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We construct simple Lagrangians of vector fields which involve second derivatives but nevertheless lead
to second-order field equations. These vector fields are, therefore, analogs of generalized Galileons. Our
construction is given first in Minkowski space and then generalized to include dynamical gravity. We show

that the speed of gravitational waves about homogeneous and isotropic backgrounds is equal to the speed of
light. We present examples of backgrounds that are stable and ghost free despite the absence of gauge
invariance. Some of these backgrounds violate the null energy condition.
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I. INTRODUCTION

Scalar theories with Lagrangians involving second deriv-
atives, which nevertheless lead to second-order field equa-
tions, attract considerable interest. These are theories of
generalized Galileons [1] of which the versions with
dynamical gravity are Horndeski theories [2,3]. From the
cosmological viewpoint, these theories are particularly
interesting because they are capable of violating the null
energy condition (NEC) in a healthy way (for a review, see
Ref. [4]). It is natural to try to generalize these theories to
fields other than scalar. If one insists on gauge invariance,
then no generalization is possible in four dimensions' [6],
while in higher dimensions, one arrives at a theory of
p-form Galileons [7,8]. Giving up gauge invariance is
dangerous but may not be fatal. Indeed, there are vector
theories (with Lagrangians involving first derivatives only)
which are not gauge invariant but, nevertheless, stable.
One class of such theories is the generalized Proca theories,
or vector Galileons [9,10]. Theories of another class [11] are
stable in nontrivial backgrounds. An interesting property of
the latter is that they also may violate the NEC in a healthy
way [12].

In this paper, we also consider vector field and give up
gauge invariance. Our purpose is to construct the simplest
vector-field Lagrangians involving second derivatives and
yet giving rise to second-order field equations. We do this
first in Minkowski space and find that there are at least

"This not the case in curved space-time [5].
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three fairly large classes of theories that have the desired
property. We then switch on the dynamical gravity and
observe that all field equations remain second order for
theories belonging to two of these classes. A possible area
of application of the classes of theories we consider is the
early Universe and/or dark energy. Concerning the dark
energy application, a prerequisite is that the gravitational
waves travel at the speed of light, cf. Ref. [13]; we discuss
this point in our paper. A particularly interesting possibility
is NEC violation by homogeneous and isotopic back-
ground. In this paper, we take the first step in this direction.
Namely, we consider one class of theories and give an
example of vector background in Minkowski space that
violates the NEC. Then, we derive the conditions for
stability (absence of ghosts and gradient instabilities) about
this background in Minkowski space and find the range of
parameters where the NEC-violating background is stable.
Thus, theories we consider may be viewed as vector
analogs of the generalized Galileons. In a straightforward
application, we describe a model of early genesis stage
based on our NEC-violating vectorlike Galileons. It is
worth noting that our class of models is substantially
different from vector Galileons (generalized Proca fields)
of Refs. [9,10]. The defining feature of the latter is the
existence of 3 degrees of freedom (d.o.f.) in an arbitrary
background. We do not impose this requirement, so our
vector field genuinely has four propagating d.o.f. As a
result, these d.o.f. are not pathological in nontrivial back-
grounds only, while there exist ghosts in trivial background
A, = 0. It remains to be understood whether or not the
absence of the stable Lorentz-invariant vacuum is a draw-
back of our class of models.

This paper is organized as follows. In Sec. II, we con-
struct non—gauge invariant second-derivative Lagrangians
with second-order field equations for vector fields in
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Minkowski space. In Sec. III, we turn on dynamical gravity
and show that all equations of motion remain second order
in theories belonging to two of the classes found in Sec. II.
In Sec. IV, we prove that Lagrangians, belonging to the two
classes of Sec. III, do not modify the propagation speed of
gravitational waves; this speed is equal to the speed of light.
In Sec. V, we give an example of nontrivial homogeneous
vector field background in Minkowski space that violates
the NEC and derive the conditions for stability and for
the absence of superluminal propagation of perturbations.
Then, we determine the range of parameters, in which the
background is stable and violates the NEC in Minkowski
space. Finally, we describe a model of early genesis stage
based on our NEC-violating vectorlike Galileons. We
conclude in Sec. VI

II. SECOND-DERIVATIVE LAGRANGIANS IN
MINKOWSKI SPACE

Let us construct a nongauge-invariant simplest theory for
vector field in Minkowski space which has the Lagrangian
satisfying the following requirements:

(1) The Lagrangian £ has second derivatives, along with

first derivatives and the field itself.

(2) Field equations obtained from this Lagrangian have
derivatives of at most second order.

(3) The Lagrangian cannot be reduced by integration by
parts to the Lagrangian involving first derivatives
only.

(4) The Lagrangian is linear in the second derivatives:

L= SMD/)(AA;AT;éf)A/);ﬂD + L(AT’Ai;éf) (21)

It is convenient to think of S¥*” as a sum

1
50 = o (Km0 4 K0), (2.2)

where K*7 does not have to be symmetric in y, v.

