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The smooth topology change of Berry’s phase from a Dirac monopolelike configuration to a dipole
configuration, when one approaches the monopole position in the parameter space, is analyzed in an
exactly solvable model. A novel aspect of Berry’s connection Ak is that the geometrical center of the
monopolelike configuration and the origin of the Dirac string are displaced in the parameter space. Gauss’s

theorem
R
Sð∇ ×AÞ · dS⃗ ¼ RV ∇ · ð∇ ×AÞdV ¼ 0 for a volume V which is free of singularities shows that

a combination of the monopolelike configuration and the Dirac string is effectively a dipole. The smooth
topology change from a dipole to a monopole with a quantized magnetic charge eM ¼ 2πℏ takes place
when one regards the Dirac string as unobservable if it satisfies the Wu-Yang gauge invariance condition. In
the transitional region from a dipole to a monopole, a half-monopole appears with an observable Dirac
string, which is analogous to the Aharonov-Bohm phase of an electron for the magnetic flux generated by
the Cooper pair condensation. The main topological features of an exactly solvable model are shown to be
supported by a generic model of Berry’s phase.
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I. INTRODUCTION

Berry’s phase is defined for the level crossing pheno-
menon [1–4], and a monopolelike object [5,6] appears at
the level crossing point in the adiabatic approximation. The
appearance of a monopolelike singularity in a regular
Hamiltonian is interesting but mysterious, and the impli-
cations of the resolution of the monopole singularity in the
nonadiabatic domain have recently been discussed [7]. It
will be interesting to find more details about the topology
and topology change of Berry’s phase. We discuss this
issue using an exactly solvable model [8] which is defined
by suitably choosing the parameters in the original model
of Berry [2]. A salient feature of Berry’s connection Ak is
that the geometrical center of the monopolelike configu-
ration and the origin of the Dirac string, which appears
when the net outgoing flux is nonvanishing, are displaced
in the parameter space. The magnetic charge of Berry’s
phase in the adiabatic domain is also quantized to be
eM ¼ 2πℏ consistent with the Wu-Yang gauge invariance
condition. We discuss the smooth topology change from a
monopolelike configuration to a dipole configuration, or
the other way around, from a dipole configuration to a

monopolelike configuration, by combining this displace-
ment and the quantized magnetic charge with Gauss’s
theorem

R
Sð∇×AÞ ·dS⃗¼RV∇ ·ð∇×AÞdV¼0 for a volume

V which is free of singularities. Gauss’s theorem indicates
that the monopolelike configuration combined with the
Dirac string is effectively a dipole. The smooth topology
change from a dipole to a monopole then takes place when
one regards the Dirac string associated with Berry’s phase
as unobservable if the Dirac string satisfies the Wu-Yang
gauge invariance condition. In the transitional region
from a dipole to a monopole, a half-monopole with a
magnetic charge eM=2 appears and the Dirac string
becomes observable, analogously to the measurement of
the Aharonov-Bohm phase of an electron using the
magnetic flux generated by a superconducting current of
the Cooper pair [9].
Some parameters are fixed to be time independent in this

solvable model associated with the original Berry model
[2], but the effect of fixing these parameters turns out to be
small in the present analysis of topology and topology
change. This is explicitly illustrated by an analysis of a
generic model of Berry’s phase. This property is consistent
with the expectation that topological properties are not
very sensitive to the smooth deformation of parameters.
To our knowledge, no explicit analysis of the smooth
topology change of Berry’s phase, from a monopole to a
dipole, has been given in the past, and our analysis will
clarify the topological aspects of the monopolelike object in
Berry’s phase.
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II. TOPOLOGY CHANGE IN EXACTLY
SOLVABLE MODEL

We consider a magnetic moment placed in a rotating
magnetic field B⃗ðtÞwhich is the original model analyzed by
Berry [2], but we choose a specific B⃗ðtÞ parametrized by
φðtÞ ¼ ωt with constant ω, and constant B and θ with σ⃗
standing for Pauli matrices:

Ĥ ¼ −μℏB⃗ðtÞ · σ⃗;
B⃗ðtÞ ¼ Bðsin θ cosφðtÞ; sin θ sinφðtÞ; cos θÞ: ð1Þ

The exact solution of the Schrödinger equation

iℏ∂tψðtÞ ¼ ĤψðtÞ ð2Þ

is then written as [8]

