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Here we understand dimensional reduction as a procedure to obtain an effective model in D − 1

dimensions that is related to the original model in D dimensions. To explore this concept, we use both a
self-interacting fermionic model and self-interacting bosonic model. Furthermore, in both cases, we
consider different boundary conditions in space: periodic, antiperiodic, Dirichlet, and Neumann. For
bosonic fields, we get the so-defined dimensional reduction. Taking the simple example of a quartic
interaction, we obtain that the boundary conditions (periodic, Dirichlet, Neumann) influence the new
coupling of the reduced model. For fermionic fields, we get the curious result that the model obtained
reducing from D dimensions to D − 1 dimensions is distinguishable from taking into account a fermionic
field originally in D − 1 dimensions. Moreover, when one considers antiperiodic boundary conditions in
space (both for bosons and fermions), it is found that the dimensional reduction is not allowed.
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I. INTRODUCTION

The construction and use of quantum field-theoretical
models at dimensions different from the usual space-time in
D ¼ 3þ 1 are usual in the literature [1–17]. Its first
appearance seems to be in the construction of the
Kaluza five-dimensional theory [1] that intended to unify
gravity and electromagnetism. Since then, models and
theories in D ≠ 4 have been used in many different
situations:

(i) Phenomenology in particle physics considering
extra dimensions [2–10];

(ii) Field theories in D < 4 [11–17];
(iii) Superstring theory [18–20].
In the context of finite-temperature field theory, it is

understood that the regime of very high temperatures is
associated with a dimensional reduction of the model.
For scalar fields, it is possible to obtain an effective model
in dimension D − 1 that has a temperature-dependent
coupling. This effective model is related to the original

theory in D dimensions when the temperature is very high
[21–24]. One of the uses of the thermal dimensional
reduction is to investigate aspects of hot QCD [25–29].
When we consider a system with restriction in one

spatial direction, the discussion of dimensional reduction is
renewed. For example, in the context of low-dimensional
field theories (D ≤ 4), we can take into account the study of
films and surfaces. Let us consider two physical systems:
(A) a film with thickness L subjected to a thermal bath with
temperature T ¼ 1=β; (B) a surface (planar system) sub-
jected to the same temperature T. We call a dimensional
reduction the possibility that the model of the system (A)
becomes or brings information about a planar model—like
the one of case (B)—if we consider the limiting process to
take the length to zero: L → 0.
If we generalize this problem to an arbitrary number of

dimensions, we can ask ourselves whether there is a
relationship between a model in D dimensions and a model
in D − 1 dimensions; this is the major objective in the
present study.
It is a known theoretical result confirmed by experiments

that for both bosonic and fermionic systems that undergo a
phase transition, and are spatially limited, there is a
minimum size below which there is no phase transition
[30–32]. This seems to indicate that for systems where at
least one of the dimensions is restricted to a compact finite
size with a compactification length L, a strict dimensional
reduction is not allowed—at least in the context of phase
transitions. Recently, in the context of phase transitions, it

*erich@cbpf.br
†linharescesar@gmail.com
‡jose.lourenco@ufes.br
§adolfo@cbpf.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 025008 (2019)

2470-0010=2019=100(2)=025008(10) 025008-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.025008&domain=pdf&date_stamp=2019-07-18
https://doi.org/10.1103/PhysRevD.100.025008
https://doi.org/10.1103/PhysRevD.100.025008
https://doi.org/10.1103/PhysRevD.100.025008
https://doi.org/10.1103/PhysRevD.100.025008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


has been obtained that the minimal size of the system
depends on the boundary conditions imposed on the spatial
restriction. This analysis was done both for bosonic and
fermionic models, and a quasiperiodic boundary condition
was applied which interpolates between the periodic and
antiperiodic boundary conditions [33].
We have previously found [34] that for bosonic fields at

the one-loop level, the so-called dimensional reduction is
obtained when one considers periodic boundary condition
in space. In this article, we extend this analysis so that
we consider a few more boundary conditions: Dirichlet,
Neumann, and antiperiodic. Another step is to take into
account purely fermionic models, so we can compare them
with the bosonic situation. In the context of a thermal
dimensional reduction, it is known that dimensional reduc-
tion happens for bosonic models [21–24]. The logic is that
at high temperatures there occurs a decoupling between
static (a zero mode) and nonstatic contributions (nonzero
modes). Although this reasoning occurs when dealing with
periodic boundary condition, when we refer to antiperiodic
boundary condition—as is the case of fermions in the
thermal dimensional reduction—we do not have static
modes [22]. Therefore, we cannot expect the same
behavior both for periodic and antiperiodic boundary
conditions. Indeed, it seems that a fermionic model in D
dimensions is not related to a model originally built in
D − 1 dimensions [35,36].