(5) The function K#*” in (2.2) is a monomial in variables
Ay, A, which does not involve the totally antisym-
metric tenzor:

KHaHsHy — const - nﬂﬂ(])ﬂn(z) .. 'ﬂﬂa(1x+2m+2)ﬂn(n+2m+3)

X Ay A, A

Hn® “Hnr B2 ° 0 TR 2am—1 01 2m

(2.3)

where n is odd, o denotes a permutation of
(n+2m+3) indices, and u,, p p, are
non-convoluted indeces, (Uq.fp:tty) =Kot (ns2m1)s
He1 (n+2m+2) Mg (n+2m+3) ) .
The Euler-Lagrange equations for a theory with this
Lagrangian have the following form:

oL oL oL

—=0,—+0,0,—=0, 2.4

0A, "OA,, I Ay 24
where A, = 9,A,, A,.,,, = 0,0,A,,. The third order terms

in Eq. (2.4) for the Lagrangian (2.1) read:

oS g
a1 A‘r;im/'
0A,, 0A,

Thus, to have second-order field equations, we require that

17 vt
asmr o8 _0 (2.5)

In accordance with (2.3), the indices u, v, p in the
function K**” come from the metrics or vector field or
derivative of vector field. The last index in K" plays
a different role in Eq. (2.5) than the other indices, and so it
is convenient to classify functions K*** according to the
“origin” of the index p. In this way we arrive at four
possibilities (other options give the same S in (2.2):

L K" =L (A, A, )A*

L K* = (A, A)n”

IMI. K" = B (A,,A,;)A?

IV. Km0 =L (A, Ap)AP,
where functions L*,, L*,, B* and f* are again mono-
mials in two variables A,, A, that do not involve totally
antisymmetric tensor. Furthermore, it is convenient to
classify the functions L*, according to the “origin” of
index x:
IV.I. L*, = TH(A,, A8y KM = TH(A,, Ay )APY
V2, L#, = X" (A, Ap)A%; KPP = XM (A, Ay X

4(1;}{A[);){
IV3. L", =7ZM (A, Apy)ALY KM = ZM (A, AL, X
A}{;(IA[);}{

VA, L#, =V (A, A)A KPP = VI (A, AL)ALAP.
Making use of this classification, we analyse Eq. (2.5) in
Appendix A. We find that there are three independent
Lagrangians which satisfy above requirements 1-5, namely

Ly = (F)" (D) (B)“ iy AP A,y . (2.6)
L, = (F)2(D)"(B)*>A,A,A*A™APA,,,,. (2.7)
Ly = (F)5(C)"n" A" AA . (2.8)
where k;, [;, n; are nonnegative integers, and
F=A,A¥, (2.9)
D = AYA*A,,, (2.10)
B =A,AYAMA,,, (2.11)
C=ArFTAAPA,,. (2.12)
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The Lagrangians (2.6) and (2.7) have the structure corre-
sponding to the case III above for function K**”, while the
Lagrangian (2.8) corresponds to IV.4.

The Lagrangians (2.6)—(2.8) contain second derivatives,
provided that

ki #0 and/or n; > 1, (2.13)
ky #0 and/or n, #0, (2.14)
ny #0, (2.15)

respectively. Lagrangians (2.6) and (2.7) are independent
when

ny > 1. (2.16)
Straightforward generalizations of (2.6)—(2.8) are
Ly = fY(B,D,F)f*A’A,,,.
£3) #0 andfor fy) #0. (2.17)
‘CZ = f(Z) (37 D’ F)A;{ATAK;”AT;DA/JA;);”U’
220 and/or 2 #0, (2.18)
Ly = fO(C, F)pmaAria A, O #0,  (2.19)

where f1), 2 and f©) are arbitary functions of their
arguments, and fp = %, fop = 0%’;, etc.

It is worth pointing out that there may exist linear
combinations of Lagrangians whose structure is different
from (2.17)—(2.19), but which nevertheless lead to second
order field equations due to cancellations between different
terms. One of the examples is

(I v
L= <2Af AFVA A, AT+ APTAA, AMA >DA/)-

We do not consider this fairly contrived possibility in
this paper.

Coming back to the Lagrangians (2.17)—(2.19), we point
out that since they lead to the second order field equations,
the number of propagation degrees of freedom is generally
|

speaking, equal to four. We will see this explicitly in
Sec. V B.
III. TURNING ON GRAVITY

In the previous section, we constructed three non—gauge
invariant vector-field Lagrangians involving second deriv-
atives and yet giving rise to second-order and/or lower field
equations in Minkowski space, Eqs. (2.17)-(2.19). Our
purpose here is to figure out which of these Lagrangians
lead to the second-order or lower equations of motion and
energy-momentum tensor.

Let us consider Lagrangian (2.17). One assumes minimal
coupling to gravity; then, —,/=gT*?dg,, for this theory
reads
—/=9T7°6g,, = 26(\/=9L 1))

= 8(y/=9f"(B.D, F)OF) + - --
1
= V=3f3 9" ((9,0,F)8B + (9,0,B)5F)
1
+/=af ((8,0,F)8D + (8,0,D)8F) + -+
(3.1)

where omitted terms do not contain third derivatives
and the arrow denotes integration by parts and 6B =
({%égw, etc. It is convenient to represent Eq. (3.1) in

the following form,
—/=gT78g,s = I, + 1o+ -,
where
I = v=afy ¢*((8,0,F)8B + (8,0,B)5F),
I = =91y ¢ ((9,8,F)8D + (8,0,D)5F).