ψ�ðtÞ ¼ w�ðtÞ exp
�
−
i
ℏ

Z
t

0

dtw†
�ðtÞðĤ − iℏ∂tÞw�ðtÞ

�

¼ w�ðtÞ exp
�
−
i
ℏ

Z
t

0

dtw†
�ðtÞĤw�ðtÞ

�

× exp

�
−
i
ℏ

Z
t

0

A⃗�ðB⃗Þ ·
dB⃗
dt

dt

�
ð3Þ

where

wþðtÞ ¼
�
cos 1

2
ðθ − αÞe−iφðtÞ

sin 1
2
ðθ − αÞ

�
;

w−ðtÞ ¼
�
sin 1

2
ðθ − αÞe−iφðtÞ

− cos 1
2
ðθ − αÞ

�
ð4Þ

and A⃗�ðB⃗Þ≡ w†
�ðtÞð−iℏ ∂

∂B⃗Þw�ðtÞ. The parameter αðθÞ is
defined by

tan αðθÞ ¼ ðℏω=2μℏBÞ sin θ
1þ ðℏω=2μℏBÞ cos θ ¼ sin θ

ηþ cos θ
ð5Þ

with

η ¼ 2μℏB
ℏω

¼ μBT
π

ð6Þ

when one defines the period T ¼ 2π=ω. It is important that
w�ðtÞ, which define the exact solutions, are different from
the instantaneous eigenfunctions of the Hamiltonian Ĥ at
time t that are given by setting α ¼ 0 in (4). This shows that
the adiabatic approximation using the instantaneous eigen-
functions cannot describe the smooth topology change
discussed below.
The solution (3) is confirmed by evaluating

iℏ∂tψ�ðtÞ ¼ fiℏ∂tw�ðtÞ þ w�ðtÞ½w†
�ðtÞðĤ − iℏ∂tÞw�ðtÞ�g exp

�
−
i
ℏ

Z
t

0

dt0w†
�ðt0ÞðĤ − iℏ∂t0 Þw�ðt0Þ

�
¼ fiℏ∂tw�ðtÞ þ w�ðtÞ½w†

�ðtÞðĤ − iℏ∂tÞw�ðtÞ� þ w∓ðtÞ½w†∓ðtÞðĤ − iℏ∂tÞw�ðtÞ�g

× exp

�
−
i
ℏ

Z
t

0

dt0w†
�ðt0ÞðĤ − iℏ∂t0 Þw�ðt0Þ

�
¼ Ĥψ�ðtÞ ð7Þ

where we used, by noting (5),

w†∓ðĤ − iℏ∂tÞw� ¼ 0 ð8Þ

and the completeness relation wþw
†
þ þ w−w†

− ¼ 1.
The quantity in (3),

A⃗�ðB⃗Þ≡ w†
�ðtÞ

�
−iℏ

∂
∂B⃗
�
w�ðtÞ; ð9Þ

gives an analogue of the gauge potential (or connection) in
the parameter space. The extra phase factor for one period
of motion is given by

exp

�
−
i
ℏ

I
A⃗�ðB⃗Þ ·

dB⃗
dt

dt

�

¼ exp

�
−i
I

−1 ∓ cosðθ − αðθÞÞ
2

dφ

�

¼ exp

�
−i
I

1 ∓ cosðθ − αðθÞÞ
2

dφþ 2iπ

�

¼ exp

�
−
i
ℏ
Ω�

�
; ð10Þ

with the monopolelike flux

Ω� ¼ ℏ
I ð1 ∓ cosðθ − αðθÞÞÞ

2
dφ

¼ 2πℏ
ð1 ∓ cosðθ − αðθÞÞÞ

2
: ð11Þ
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In (10), we adjusted the trivial phase 2πi for the conven-
ience of the later analysis; this is related to the gauge
transformation of Wu and Yang [6] discussed below. From
now on, we concentrate on Ωþ.