II. GENERIC MODEL AND
BOUNDARY CONDITIONS

Our aim is to discuss field-theoretical models with self-
interaction terms. In this way, we avoid for the moment the
combinatorics of many-particle models to focus on the
effects of boundary conditions. The basic ingredient to
discuss field theories in D dimensions at one-loop level is
the one-loop Feynman amplitude. In the scenario of a scalar
field theory, the amplitude I with ρ propagators and zero
external momenta is

ID
ρ ðMÞ ¼

Z
dDp
ð2πÞD

1

ðp2 þM2Þρ ;

whereM is the mass of the scalar field. The D-dimensional
integral becomes an integral sum after we introduce
boundary conditions on d < D coordinates. The compac-
tification of the imaginary time introduces the inverse
temperature β ¼ 1=T, and the compactification of the
spatial directions introduces some finite-lengths Li. The
boundary condition on the imaginary time must be periodic
(a0 ¼ 0) for bosons or antiperiodic (a0 ¼ 1). However,
there is freedom regarding the boundary condition imposed
on the spatial direction. In the context of quantum field
theories at toroidal topologies, the use of periodic and
antiperiodic boundary conditions [30,31] has been dis-
cussed, its extension to quasiperiodic boundary conditions
[33], and also the use of Dirichlet and Neumann boundary
conditions [37]. We consider a scenario with d ¼ 2
compactifications; after computing the remaining D − 2
integrals using dimensional regularization, we obtain that
the one-loop Feynman amplitude for each boundary con-
dition (b.c.) is

ID;2
ρ ðM;β;a0;Ljb:c:Þ

¼ Γðρ−D
2
þ1Þ

ð4πÞD2−1ΓðρÞβL
X

n0∈Z;n1∈M

�
M2þ

�
2πn0
β

þa0π
β

�
2

þω2
n1

�
;

ð1Þ

where the domainM of the sum over the frequencies ωn1 is
given in Table I for each boundary condition.
Although we start with a Feynman amplitude for a scalar

field, Eq. (2), it can be shown that the one-loop Feynman
amplitude of μ fermionic propagators can be written as a
combination of scalar one-loop Feynman amplitudes. We
take into account a four-fermion coupling given by
aþ bγS, where γS represents the chiral matrix. The one-
loop Feynman amplitude in this scenario is

J D
μ ðMÞ ¼ tr

Z
dDp
ð2πÞD

�
aþ bγS
ipþM

�
μ

: ð2Þ

The relation between J D
μ and ID

ρ is obtained in the
Appendix A and reads

1

dγ
J D;d

μ ¼ aμ
Xbμ2c
k¼0

Xk
j¼0

�
μ

2k

��
k

j

�
Mμ−2jð−1ÞjID;d

μ−jðMÞ þ bμðμ − 2bμ=2cÞID;d
μ=2ðMÞ

þ
Xbμ−12 c

k¼1

aμ−2kb2k
Xbμ2c
j¼k

j!ðμ − j − 1Þ!
ðj − kÞ!k!ðμ − k − jÞ!ðk − jÞ!

Xbμ2−jc
l¼0

�
μ − 2j

2l

�Xl
n¼0

ð−1Þn
�
l

n

�
Mμ−2j−2nID;d

μ−j−nðMÞ

þ
Xbμ−12 c

k¼1

aμ−2kb2k
Xμ−k

j¼bμ
2
þ1c

j!ðμ − j − 1Þ!
ðj − kÞ!k!ðμ − k − jÞ!ðk − jÞ!

Xbμ2−jc
l¼0

�
2j − μ

2l

�Xl
n¼0

�
l

n

�
M2j−μ−2nID;d

j−nðMÞ: ð3Þ
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It holds independently of the number of compactified
dimensions d. This means that the fermionic scenario is
a combination of the relation given by Eq. (3) and the
expression of Eq. (1) considering antiperiodic boundary
condition in the imaginary time (a0 ¼ 1). Therefore, in the
analysis that follows, the bosonic behavior is studied by
investigating Eq. (1) with a0 ¼ 0 and the fermionic
behavior is studied by investigating Eq. (1) with a0 ¼ 1.
Notice that we can express both the cases of Dirichlet

and Neumann boundary conditions in terms of the function
with periodic boundary condition in space and a reduced
function with just a thermal compactification.

ID;2
ρ ðM; β; a0;LjDÞ ¼ 1

2
ID;2
ρ ðM; β; a0; 2LjPÞ

−
1

2L
ID−1;1
ρ ðM; β; a0Þ; ð4Þ

ID;2
ρ ðM; β; a0;LjN Þ ¼ 1

2
ID;2
ρ ðM; β; a0; 2LjPÞ

þ 1

2L
ID−1;1
ρ ðM; β; a0Þ: ð5Þ

Therefore, we only need to analyze the cases of periodic
and antiperiodic boundary conditions in space. For both
periodic and antiperiodic boundary conditions in space, the
remaining infinite sum in Eq. (1) can be identified as an
Epstein-Hurwitz zeta function [38]. After an analytic
continuation, this leads to the sum over modified Bessel
functions of the second kind KνðxÞ; see Refs. [30,31].
Using for convenience that ν ¼ D=2 − ρ, the amplitude
ID;2
ρ reads