We see that 7+ does not contain third-order derivatives of
the vector field and/or metric. Indeed, using the fact that
B = }TF . F*#, we obtain that /, is second order or lower,

1= 0 i (0 F) 0.0,0,7)0F
+ (0°F)(8,0,0,F)8F) + - =0+ -

I, does not contain third-order derivatives, either:

12 = fg) V _gAlA%ADA/)A”g(m((aoaag/w)&rz,l + (avaar‘;ﬂ)‘sg/w)
- fg) V —gAﬂApg{m(ZA” (8ﬂa(1Aﬂ)Ax5FZA + (808(18214/))‘4”‘4”59;41/) +oe

1
= Efg) V _gAﬂAKADApAMg(m((aaaaaxgyv)égpi - (8aaaapg;u/)5gb()

- fg) V _gAAApAﬂADg(m((aaaaa/lAﬂ)égpy - (8080561‘4/))69#1/) +oe

—04---
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8(/=9L )
Now, oA,

(FieF™)

o(v=a6n) = 5 v=a 5

5A also does not contain third-order derivatives. Indeed,

4

+ fp((OF)8D + (DD)(SF)] -

= S VG0 5((F.~ F)OF")SF

+ fp(A*A,A*A,0,0,07 ¢

_|_...:0_|_..._

— AMAPALA,D.0,07 4" )5A;)

Thus, the equation of motion has derivatives of second order and/or lower. Summarizing, we see that Lagrangian (2.17)
leads to the second-order and/or lower field equation and energy-momentum tensor.

Let us consider Lagrangian (2.18). Using the fact that B

5(v/5L2) =Y Lo (f D (B.D, F)F*B,) + -

_1 ; _
=IF, F# and D =

1F#A,, we find that

= VI 5500F)B)

4
=5 p— — (2)
- Tgé(f;(f)F;”B) +o= —Tgé(f;(?F;”B) +o= —+fB(—(BF;”);DéB
—(2)
— (OB)BSF + B, F*6B) — —VZfD (—(F*B), 6D — B(OD)SF + D, F*6B) +

—Op
= 7Vg8fB (-F*O(F.,) + (OF) F

where omitted terms do not contain third derivatives and
F,=V,F, F,,=V,V,F, etc., 6B = 53 E5g,, + 28 5A,,
;4

etc. Thus, all field equations have denvatlves of second
order and/or lower.

The minimal extension of Lagrangian (2.19) leads to the
third-order field equations. We were unable to find addi-
tional terms involving the Riemann tensor that would give
rise to the cancellation of the third derivatives in the field
equations. Thus, we conjecture that Lagrangian (2.19)
cannot be generalized to the theory with dynamical gravity
in such a way that the equations of motion remain second
order. We do not consider Lagrangian (2.19) in what
follows.

To summarize, in the case when we switch on the
dynamical gravity, all field equations remain second order
for two Lagrangians (2.17) and (2.18).

IV. SPEED OF GRAVITATIONAL WAVES

Our purpose here is to figure out whether the second-
derivative terms in Galileon-like Lagrangians (2.17) and
(2.18) can modify the propagation speed of tensors modes.
Even though we consider minimal coupling to gravity in
the sense that we do not have any direct couplings between
the vector field and curvature tensors, the second deriva-
tives acting on the vector field do induce explicit couplings

f AF v . .
- f6 (FF .o = FF 3, )0F = 04 -+,

|

between the vector field and the metric and its derivatives,
which could result in a modified propagation speed of
gravitational waves. Let us consider the following back-
ground and gauge fixing for metric perturbation,

ds* = dr* — a*(1)(6;; + hi}")dx'dx/, (4.1)
with 9; hTT 0, hLT = 0, and for vector field
A, = (A(1).0.0,0) + 6A,. (4.2)

The term with second derivatives in Lagrangian (2.17)
reads

1
Ef<1>(B, D, F)OF, (4.3)
while for Lagrangian (2.18), we have
1
T f®(B,D,F)F*(F ,F*),. (4.4)

The terms (4.3) and (4.4) may give rise to the combination
like £ D F(t)hj; 0,5A;. However, these terms in the action
vanish upon integration by parts. In other words, helicity-2
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field h,-TjT does not mix with the field 54, which has helicity
1 orO.

Now, let us see that the terms (4.3) and (4.4) do not lead
to the term (4];")? or (9khf")?. To this end, we set 64, = 0.

Functions f()(B, D, F) and f* (B, D, F) do not contain
hlT. This follows from the facts that B =jF  F*,
D=1F"A,, and F=A"A, = A’. We also notice that
(F,F?), does not contain A/l either. Therefore, the
term (4.4) does not contain 4]} at all.

Turning to the term (4.3), we recall that LJF can be
written in the following form:

1
OF = ——a,(¢* /=g, F).

Thus, [1F, and hence the whole term (4.3), is at most linear
in 0,h]". This completes the argument.

Thus, terms (4.3) and (4.4) do not modify the propaga-
tion speed of gravitational waves in homogeneous and

isotropic background.