A. Classification of topological configurations

From (11), we have the monopolelike potential

Aφ ¼ ℏ
2B sin θ

ð1 − cosðθ − αðθÞÞÞ ð12Þ

andAθ ¼ AB ¼ 0. We have ℏ in (12) which shows that the
potential is an order OðℏÞ quantum effect in the present
context. We want to clarify precisely what kind of object is
described by the potential (12).
We start with the analysis of the parameter αðθÞ. In

Fig. 1, we show the relation between θ and tan αðθÞ for the
case 0 ≤ η < 1 given by (5). For this parameter range, we
have a singularity at cos θ0 ¼ −η in the denominator of (5).
But this does not give rise to a singular relation between
αðθÞ and θ; one can confirm

dαðθÞ
dθ

¼ 1þ η cos θ
ðηþ cos θÞ2 þ sin2 θ

ð13Þ

and thus

dαðθÞ
dθ

����
θ¼θ0

¼ 1 ð14Þ

for cos θ0 ¼ −η. For the parameter range η ≥ 1, the relation
(5) is smooth. For η ¼ 1, we have an exact relation

αðθÞ ¼ θ=2: ð15Þ
For other parameter values, we have

αðθÞ ¼ 1

η
sin θ for η ≫ 1;

αðθÞ ¼ θ − η sin θ for 0 ≤ η ≪ 1: ð16Þ

In the following analysis of topology, it will be shown
that the value of η ¼ μBT=π in (6) plays a central role to
specify topology, namely, invariance under the smooth
variation of parameters. The parameter domain η > 1
defines the adiabatic domain and implies the existence
of a monopolelike configuration regardless of the values of
B and T individually; “adiabatic” implies typically large T
with fixed B. The domain 0 ≤ η < 1 defines the non-
adiabatic domain and implies the appearance of a dipolelike
configuration (and the disappearance of a monopolelike
configuration) regardless of the values of B and T indi-
vidually; “nonadiabatic” implies typically small T with
fixed B.
In the analysis of topology change, the transition from

η > 1 to η < 1 through the critical value η ¼ 1 is important.
In Fig. 2, we thus show the relation between αðθÞ and θ at
the transition region near η ¼ 1 given by (5). For the
parameters η ¼ 1� ϵwith a small positive ϵ, the value αðθÞ
departs from the common value 1

2
θ assumed at around

θ ¼ 0 and splits into two branches for the values of the
parameter θ close to θ ¼ π. We have αðπÞ ¼ 0 for η ¼
1þ ϵ and αðπÞ ¼ π for η ¼ 1 − ϵ, respectively, with the
slopes

dαðθÞ
dθ

����
θ¼π

¼ ∓ 1

ϵ
ð17Þ

for η ¼ 1� ϵ, respectively, using (13). We thus observe the
singular jump characteristic of the topology change in
terms of αðθÞ at η ¼ 1.
When one defines

Θðθ; ηÞ ¼ θ − αðθÞ; ð18Þ

but without writing η explicitly, we have Θð0Þ ¼ 0 and

ΘðπÞ ¼ π; π=2; 0; ð19Þ

FIG. 1. The relation between θ and tan αðθÞ determined by
Eq. (5) for 0 ≤ η < 1 with cos θ0 ¼ −η.

FIG. 2. The topology change at the parameter value η ¼ 1
determined by Eq. (5).
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respectively, for η > 1, η ¼ 1, and η < 1. We also have

∂ΘðθÞ
∂θ

����
θ¼θ0

¼ 0 ð20Þ

for η < 1 using (14). In Fig. 3, we show the relation
between θ and ΘðθÞ. We write the monopolelike potential
(12) in the form

Aφ ¼ ℏ
2B sin θ

ð1 − cosΘðθÞÞ: ð21Þ

The variable ΘðθÞ thus describes the essence of the top-
ology and topology change of Berry’s phase. The topology
change is seen in the change of ΘðπÞ ¼ π for η > 1 to
ΘðπÞ ¼ 0 for η < 1 in Fig. 3. But we have a well-defined
potential at the boundary η ¼ 1,

Aφ ¼ ℏ
2B sin θ

�
1 − cos

1

2
θ

�
; ð22Þ

for θ ≠ π. We also note that the Dirac string which
corresponds to the singularity of the potential (21) can
appear at θ ¼ 0 or θ ¼ π; there is no singularity at θ ¼ 0
since Θð0Þ ¼ 0, and the possible Dirac string appears at
θ ¼ π for ΘðπÞ ¼ π (η > 1) or ΘðπÞ ¼ π=2 (η ¼ 1);
however, no string appears for ΘðπÞ ¼ 0 (η < 1).
Using the exact potential (21) and Aθ ¼ AB ¼ 0, we

have an analogue of the magnetic flux in the parameter
space B⃗ ¼ Bðsin θ cosφ; sin θ sinφ; cos θÞ,

