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We construct simple Lagrangians of vector fields which involve second derivatives but nevertheless lead
to second-order field equations. These vector fields are, therefore, analogs of generalized Galileons. Our
construction is given first in Minkowski space and then generalized to include dynamical gravity. We show
that the speed of gravitational waves about homogeneous and isotropic backgrounds is equal to the speed of
light. We present examples of backgrounds that are stable and ghost free despite the absence of gauge
invariance. Some of these backgrounds violate the null energy condition.
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I. INTRODUCTION

Scalar theories with Lagrangians involving second deriv-
atives, which nevertheless lead to second-order field equa-
tions, attract considerable interest. These are theories of
generalized Galileons [1] of which the versions with
dynamical gravity are Horndeski theories [2,3]. From the
cosmological viewpoint, these theories are particularly
interesting because they are capable of violating the null
energy condition (NEC) in a healthy way (for a review, see
Ref. [4]). It is natural to try to generalize these theories to
fields other than scalar. If one insists on gauge invariance,
then no generalization is possible in four dimensions1 [6],
while in higher dimensions, one arrives at a theory of
p-form Galileons [7,8]. Giving up gauge invariance is
dangerous but may not be fatal. Indeed, there are vector
theories (with Lagrangians involving first derivatives only)
which are not gauge invariant but, nevertheless, stable.
One class of such theories is the generalized Proca theories,
or vector Galileons [9,10]. Theories of another class [11] are
stable in nontrivial backgrounds. An interesting property of
the latter is that they also may violate the NEC in a healthy
way [12].
In this paper, we also consider vector field and give up

gauge invariance. Our purpose is to construct the simplest
vector-field Lagrangians involving second derivatives and
yet giving rise to second-order field equations. We do this
first in Minkowski space and find that there are at least

three fairly large classes of theories that have the desired
property. We then switch on the dynamical gravity and
observe that all field equations remain second order for
theories belonging to two of these classes. A possible area
of application of the classes of theories we consider is the
early Universe and/or dark energy. Concerning the dark
energy application, a prerequisite is that the gravitational
waves travel at the speed of light, cf. Ref. [13]; we discuss
this point in our paper. A particularly interesting possibility
is NEC violation by homogeneous and isotopic back-
ground. In this paper, we take the first step in this direction.
Namely, we consider one class of theories and give an
example of vector background in Minkowski space that
violates the NEC. Then, we derive the conditions for
stability (absence of ghosts and gradient instabilities) about
this background in Minkowski space and find the range of
parameters where the NEC-violating background is stable.
Thus, theories we consider may be viewed as vector
analogs of the generalized Galileons. In a straightforward
application, we describe a model of early genesis stage
based on our NEC-violating vectorlike Galileons. It is
worth noting that our class of models is substantially
different from vector Galileons (generalized Proca fields)
of Refs. [9,10]. The defining feature of the latter is the
existence of 3 degrees of freedom (d.o.f.) in an arbitrary
background. We do not impose this requirement, so our
vector field genuinely has four propagating d.o.f. As a
result, these d.o.f. are not pathological in nontrivial back-
grounds only, while there exist ghosts in trivial background
Aμ ¼ 0. It remains to be understood whether or not the
absence of the stable Lorentz-invariant vacuum is a draw-
back of our class of models.
This paper is organized as follows. In Sec. II, we con-

struct non–gauge invariant second-derivative Lagrangians
with second-order field equations for vector fields in
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1This not the case in curved space-time [5].
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Minkowski space. In Sec. III, we turn on dynamical gravity
and show that all equations of motion remain second order
in theories belonging to two of the classes found in Sec. II.
In Sec. IV, we prove that Lagrangians, belonging to the two
classes of Sec. III, do not modify the propagation speed of
gravitational waves; this speed is equal to the speed of light.
In Sec. V, we give an example of nontrivial homogeneous
vector field background in Minkowski space that violates
the NEC and derive the conditions for stability and for
the absence of superluminal propagation of perturbations.
Then, we determine the range of parameters, in which the
background is stable and violates the NEC in Minkowski
space. Finally, we describe a model of early genesis stage
based on our NEC-violating vectorlike Galileons. We
conclude in Sec. VI.

II. SECOND-DERIVATIVE LAGRANGIANS IN
MINKOWSKI SPACE

Let us construct a nongauge-invariant simplest theory for
vector field in Minkowski space which has the Lagrangian
satisfying the following requirements:
(1) The LagrangianL has second derivatives, along with

first derivatives and the field itself.
(2) Field equations obtained from this Lagrangian have

derivatives of at most second order.
(3) The Lagrangian cannot be reduced by integration by

parts to the Lagrangian involving first derivatives
only.

(4) The Lagrangian is linear in the second derivatives:

L ¼ SμνρðAλ;Aτ;ξÞAρ;μν þ LðAτ; Aλ;ξÞ ð2:1Þ

It is convenient to think of Sμνρ as a sum

Sμνρ ¼ 1

2
ðKμνρ þ KνμρÞ; ð2:2Þ

where Kμνρ does not have to be symmetric in μ, ν.
(5) The function Kμνρ in (2.2) is a monomial in variables

Aμ, Aν;τ which does not involve the totally antisym-
metric tenzor:

Kμαμβμγ ¼ const · ημσð1Þμσð2Þ…ημσðnþ2mþ2Þμσðnþ2mþ3Þ

× Aμ1…AμnAμnþ1;μnþ2
…Aμnþ2m−1;μnþ2m

;

ð2:3Þ

where n is odd, σ denotes a permutation of
(nþ 2mþ 3) indices, and μα, μβ, μγ are
non-convoluted indeces, ðμα;μβ;μγÞ¼ðμσ−1ðnþ2mþ1Þ;
μσ−1ðnþ2mþ2Þ;μσ−1ðnþ2mþ3ÞÞ.

The Euler-Lagrange equations for a theory with this
Lagrangian have the following form:

∂L
∂Aρ

− ∂μ
∂L
∂Aρ;μ

þ ∂μ∂ν
∂L

∂Aρ;μν
¼ 0; ð2:4Þ

where Aρ;μ ¼ ∂μAρ, Aρ;μν ¼ ∂μ∂νAρ. The third order terms
in Eq. (2.4) for the Lagrangian (2.1) read:

�∂Sμνρ
∂Aτ;λ

−
∂Sμντ
∂Aρ;λ

�
Aτ;λμν:

Thus, to have second-order field equations, we require that

∂Sμνρ
∂Aτ;λ

−
∂Sμντ
∂Aρ;λ

¼ 0: ð2:5Þ

In accordance with (2.3), the indices μ, ν, ρ in the
function Kμνρ come from the metrics or vector field or
derivative of vector field. The last index in Kμνρ plays
a different role in Eq. (2.5) than the other indices, and so it
is convenient to classify functions Kμνρ according to the
“origin” of the index ρ. In this way we arrive at four
possibilities (other options give the same Sμνρ in (2.2):