V. STABLE NEC-VIOLATING SOLUTION
IN MINKOWSKI SPACE

A. Solution

Our purpose here is to figure out if there are Lagrangians
in the set (2.17) and (2.18), which lead to stable NEC-
violation solutions. In this section, we give such an
example in the Minkowski background. Let us consider
the Lagrangian (2.17) with additional first-order terms

Ly =gD*A’0A, + kB> 4+ IC* + vF®,  (5.1)
where ¢, k, [, and v are free parameters and B, C, D, and F
are given by Eqgs. (2.9)—(2.12), respectively. The specific
choice of the Lagrangian functions here is such that all
terms have the same transformation property under rescal-
ing x* = Ax*, A, = 27'A,, namely, £; = 27'2L,. Then,
there exists a nontrivial homogeneous solution of the field
equation

AV = (r,0,0,0), > 0. (5.2)
For this solution, the field equation gives
3k +31-5q\ /4
p= (—) . (5.3)
v
This solution exists when
3k+3/-5¢>0 and v >0 or
3k+31-5g<0 and v<O. (5.4)

We will need the expression for the energy-momentum
tensor for this solution:

26(,/~5L)

T, b=
1 gy =11yiA =A = '
g/) '7/7 T _gagﬂ y/m :”‘w;AT:qu

To this end, we again consider minimal coupling to the
metric, i.e., set A, = V¥V, A, and D = A, ,A,A;¢"" ¢,
etc., in curved space-time. The Lagrangian (5.1) can be
written in the following form,

L, = %f(])(D)DF - f(D)A,., A% + L(B,C,D,F),

fO(D) = gD?,
L(B,C,D,F) = kB?> + IC? + vF®.

Using the fact that 9yT%|, _ s = 0, we find that
=

T =0,

T;j=pd;,

. (5.5)

b,
=N ;A[A =A/4!/

p= <—%a, fOF+L~ fAT;,;AT;">

where i, j = 1, 2, 3. This gives

p =B (up 4 k+1=9q) = B2 (4(k + 1) - 14q).
(5.6)

Thus, the background (5.2) violates the NEC, provided that

7
l+k<—q.

: (5.7)

This is possible in both cases listed in (5.4).

B. Stability conditions in Minkowski space
Let us consider the stability of the solution (5.2). Having
in mind Refs. [14,15], we also require subluminality of the
perturbations about it. To this end, we study the somewhat
more general Lagrangian
L, =fY(B,D,F)A’CA,+ L(B,D.F,C),  (5.8)
where L(B, D, F) and f(')(B,D,F, C) are arbitrary func-
tions of their arguments. We consider homogeneous back-
ground A;Y = (A2(1),0,0,0) and expand Lagrangian (5.8)
up to the second order. In the expansion, we are only
interested in coefficients of (SA%5Ay), (SA°%6A,,) and
(SA™5AL)), (BA™5A™) because here we consider the high
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momentum regime, meaning that the variation of 5A, in
space and time occurs at scales much shorter than the

timescale characteristic of the background AZ”’ (1); the terms
0A( ;0A; o are not present. We find

8Ly = Ly (A} + 8A,) = L1(A)Y) = Koy (6A%6A;)
+ Koo(8A%96A0 ) + K 1o(5A™05AT)
+ K11 (BAMSAN) + (...)(6A%A,) + (...)(5AT5AY)
4o (5.9)

where dots denote terms with fewer than two derivatives
and A = A(b)g . Here,

) .
Koo = 2A%A(Lgg + Loc) + 4LpcA*A + 5A4LDD

1 2A%A(Lpp + Lep) + 2A5A%A(FU)) + %ASA’f%
. § ld ..
F2MSAA(FD)) + ABA(FY)) - S (A%A(fy))

+Afp)) - fO 2428 (Fy)) — 2424 1))
—20%f) + A(Lc + L),
. 1d .
Kot = ~LgA? = A%Afy) + {1 — 2= (2A%A(fy))
+ A ) + 20287 (f)) +24%A ) + 24%f ),
Kip = f = LeA?,
Ky =—f0.

So, the conditions of stability are

K00>0, KO] <0, K10>0, K“ <0, (510)

and the condition of the absence of superluminal perturba-
tions is

|Koo| > Ko

. Kol > K- (5.11)

The conditions (5.10) and (5.11) for Lagrangian (5.2) read

[>3q—k,
[ <0,
I~ 36q — 12k7
13
v > 0. (5.12)

We see that Lagrangian (5.2) gives rise to the stable
homogeneous NEC-violating solution (5.3) when the
parameters satisfy the relations (5.12), (5.7), and (5.4).
In fact, all these conditions are satisfied, provided that

19
3q<k<—q,

09
v > 5

qg >0, [ <0,

36q 12k, _Tq _

<
13 13 2

Thus, our example shows that there are stable homo-
geneous solutions in our vector theories that violate
the NEC.

It is worth noting that Lagrangian (5.9) describes,
generally speaking, four propagating d.o.f. None of them
is pathological, however, in the background (5.2), whereas
trivial background A, = 0 may well be unstable because of
ghost perturbations.

C. Early genesis stage

For a straightforward application of the NEC-violating
solution (5.2), we construct an initial stage of the cos-
mological genesis scenario, similar to Ref. [16]. In the
asymptotic past, space-time is assumed to be Minkowskian,
and in accordance with (5.5) and (5.6), energy-momentum
tensor vanishes as 7 — —oo. At large but finite |#|, gravita-
tional effects on the vector-field evolution are negligible, so
to the leading order in Mp!, the energy density and pressure
are given by (5.5) and (5.6). Then, the Hubble parameter is
obtained from

H = —42G(p + p).

We find

4xGP8|(4(k + 1) — 14q)|
H= :
117!

Thus, the Universe undergoes an accelerated expansion
characteristic of the early genesis epoch. At this stage,
perturbations about the background are stable and sublumi-
nal. It remains to be seen whether this genesis scenario with
vector field can be made complete. In particular, it would be
interesting to see whether or not the model suffers from
instabilities at later times, analogous to those in Horndeski
theories [17,18]. We leave this analysis for future work.