ID;2
ρ ðM;β;a0;LÞ¼

ðM2ÞνΓð−νÞ
ð4πÞD2ΓðρÞ þWνðM;β;a0;LÞ

ð2πÞD2 2ρ−2ΓðρÞ ; ð6Þ

where, for periodic boundary conditions in space (P), the
function Wν is

WνðM;β;a0;LjPÞ

¼
X∞
n¼1

cosðnπa0Þ
�
M
nβ

�
ν

KνðnβMÞþ
X∞
n¼1

�
M
nL

�
ν

KνðnLMÞ

þ2
X∞

n0;n1¼1

cosðn0πa0Þ
�

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20β

2þn21L
2

p �
ν

×Kν

�
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20β

2þn21L
2

q �
; ð7Þ

and, for antiperiodic boundary conditions in space (A), the
function Wν is

WνðM; β; a0;LjAÞ

¼
X∞
n¼1

cosðnπa0Þ
�
M
nβ

�
ν

KνðnβMÞ

þ
X∞
n¼1

ð−1Þn
�
M
nL

�
ν

KνðnLMÞ

þ 2
X∞

n0;n1¼1

cosðn0πa0Þð−1Þn1
�

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20β

2 þ n21L
2

p �
ν

× Kν

�
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20β

2 þ n21L
2

q �
: ð8Þ

Notice that with the above equations one fully deter-
mines the behavior at one-loop level for finite β and finite L
both for bosonic and fermionic models in D dimensions
with the prescribed boundary conditions. In the following
sections, we organize and apply the expressions for each
situation under interest.

III. DIMENSIONAL REDUCTION

In this section, let us clarify the discussion of dimen-
sional reduction. There are two main paths to obtain a
dimensionally reduced field-theoretical model.
The first path is to take the original Lagrangian in D

dimensions, reduce it to D − 1 dimensions, and then
quantize it. This path ignores possible boundary conditions
imposed on the removed dimension. The quantization is
here understood as the computation of the correction given
by the one-loop Feynman amplitudes. If we are dealing
with a model with one self-interacting bosonic field, the
Feynman amplitude for the dimensionally reduced model
in D − 1 with one compactification corresponding to the
inverse temperature β ¼ 1=T reads

ID−1;1
ρ ðM; β; a0 ¼ 0Þ

¼ ðM2=2Þν
ð2πÞD2 2ρ−2ΓðρÞ

�
π

M2β
Γð1 − νÞ

þ
ffiffiffi
π

p
M

X∞
k¼0

ð−1Þk
Γðkþ 1ÞΓ

�
ν − k −

1

2

�

× ζð2ν − 2k − 1Þ
�
Mβ

2

�
−2νþ2kþ1

�
: ð9Þ

On the other hand, for a model describing a self-interacting
fermionic field, the Feynman amplitude J D−1;1

ρ is related to
ID−1;1
ρ ðM; β; a0 ¼ 1Þ through the relation given by Eq. (3),

and the function ID−1;1
ρ ðM; β; a0 ¼ 1Þ reads

ID−1;1
ρ ðM;β;a0¼ 1Þ¼FD

ρ ðM;β;c1 ¼ 0;c2¼ 1=2Þ; ð10Þ

TABLE I. Frequencies and domain of sum for each boundary
condition in space.

Boundary condition (b.c.) M ωn1

Periodic (P) Z 2πn1=L
Antiperiodic (A) Z ð2n1 þ 1Þπ=L
Dirichlet (D) Nþ πn1=L
Neumann (N ) N πn1=L
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where, for future convenience, the functionFD
ρ ðM; β; c1; c2Þ

is defined as

FD
ρ ðM;β;c1;c2Þ ¼

ðM2=2Þν
ð2πÞD2 2ρ−2ΓðρÞ

β

2π

X∞
k¼1

ð−1Þk
Γðkþ1Þ

×Γðkþ1− νÞζð2kþ2−2νÞ
�
Mβ

2π

�
2k−2ν

× ð−1þc122ðk−νÞ þc22−2ðk−νÞÞ: ð11Þ

We compare this first path with a different procedure to
obtain a dimensionally reduced field-theoretical model. In
this second path, we take a quantized version of the model
in D dimensions and force the reduction taking the limit
L → 0. To explore this, we need to evaluate ID;2

ρ at a very
small length L. We proceed as in Ref. [34] and use a
integral representation of Kν in the complex plane,

KνðXÞ ¼
1

4πi

Z
cþi∞

c−i∞
dtΓðtÞΓðt − νÞ

�
X
2

�
ν−2t

: ð12Þ

To allow the interchange of the integral and the sum, the
value of cmust be chosen in such a way that there is no pole
located to the right of it [37]. After using this integral
representation, we can compute the infinite sums and study
the poles. It produces a tedious algebraic manipulation for
each of the situations under interested, and the main results
are exhibited in the following subsections. Of course, this
path splits into different ones as the choice of the boundary
condition in the spatial direction might influence the result.
Before investigating in further details the behavior as
L → 0, let us reinforce that the investigation of the dimen-
sional reduction comes from the comparison of both paths.
This comparison may produce three different outcomes.

(i) At first, there might be a well-defined dimensional
reduction, meaning that there is a relationship as

sðLÞID;2
ρ ðM; β; a0;Ljb:c:ÞjL→0

¼ ID−1;1
ρ ðM; β; a0Þ þ f??g; ð13Þ

where sðLÞ is some scale function that only depends
on the finite length L, and we allow the presence of
some residual terms.

(ii) A second possibility is that the original model does
not produce any relevant behavior as L → 0, and
then the procedure of dimensional reduced is ill-
defined and not allowed.