I. Kμνρ ¼ Lμν
ϰ ðAσ; Aτ;λÞAϰ;ρ

II. Kμνρ ¼ fμðAσ; Aτ;λÞηνρ
III. Kμνρ ¼ BμνðAσ; Aτ;λÞAρ

IV. Kμνρ ¼ L̃μν
ϰðAσ; Aτ;λÞAρ;ϰ,

where functions Lμν
α, L̃μν

ϰ, Bμν and fμ are again mono-
mials in two variables Aσ, Aτ;λ that do not involve totally
antisymmetric tensor. Furthermore, it is convenient to
classify the functions L̃μν

ϰ according to the “origin” of
index ϰ:
IV.1. L̃μν

ϰ ¼ TμðAσ; Aτ;λÞδνϰ; Kμνρ ¼ TμðAσ; Aτ;λÞAρ;ν

IV.2. L̃μν
ϰ ¼ Xμν

αðAσ; Aτ;λÞAα
ϰ; Kμνρ ¼ Xμν

αðAσ; Aτ;λÞ×
Aα;

ϰAρ;ϰ

IV.3. L̃μν
ϰ ¼ Zμν

αðAσ; Aτ;λÞAϰ;
α; Kμνρ ¼ Zμν

αðAσ; Aτ;λÞ×
Aϰ;

αAρ;ϰ

IV.4. L̃μν
ϰ¼VμνðAσ;Aτ;λÞAϰ; Kμνρ ¼ VμνðAσ; Aτ;λÞAϰAρ;ϰ.

Making use of this classification, we analyse Eq. (2.5) in
Appendix A. We find that there are three independent
Lagrangians which satisfy above requirements 1–5, namely

L1 ¼ ðFÞl1ðDÞn1ðBÞk1ημνAρAρ;μν; ð2:6Þ

L2 ¼ ðFÞl2ðDÞn2ðBÞk2AσAτAσ;μAτ;νAρAρ;μν; ð2:7Þ

L3 ¼ ðFÞl3ðCÞn3ημνAρ;σAσAρ;μν; ð2:8Þ

where ki, li, ni are nonnegative integers, and

F ¼ AμAμ; ð2:9Þ

D ¼ AνAλAν;λ; ð2:10Þ

B ¼ AμAνAμ;λAν;λ; ð2:11Þ

C ¼ Aμ;τAτAρAμ;ρ: ð2:12Þ
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The Lagrangians (2.6) and (2.7) have the structure corre-
sponding to the case III above for function Kμνρ, while the
Lagrangian (2.8) corresponds to IV.4.
The Lagrangians (2.6)–(2.8) contain second derivatives,

provided that

k1 ≠ 0 and=or n1 > 1; ð2:13Þ

k2 ≠ 0 and=or n2 ≠ 0; ð2:14Þ

n3 ≠ 0; ð2:15Þ

respectively. Lagrangians (2.6) and (2.7) are independent
when

n1 > 1: ð2:16Þ

Straightforward generalizations of (2.6)–(2.8) are

L1 ¼ fð1ÞðB;D;FÞημνAρAρ;μν;

fð1ÞB ≠ 0 and=or fð1ÞDD ≠ 0; ð2:17Þ

L2 ¼ fð2ÞðB;D;FÞAϰAτAϰ;μAτ;νAρAρ;μν;

fð2ÞB ≠ 0 and=or fð2ÞD ≠ 0; ð2:18Þ

L3 ¼ fð3ÞðC;FÞημνAρ;λAλAρ;μν; fð3ÞC ≠ 0; ð2:19Þ

where fð1Þ, fð2Þ and fð3Þ are arbitary functions of their

arguments, and fB ¼ ∂f
∂B, fDD ¼ ∂2f

∂D2, etc.
It is worth pointing out that there may exist linear

combinations of Lagrangians whose structure is different
from (2.17)–(2.19), but which nevertheless lead to second
order field equations due to cancellations between different
terms. One of the examples is

L ¼
�
1

2
AρAμ;νAνAμ;λAλ þ Aρ;τAτAμ;νAμAν

�
□Aρ:

We do not consider this fairly contrived possibility in
this paper.
Coming back to the Lagrangians (2.17)–(2.19), we point

out that since they lead to the second order field equations,
the number of propagation degrees of freedom is generally

speaking, equal to four. We will see this explicitly in
Sec. V B.

III. TURNING ON GRAVITY

In the previous section, we constructed three non–gauge
invariant vector-field Lagrangians involving second deriv-
atives and yet giving rise to second-order and/or lower field
equations in Minkowski space, Eqs. (2.17)–(2.19). Our
purpose here is to figure out which of these Lagrangians
lead to the second-order or lower equations of motion and
energy-momentum tensor.
Let us consider Lagrangian (2.17). One assumes minimal

coupling to gravity; then, − ffiffiffiffiffiffi−gp
Tρσδgρσ for this theory

reads

−
ffiffiffiffiffiffi
−g

p
Tρσδgρσ ¼ 2δð ffiffiffiffiffiffi

−g
p

Lð1ÞÞ
¼ δð ffiffiffiffiffiffi

−g
p

fð1ÞðB;D;FÞ□FÞ þ � � �
⇒

ffiffiffiffiffiffi
−g

p
fð1ÞB gμνðð∂μ∂νFÞδBþ ð∂μ∂νBÞδFÞ

þ ffiffiffiffiffiffi
−g

p
fð1ÞD gμνðð∂μ∂νFÞδDþ ð∂μ∂νDÞδFÞ þ � � � ;

ð3:1Þ
where omitted terms do not contain third derivatives
and the arrow denotes integration by parts and δB ¼
δB
δgρσ

δgρσ, etc. It is convenient to represent Eq. (3.1) in

the following form,

−
ffiffiffiffiffiffi
−g

p
Tρσδgρσ ⇒ I1 þ I2 þ � � � ;

where

I1 ¼
ffiffiffiffiffiffi
−g

p
fð1ÞB gμνðð∂μ∂νFÞδBþ ð∂μ∂νBÞδFÞ;

I2 ¼
ffiffiffiffiffiffi
−g

p
fð1ÞD gμνðð∂μ∂νFÞδDþ ð∂μ∂νDÞδFÞ:

We see that Tμν does not contain third-order derivatives of
the vector field and/or metric. Indeed, using the fact that
B ¼ 1

4
F;μF;μ, we obtain that I1 is second order or lower,

I1 ⇒
ffiffiffiffiffiffi−gp
2

fð1ÞB ð−ð∂τFÞð∂τ∂μ∂νFÞδF
þ ð∂τFÞð∂μ∂ν∂τFÞδFÞ þ � � � ¼ 0þ � � �

I2 does not contain third-order derivatives, either:

I2 ¼ fð1ÞD
ffiffiffiffiffiffi
−g

p
AλAϰAνAρAμgσαðð∂σ∂αgμνÞδΓϰ

ρλ þ ð∂σ∂αΓϰ
ρλÞδgμνÞ

− fð1ÞD
ffiffiffiffiffiffi
−g

p
AλAρgσαð2Aμð∂σ∂αAμÞAϰδΓϰ

ρλ þ ð∂σ∂α∂λAρÞAμAνδgμνÞ þ � � �

⇒
1

2
fð1ÞD

ffiffiffiffiffiffi
−g

p
AλAϰAνAρAμgσαðð∂σ∂α∂ϰgμνÞδgρλ − ð∂σ∂α∂ρgμνÞδgλϰÞ

− fð1ÞD
ffiffiffiffiffiffi
−g

p
AλAρAμAνgσαðð∂σ∂α∂λAμÞδgρν − ð∂σ∂α∂λAρÞδgμνÞ þ � � �

¼ 0þ � � �
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Now,
δð ffiffiffiffi−gp