VI. CONCLUSION

In this paper, we have constructed simplest vector-field
Lagrangians involving second derivatives and leading to
second-order field equations. We found that there exist
three large classes of such theories in Minkowski space.
However, we observed that in the case when the dynamical
gravity is switched on only theories belonging to two of
these classes have all field equations remaining second
order. These two Lagrangians are

Ly =fY(B,D,F)n*A’A,,,,

L, = fP(B,D,F)A,AA*A™ AP A (6.1)

s
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where B, D, and F are defined in (2.9)—(2.11). Furthermore,
we have seen that the gravitational waves travel with the
speed of light in homogeneous and isotropic backgrounds.
This opens up the possibility of using our vector field as a
model of dark energy.

We have shown that the theory (6.1) can violate the
NEC in a healthy way in Minkowski space. Then, for a
straightforward application, we described a model of early
genesis stage based on our NEC-violating vectorlike
Galileons. Other applications may have to do with dark
energy or a bouncing Universe.

As we already pointed out, our vector field generically
has four propagating d.o.f. It would be interesting to find a
subclass of our models (if any) in which there are only
3 d.o.f., like in the vector Galileons of Refs. [9,10]. We
leave this issue for the future.

APPENDIX: SIMPLEST LAGRANGIANS

As we discussed in Sec. II, we have seven possibilities
for the structure of the function K***:

(I K*P = LM, (A, Ay AP

(I Kmr = fr (AmAr;/{)rlyp

(IIT) K*? = B"(A,,A.)A?
(IV.1) K"’ =TH(A,, A, ;)AP*
(IV.2) KHP = XM (Ay. Ap)A% AP
(IV.3) KP =7 (A,  Arp) A, PAP*
(IV.4) KMP = VI (A, A, A AP,

1. Case 1

Considering option I, we find that the requirement (2.5)
is equivalent to

OLW)
Ay

o OL ()
8AP;/1

Axp 4 L(ﬂv)anpl — L(W)ﬂ,]wl =0,

(A1)

where parentheses denote symmetrization. L#** is a mono-
mial, so L*¥)7 can be represented in the following form,

L)y — (AT;I)HZ(MD)/J’

where 7 is non-negative integer and L does not contain A% .
So, Eq. (Al) reads

;1/”1(—A”;”n(AT;T)”‘II:(””)K + (AT;T)"]:(FV)G) +--=0,
(A2)

where omitted terms do not contain the structures propor-

tional to #”*. We see that (A2) cannot be satisfied because

the two terms in parentheses have different powers of A™ .
Thus, option I does not work.

2. Case 11

Considering option II, we find that the requirement (2.5)
is equivalent to

1 o o o af
v PH _ - —
2(" oA, " oa, " oA, T 0A,, 0-

(A3)

We have three possibilities for function f*:
(ITa) f* = A*h(A,.A,,)
(Ib) f* = A*v, (A, A,,)
(Ilc) f* = A*v, (A, AL)

In case Ila, we obtain that (A3) is equivalent to

which is satisfied only in the case h = h(A,), so that
= A'h(A,).

However, the corresponding Lagrangian L = h(A,) x
A<”r]”>f’Ap;,w does not contain second-order derivatives after

integration by parts.
In case IIb, we find that (A3) is equivalent to

v

Ay;;{nup 81},{ — AWK VT X

0A,, 0A,;"

This is possible only if v, = v,(A,). This leads to the
following Lagrangian:

L =A,(AA)"nPAI>A

iy

It can be reduced by integration by parts to a Lagrangian
involving first derivatives only,

Ay (ATAT ) " ’Y"(Z'A”) ;KAp;yy
TA \n 1 U A vix
= A;{(A Ar) E (ﬂp AR A pPRAY )Ap;m/
= _(ATAT)nAKAll;W{A/);p + e

1 :
= 3 (ATA)"A) (A7) P =04,

where omitted terms do not contain second derivatives and
arrows denote integration by parts.
Finally, in case Ilc, Eq. (A3) is equivalent to

v
VPPt VA _ HT AXV x .
n'n A oA,

This equation cannot be satisfied.
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Summarizing, we see that option II does not lead to the
desired Lagrangians.

3. Option III

Let us consider option III. It is convenient to classify the
functions B** according to the origin of the indices y and v.
In this way, we arrive at nine possibilities [other options
give the same S** in (2.2)]:

(Ila) B™ = h(Ag, A,,)AFAY
(Ib) B™ = h(Ag, A, )"
(Ilc) B™ = h(Ag, A, ) AR

() B™ = vz(Ag, Ay ) AFEAY

(lle) B* = vg(Ag. A, )ASHAY

(I11f) B = Ley(Ag, A )AREAVD
(Ilg) B Lw( ﬂ)AfW”
(th) (Ag, A )AEHAV
(I117) L&p( A AREAPY

a. Cases IIla and IIIb

In cases Illa and IIIb, we obtain that the requirement
(2.5) is equivalent to

h h
AP 8— — A7 9
0A, " 0A,

=0. (A4)

This is possible only if
h = (F)'(D)"(B)",
where n, [, and k are non-negative integers and

F=ArA,
D = AYA*A,,,
B = AYAAMA,,.