(iii) A final possibility that could arise is that a dimen-
sionally reduced model is achieved, but it does not
correspond to the expected one.

sðLÞID;2
ρ ðM; β; a0;Ljb:c:ÞjL→0

¼ ĨD−1;1
ρ ðM; β; a0Þ þ f??g: ð14Þ

With this discussion made evident, let us now study each
possibility. Bosonic fields are treated in Secs. III A, III B,
and III C, while fermionic fields are considered in
Secs. III D, III E, and III F.

A. Bosonic field: Periodic boundary
conditions in space

This first case was the object of study in a previous
article where we explored the subject in further detail [34].
We take the case of periodic boundary conditions, Eq. (7),
for a0 ¼ 0, that is related to bosons, apply the integral
representation Eq. (12), and use the following analytic
extension [38] of infinite double sum:

X∞
n0¼1;n1¼1

1

ðn20β2 þ n21L
2Þt

¼ −
ζð2tÞ
2L2t þ

ffiffiffi
π

p
2

Γðt − 1=2Þ
ΓðtÞ

ζð2t − 1Þ
βL2t−1

þ 2πt

ΓðtÞ

ffiffiffiffi
L
β

s
1

ðβLÞt
X∞

n0;n1¼1

�
n0
n1

�
t−1

2

Kt−1
2

�
2πn0n1

L
β

�
;

ð15Þ

where ζ is the Riemann zeta function. By convention, we
first do the sum over n0 and then the sum over n1. After this,
the function Wν reads

WνðM;β;a0¼0;LjPÞ

¼
Z

cþi∞

c−i∞

dt
4πi

ΓðtÞζð2tÞΓðt−νÞ
�
Mβ

2

�
−2t

þ
ffiffiffi
π

p
L

β

Z
cþi∞

c−i∞

dt
4πi

Γðt−νÞΓ
�
t−

1

2

�
ζð2t−1Þ

�
ML
2

�
−2t

þ 1ffiffiffi
π

p
X∞
k¼1

Z
cþi∞

c−i∞

ds
2πi

�
Mβ

2π

�
2k−2ν

�
πL
β

�
−2s

×ΓðsÞζð2sÞΓ
�
sþk−νþ1

2

�
ζð2sþ2k−2νþ1Þ: ð16Þ

A detailed treatment demands to investigate Eq. (16) for
each different value assumed by 2ν (odd, even, noninteger),
as this determines whether we are dealing with single or
double poles. However, motivated by previous results and
to make the notation clear, we choose here to exhibit only
the position of the poles and the power dependencies on β
and L. Note that a structure as ΓðuÞζð2uÞ means the
existence of poles at u ¼ 0; 1=2, and a structure as
ΓðuÞηð2uÞ means only a pole at u ¼ 0. The analysis of
Eq. (16) gives that:

(i) for the first integral we have poles at t ¼ 0, t ¼ 1=2,
and t ¼ ν − j with j ∈ ½0;∞½. This corresponds to
the dependencies β0, β−1, and β2k−2ν;
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(ii) for the second integral there are poles at t ¼ 1=2,
t ¼ 1, and t ¼ ν − j with j ∈ ½0;∞½. This corre-
sponds to the dependencies β−1, β−1L−1, and
ðL=βÞL2k−2ν;

(iii) the last integral has poles at s ¼ 0, s ¼ 1=2,
s ¼ ν − k − 1=2, and s ¼ ν − k. This corresponds
to the dependencies β2k−2ν, ðβ=LÞβ2k−2ν, L2k−2ν,
and ðL=βÞL2k−2ν.

We are mainly interested in the behavior of ID;2 as
L → 0 to see whether there is some function of the inverse
temperature β ¼ 1=T that could be related to a scenario
with one less dimension. To do this, we use some scale
function multiplied by the Feynman amplitude,

sðLÞID;2
ρ ðM; β; a0 ¼ 0;LjPÞjL→0: ð17Þ

In a previous article, we used sðLÞ ¼ L and split this
product into three different parts: one that goes to zero as
L → 0 and therefore do not contribute in anything, another
component that grows as L → 0 and could be considered a
residual contribution coming from high dimension, and a
final component that gives a contribution independent of
the length L. From the analysis of the poles and the power
dependencies on β and L, we can note that the relevant
poles are t ¼ 1 from the second integral and s ¼ 1=2 from
the third integral in Eq. (16). Indeed, this gives the simple
result

LID;2
ρ ðM; β; a0 ¼ 0;LjPÞjL→0

¼ ID−1;1
ρ ðM; β; a0 ¼ 0Þ þ divergent terms; ð18Þ

where ID−1;1
ρ ðM; β; a0 ¼ 0Þ is exactly the Feynman ampli-

tude for the reduced scenario with D − 1 dimensions and
just one compactification related to the temperature. It
reads

ID−1;1
ρ ðM; β; a0 ¼ 0Þ

¼ ðM2=2Þν
ð2πÞD2 2ρ−2ΓðρÞ

�
π

M2β
Γð1 − νÞ

þ
ffiffiffi
π

p
M

X∞
k¼0

ð−1Þk
Γðkþ 1ÞΓ

�
ν − k −

1

2

�

× ζð2ν − 2k − 1Þ
�
Mβ

2

�
−2νþ2kþ1

�
:

This result shows that the dimensional reduction is well
defined for a self-interacting bosonic field with periodic
boundary conditions, as already discussed in the previous
article. For further details, one is referred to Ref. [34] where
this relation was obtained with a careful investigation for
even, odd, and nonintegerD and also the residual divergent
terms were fully exhibited. The important aspect to be
noted here is that we can get the structure of the function

from a quick investigation of the poles. To avoid a lengthy
exposition, this procedure is repeated in the following
sections to study other cases of interest.