Lð1ÞÞffiffiffiffi−gp
δAσ

δAσ also does not contain third-order derivatives. Indeed,

δð ffiffiffiffiffiffi
−g

p
L1Þ ¼

1

2

ffiffiffiffiffiffi
−g

p �
fB

�
δðF;τF;τÞ

4
□F þ□ðF;τF;τÞ

4
δFÞ

�

þ fDðð□FÞδDþ ð□DÞδFÞ
�
þ � � �

⇒
1

2

ffiffiffiffiffiffi
−g

p ½0.5fBððF;τ − F;τÞ□F;τÞδF
þ fDðAλAρAμAν∂τ∂μ∂τgρν − AλAρAμAν∂τ∂ρ∂τgμνÞδAλ�
þ � � � ¼ 0þ � � � :

Thus, the equation of motion has derivatives of second order and/or lower. Summarizing, we see that Lagrangian (2.17)
leads to the second-order and/or lower field equation and energy-momentum tensor.
Let us consider Lagrangian (2.18). Using the fact that B ¼ 1

4
F;μF;μ and D ¼ 1

2
F;μAμ, we find that

δð ffiffiffiffiffiffi
−g

p
L2Þ ¼

ffiffiffiffiffiffi−gp
4

δðfð2ÞðB;D; FÞF;νB;νÞ þ � � � ⇒ −
ffiffiffiffiffiffi−gp
4

δðfð2Þð□FÞBÞ

−
ffiffiffiffiffiffi−gp
4

δðfð2Þ;ν F;νBÞ þ � � � ¼ −
ffiffiffiffiffiffi−gp
4

δðfð2Þ;ν F;νBÞ þ � � � ⇒ −
ffiffiffiffiffiffi−gp

fð2ÞB

4
ð−ðBF;νÞ;νδB

− ð□BÞBδF þ B;νF;νδBÞ −
ffiffiffiffiffiffi−gp

fð2ÞD

4
ð−ðF;νBÞ;νδD − Bð□DÞδF þD;νF;νδBÞ þ � � �

⇒
ffiffiffiffiffiffi−gp

fð2ÞB B

8
ð−F;τ□ðF;τÞ þ ð□FÞ;τF;τÞδF −

ffiffiffiffiffiffi−gp
fð2ÞD AλF;ν

16
ðF;τF;τνλ − F;τF;λντÞδF ¼ 0þ � � � ;

where omitted terms do not contain third derivatives and
F;ν ¼ ∇νF, F;νμ ¼ ∇μ∇νF, etc., δB ¼ δB

δgρσ
δgρσ þ δB

δAμ
δAμ,

etc. Thus, all field equations have derivatives of second
order and/or lower.
The minimal extension of Lagrangian (2.19) leads to the

third-order field equations. We were unable to find addi-
tional terms involving the Riemann tensor that would give
rise to the cancellation of the third derivatives in the field
equations. Thus, we conjecture that Lagrangian (2.19)
cannot be generalized to the theory with dynamical gravity
in such a way that the equations of motion remain second
order. We do not consider Lagrangian (2.19) in what
follows.
To summarize, in the case when we switch on the

dynamical gravity, all field equations remain second order
for two Lagrangians (2.17) and (2.18).

IV. SPEED OF GRAVITATIONAL WAVES

Our purpose here is to figure out whether the second-
derivative terms in Galileon-like Lagrangians (2.17) and
(2.18) can modify the propagation speed of tensors modes.
Even though we consider minimal coupling to gravity in
the sense that we do not have any direct couplings between
the vector field and curvature tensors, the second deriva-
tives acting on the vector field do induce explicit couplings

between the vector field and the metric and its derivatives,
which could result in a modified propagation speed of
gravitational waves. Let us consider the following back-
ground and gauge fixing for metric perturbation,

ds2 ¼ dt2 − a2ðtÞðδij þ hTTij Þdxidxj; ð4:1Þ

with ∂ihTTij ¼ 0, hTTii ¼ 0, and for vector field

Aμ ¼ ðAðtÞ; 0; 0; 0Þ þ δAμ: ð4:2Þ

The term with second derivatives in Lagrangian (2.17)
reads

1

2
fð1ÞðB;D;FÞ□F; ð4:3Þ

while for Lagrangian (2.18), we have

1

16
fð2ÞðB;D;FÞF;λðF;ρF;ρÞ;λ: ð4:4Þ

The terms (4.3) and (4.4) may give rise to the combination
like L ⊃ F ðtÞ _hTTij ∂iδAj. However, these terms in the action
vanish upon integration by parts. In other words, helicity-2
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field hTTij does not mix with the field δAμ, which has helicity
1 or 0.
Now, let us see that the terms (4.3) and (4.4) do not lead

to the term ð _hTTij Þ2 or ð∂khTTij Þ2. To this end, we set δAμ ¼ 0.

Functions fð1ÞðB;D; FÞ and fð2ÞðB;D; FÞ do not contain
hTTij . This follows from the facts that B ¼ 1

4
F;μF;μ,

D ¼ 1
2
F;νAν, and F ¼ AνAν ¼ _A2. We also notice that

ðF;ρF;ρÞ;λ does not contain hTTij either. Therefore, the
term (4.4) does not contain hTTij at all.
Turning to the term (4.3), we recall that □F can be

written in the following form:

□F ¼ 1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p ∂νFÞ:

Thus,□F, and hence the whole term (4.3), is at most linear
in ∂μhTTij . This completes the argument.
Thus, terms (4.3) and (4.4) do not modify the propaga-

tion speed of gravitational waves in homogeneous and
isotropic background.

V. STABLE NEC-VIOLATING SOLUTION
IN MINKOWSKI SPACE

A. Solution

Our purpose here is to figure out if there are Lagrangians
in the set (2.17) and (2.18), which lead to stable NEC-
violation solutions. In this section, we give such an
example in the Minkowski background. Let us consider
the Lagrangian (2.17) with additional first-order terms

L1 ¼ qD2Aρ
□Aρ þ kB2 þ lC2 þ vF6; ð5:1Þ

where q, k, l, and v are free parameters and B, C, D, and F
are given by Eqs. (2.9)–(2.12), respectively. The specific
choice of the Lagrangian functions here is such that all
terms have the same transformation property under rescal-
ing xμ ⇒ λxμ, Aμ ⇒ λ−1Aμ, namely, L1 ⇒ λ−12L1. Then,
there exists a nontrivial homogeneous solution of the field
equation

Abg
μ ¼ ðβt−1; 0; 0; 0Þ; t > 0: ð5:2Þ

For this solution, the field equation gives

β ¼
�
3kþ 3l − 5q

v

�
1=4

: ð5:3Þ

This solution exists when

3kþ 3l − 5q > 0 and v > 0 or

3kþ 3l − 5q < 0 and v < 0: ð5:4Þ

We will need the expression for the energy-momentum
tensor for this solution:

Tμνjgρσ¼ηρσ ;Aτ¼Abg
τ
¼ 2δð ffiffiffiffiffiffi−gp

LÞffiffiffiffiffiffi−gp
δgμν

����
gρσ¼ηρσ ;Aτ¼Abg

τ

:

To this end, we again consider minimal coupling to the
metric, i.e., set □Aρ ¼ ∇μ∇μAρ and D ¼ Aμ;νAτAλgμτgνλ,
etc., in curved space-time. The Lagrangian (5.1) can be
written in the following form,

L1 ¼
1

2
fð1ÞðDÞ□F − fð1ÞðDÞAτ;σAτ;σ þ LðB;C;D; FÞ;

where

fð1ÞðDÞ ¼ qD2;

LðB;C;D; FÞ ¼ kB2 þ lC2 þ vF6:

Using the fact that ∂0T0ρjAμ¼Abg
μ
¼ 0, we find that

T00¼0;

Tij¼pδij;

p¼
�
−
1

2
∂τf∂τFþL−fAτ;σAτ;σ

�����
gμν¼ημν;Aμ¼Abg

μ

; ð5:5Þ

where i, j ¼ 1, 2, 3. This gives

p ¼ β8t−12ðvβ4 þ kþ l − 9qÞ ¼ β8t−12ð4ðkþ lÞ − 14qÞ:
ð5:6Þ

Thus, the background (5.2) violates the NEC, provided that

lþ k <
7q
2
: ð5:7Þ

This is possible in both cases listed in (5.4).

B. Stability conditions in Minkowski space

Let us consider the stability of the solution (5.2). Having
in mind Refs. [14,15], we also require subluminality of the
perturbations about it. To this end, we study the somewhat
more general Lagrangian

L1 ¼ fð1ÞðB;D;FÞAρ
□Aρ þ LðB;D;F; CÞ; ð5:8Þ

where LðB;D;FÞ and fð1ÞðB;D; F; CÞ are arbitrary func-
tions of their arguments. We consider homogeneous back-
ground Abg

μ ¼ ðAbg
0 ðtÞ; 0; 0; 0Þ and expand Lagrangian (5.8)

up to the second order. In the expansion, we are only
interested in coefficients of ðδA0;iδA;i

0Þ, ðδA0;0δA0;0Þ and
ðδAi;0δAi

;0Þ, ðδAi;jδAi;jÞ because here we consider the high
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momentum regime, meaning that the variation of δAμ in
space and time occurs at scales much shorter than the
timescale characteristic of the background Abg

μ ðtÞ; the terms
δA0;iδAi;0 are not present. We find

δL1 ¼ L1ðAbg
μ þ δAμÞ − L1ðAbg

μ Þ ¼ K01ðδA0;iδA;i
0Þ

þ K00ðδA0;0δA0;0Þ þ K10ðδAi;0δAi
;0Þ

þ K11ðδAi;jδAi;jÞ þ ð…ÞðδA0δA0Þ þ ð…ÞðδAiδAiÞ
þ � � � ; ð5:9Þ

where dots denote terms with fewer than two derivatives
and A≡ Abg

0 . Here,

K00 ¼ 2 _A2AðLBB þ LCCÞ þ 4LBCA4 _Aþ 1

2
A4LDD

þ 2A4 _AðLBD þ LCDÞ þ 2A5 _A2Äðfð1ÞBBÞ þ
1

2
A5Äfð1ÞDD

þ 2A5 _A Äðfð1ÞBDÞ þ A3Äðfð1ÞB Þ − 1

2

d
dt

ð2A3 _Aðfð1ÞB Þ

þ A3fð1ÞD Þ − fð1Þ − 2A2 _A2ðfð1ÞB Þ − 2A2 _Afð1ÞD

− 2A2fð1ÞF þ A2ðLC þ LBÞ;

K01 ¼ −LBA2 − A3Äfð1ÞB þ fð1Þ −
1

2

d
dt

ð2A3 _Aðfð1ÞB Þ

þ A3fð1ÞD Þ þ 2A2 _A2ðfð1ÞB Þ þ 2A2 _Afð1ÞD þ 2A2fð1ÞF ;

K10 ¼ fð1Þ − LCA2;

K11 ¼ −fð1Þ:

So, the conditions of stability are

K00 > 0; K01 < 0; K10 > 0; K11 < 0; ð5:10Þ

and the condition of the absence of superluminal perturba-
tions is

jK00j > jK01j; jK10j > jK11j: ð5:11Þ

The conditions (5.10) and (5.11) for Lagrangian (5.2) read

l > 3q − k;

l < 0;

l >
36q − 12k

13
;

v > 0: ð5:12Þ

We see that Lagrangian (5.2) gives rise to the stable
homogeneous NEC-violating solution (5.3) when the
parameters satisfy the relations (5.12), (5.7), and (5.4).
In fact, all these conditions are satisfied, provided that

v > 0; q > 0; l < 0; 3q < k <
19q
2

;

36q
13

−
12k
13

< l <
7q
2
− k:

Thus, our example shows that there are stable homo-
geneous solutions in our vector theories that violate
the NEC.
It is worth noting that Lagrangian (5.9) describes,

generally speaking, four propagating d.o.f. None of them
is pathological, however, in the background (5.2), whereas
trivial background Aμ ¼ 0 may well be unstable because of
ghost perturbations.

C. Early genesis stage

For a straightforward application of the NEC-violating
solution (5.2), we construct an initial stage of the cos-
mological genesis scenario, similar to Ref. [16]. In the
asymptotic past, space-time is assumed to be Minkowskian,
and in accordance with (5.5) and (5.6), energy-momentum
tensor vanishes as t → −∞. At large but finite jtj, gravita-
tional effects on the vector-field evolution are negligible, so
to the leading order inM−1

Pl , the energy density and pressure
are given by (5.5) and (5.6). Then, the Hubble parameter is
obtained from

_H ¼ −4πGðρþ pÞ:

We find

H ¼ 4πGβ8jð4ðkþ lÞ − 14qÞj
11jtj11 :

Thus, the Universe undergoes an accelerated expansion
characteristic of the early genesis epoch. At this stage,
perturbations about the background are stable and sublumi-
nal. It remains to be seen whether this genesis scenario with
vector field can be made complete. In particular, it would be
interesting to see whether or not the model suffers from
instabilities at later times, analogous to those in Horndeski
theories [17,18]. We leave this analysis for future work.

VI. CONCLUSION

In this paper, we have constructed simplest vector-field
Lagrangians involving second derivatives and leading to
second-order field equations. We found that there exist
three large classes of such theories in Minkowski space.
However, we observed that in the case when the dynamical
gravity is switched on only theories belonging to two of
these classes have all field equations remaining second
order. These two Lagrangians are

L1 ¼ fð1ÞðB;D;FÞημνAρAρ;μν;

L2 ¼ fð2ÞðB;D;FÞAϰAτAϰ;μAτ;νAρAρ;μν; ð6:1Þ
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where B, D, and F are defined in (2.9)–(2.11). Furthermore,
we have seen that the gravitational waves travel with the
speed of light in homogeneous and isotropic backgrounds.
This opens up the possibility of using our vector field as a
model of dark energy.
We have shown that the theory (6.1) can violate the

NEC in a healthy way in Minkowski space. Then, for a
straightforward application, we described a model of early
genesis stage based on our NEC-violating vectorlike
Galileons. Other applications may have to do with dark
energy or a bouncing Universe.
As we already pointed out, our vector field generically

has four propagating d.o.f. It would be interesting to find a
subclass of our models (if any) in which there are only
3 d.o.f., like in the vector Galileons of Refs. [9,10]. We
leave this issue for the future.