∇ ×Ajη ¼
ℏ
2

Θ0ðθÞ sinΘðθÞ
sin θ

1

B2
eB ð23Þ

for θ ≠ π with Θ0ðθÞ ¼ ∂ΘðθÞ
∂θ . In this evaluation of the flux,

we keep the parameter η ¼ μTB=π fixed, since
ΘðθÞ ¼ Θðθ; ηÞ. It is significant that the “magnetic flux”

is always pointing in the radial direction eB ¼ B⃗
B, but the

magnitude of the flux depends on the angle θ.

As for the integrated net outgoing flux from a sphere
centered at B⃗ ¼ 0, avoiding the singular point θ ¼ π, we
have

Z
θ≠π

∇ ×Ajη · dS⃗ ¼
Z

ℏ
2

Θ0ðθÞ sinΘðθÞ
sin θ

1

B2
B2 sin θdφdθ

¼
Z

π

0

2πℏ
2

Θ0ðθÞ sinΘðθÞdθ

¼ πℏð1 − cosΘðπÞÞ ð24Þ

which agrees with Stokes’s theorem applied to (21) near the
south pole.
We now illustrate the typical topological configurations

from the point of view of the outgoing flux. In the adiabatic
limit η ¼ μBT=π → ∞ (i.e., T → ∞with fixed B), we have
ΘðθÞ → θ due to (16), and we have the Dirac monopolelike
flux

∇ ×Ajη ¼
eM
4π

1

B2
eB ð25Þ

with the magnetic charge eM ¼ 2πℏ. We thus have the
integrated flux Z

θ≠π
∇ ×Ajη · dS⃗ ¼ eM: ð26Þ

In the transitional domain η ¼ μBT=π ¼ 1, we have
ΘðθÞ ¼ 1

2
θ, and we have the flux

∇ ×Ajη ¼
eM
8π

sin 1
2
θ

sin θ
1

B2
eB ð27Þ

which is pointing in the direction of eB ¼ B⃗
B; however, its

magnitude depends on the angle θ and is divergent for
θ → π. The integrated flux is, however, finite and half of
the value of the adiabatic limitZ

θ≠π
∇ ×Ajη · dS⃗ ¼ 1

2
eM: ð28Þ

In the nonadiabatic limit, η ¼ μBT=π → 0 (i.e., T → 0with
fixed B), we have ΘðθÞ → 0 due to (16), and thus

∇ ×Ajη → 0; ð29Þ

namely, the monopolelike object disappears. We thus
recognize three distinct topological configurations.
To visualize the topology specified by the value of η, we

draw schematic figures in Figs. 4(a)–4(c)which are based
on the formula (21) with the integrated flux (24) and the
movement ofΘðθÞ in Fig. 3. When one varies the parameter
θ from 0 to π, one has full coverage of the sphere S2 with
the appearance of a Dirac string at θ ¼ π for η > 1

FIG. 3. The relation between θ and ΘðθÞ parametrized by η.
Note that cos θ0 ¼ −η.
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(adiabatic domain) in Fig. 4(a) since ΘðπÞ ¼ π, which is
analogous to the Dirac monopole. The wavy line in
Fig. 4(a) along the negative z axis represents the Dirac
string. Note that fixed η ¼ μBT=π means that T varies
when one changes B, in contrast to the fixed T figures in
Figs. 5, 6(a)–6(c) discussed later.
For η ¼ 1 (transitional domain) in Fig. 4(b), we have a

half-covering of S2 but still with a Dirac string at θ ¼ π
since ΘðπÞ ¼ π=2. We show schematically the Dirac string
by a wavy line along the negative x axis in Fig. 4(b). For
η < 1 (nonadiabatic domain) in Fig. 4(c), we have no
covering and no Dirac string since Θð0Þ ¼ ΘðπÞ ¼ 0 [the
turning point of the arrows in the figure takes place at
θ ¼ θ0 in (20)], which is topologically identified to be a
dipole as will be explained in more detail later.
The new ingredient in the present analysis, which was

absent in the analysis of ΘðθÞ in Fig. 3, is the appearance of
the Dirac string at θ ¼ π. It is important that both singular
behaviors (17) and the Dirac string appear at θ ¼ π. In
other words, one can choose Berry’s phase to be regular
for θ ≠ π.
In passing, we mention that when one varies T for fixed

B, one observes the configurations in Fig. 4 starting with
Fig. 4(a) to Fig. 4(b) and then to Fig. 4(c), corresponding to
the change of T from T → ∞ (η ¼ ∞) to T ¼ π=μB
(η ¼ 1) and then to T → 0 (η ¼ 0), respectively.