B. Bosonic field: Dirichlet and Neumann boundary
conditions in space

As discussed previously, both the Dirichlet [Eq. (4)] and
Neumann [Eq. (5)] boundary conditions are a linear
combination of a model with periodic boundary condition
in space and a dimensionally reduced model. Therefore, as
we know that the behavior of the model with periodic
boundary conditions in space is given by Eq. (18), we
obtain directly that

LID;2
ρ ðM; β; a0 ¼ 0;LjDÞjL→0

¼ −
1

4
ID−1;1
ρ ðM; β; 0Þ þ divergent terms; ð19Þ

LID;2
ρ ðM; β; a0 ¼ 0;LjN ÞjL→0

¼ 3

4
ID−1;1
ρ ðM; β; 0Þ þ divergent terms: ð20Þ

Just like the scenario with periodic boundary conditions,
we obtain that the dimensional reduction is well defined.
What changes is the relation between the (D)-dimensional
model and the (D − 1)-dimensional model. The signifi-
cance of this can be further understood if we follow the
discussion of a previous article [34] and consider a bosonic
model with quartic interaction given by the coupling
constant λD. The relationship between the coupling con-
stant of the dimensionally reduced model λD−1 and λD is
different for each boundary condition,

λD−1 ¼
λD
L

; periodic b:c:;

λD−1 ¼ −
λD
4L

; Dirichlet b:c:;

λD−1 ¼
3λD
4L

; Neumann b:c::

Notice that for Dirichlet boundary conditions the coupling
constant of the dimensionally reduced model changes sign,
which raises a question about the vacua stability of this
model and motivates a further investigation.

C. Bosonic field: Antiperiodic boundary
conditions in space

In this section, we consider bosonic fields (a0 ¼ 0)
with antiperiodic boundary conditions in space. To inves-
tigate this, we apply the integral representation of the Kν,
Eq. (12), in the function Wν, Eq. (8), and make use of the
analytic extension that reads
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X∞
n0¼1;n1¼1

ð−1Þn1
ðn20β2þn21L

2Þt

¼ 1

2L2tηð2tÞ−
ffiffiffi
π

p
2

Γðt−1=2Þ
ΓðtÞ

ηð2t−1Þ
βL2t−1

þ 2πt

ΓðtÞ

ffiffiffiffi
L
β

s
1

ðβLÞt
X∞

n0;n1¼1

ð−1Þn1
�
n0
n1

�
t−1

2

Kt−1
2

�
2πn0n1

L
β

�
;

ð21Þ

where η is the Dirichlet eta function. By convention, we
first do the sum over n0 and then the sum over n1. After this,
the function Wν reads

WνðM;β;a0 ¼ 0;LjAÞ

¼
Z

cþi∞

c−i∞

dt
4πi

ΓðtÞζð2tÞΓðt− νÞ
�
Mβ

2

�
−2t

−
ffiffiffi
π

p
L

β

Z
cþi∞

c−i∞

dt
4πi

Γðt− νÞΓ
�
t−

1

2

�
ηð2t−1Þ

�
ML
2

�
−2t

−
1ffiffiffi
π

p
X∞
k¼1

Z
cþi∞

c−i∞

ds
2πi

�
Mβ

2π

�
2k−2ν

�
πL
β

�
−2s

ΓðsÞηð2sÞ

×Γ
�
sþ k− νþ1

2

�
ζð2sþ2k−2νþ1Þ: ð22Þ

We investigate the above equation and obtain the poles
for each of the integrals.

(i) First integral: poles at t ¼ 0, t ¼ 1=2 and t ¼ ν − j
with j ∈ ½0;∞½. This corresponds to the dependen-
cies β0, β−1, and β2k−2ν.

(ii) Second integral: poles at t ¼ 1=2 and t ¼ ν − j with
j ∈ ½0;∞½. This corresponds to the dependencies
β−1 and ðL=βÞL2k−2ν.

(iii) Third integral: poles at s ¼ 0, s ¼ ν − k − 1=2, and
s ¼ ν − k. This corresponds to the dependencies
β2k−2ν, L2k−2ν, and ðL=βÞL2k−2ν.

This means that the case of antiperiodic boundary
conditions in space and a0 ¼ 0 only has dependencies as
βα, ðL=βÞLα; Lα. Therefore, the procedure of taking L → 0,

LID;2
ρ ðM; β; a0 ¼ 0;LjAÞjL→0; ð23Þ

does not reproduce any behavior of a model with fewer
dimensions. This is completely different from the situation
with periodic boundary conditions in space, where a
relationship between a “film” model (D dimensions) and
a “surface” model (D − 1 dimensions) is clear. Therefore,
for a bosonic model with antiperiodic boundary conditions
in space, the idea of dimensional reduction is ill defined and
does not result in any temperature-dependent function. This
is related to the nonexistence of static modes when dealing
with antiperiodic boundary conditions [22].