APPENDIX: SIMPLEST LAGRANGIANS

As we discussed in Sec. II, we have seven possibilities
for the structure of the function Kμνρ:

(I) Kμνρ ¼ Lμν
ϰðAσ; Aτ;λÞAϰ;ρ

(II) Kμνρ ¼ fμðAσ; Aτ;λÞηνρ
(III) Kμνρ ¼ BμνðAσ; Aτ;λÞAρ

(IV.1) Kμνρ ¼ TμðAσ; Aτ;λÞAρ;ν

(IV.2) Kμνρ ¼ Xμν
αðAσ; Aτ;λÞAα;

ϰAρ;ϰ

(IV.3) Kμνρ ¼ Zμν
αðAσ; Aτ;λÞAϰ;

αAρ;ϰ

(IV.4) Kμνρ ¼ VμνðAσ; Aτ;λÞAϰAρ;ϰ.

1. Case I

Considering option I, we find that the requirement (2.5)
is equivalent to

Aϰ;ρ ∂LðμνÞ
ϰ

∂Aσ;λ
− Aϰ;σ ∂LðμνÞ

ϰ

∂Aρ;λ
þ LðμνÞσηρλ − LðμνÞρησλ ¼ 0;

ðA1Þ

where parentheses denote symmetrization. Lμντ is a mono-
mial, so LðμνÞτ can be represented in the following form,

LðμνÞρ ¼ ðAτ;
τÞnL̃ðμνÞρ;

where n is non-negative integer and L̃ does not contain Aτ;
τ.

So, Eq. (A1) reads

ηρλð−Aϰ;σnðAτ;
τÞn−1L̃ðμνÞ

ϰ þ ðAτ;
τÞnL̃ðμνÞσÞ þ � � � ¼ 0;

ðA2Þ

where omitted terms do not contain the structures propor-
tional to ηρλ. We see that (A2) cannot be satisfied because
the two terms in parentheses have different powers of Aτ;

τ.
Thus, option I does not work.

2. Case II

Considering option II, we find that the requirement (2.5)
is equivalent to

1

2

�
ηρν

∂fμ
∂Aτ;λ

þ ηρμ
∂fν
∂Aτ;λ

− ητν
∂fμ
∂Aρ;λ

− ητμ
∂fν
∂Aρ;λ

�
¼ 0:

ðA3Þ

We have three possibilities for function fμ:
(IIa) fμ ¼ AμhðAσ; Aν;λÞ
(IIb) fμ ¼ Aμ;ϰvϰðAσ; Aν;λÞ
(IIc) fμ ¼ Aϰ;μvϰðAσ; Aν;λÞ

In case IIa, we obtain that (A3) is equivalent to

ηνρ
∂h
∂Aτ;λ

¼ ηντ
∂h
∂Aρ;λ

;

which is satisfied only in the case h ¼ hðAσÞ, so that

fμ ¼ AμhðAσÞ:

However, the corresponding Lagrangian L ¼ hðAσÞ ×
AðμηνÞρAρ;μν does not contain second-order derivatives after
integration by parts.
In case IIb, we find that (A3) is equivalent to

Aμ;ϰηνρ
∂vϰ
∂Aτ;λ

¼ Aμ;ϰηντ
∂vϰ
∂Aρ;λ

:

This is possible only if vϰ ¼ vϰðAσÞ. This leads to the
following Lagrangian:

L ¼ AϰðAτAτÞnηρðνAμÞ;ϰAρ;μν:

It can be reduced by integration by parts to a Lagrangian
involving first derivatives only,

AϰðAτAτÞnηρðνAμÞ;ϰAρ;μν

¼ AϰðAτAτÞn
1

2
ðηρνAμ;ϰ þ ηρμAν;ϰÞAρ;μν

⇒ −ðAτAτÞnAϰAμ;
μϰAρ;

ρ þ � � �

⇒
1

2
ððAτAτÞnAϰÞ;ϰðAρ;

ρÞ2 þ � � � ¼ 0þ � � � ;

where omitted terms do not contain second derivatives and
arrows denote integration by parts.
Finally, in case IIc, Eq. (A3) is equivalent to

vρημτηνλ ¼ −ημτAϰ;ν ∂vϰ
∂Aρ;λ

:

This equation cannot be satisfied.
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Summarizing, we see that option II does not lead to the
desired Lagrangians.

3. Option III

Let us consider option III. It is convenient to classify the
functions Bμν according to the origin of the indices μ and ν.
In this way, we arrive at nine possibilities [other options
give the same Sμνρ in (2.2)]:

(IIIa) Bμν ¼ hðAθ; Aτ;λÞAμAν

(IIIb) Bμν ¼ hðAθ; Aτ;λÞημν
(IIIc) Bμν ¼ hðAθ; Aτ;λÞAμ;ν

(IIId) Bμν ¼ vξðAθ; Aτ;λÞAμ;ξAν

(IIIe) Bμν ¼ vξðAθ; Aτ;λÞAξ;μAν

(IIIf) Bμν ¼ LξϕðAθ; Aτ;λÞAμ;ξAν;ϕ

(IIIg) Bμν ¼ LξϕðAθ; Aτ;λÞAξ;μAϕ;ν

(IIIh) Bμν ¼ LξϕðAθ; Aτ;λÞAξ;μAν;ϕ

(IIIi) Bμν ¼ LξϕðAθ; Aτ;λÞAμ;ξAϕ;ν

a. Cases IIIa and IIIb

In cases IIIa and IIIb, we obtain that the requirement
(2.5) is equivalent to

Aρ ∂h
∂Aτ;λ

− Aτ ∂h
∂Aρ;λ

¼ 0: ðA4Þ

This is possible only if

h ¼ ðFÞlðDÞnðBÞk;

where n, l, and k are non-negative integers and

F ¼ AρAρ;

D ¼ AνAλAν;λ;

B ¼ AνAμAμ;λAν;λ:

Thus, this option leads to the following Lagrangians,

L1 ¼ ðFÞl1ðDÞn1ðBÞk1AμAνAρAρ;μν; ðA5Þ

L2 ¼ ðFÞl2ðDÞn2ðBÞk2ημνAρAρ;μν; ðA6Þ

where l1;2, k1;2, and n1;2 are non-negative integers. We
consider these Lagrangians, along with other cases, in the
end of this Appendix to figure out which of them are
independent.

b. Case IIIc

In case IIIc we obtain the following function Sμνρ∶

Sμνρ ¼ h
2
ðAμ;ν þ Aν;μÞAρ; ðA7Þ

Using (A7), we find that the requirement (2.5) is equi-
valent to

ητðμηνÞλhAρ−ηρðμημÞλhAτþAðμ;νÞ
�∂ðhAρÞ

∂Aτ;λ
−
∂ðhAτÞ
∂Aρ;λ

�
¼ 0:

ðA8Þ

We see that (A8) cannot be satisfied because the first term
in (A8) cannot be canceled out by other terms. Thus, option
IIIc does not work.

c. Case IIId

In case IIId, we obtain the following function Sμνρ∶

Sμνρ ¼ vϰ
2
ðAμ;ϰAν þ Aν;ϰAμÞAρ: ðA9Þ

Using (A9), we observe that the requirement (2.5) is
equivalent to

�∂ðAρvϰÞ
∂Aτ;λ

−
∂ðAτvϰÞ
∂Aρ;λ

�
Aðμ;νÞ þ AρvλAðνημÞτ

− AτvλAðνημÞρ ¼ 0:

We see that (A9) cannot be satisfied because the third term
in (A9) cannot be canceled out by other terms. Thus,
case IIId does not lead to the desired Lagrangians.

d. Case IIIe

In case IIIe, we obtain the following function Sμνρ:

Sμνρ ¼ vϰ
2
ðAϰ;μAν þ Aϰ;νAμÞAρ:

Then, the requirement (2.5) is equivalent to

∂ðAρvϰÞ
∂Aτ;λ

−
∂ðAτvϰÞ
∂Aρ;λ

¼ 0;

Aρvϰ ¼ Aϰvρ: ðA10Þ

Using the second equation in (A10), we find that vϰ must
have the following form:

vϰ ¼ AϰhðAσ; Aμ;νÞ:

From this, we obtain that h must obey Eq. (A4), so we get
the Lagrangian

L3 ¼ ðFÞl3ðDÞn3ðBÞk3AϰAϰ;ðνAμÞAρAρ;μν; ðA11Þ

where l3, k3, and n3 are non-negative integers. We consider
this Lagrangian in the end of the Appendix.

P. K. PETROV PHYS. REV. D 100, 025006 (2019)

025006-8



e. Case IIIf

In case IIIf, we obtain the following function Sμνρ∶

Sμνρ ¼ LðϰτÞAμ;ϰAν;σAρ: ðA12Þ

Using (A12), we find that the requirement (2.5) is equiv-
alent to

�ð∂AρLðϰτÞÞ
∂Aσ;λ

−
∂ðAσLðϰτÞÞ

∂Aρ;λ

�
Aμ;ϰAν;τ

þ AρðLðλϰÞησνAμ;
ξ þ LðλϰÞησμAν;

ϰÞ
− AσðLðλϰÞηρνAμ;

ϰ þ LðλϰÞηρμAν;
ϰÞ ¼ 0: ðA13Þ

We see that (A13) cannot be satisfied because the third
term in (A13) cannot be canceled out by other terms. Thus,
case IIIf does not lead to the desired Lagrangians.

f. Case IIIg

In case IIIg, we find the following function Sμνρ:

Sμνρ ¼ LðϰτÞAϰ;μAτ;νAρ: ðA14Þ

Using (A14), we obtain that the requirement (2.5) is
equivalent to

AρLðϰτÞ ¼ AτLðϰρÞ;

∂ðAρLðϰτÞÞ
Aσ;λ

−
∂ðAσLðϰτÞÞ

Aρ;λ
¼ 0: ðA15Þ

Using the first equation in (A15), we find that Lμν must
have the following form:

Lμν ¼ AμAνhðAθ; Aξ;τÞ:

From this, we obtain that h must satisfy Eq. (A4), and the
Lagrangian is

L4 ¼ ðFÞl4ðDÞn4ðBÞk4AϰAλAϰ;μAλ;νAρAρ;μν; ðA16Þ

where l4, k4, and n4 are numbers.

g. Case IIIh

In case IIIh we obtain the following function Sμνρ:

Sμνρ ¼ 1

2
LϰτðAϰ;μAν;τ þ Aϰ;νAμ;τÞAρ: ðA17Þ

Using the (A17), we find that the requirement (2.5) is
equivalent to

1

2
ðAϰ;μAν;τ þ Aϰ;νAμ;τÞ

�
Aρ ∂ðLϰτÞ

∂Aσ;λ
− Aθ ∂ðLϰτÞ

∂Aρ;λ

�

þ AρLϰτðηλðμAνÞ;τηϰσ þ Aϰ;ðμηνÞσητλÞ − AσLϰτðηλðμAνÞ;τηϰρ

þ Aϰ;ðμηνÞρητλÞ ¼ 0: ðA18Þ

This equation cannot be satisfied because the term
AρLϰτAϰ;ðμηνÞσητλ in (A18) cannot be canceled out by other
terms. Thus, option IIIh does not work.

h. Case IIIi

This case is similar to the previous one IIIh, and so it
does not lead to the desired Lagrangians.
Summarizing, we see that option III leads to the four

Lagrangians (A5), (A6), (A11), and (A16).

4. Case IV.1

Considering option IV.1, we find that the requirement
(2.5) is equivalent to

Aρ;μ ∂Tν

∂Aτ;λ
¼ Aτ;ν ∂Tμ

∂Aρ;λ
: ðA19Þ

We have three possibilities for function Tμ:
(IV.1a) Tμ ¼ AμhðAσ; Aν;λÞ
(IV.1b) Tμ ¼ Aμ;ϰvϰðAσ; Aν;λÞ
(IV.1c) Tμ ¼ Aϰ;μvϰðAσ; Aν;λÞ

In case IV.1a, we obtain that (A19) is equivalent to

Aρ;μAν ∂h
Aτ;λ

¼ Aτ;νAμ ∂h
Aρ;λ

;

which is satisfied only in the case h ¼ hðAσÞ, so that

Tμ ¼ AμhðAσÞ:

However, the corresponding Lagrangian L ¼ hðAσÞ ×
Aρ;ðνAμÞAρ;μν does not contain second-order derivatives
after integration by parts.
In case IV.1b, we find that (A19) is equivalent to

Aρ;μ

�
ηντvλ þ Aν;ϰ ∂vϰ

∂Aτ;λ

�
¼ Aτ;ν

�
ημρvλ þ Aμ;ϰ ∂vϰ

∂Aρ;λ

�
:

ðA20Þ
We see that (A20) cannot be satisfied because the first term
Aρ;μηντvλ in (A20) cannot be canceled out by other terms.
Finally, in case IV.1c, we obtain that (A19) is equivalent

to

Aρ;μ

�
ηνλvτ þ Aϰ;ν ∂vϰ

∂Aτ;λ

�
¼ Aτ;ν

�
ημλvρ þ Aϰ;μ ∂vϰ

∂Aρ;λ

�
:

ðA21Þ
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We see that (A21) cannot be satisfied because the first term
Aρ;μηνλvτ in (A21) cannot be canceled out by other terms.
Summarizing, we see that option IV.1 does not work.