Thus, this option leads to the following Lagrangians,

L, = (F)h(D)m (B)"IA”A”A/’A/,;W, (A5)

Ly = (F)2(D)"(B)n"A’A,,,. (A6)
where [, ,, ki, and n;, are non-negative integers. We
consider these Lagrangians, along with other cases, in the
end of this Appendix to figure out which of them are

independent.

b. Case IIlc

In case Illc we obtain the following function S#*:

h
50 = 2 (AR A AP, (A7)

Using (A7), we find that the requirement (2.5) is equi-
valent to

(#;7 AR AP —np(”r]”)’lhA’ 1 Al (8(hAP) 8(hAT)> —0.

0A.;  0A,y
(A8)

We see that (A8) cannot be satisfied because the first term
in (A8) cannot be canceled out by other terms. Thus, option
IIIc does not work.

c. Case IIId

In case IIId, we obtain the following function S¥**:

SHr = % (A*AY + A AF) AP, (A9)

Using (A9), we observe that the requirement (2.5) is
equivalent to

I(A’v,) _ I(A™v,) Alv) 4 APy Ay
OA,J 8Ap;ﬁ

— AT Al = Q.

We see that (A9) cannot be satisfied because the third term
in (A9) cannot be canceled out by other terms. Thus,
case IIId does not lead to the desired Lagrangians.

d. Case IIle

In case Ille, we obtain the following function S¥**:

Sm//) — (A){ ﬂAl/ + A}{ l/Aﬂ)A/)

Ux
2
Then, the requirement (2.5) is equivalent to

O(A%v,) _O(A™vy)
0A,, 0A,,
APy, = A, 0.

=0,
(A10)

Using the second equation in (A10), we find that v* must
have the following form:

Uy = h(AmA/z v)

From this, we obtain that 2 must obey Eq. (A4), so we get
the Lagrangian

Ly = (F)5(D)"(B)bsA, A% AR AP A (A11)

Py

where /5, k3, and n; are non-negative integers. We consider
this Lagrangian in the end of the Appendix.
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e. Case IIIf

In case IIIf, we obtain the following function S$¥*:
SHP = L () AF* AV AP (A12)

Using (A12), we find that the requirement (2.5) is equiv-
alent to

(0A°Liyy)  D(A"Liyr)
04, 0A,,;

1+ AP (L(ﬁk)l,layAgi + L(ﬂ;{)l,[zmAt/;K)
_ A"(L(’l’f)nﬂ”A”;,{ + L(“)n/’”A”‘,) =0.

)Ay;xAu;r

(A13)

We see that (A13) cannot be satisfied because the third
term in (A13) cannot be canceled out by other terms. Thus,
case IIIf does not lead to the desired Lagrangians.

f. Case IlIg

In case Illg, we find the following function S***:

SHP = Ly ASHATVAP, (Al14)

Using (A14), we obtain that the requirement (2.5) is
equivalent to

AL = ATL(P)

DAL _DATL)
Arr;/l Ap;/l ‘

(A15)

Using the first equation in (A15), we find that L* must
have the following form:

L* = A*A*h(Ag, Ae.,).

From this, we obtain that & must satisfy Eq. (A4), and the
Lagrangian is

Ly = (F)(D)"(B)A, A, A<M A* AP A (A16)

s

where l4, k4, and n, are numbers.

g. Case IITh
In case IlIh we obtain the following function S***:
1
SHP = ELM(A”;”A”” + AXVART)AP. (A17)

Using the (A17), we find that the requirement (2.5) is
equivalent to

e g o L) p0(L,)
_ AX,/AAU,T Ax,uAy,r Ap xt) _ Ag T
(A )( ) _ o O

+ ApLXT(n/l(yAu);Tnka 4 Ax;(ynu)anr/l) _ AaLKT(I,[A(yAI/);ri,I;{p
+ Al ey = Q. (A18)

This equation cannot be satisfied because the term

AL, AXF)on in (A18) cannot be canceled out by other
terms. Thus, option IITh does not work.

h. Case IIIi

This case is similar to the previous one IITh, and so it
does not lead to the desired Lagrangians.

Summarizing, we see that option III leads to the four
Lagrangians (AS), (A6), (All), and (A16).

4. Case IV.1

Considering option IV.1, we find that the requirement
(2.5) is equivalent to
oT” oTH

APH — ATV )
0A,, 0A,,)

(A19)

We have three possibilities for function 7*:
(IV.la) T+ = A*h(A,.A,,)
(IV.1b) T+ = A¥v, (A, AL,)
(IV.lc) T = A0, (A, AL,)
In case IV.1a, we obtain that (A19) is equivalent to

Oh — ATVAH %’
A Ap;i

APHAY

which is satisfied only in the case h = h(A,), so that
T = AFh(A,).

However, the corresponding Lagrangian £ = h(A,) x
A/’;(”A’”APW does not contain second-order derivatives
after integration by parts.

In case IV.1b, we find that (A19) is equivalent to

ov ov
APH [ T h L AV ) = ATV gt - ARX * ).
<’1 - aAr;ﬂ) (7] . 8Aﬂ;/1>

(A20)

We see that (A20) cannot be satisfied because the first term
AP#y’"p* in (A20) cannot be canceled out by other terms.

Finally, in case IV.1c, we obtain that (A19) is equivalent
to

ov ov
APH AT o ARV X ) = AT gy 4 AR X
<rl v aAr;/l) (77 . 8Ap;/l>

(A21)
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We see that (A21) cannot be satisfied because the first term
AP#yY*p7 in (A21) cannot be canceled out by other terms.
Summarizing, we see that option IV.1 does not work.