D. Fermionic field: Periodic boundary
conditions in space

From this point forward, we proceed to take into account
the situation of a fermionic model. We already know that
the one-loop Feynman amplitude for fermions is related
to the one-loop Feynman amplitude for bosons with
a0 ¼ 1; this relation is given by Eq. (3). At first, we
consider periodic boundary conditions in space, given by
Eq. (7). To explore the behavior as L → 0, we use the
integral representation of Kν, Eq. (12), and the double sum
that arises is treated by an analytic extension

X∞
n0¼1;n1¼1

ð−1Þn0
ðn20β2þn21L

2Þt

¼−
1

2L2t ζð2tÞþ
2πt

ΓðtÞ

ffiffiffiffi
L
β

s
1

ðβLÞt
X∞

n0;n1¼1

�
n0
n1

�
t−1

2

×

�
−Kt−1

2

�
2πn0n1

L
β

�
þ2

1
2
−tKt−1

2

�
2πn0n1

L
β

��
: ð24Þ

Hence, the function Wν reads

WνðM; β; a0 ¼ 1;LjPÞ

¼ −
Z

cþi∞

c−i∞

dt
4πi

ΓðtÞηð2tÞΓðt − νÞ
�
Mβ

2

�
−2t

×
1ffiffiffi
π

p
X∞
k¼1

Z
cþi∞

c−i∞

ds
2πi

�
Mβ

2π

�
2k−2ν

�
πL
β

�
−2s

× ΓðsÞζð2sÞΓ
�
sþ k − νþ 1

2

�
ð−1þ 22sþ2k−2νþ1Þ

× ζð2sþ 2k − 2νþ 1Þ; ð25Þ

and an analysis of each term gives that
(i) for the first integral there are poles at t ¼ 0 and t ¼

ν − j with j ∈ ½0;∞½. This corresponds to the
dependencies β0 and β2k−2ν;

(ii) and for the second integral there are poles at s ¼ 0,
s ¼ 1=2, and s ¼ ν − k. This corresponds to the
dependencies β2k−2ν, ðβ=LÞβ2k−2ν, and ðL=βÞL2k−2ν.

It can be noted that the relevant contribution comes from
the pole s ¼ 1=2 of the second integral. This is the
contribution that survives at L → 0. Making it explicit,
we obtain in this limit that

LID;2
ρ ðM; β; a0 ¼ 1;LjPÞjL→0

¼ FD
ρ ðM; β; c1 ¼ 4; c2 ¼ 0Þ þ divergent terms; ð26Þ

where the function FD
ρ ðM; β; c1; c2Þ is defined in Eq. (11).

Just as we did when we exhibited the result for the
bosonic case (a0 ¼ 0) in periodic boundary conditions in
space, let us concentrate on the behavior as L → 0. To
make the comparison clear, we can keep in mind the
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analogy of heated films (in dimension D with two com-
pactifications) and surfaces (in dimension D − 1 with one
compactification). The heated film described by a fer-
mionic model is given by (26) when the film thickness is
very small. However, the surface described by the same
fermionic model reads

ID−1;1
ρ ðM;β;a0¼ 1Þ
¼FD

ρ ðM;β;c1 ¼ 0;c2 ¼ 1=2Þþdivergent terms; ð27Þ

which is completely different.
Therefore, in the case of a fermionic model, there is no

direct relationship between models in different dimensions.
This result resembles the discussion that the procedure of
dimensional reduction and quantization does not commute
for fermionic models [36] and that the dimensional reduc-
tion behaves differently for bosons and fermions [35].

E. Fermionic field: Dirichlet and Neumann
boundary conditions in space

As a next step, we investigate the fermionic field at
different spatial boundary conditions. Just as done in
Sec. III B for bosonic fields in Dirichlet and Neumann
boundary conditions, we apply in Eqs. (4) and (5) the
known result for periodic boundary conditions, Eq. (26),
and the dimensionally reduced fermionic model given by
Eq. (10). This gives, respectively, for Dirichlet and
Neumann boundary conditions that

LID;2
ρ ðM;β;a0¼1;LjDÞjL→0

¼3

4
FD

ρ ðM;β;c1¼4=3;c2¼1=3Þþdivergent terms; ð28Þ

LID;2
ρ ðM;β;a0¼1;LjN ÞjL→0

¼−
1

4
FD

ρ ðM;β;c1¼−4;c2¼1Þþdivergent terms: ð29Þ

These results reinforce that, as found in Sec. III D, the
fermionic field does not undergo a dimensional reduction
as bosonic fields. We can, indeed, obtain a dimensionally
reduced model, as expressed in Eqs. (28) and (29).
However, it has no relation with the otherwise expected
result given by Eq. (10).