5. Case IV.2

Considering option IV.2, we find that the requirement
(2.5) is equivalent to

LðμνÞσAρ;λ þ Aτ;
ϰAρ;ϰ ∂LðμνÞ

τ

∂Aσ;λ
− LðμνÞρAσ;λ

− Aτ;
ϰAσ;ϰ ∂LðμνÞ

τ

∂Aρ;λ
¼ 0: ðA22Þ

Lμνσ is a monomial, so LðμνÞσ can be represented in the
following form,

LðμνÞσ ¼ ðAϰ;τAϰ;τÞnL̃ðμνÞσ;

where n is a natural number and L̃ðμνÞσ does not contain
ðAρ;τAρ;τÞ. So, Eq. (A22) reads

ððAϰ;τAϰ;τÞnL̃ðμνÞσ − 2nAτ;
ϰAσ;ϰL̃ðμνÞ

τðAϰ;τAϰ;τÞn−1ÞAρ;λ

þ � � � ¼ 0; ðA23Þ

where omitted terms do not contain the structures propor-
tional to Aρ;λ. We see that (A23) cannot be satisfied because
the two terms in parentheses have different powers of
ðAϰ;τAϰ;τÞ. Thus, option IV.2 does not work.

6. Case IV.3

Considering option IV.3, we find that the requirement
(2.5) is equivalent to

Aρ;τLðμνÞλ þ Aρ;ϰAϰ;σ
∂LðμνÞσ

∂Aτ;λ
− Aτ;ρLðμνÞλ

− Aτ;ϰAϰ;σ
∂LðμνÞσ

∂Aρ;λ
¼ 0: ðA24Þ

We see that (A24) cannot be satisfied because the first term
in (A24) cannot be canceled out by others terms in (A24).
Thus, option IV.3 does not lead to the desired Lagrangians.

7. Option IV.4

We now consider option IV.4. It is convenient to classify
the functions Zμν according to the origin of the indices μ, ν.
In this way, we arrive at nine possibilities [other options
give the same Sμνρ in (2.2)]:

(IV.4a) Zμν ¼ hðAθ; Aτ;λÞAμAν

(IV.4b) Zμν ¼ hðAθ; Aτ;λÞημν
(IV.4c) Zμν ¼ hðAθ; Aτ;λÞAμ;ν

(IV.4d) Zμν ¼ vξðAθ; Aτ;λÞAμ;ξAν

(IV.4e) Zμν ¼ vξðAθ; Aτ;λÞAξ;μAν

(IV.4f) Zμν ¼ LξϕðAθ; Aτ;λÞAμ;ξAν;ϕ

(IV.4g) Zμν ¼ LξϕðAθ; Aτ;λÞAξ;μAϕ;ν

(IV.4h) Zμν ¼ LξϕðAθ; Aτ;λÞAξ;μAν;ϕ

(IV.4i) Zμν ¼ LξϕðAθ; Aτ;λÞAμ;ξAϕ;ν.

a. Cases IV.4a and IV.4b

In cases IV.4a and IV.4b, we find that the requirement
(2.5) is equivalent to

Aρ;ϰAϰ
∂h
∂Aτ;λ

− Aτ;ϰAϰ
∂h
∂Aρ;λ

¼ 0;

which can be satisfied only in the case h ¼ ðFÞl×
ðAμ;τAτAρAμ;ρÞn, so that we have the following
Lagrangians,

L5 ¼ ðFÞl3ðCÞn5AμAνAρ;ϰAϰAρ;μν; ðA25Þ

L6 ¼ ðFÞl6ðCÞn6ημνAρ;ϰAϰAρ;μν; ðA26Þ

where l5;6 and n5;6 are non-negative integers and

C ¼ Aμ;τAτAρAμ;ρ:

We discuss Lagrangians (A25) and (A26) in the end of this
Appendix.

b. Case IV.4c

In case IV.4c, we obtain the following function Sμνρ:

Sμνρ ¼ h
2
ðAμ;ν þ Aν;μÞAρ: ðA27Þ

Using (A27), we find that the requirement (2.5) is equiv-
alent to

ητðμηνÞλhAρ;ϰAϰ − ηρðμημÞλhAτ;ϰAϰ

þ Aðμ;νÞ
�∂ðhAρ;ϰAϰÞ

∂Aτ;λ
−
∂ðhAτ;ϰAϰÞ

∂Aρ;λ

�
¼ 0: ðA28Þ

We see that (A28) cannot be satisfied because the first
term in (A28) cannot be canceled out by other terms. Thus,
option IV.4c does not work.

c. Case IV.4d

In case IV.4d, we obtain the following function Sμνρ∶

Sμνρ ¼ vϰ
2
ðAμ;ϰAν þ Aν;ϰAμÞAρ: ðA29Þ

Using (A29), we find that the requirement (2.5) is equiv-
alent to
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�∂ðAρ;σAσvϰÞ
∂Aτ;λ

−
∂ðAτ;σAσvϰÞ

∂Aρ;λ

�
Aðμ;νÞ þ Aρ;σAσvλAðνημÞτ

− Aτ;σAσvλAðνημÞρ ¼ 0: ðA30Þ

We see that (A30) cannot be satisfied because the third term
in (A30) cannot be canceled out by other terms. Thus,
option IV.4d does not lead to the desired Lagrangians.

d. Case IV.4e

In case IV.4e, we find the following function Sμνρ:

Sμνρ ¼ vϰ
2
ðAϰ;μAν þ Aϰ;νAμÞAρ;σAσ:

Then, the requirement (2.5) is equivalent to

∂ðAρ;σAσvϰÞ
∂Aτ;λ

−
∂ðAτ;σAσvϰÞ

∂Aρ;λ
¼ 0;

Aρ;σAσvϰ ¼ Aϰ;σAσvρ: ðA31Þ

Using the second equation in (A31), we find that vϰ must
have the following form:

vϰ ¼ Aϰ;σAσhðAτ; Aμ;νÞ:

So, Eq. (A31) reads

Aϰ
;ðνAμÞ

�
Aρ;τAτAϰ;τAτ

∂h
∂Aσ;λ

þ Aρ;τAλhAτη
ϰσ

− Aσ;τAτAϰ;τAτ
∂h
∂Aρ;λ

− Aσ;τAλhAτη
ϰρ

�
¼ 0: ðA32Þ

This equation cannot be satisfied because the second term
in (A32) cannot be canceled out by other terms. Thus,
option IV.4e does not work.

e. Case IV.4f

In case IV.4f, we find that (2.5) is equivalent to

�∂ðAρ;σAσLðϰτÞÞ
∂Aα;λ

−
∂ðAα;σAσLðϰτÞÞ

∂Aρ;λ

�
Aμ;ϰAν;τ

þ Aρ;σAσðLðλϰÞηανAμ;
ϰ þ LðλϰÞηαμAν;

ϰÞ
− Aα;σAσðLðλϰÞηρνAμ;

ϰ þ LðλϰÞηρμAν;
ϰÞ ¼ 0: ðA33Þ

We see that (A33) cannot be satisfied because the third term
in Eq. (A33) cannot be canceled out by other terms. Thus,
this option does not lead to the desired Lagrangians.

f. Case IV.4g

In case IV.4g, we obtain that (2.5) is equivalent to

fρLðϰτÞ ¼ fτLðϰρÞ;

∂ðfρLðϰτÞÞ
Aσ;λ

−
∂ðfσLðϰτÞÞ

Aρ;λ
¼ 0; ðA34Þ

where fρ ¼ Aρ;μAμ. This is possible only if Lμν ¼
fμfνhðAσ; Aϰ;τÞ. From this, we find that (A34) is equivalent
to