B. Smooth topology change

We have useful information about the topology change
from Gauss’s theorem which states thatZ

S
ð∇ ×AÞ · dS⃗ ¼

Z
V
∇ · ð∇ ×AÞdV ¼ 0 ð30Þ

using the formula of vector analysis

∇ · ð∇ ×AÞ ¼ 0: ð31Þ

Here the volume V is defined by excluding a thin tube
covering the Dirac string as in Fig. 5, and S stands for the
surface of this volume V for a fixed value of T. Note that
there is no singularity inside the volume V. The Dirac string

originates at z ¼ −π=μT on the negative z axis correspond-
ing to η ¼ μTB=π ¼ 1 with fixed T. Recall that no Dirac
string appears for η < 1 since Θð0Þ ¼ ΘðπÞ ¼ 0 as in
Fig. 3, and thus no singularity appears in (21) at θ ¼ 0
or θ ¼ π. The present fixed T picture is convenient to
understand the difference between Berry’s phase and the
genuine Dirac monopole.
For the fixed T picture, we have, instead of (23),

∇×A¼ℏ
2

Θ0ðθÞsinΘðθÞ
sinθ

1

B2
eB−

ℏ
2

∂ΘðθÞ
∂B sinΘðθÞ
Bsinθ

eθ ð32Þ

where eθ is a unit vector in the direction θ in the spherical
coordinates. By recallingΘðθÞ ¼ Θðθ; ηÞwith η ¼ μTB=π,
we have

∂ΘðθÞ
∂B ¼ ∂η

∂B
∂ΘðθÞ
∂η ¼ μT

π

∂ΘðθÞ
∂η ; ð33Þ

and using ΘðθÞ ¼ θ − αðθÞ and (5),

∂ΘðθÞ
∂η ¼ sin θ

ðηþ cos θÞ2 þ sin2 θ
: ð34Þ

The discrepancy of (24) and (30) is attributed to the
contribution of the Dirac string. It is useful to confirm
Gauss’s theorem in the present context for the adiabatic
domain η > 1. The first term in (32) determines the
contribution from the outer surface in Fig. 5,

Z
Sout

ð∇ ×AÞ · dS⃗ ¼ 2πℏ ð35Þ

FIG. 4. Fixed η ¼ μBT=π pictures. The wavy lines symboli-
cally represent the Dirac strings.

FIG. 5. Fixed T picture. The volume V avoids a thin tube
surrounding the Dirac string. Geometrical center and the origin of
the Dirac string are displaced by the distance B ¼ π=μT.
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using the result in (24). The second term in (32) describes a
contribution of the cylinder part of the thin tube surround-
ing the Dirac string in Fig. 5,

Z
ð∇ ×AÞ · dSθ ¼ −

Z
ℏ
2

∂ΘðθÞ
∂B sinΘðθÞ
B sin θ

dBB sin θdφ

¼ −πℏ
Z

B

π=μT

∂ΘðθÞ
∂B sinΘðθÞdB

¼ πℏðcosΘðθ; ηÞ − cosΘðθ; η ¼ 1ÞÞ

¼ πℏ

�
cosΘðθÞ − cos

1

2
θ

�
ð36Þ

using the surface element

dSθ ¼ dBB sin θdφeθ ð37Þ

and Θðθ; η ¼ 1Þ ¼ 1
2
θ. As for the contribution of a small

cap around the origin of the Dirac string in Fig. 5, we “blow
it up” to a full surface without encountering a singularity.
The picture is then analogous to the outer surface in
Fig. 6(b) discussed below, but the inside of the sphere is
outside the volume V; thus, the contribution from the
blown-up sphere is given by