F. Fermionic field: Antiperiodic boundary
conditions in space

At last, let us consider a fermionic model (a0 ¼ 1) with
antiperiodic boundary conditions in space [Eq. (12)]. After
using the integral representation of Eq. (12), we use the
following analytic extension of the double sum:

X∞
n0¼1;n1¼1

ð−1Þn0þn1

ðn20β2þn21L
2Þt

¼ 1

2L2t ηð2tÞþ
2πt

ΓðtÞ

ffiffiffiffi
L
β

s
1

ðβLÞt
X∞

n0;n1¼1

ð−1Þn1
�
n0
n1

�
t−1

2

×

�
−Kt−1

2

�
2πn0n1

L
β

�
þ 2

1
2
−tKt−1

2

�
2πn0n1

L
β

��
; ð30Þ

and obtain the expression for the function Wν,

WνðM; β; a0 ¼ 1;LjAÞ

¼ −
Z

cþi∞

c−i∞

dt
4πi

ΓðtÞηð2tÞΓðt − νÞ
�
Mβ

2

�
−2t

−
1ffiffiffi
π

p
X∞
k¼1

Z
cþi∞

c−i∞

ds
2πi

�
Mβ

2π

�
2k−2ν

�
πL
β

�
−2s

ΓðsÞηð2sÞ

× Γ
�
sþ k − νþ 1

2

�
ð−1þ 22sþ2k−2νþ1Þ

× ζð2sþ 2k − 2νþ 1Þ: ð31Þ

Studying the poles for each integral in Eq. (31), we
obtain that

(i) first integral: poles at t ¼ 0 and t ¼ ν − j with
j ∈ ½0;∞½. This corresponds to the dependencies
β0 and β2k−2ν;

(ii) second integral: poles at s ¼ 0 and s ¼ ν − k. This
corresponds to the dependencies β2k−2ν and L2k−2ν.

Therefore, for antiperiodic boundary conditions in space
and a0 ¼ 1 there is no mixed dependency on β and L. Also,
just like the case of antiperiodic boundary conditions in
space for bosons discussed in Sec. III C the procedure of
dimensional reduction is ill defined.
This result shows that the use of antiperiodic boundary

conditions in space forbids the procedure of dimensional
reduction both for bosonic and fermionic fields. This might
be an indication of a topological aspect, independent of the
nature of the field.

IV. CONCLUSION

We discussed in Sec. III that there were three possible
outcomes when one investigates the procedure of dimen-
sional reduction as proposed in this article. In the remaining
sections, we found examples of all the following three
categories:

(i) Well-defined dimensional reduction.
This happens for bosonic fields in periodic,

Dirichlet, and Neumann boundary conditions
where there is a simple relation between a model
in D dimensions that is dimensionally reduced
and a model in D − 1 dimensions. See Secs. III A
and III B.
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(ii) Ill-defined dimensional reduction.
This happens for antiperiodic boundary condi-

tions in space, both for bosonic and fermionic fields.
See Secs. III C and III F.

(iii) Dimensional reduction to a different model.
This happens for fermionic fields in periodic,

Dirichlet, and Neumann boundary conditions where
the model in D dimensions that is dimensionally
reduced has no relation with a model originally
constructed in D − 1 dimensions. See Secs. III D
and III E.

We remark that from the perspective of the decoupling of
heavy fields [21,22], what we call a “dimensional reduc-
tion,” could also be understood as identifying whether there
are static modes related to the compactified dimension in
the model under analysis. It means that for periodic,
Dirichlet, and Neumann boundary condition we get a static
mode related to the system size L, while for antiperiodic
boundary condition there are only nonstatic modes.
We found that the previous article [34] was indeed a

special case (bosonic field, periodic boundary condition in
space) and now we exhibit a bigger picture of the problem.
The procedure of dimensional reduction indeed depends on
the imposed boundary conditions and the nature of the
field. Nevertheless, there are yet some open questions. The
behavior of fermionic fields passing through a dimensional
reduction might be explained by the fact that fermions are
dependent on the number of spatial dimensions. Moreover,
the forbidden dimensional reduction for models with
antiperiodic boundary conditions in space is perhaps a
topological aspect of dimensionally reducing a Möbius
strip, which would explain the independence on the nature
of the fields.
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APPENDIX: RELATION BETWEEN FERMIONIC
AND BOSONIC INTEGRALS

The one-loop Feynman amplitude for self-interacting
fermionic field with coupling aþ bγS is

J D
ν ðmÞ ¼ tr

Z
dDp
ð2πÞD

�
aþ bγS
ipþm

�
ν

¼ tr
Z

dDp
ð2πÞD

�ðaþ bγSÞð−ipþmÞ
p2 þm2

�
ν

: ðA1Þ

Here we use the notation of Ref. [23] for the Euclidean
Dirac matrices. To compute the trace in a systematic way,
we define v ¼ −ipμγμ þm, ṽ ¼ ipμγμ þm and note that
vγS ¼ ṽγS. Organizing the trace T ν ¼ tr½ðaþ bγSÞv�ν

in such a way that all γS matrices are on the left,
we have

T 1ða; bÞ ¼ avþ bγSv; ðA2aÞ

T 2ða; bÞ ¼ a2v2 þ abγSðṽvþ v2Þ þ b2γ2Sṽv; ðA2bÞ

T 3ða; bÞ ¼ a3v3 þ a2bγSðṽ2vþ ṽv2 þ v3Þ
þ ab2γ2Sðṽ2vþ 2ṽv2Þ þ b3γ3Sṽv

2; ðA2cÞ

T 4ða; bÞ ¼ a4v4 þ a3bγSðṽ3vþ ṽ2v2 þ ṽv3 þ v4Þ
þ a2b2γ2Sðṽ3vþ 2ṽ2v2 þ 3ṽv3Þ
þ ab3γ3Sð2ṽ2v2 þ 2ṽv3Þ þ b4γ4Sṽ