5. Case IV.2

Considering option IV.2, we find that the requirement
(2.5) is equivalent to

OLmv)

T _ Luw)p poid
aAa;l

L(/w)aAp;ﬁ + Ar;KAp;K

OLW)
0A,;

— A%, AT =0. (A22)

L is a monomial, so Lo
following form,

can be represented in the

Lo — (A%TA,. )" Lo

where 1 is a natural number and L®#)° does not contain
(A77A,.;). So, Eq. (A22) reads

(4
+...=0,

”;T)nl":(pw)(r _ 2nAr;KAa;%z(yv)T(AK;TAK;T>n—1 )Ap;/l

(A23)
where omitted terms do not contain the structures propor-
tional to A”**. We see that (A23) cannot be satisfied because

the two terms in parentheses have different powers of
(A*%?A,..). Thus, option IV.2 does not work.

6. Case IV.3

Considering option IV.3, we find that the requirement
(2.5) is equivalent to

Ar;/)L(;w)ﬂ

(A24)

We see that (A24) cannot be satisfied because the first term
in (A24) cannot be canceled out by others terms in (A24).
Thus, option IV.3 does not lead to the desired Lagrangians.

7. Option IV .4

We now consider option IV.4. It is convenient to classify
the functions Z* according to the origin of the indices u, v.
In this way, we arrive at nine possibilities [other options
give the same S*” in (2.2)]:

(IV4a) ZM = h(Ay, A, )A”A”

(IV.4b) ZH = h(Ag, A )™

(IV.dc) 2" = h(A,, Ta)

(AV.4d) 72" = v:(Ay )A” 5A”

(IV.de) 7z = Uf(Ag, - l)A&"A”

(IV.AD) ZM = Liy(Ag, Ay ) AFEAVD
(IV.4g) 7 —L§¢( o2 Ay ) ASHAPY
(IV.4h) ZM = Liy(Ag, A, ) ASHAVS
(IV.4i) Zm —Lw( o2 Ay ) AFEADY

a. Cases IV.4a and 1V.4b

In cases IV.4a and 1V.4b, we find that the requirement
(2.5) is equivalent to

oh .. ok

AP*A
*0A,, ¥ 0A,,

-0,

which can be satisfied only in the case h = (F)'x

(ATA APA,.,)", so that we have the following
Lagrangians,
Ls = (F)5(C)sA*AYAP™ALA . (A25)
£6 = (F)lﬁ (C)n(”’/WA/);KAKA/J;ﬂw (A26)

where /5 and ns¢ are non-negative integers and
— AHTA AP
C = AFTAAPA,,.

We discuss Lagrangians (A25) and (A26) in the end of this
Appendix.

b. Case IV.4c

In case IV.4c, we obtain the following function S**:

h
SHp — 3 (AR¥ 4 AVH)AP . (A27)

Using (A27), we find that the requirement (2.5) is equiv-
alent to
,]f(ﬂnv)l hAP*A, — ,7/)(/4,1#)1 hA™A,,

| At (QBAP7A)  D(hATA,)
0A,, 9A,.,

) =0. (A28)

We see that (A28) cannot be satisfied because the first
term in (A28) cannot be canceled out by other terms. Thus,
option IV.4c does not work.

c. Case IV.4d

In case IV.4d, we obtain the following function S#7:
S = % (AF<AV 4 AV AR) AP, (A29)

Using (A29), we find that the requirement (2.5) is equiv-
alent to
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(AP Aw,)  O(ATA,v,)
0A,; 0A,,
— ATCA VAP = 0.

>A(ﬂ:v) 4 A/’?”A(,MA(";y”)T
(A30)
We see that (A30) cannot be satisfied because the third term

in (A30) cannot be canceled out by other terms. Thus,
option IV.4d does not lead to the desired Lagrangians.

d. Case IV.de

In case IV.4e, we find the following function S***:
SHep — Ux (AX;uAu 4 AK;DAM)A/);O'A )
2 (2

Then, the requirement (2.5) is equivalent to

O(AP?A,v,)  O(A™A,0,)
0A,, 0A,;
APCA vV, = AL AR

-0,

(A31)

Using the second equation in (A31), we find that v, must
have the following form:

Uy = Au;aAﬂh(Ar’ Au;u)'

So, Eq. (A31) reads

Oh

AK;(”A”) Ap;‘[ATA}{;TAT + A/);rA/IhAT”;m
0A,.;

oh

— ATAASTA,
aAm

—AﬂﬂA*hA,;fﬂ) =0. (A32)

This equation cannot be satisfied because the second term
in (A32) cannot be canceled out by other terms. Thus,
option IV.4e does not work.

e. Case IV.4f
In case IV.4f, we find that (2.5) is equivalent to

0N AL ) 0N AL ) 1
8Aa;,1 8Ap;/1
4 A/J;GAO_(L(A}()’,I{IDA”;K + L(ﬂ;{)nayAy;}{)

—Aa;GAa(LW)ﬂp”A”;K + L(/lk)”pﬂAV:K) =0.