Aρ;τAτAϰ;σAσAα;μAμ

� ∂h
Aν;λ

�
− Aν;τAτAϰ;σAσAα;μAμ

� ∂h
Aρ;λ

�

þ hðAα;μAμAρ;τAτη
ϰνAλ − Aα;μAμAν;τAτη

ϰρAλ

þ Aϰ;μAμAρ;τAτη
ανAλ − Aϰ;μAμAν;τAτη

αρAλÞ ¼ 0:

ðA35Þ

We see that (A35) cannot be satisfied because the third term
in Eq. (A35) cannot be canceled out by other terms. Thus,
option IV.4g does not work.

g. Case IV.4h

In case IV.4h, we obtain that (2.5) is equivalent to

1

2
ðAϰ;μAν;τ þ Aϰ;νAμ;τÞ

�
fρ

∂ðLϰτÞ
∂Aα;λ

− fα
∂ðLϰτÞ
∂Aρ;λ

�

þ fρLϰτðηλðμAνÞ;τηϰα þ Aϰ;ðμηνÞαητλÞ
− fαLϰτðηλðμAνÞ;τηϰρ þ Aϰ;ðμηνÞρητλÞ ¼ 0; ðA36Þ

where fρ ¼ Aρ;σAσ. We see that (A36) cannot be satisfied
because the term Aϰ;ðμηνÞαητλ in (A36) cannot be canceled
out by other terms. Thus, this option does not lead to the
desired Lagrangians.

h. Case IV.4i

This case is similar to the previous one, IV.4i, and so it
does not lead to the desired Lagrangians.

8. Independent Lagrangians

To summarize, we have arrived at the six Lagrangians
(A5), (A6), (A11), (A16), (A25), and (A26). We write them
again for reference:

L1 ¼ ðFÞl1ðDÞn1ðBÞk1AμAνAρAρ;μν; ðA37Þ

L2 ¼ ðFÞl2ðDÞn2ðBÞk2ημνAρAρ;μν; ðA38Þ

L3 ¼ ðFÞl3ðDÞn3ðBÞk3AϰAϰ;ðνAμÞAρAρ;μν; ðA39Þ

L4 ¼ ðFÞl4ðDÞn4ðBÞk4AϰAσAϰ;μAσ;νAρAρ;μν; ðA40Þ
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L5 ¼ ðFÞl5ðCÞn5AμAνAρ;ϰAϰAρ;μν; ðA41Þ

L6 ¼ ðFÞl6ðCÞn6ημνAρ;ϰAϰAρ;μν: ðA42Þ

Upon integration by parts. some of these Lagrangians
are reduced to the Lagrangian containing the first deriv-
atives only. Our purpose here is to figure out which of
these Lagrangians are independent modulo first-order
Lagrangians.
The Lagrangian (A41) can be reduced by integration by

parts to a Lagrangian involving first derivatives only,

L5 ¼ ðFÞl5ðCÞn5AμAνAρ;ϰAϰAρ;μν

¼ 1

2
ðFÞl5ðCÞn5AνC;ν þ � � �

¼ 1

2ðn5 þ 1Þ ðFÞ
l5ððCÞn5þ1Þ;νAν þ � � �

⇒ −
1

2ðn5 þ 1Þ ðFÞ
l5ðCÞn5þ1Aν;

ν þ � � � ¼ 0þ � � � ;

where, as before, omitted terms do not contain second
derivatives and the arrow denotes integration by parts.
Upon integration by parts and adding terms contain-

ing first derivatives only, the remaining Lagrangians
(A37)–(A40) and (A42) can be expressed through three
Lagrangians (A38), (A40), and (A42). Indeed, Lagrangian
(A37) can be expressed through Lagrangian (A39):

L1 ¼ ðFÞl1ðDÞn1ðBÞk1AμAνAρAρ;μν þ � � �

¼ 1

2
ðFÞl1ðDÞn1ðBÞk1AνD;ν þ � � �

⇒ −
k1

2ðn1 þ 1Þ ððFÞ
l1ðDÞn1þ1ðBÞk1−1ÞF;νD;ν þ � � �

¼ −
k1

ðn1 þ 1Þ ðFÞ
l1ðDÞn1þ1ðBÞk1−1AϰAϰ;ðνAμÞAρAρ;μν

þ � � �

Lagrangian (A39) can in turn be expressed through two
Lagrangians (A38) and (A40):

L3 ¼ ðFÞl3ðDÞn3ðBÞk3AϰAϰ;ðνAμÞAρAρ;μν þ � � � ¼ 1

2
ðFÞl3ðDÞn3ðBÞk3D;μF;μ þ � � �

⇒ −
1

2ðn3 þ 1Þ ðFÞ
l3ðDÞn3þ1ðBÞk3□F −

k3
2ðn3 þ 1Þ ðFÞ

l3ðDÞn3þ1ðBÞk3−1B;νF;ν þ � � �

¼ −
1

ðn3 þ 1Þ ðFÞ
l3ðDÞn3þ1ðBÞk3ημνAρAρ;μν

−
2k3

ðn3 þ 1Þ ðFÞ
l3ðDÞn3þ1ðBÞk3−1AϰAτAϰ;μAτ;νAρAρ;μν þ � � �

There are four special cases in which the remaining Lagrangians (A38), (A40), and (A42) are, in fact, first order or are not
independent. One is Lagrangian (A38) with n2 ¼ 0, 1 and k2 ¼ 0∶

Fl2DημνAρAρ;μν þ � � � ¼ 1

2
Fl2D□F þ � � � ⇒ −

1

2
Fl2D;νF;ν þ � � �

¼ −
1

4
Fl2AθF;θνF;ν þ � � � ¼ −

1

8
Fl2AλðF;νF;νÞ;λ þ � � �

⇒
1

8
ðFl2AλÞ;λF;νF;ν þ � � � ¼ 0þ � � �

Another is Lagrangian (A40) with n4 ¼ 0 and k4¼0, which is effectively first order. The third special case is Lagrangian
(A38) with n2 ¼ 1 and arbitrary k2, which can be expressed through Lagrangian (A40):

L2 ¼ ðFÞl2ðBÞk2DημνAρAρ;μν ¼
1

2
ðFÞl2ðBÞk2D□F þ � � �

⇒ −
1

2
ðFÞl2ððBÞk2DÞ;νF;ν þ � � � ¼ −

1

2
ðFÞl2ðBÞk2D;νF;ν −

k2
2
ðFÞl2ðBÞk2−1DB;νF;ν þ � � �

¼ −
1

2
ðFÞl2ðBÞk2B;νAν − 2k2ðFÞl2ðBÞk2−1DAϰAτAϰ;μAτ;νAρAρ;μν þ � � �

⇒ −2k2ðFÞl2ðBÞk2−1DAϰAτAϰ;μAτ;νAρAρ;μν þ � � �
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Finally, Lagrangian (A42) is effectively first order for n6 ¼ 0. This completes the analysis leading to the result quoted in the
end of Sec. II, Eqs. (2.6)–(2.16).
We point out that in the cases when the above Lagrangians are first order in derivatives (upon integration by parts) their

structure does not coincide with any of the Lagrangian for vector Galileons [9,10].
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