−πℏ
�
1 − cos

1

2
θ

�
ð38Þ

from (24) (but with a free value of θ without fixing it at
θ ¼ π for the moment) using ΘðθÞ ¼ 1

2
θ for η ¼ 1. The

sum of (36) and (38) gives

πℏ

�
cosΘðθÞ − cos

1

2
θ

�
− πℏ

�
1 − cos

1

2
θ

�
¼ −πℏð1 − cosΘðθÞÞ ð39Þ

which gives −2πℏ when one sets θ ¼ π and cancels the
contribution from the outer surface (35) in Fig. 5, in
agreement with Gauss’s theorem (30).
More formally, Stokes’s theorem states, in the adiabatic

domain η > 1 using (24),I
C
AφB sin θdφ ¼

Z
S0
ð∇ ×AÞ · dS⃗ ¼ 2πℏ ð40Þ

for an infinitesimally small circle C surrounding the Dirac
string in Fig. 5. This flux is regarded, depending on the
choice of S0, either as the flux flowing out of the volume V
indicated by (24) or the flux flowing into the volume V
through the Dirac string by recalling the fact that no
singularity exists inside the volume V in Fig. 5.
The surface S on the left-hand side of Gauss’s theorem

(30) does not cover the singularity, and in this sense, it is
topologically trivial. Gauss’s theorem (30) is valid for a

smooth decrease of B starting with Fig. 6(a) to Fig. 6(b) and
then to Fig. 6(c). We shall argue that the origin of the
smooth topology change in Berry’s phase resides in this
trivial topology for all the topological configurations.
Using the second expression in (24),

2πℏ
2

Θ0ðθÞ sinΘðθÞ; ð41Þ

and the movement ofΘðθÞ in Fig. 3, we show the schematic
pictures with fixed T in Figs. 6(a)–6(c). Here we use the
parameter θ which covers the full range from 0 to π for all
the cases in Figs. 6(a)–6(c). Both the Dirac monopolelike
flux and the Dirac string indicated by a wavy line are seen
when observed at B > π=ðμTÞ (adiabatic domain) in
Fig. 6(a). One has the transitional domain at B ¼
π=ðμTÞ in Fig. 6(b) where both the outgoing flux from
an outer sphere and a small half-sphere covering the origin
of the Dirac string are still seen, but with half of the strength
of those in Fig. 6(a). See (28). No net outgoing flux or
Dirac string is observed when one comes closer to the
monopole position B < π=ðμTÞ (nonadiabatic domain) in
Fig. 6(c), which looks like the flux from a small earth (i.e., a
dipole). The inward flux in Fig. 6(c) arises from the
negative signature of

Θ0ðθÞ ¼ ∂ΘðθÞ
∂θ < 0 ð42Þ

in (41) for η < 1 and θ0 < θ. See Fig. 3. It is remarkable
that the topological properties of the monopolelike object in
Berry’s phase are very rich.
From the point of view of the net outgoing flux, we thus

see the full flux with eM ¼ 2πℏ in Fig. 6(a) and the half flux
with eM=2 in Fig. 6(b) and then no net flux in Fig. 6(c),
corresponding to ΘðπÞ with π, π=2 and 0, respectively, in
(24). Thus, these configurations are very distinct.

FIG. 6. Fixed T pictures with varying radius B (and thus
varying η ¼ μTB=π). The geometrical center and the origin of the
Dirac string are displaced by the distance B ¼ π=μT.
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On the other hand, Gauss’s theorem (30) shows a smooth
transition among distinct topologies specified by ΘðπÞ with
π, π=2 and 0. Our smoothness argument of topology
change in Berry’s phase is based on the Gauss theorem,
but we use the arguments of Dirac [5] and Wu and Yang [6]
to distinguish different configurations. Namely, if the
Dirac string is not observable, then we ignore it physically
and identify a monopole. This unobservability critically
depends on the magnetic charge of the monopolelike object
and leads to the quantization of the charge in the case of the
genuine Dirac monopole [5,6]. In the present case, the
magnetic charge is fixed by the formula of Berry’s phase.
Thus, if the magnetic flux carried by the Dirac string
satisfies the unobservability condition, we regard the
monopolelike object as a physical monopole, otherwise,
no physical monopole; namely, we regard a combination of
the monopolelike object accompanied by the string as a
physical entity.
We start with an analysis of the adiabatic configuration

with η ¼ μTB=π > 1 such as in Fig. 6(a). The argument of
Wu and Yang is to consider the singularity-free potentials in
the upper and lower hemispheres,