(A33)

We see that (A33) cannot be satisfied because the third term
in Eq. (A33) cannot be canceled out by other terms. Thus,
this option does not lead to the desired Lagrangians.

f. Case IV.4g
In case IV.4g, we obtain that (2.5) is equivalent to

pr(M) = frLb),

8(f/)L(;{1)) ~ a(fo'L(xr)) o
Aa;ﬂ A/);/l '

(A34)

where f? = A”#A,. This is possible only if L* =
f*f*h(A,, A,..). From this, we find that (A34) is equivalent
to

oh Oh
APTAAFALAHA,, — AYTA AOAAHA,
Au;l Ap;ﬁ

+ h(A"“”A”A/’;’A,;y"”A/1 - A"‘;"AMA”;TA,W’/’A’1
H T A ; T A\
+ AHA APTA VAL — AHA L AVTA P AY) = 0.
(A35)
We see that (A35) cannot be satisfied because the third term

in Eq. (A35) cannot be canceled out by other terms. Thus,
option 1V.4g does not work.

g. Case IV.4h
In case IV.4h, we obtain that (2.5) is equivalent to

(L)
0A,,

L)
0A g

_l_prKT(},ll(uAy);rnxa +Au;(y”u)a’17/1)
— faLm(,]i(ﬂAv):T,,%p 4 A%:(ﬂnv)pnfl) =0,

(A;{;pAu;r + A}{;I/Aﬂ;‘[) ( P _ fa

N =

(A36)

where f¥ = A”°A,. We see that (A36) cannot be satisfied

because the term A<¥ )%™ in (A36) cannot be canceled
out by other terms. Thus, this option does not lead to the
desired Lagrangians.

h. Case IV.4i

This case is similar to the previous one, IV.4i, and so it
does not lead to the desired Lagrangians.

8. Independent Lagrangians

To summarize, we have arrived at the six Lagrangians
(AS), (A6), (A11), (A16), (A25), and (A26). We write them
again for reference:

[:1 = (F)l] (D)”] (B)k]AﬂADA/)A/);ﬂw (A37)

L, = (F)2(D)"=(B)n“ AP A, (A38)

L3 = (F)5(D)"(B)sA,A<VAWAPA, . (A39)
Ly = (F)(D)"(B)A,A,A AT APA,,,,.  (A40)
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Ls = (F)5(C)"sAAYAP* A, A (A41)

piuv?

Lo = (FYe(CYsn AP A Ay, (A42)
Upon integration by parts. some of these Lagrangians
are reduced to the Lagrangian containing the first deriv-
atives only. Our purpose here is to figure out which of
these Lagrangians are independent modulo first-order
Lagrangians.

The Lagrangian (A41) can be reduced by integration by
parts to a Lagrangian involving first derivatives only,

Ls = (F)IS(C)”SA”A”A/’;”A,{A
1
- E (F)IS(C)nSADC;v +--
1
- (Ps((C)sth) AV 4+ ...
S 1) (A +
b

PV

= _ (F)IS(C)'“HAZ;-F"'=0+"',

Ly = (F)5(D)"™ (B)kgAKAx;(uAﬂ)ApAPW 4

1

= ————(F)5(D)=*(B)L0OF -

2("3 + 1)
1

== (F)5 (D) {(B)sn APA,,,,

(n3+1)
2y

where, as before, omitted terms do not contain second
derivatives and the arrow denotes integration by parts.
Upon integration by parts and adding terms contain-
ing first derivatives only, the remaining Lagrangians
(A37)—(A40) and (A42) can be expressed through three
Lagrangians (A38), (A40), and (A42). Indeed, Lagrangian
(A37) can be expressed through Lagrangian (A39):

L, = (F)'"(D)"(B) AFAYAPA .., + - -

Py

—

() (D) (B)A"D, + -+

ky .
= -————((B)"(D)y" " (B "YF¥D., + - --
S, 1) (P2 B )FD,
ky .
=————(F)"(D)" 1 (B)"~1A,A<VAWAPA,,
Gy (PO B,

| =

Lagrangian (A39) can in turn be expressed through two
Lagrangians (A38) and (A40):

1 ‘
= E(F)Iz(D)"S(B)kzDWF,ﬂ N

k
L (P (D) (B B P

2(ny + 1)

_ = (F)l3 (D)n3+1 (B)k3—lAKATA}(;#AT;VA/)AP;W + .-

(n3+1)

There are four special cases in which the remaining Lagrangians (A38), (A40), and (A42) are, in fact, first order or are not
independent. One is Lagrangian (A38) with n, =0, 1 and k, =0:

1
FhDp"APA ., + - = 5FlzDDF + -

pipv

1 1, A0 W
:—ZF'A F;QDF’ +

O | —

=

1
L= _EFlszF:v_|_...

1
— _gF12A/1<F;l/]-7‘§l/);/1 4.

(FEA0) ¥ e = 04

Another is Lagrangian (A40) with n, = 0 and k4_(, which is effectively first order. The third special case is Lagrangian
(A38) with n, = 1 and arbitrary k,, which can be expressed through Lagrangian (A40):

1
PV 5

=

B

L, = (F)2(B)>Dnp*ArA ., =
1
2

1

(F)>(B)eDOF + - -

1 k
() ((B)SD) ¥+ = =2 (F)(B) D, F¥ = 2 (F)(B) ' DB, F¥ + -

=3 (F)2(B)2B,A" = 2ky(F)">(B)*>"' DA, A, A*A™ AP A, + -+ -

= —2ky(F)2(B) 2" DA AAFA™APA .\, + - - -
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Finally, Lagrangian (A42) is effectively first order for ng = 0. This completes the analysis leading to the result quoted in the

end of Sec. II, Egs. (2.6)-(2.16).

We point out that in the cases when the above Lagrangians are first order in derivatives (upon integration by parts) their
structure does not coincide with any of the Lagrangian for vector Galileons [9,10].
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