2v2: ðA2dÞ

From these we can infer some relations regarding the
trace T ν for any ν. The component with b ¼ 0 and a ≠ 0
contributes as

T νða; 0Þ ¼ aνvν;

and the component with a ¼ 0 and b ≠ 0 behaves as

T νð0; bÞ ¼ bνγνSðṽvÞbν=2cvν−2bν=2c:

The mixed terms are a little bit more intricated. First, we
adopt another notation defining some function fðiÞj ðṽ; vÞ,

T νða;bÞ−T νða;0Þ−T νð0;bÞ¼
Xν−1
σ¼1

aν−σbσγσSf
ðν−σÞ
σ ðṽ;vÞ;

where the function fðiÞj ðṽ; vÞ can be shown to satisfy the
following difference equations:

fðiÞ2lðṽ; vÞ ¼
ṽv
l!

∂
∂v f

ðiÞ
2l−1ðṽ; vÞ; ðA3Þ

fðiÞ2lþ1ðṽ; vÞ ¼
ṽv
l!

∂
∂ṽ f

ðiÞ
2lðṽ; vÞ: ðA4Þ

Therefore, once we obtain one of these functions all
others are obtained recursively. The simpler one is the case

fðiÞ1 which is associated with aibγS and can be directly
written as

fðiÞ1 ¼
Xi

k¼0

ṽi−kvkþ1:

With this in hand, we use the difference equations and
obtain the generalization that
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fðiÞj ðṽ; vÞ ¼
Xi

k¼0

ðkþ bj=2cÞ!
k!bj=2c!

ði − kþ bjþ1
2
c − 1Þ!

ði − kÞ!ðbjþ1
2
c − 1Þ! ṽ

iþj−k−bjþ1
2
cvkþbjþ1

2
c:

Substituting back, we obtain that the complete trace is

tr½ðaþ bγSÞv�ν ¼ tr

�
aνvν þ bνγνSðp2 þm2Þbν2cvν−2bν2c

þ
Xν−1
σ¼1

aν−σbσγσS
Xν−σ
k¼0

ðkþ bσ
2
cÞ!

k!bσ
2
c!

ðν− k− 1− bσ
2
cÞ!

ðν− k− σÞ!ðbσþ1
2
c− 1Þ! v̄

ν−k−bσþ1
2
cvkþbσþ1

2
c
�
: ðA5Þ

Therefore, the trace operation becomes simply

trðṽvÞnðv2Þm ¼ trðṽvÞnðṽ2Þm ¼ dγðm2 þ p2Þnðm2 − p2Þm;

where dγ is the dimension of the gamma matrix.
After computing the full trace and making some algebraic manipulation, we obtain

1

dγ
tr½ðaþbγSÞv�ν ¼ aν

Xbν2c
k¼0

�
ν

2k

�
mν−2kð−p2Þkþbνðp2þm2Þν2ðν− 2bν=2cÞ

þ
Xbν−12 c

k¼1

aν−2kb2k
Xbν2c
j¼k

j!ðν− j− 1Þ!
ðj− kÞ!k!ðν− k− jÞ!ðk− jÞ!ðp

2þm2Þj
Xbν2−jc
l¼0

�
ν− 2j

2l

�
mν−2j−2lð−p2Þl

þ
Xbν−12 c

k¼1

aν−2kb2k
Xν−k

j¼bν
2
þ1c

j!ðν− j− 1Þ!
ðj− kÞ!k!ðν− k− jÞ!ðk− jÞ! ðp

2þm2Þν−j
Xbν2−jc
l¼0

�
2j− ν

2l

�
m2j−ν−2lð−p2Þl: ðA6Þ

As a final manipulation we use that

ð−p2Þl ¼
Xl
n¼0

ð−1Þn
�
l

n

�
ðp2 þm2Þnm2l−2n;

and now we can relate the fermionic scenario with the bosonic one,

1

dγ
J D

ν ¼ aν
Xbν2c
k¼0

Xk
j¼0

�
ν

2k

��
k

j

�
mν−2jð−1ÞjID

ν−jðm2Þ þ bνðν − 2bν=2cÞID
ν=2ðm2Þ

þ
Xbν−12 c

k¼1

aν−2kb2k
Xbν2c
j¼k

j!ðν − j − 1Þ!
ðj − kÞ!k!ðν − k − jÞ!ðk − jÞ!

Xbν2−jc
l¼0

�
ν − 2j

2l

�Xl
n¼0

ð−1Þn
�
l

n

�
mν−2j−2nID

ν−j−nðm2Þ

þ
Xbν−12 c

k¼1

aν−2kb2k
Xν−k

j¼bν
2
þ1c

j!ðν − j − 1Þ!
ðj − kÞ!k!ðν − k − jÞ!ðk − jÞ!

Xbν2−jc
l¼0

�
2j − ν

2l

�Xl
n¼0

�
l

n

�
m2j−ν−2nID

j−nðm2Þ:

This relation also holds if one considers compactified
dimensions. One must only be careful that the conditions
imposed on I will be, in this case, the conditions
that would be imposed on the fermionic integral.

Therefore, if one introduces a compactification of the
imaginary time to introduce temperature, it must have
antiperiodic boundary condition as we are dealing with
fermions.
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