10,11] or
introducing other possible dynamics [16]. To this end, we
consider an inflationary superpotential WI that vanishes
when the complex scalar fields T and ϕi are fixed at the
potential minimum; i.e., we do not induce supersymmetry
breaking throughWI , which typically has amass scale of the
order of the inflationary scale∼1013 GeV.When thevolume
modulus T is stabilized through the quartic terms in Eq. (2)
so that ReT ¼ 1=2 and ImT ¼ 0, the inflaton is stabilized so
that Imϕ ¼ 0 throughout inflation and Reϕ ¼ 0 at the end
of inflation. Supersymmetry breaking is generated through
an F term for T, which is given (for α ¼ 1) by

FT ¼ −eG=2Kij�Gj ¼ −m3=2ðKT þWT=WÞ=3
¼ ða1 þ a2Þ ≠ 0 ð8Þ

at the minimum, and is independent of the inflationary
scale M. The gravitino mass is simply given by m3=2 ¼
a1 − a2 [23].
Supersymmetry breaking with a Minkowski vacuum

would be obtained if either a1 or a2 vanishes, but we are
interested here in models with a1;2 ≠ 0. Specifically, we
choose a1 − a2 ¼ Oð10−16Þ in order that the gravitino mass
be Oð1Þ TeV [24]. If we also choose a2 ¼ Oð10−104Þ, we
would obtain a value of the dark energy density (cosmo-
logical constant) comparable to thepresent value,Oð10−120Þ.
However, this is not the appropriate choice, since we expect
other contributions to the present vacuum energy density,
specifically from electroweak gauge symmetry breaking and
confinement in QCD, which are estimated to be Oðm4

WÞ∼
Oð10−68Þ andOðΛ4

QCDÞ∼Oð10−80Þ, respectively. These can
be accommodated together with the present value of the dark
energy density by choosing a1 ¼ Oð10−16Þ and a2 ¼
Oð10−52Þ with the values finely tuned to cancel the electro-
weak and QCD contributions so that the net value of the dark
energy isOð10−120Þ. It is also possible that a2 ¼ Oð10−20Þ if
the residual vacuum density is canceled by a grand unified
theory (GUT) phase transition of orderm2

3=2M
2
GUT [25]. The

couplings a1 and a2 are radiatively stable, but the required
fine-tuning is inelegant. We have no suggestion on how it
may be achieved dynamically in a natural way, but it does

provide an effective framework for the different relevant
mass scales without additional fields or resorting to uplifting
with additional string dynamics.

IV. INFLATIONARY DYNAMICS

One expects that the mass of the inflaton may be of order
M ∼Oð10−5Þ, inwhich casewe can safely ignore themixing
terms between a1;2 and M during inflation because
a2 ≪ a1 ≪ M, so the constants a1;2 do not affect the
slow-roll inflationary dynamics. As was shown in [8,18],
the Starobinsky inflationary potential can be recovered in no-
scale SUð2; 1Þ=SUð2Þ × Uð1Þ supergravity from the Wess-
Zumino-like superpotential WI in (4), and we recall briefly
some of the results. For simplicity, we consider the Kähler
potential (2) with two moduli fields ϕ and T, and set the
curvature parameter toα ¼ 1.We assume that the scalar field
T is fixed by the quartic terms in Eq. (2), acquiring a VEV
hTi ¼ 1=2. The couplings b and c are expected to both be
≫ 1, corresponding to inversemass scalesb; c ∝ 1=Λ2

T , with
ΛT ≪ MP, similar to strong stabilization in some Polonyi
models [12,13,26–32]. In the limit a2 → 0, if b ¼ c, the two
real fields associated with T acquire the same mass.
However, in the absence of supersymmetry breaking both
remain massless [18] and only acquire a mass when
supersymmetry is broken, mReT ¼ 4

ffiffiffiffiffiffi
3b

p
a1 ≃ 4

ffiffiffiffiffiffi
3b

p
m3=2,

mImT ¼ 4
ffiffiffiffiffi
3c

p
a1 ≃ 4

ffiffiffiffiffi
3c

p
m3=2.

Although the mass of T is significantly below the
inflaton mass, there is no Polonyi-like problem [33]
associated with T. As in the strongly stabilized Polonyi
system, the dominant decay mode for T is into a gravitino
pair [12], with a decay rate proportional to m3

3=2M
3
P=Λ5

T

[34]. The problem of entropy production is easily evaded
here. For ΛT ≲ 10−4, the modulus decays before the
inflaton and plays a little role in subsequent reheating
processes. As a result, there is no additional constraint
from the overproduction of gravitinos (and ultimately the
lightest supersymmetric particle). Since our stabilization
term in the Kähler potential should be thought of as an
effective interaction, consistency would require ΛT > mT

or ΛT > ð48Þ1=4ðm3=2MPÞ1=2. Thus there is a substantial
range of values for ΛT for which there is no moduli
problem; see [12] for further details. It is interesting that
ΛT ¼ M lies within the allowed range.
With the modulus fixed at hTi ¼ 1=2 and Imϕ ¼ 0

(which minimizes the potential), so that Re ϕ ¼ ϕ, we
can write the scalar potential as

V ¼ 12a1a2 þ 12a2M

�
ϕ2

2
−

ϕ3

3
ffiffiffi
3

p
�

þ 3M2

�
ϕffiffiffi
3

p þ ϕ

�
2

: ð9Þ

The first term is the cosmological constant, and the second
term is a perturbation of the inflaton potential that has a
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negligible effect on the inflationary dynamics because
a2 ≪ M. We then make the following field redefinition
to obtain a canonical kinetic term for Re ϕ:

Re ϕ ¼
ffiffiffi
3

p
tanhðx=

ffiffiffi
6

p
Þ: ð10Þ

With this field redefinition and dropping terms proportional
to a1 and a2, we obtain the Starobinsky potential along the
Re ϕ direction:

V ¼ 3

4
M2

�
1 − e−

ffiffiffiffiffiffi
2=3

p
x
�
2
: ð11Þ

The first two terms in Eq. (9) can be written as

ΔV ¼ Λþ 6a2Mtanh2ðx=
ffiffiffi
6

p
Þð3 − 2 tanhðx=

ffiffiffi
6

p
ÞÞ; ð12Þ

where we have defined the cosmological constant
Λ ¼ 12a1a2. We note that, at large x, ΔV adds a relatively
small amount 6a2M to the Starobinsky plateau value
of ð3=4ÞM2.
To visualize slow-roll inflation in the Reϕ-ReT plane,

we use the following field redefinition:

Re T ¼ 1

2
e−

ffiffi
2
3

p
ρ; ð13Þ

together with the field redefinition Reϕ → x (10). The
scalar potential acquires a complicated form in terms of
ðx; ρÞ that we do not display here, which reduces to the
form V þ ΔV given by (11) and (12) when ρ ¼ 0. We
assume that the number of e-folds until inflation ends is
N ¼ 55, which is realized with the nominal choice of
x ¼ 5.35 and ρ ¼ 0, yielding the tensor-to-scalar ratio

r ¼ 0.0035 and the spectral tilt ns ¼ 0.965 [35,36]. The
potential in the x-ρ plane is shown in Fig. 1. The field x
exits the dS plateau and rolls down towards a potential
barrier on the left, located at x ¼ 0, ρ ≈ 0.34ΛT . Then the
field ρ evolves slowly towards the global minimum located
at x ¼ 0, ρ ¼ 0, and starts spiraling about the minimum
with initial amplitude hρiMin ≈ 0.34ΛT and hxi ≈MP until
ρ (or T) decay which occurs well before reheating when the
inflaton decays.

V. STANDARD MODEL INTERACTIONS

Finally, we consider the full model with SM-like fields
characterized by the Kähler function (2), and the full
superpotential W ¼ WdS þWI þWSM (3). After the
modulus acquires its vacuum expectation value, hTi ¼ 1

2
,

and as the inflaton settles to its minimum, the reheating
process begins. The coupling yϕXiXj provides a decay
channel for the inflaton and, assuming instantaneous
reheating, the reheat temperature is TR ∼ yðMMPÞ1=2.
At the minimum, hTi ¼ 1=2 and hϕi ¼ 0, and the

potential for the SM-like fields Xi can be written as follows
in the limit MP → ∞:

VSM ¼
X
i

jWXi j2 þ 2a2μðXiXj þ H:c:Þ þ 12a1a2; ð14Þ

where WXi ≡ ∂W=∂Xi. The first term in (14) is simply a
(global) supersymmetric potential term for the Standard
Model fieldsXi in no-scale supergravity. The second term is
generated from supersymmetry breaking and appears as an
effective supersymmetry-breaking bilinear term, B0 ¼ 2a2.
The third term is, again, our cosmological constant. Gaugino
masses can be generated if the gauge kinetic function fαβ is a
function of T, so that m1=2 ≃ FT jf†T=fj=2 ∝ m3=2.
As an alternative to (2), one could also consider the case

of twisted matter fields, where the kinetic term XX† is taken
out of the logarithm in Eq, (2). In such a model, additional
soft mass terms are generated as the scalar potential
becomes

VSM ¼
X
i

jWXi j2 þ ða1 − a2Þ2
X
i

jXij2

þ ð2a1 þ 4a2ÞμðXiXj þ H:c:Þ
þ 3ða1 þ a2Þ½λXiXjXk þ yϕXiXj þ H:c:�
þ 12a1a2; ð15Þ

where we see soft scalar masses withm0¼ða1−a2Þ¼m3=2,
a bilinear term, B0 ¼ ð2a1 þ 4a2Þ, and trilinear A terms,
A0 ¼ 3ða1 þ a2Þ.

VI. SUMMARY

We have outlined in this paper a simple no-scale super-
gravity framework for sub-Planckian physics capable of

FIG. 1. Realization of the Starobinsky inflationary potential
with the initial values of xð0Þ ¼ 5.35, ρð0Þ ¼ 0. The amplitude of
the oscillation and the location of the barrier is given by
hρ=ΛTiMin ∼ 0.34.
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including modulus fixing, Starobinsky-like inflation at a
scale Oð1013Þ GeV, supersymmetry breaking at a scale
Oð103Þ GeV, and a small positive cosmological constant
(dark energy density). This model should not be regarded
as fundamental, but rather as an effective field theory that
should, we believe, ultimately be derived from a suitable
variant of string theory. In a more complete study of the
dynamics of this model, the renormalization-group evolu-
tion of the supersymmetry-breaking terms would be able to
drive the effective Higgs mass-squared negative, triggering
electroweak symmetry breaking [37] and the corresponding
change in the vacuum energy density. As mentioned earlier,
the parameters a1;2 should be chosen such that the dark
energy density takes its physical value Oð10−120Þ after this
contribution is included. Thus the electroweak scale could
be generated dynamically in this framework, though we
have no new suggestions to offer concerning the origins of
the inflationary, supersymmetry-breaking, or dark energy

scales. Finally, we note that it would be interesting to
explore the extension of this scenario to include grand
unification [38] and related issues such as neutrino masses
and mixing [25]. However, such topics lie beyond the scope
of this paper.
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