Aφþ ¼ eM
4πB sin θ

ð1 − cosΘðθÞÞ;

Aφ− ¼ eM
4πB sin θ

ð−1 − cosΘðθÞÞ; ð43Þ

using the potential in (21) with eM ¼ 2πℏ. These two
potentials are related by a gauge transformation

Aφ− ¼ Aφþ −
∂Λ

B sin θ∂φ ð44Þ

with

Λ ¼ eM
2π

φ: ð45Þ

The physical condition is

exp

�
−
i
ℏ

I
Aφ−B sinθdφ

�

¼ exp

�
−
i
ℏ

I
AφþB sinθdφþ i

ℏ

I ∂Λ
B sinθ∂φB sinθdφ

�

¼ exp

�
−
i
ℏ

I
AφþB sinθdφ

�
ð46Þ

which is in fact satisfied since the gauge term gives
exp½ieM=ℏ� ¼ exp½2πi� ¼ 1 and thus defines a monopole.
Note that the physical condition in the present context is
that the Schrödinger wave function (3) is single valued
under the gauge transformation. It is confirmed that the
present argument of gauge transformation is equivalent to
the evaluation of the phase change induced by the Dirac

string [6]. The fact that the physical condition is satisfied
shows that the magnetic charge

eM ¼ 2πℏ ð47Þ

is properly quantized, satisfying the Dirac quantization
condition, although we have no analogue of an electric
coupling in the present case, unlike the original Dirac
monopole [5].
In contrast, for the transitional domain η ¼ μTB=π ¼ 1

such as in Fig. 6(b), we have two potentials from (22),

Aφþ ¼ eM
4B sin θ

�
1 − cos

1

2
θ

�
;

Aφ− ¼ eM
4B sin θ

�
− cos

1

2
θ

�
; ð48Þ

which are well defined in the upper and lower hemispheres,
respectively, and are related by the gauge transformation

Aφ− ¼ Aφþ −
∂Λ

B sin θ∂φ ð49Þ

with

Λ ¼ eM
4π

φ: ð50Þ

The physical condition

exp

�
−
i
ℏ

I
Aφ−B sinθdφ

�

¼ exp

�
−
i
ℏ

I
AφþB sinθdφþ i

ℏ

I ∂Λ
B sinθ∂φB sinθdφ

�

¼ exp

�
−
i
ℏ

I
AφþB sinθdφ

�
ð51Þ

is not satisfied since the gauge transformation gives

exp½ieM=2ℏ� ¼ exp½iπ� ¼ −1: ð52Þ

We thus conclude that the half-monopole at the transitional
domain η ¼ 1 with the magnetic charge eM=2 cannot
describe a physical monopole; it is physical as a combi-
nation of the monopolelike object, which generates the
outgoing flux, accompanied by a Dirac string,1 although the

1A half-monopole with a magnetic charge eM=2 gives a
nontrivial phase (52), and thus the Dirac string is not unobserv-
able. In fact, this phase of exp½iπ� is the same as the Aharonov-
Bohm phase of an electron in the magnetic field generated by the
superconducting current of the Cooper pair in the experiment by
Tonomura [9]. In our criterion following the analysis of Wu and
Yang [6], the Dirac string thus becomes a physical observable just
like the outgoing flux from the monopolelike object.
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Dirac string is actually defined only at B ¼ π=μT.
Topologically, it is thus the same as the dipole for η < 1
in Fig. 6(c).
In fact, from the point of view of the Gauss theorem (30),

all the configurations of Berry’s phase are topologically
dipoles, as is seen in Fig. 5; the monopole is identified only
when the Dirac string satisfies the Wu-Yang gauge invari-
ance condition, or equivalently Dirac’s quantization con-
dition, and thus becomes unobservable. This is a
mechanism of the smooth topology change in Berry’s
phase when one approaches the monopole position in
the parameter space.
In comparison, we show a schematic figure of a genuine

Dirac monopole located at the origin of the parameter space
in Fig. 7. For any fixed value of T, we have the same figure
as in Fig. 7 for any value of B with a Dirac string, which
satisfies the Wu-Yang condition, stretching from the origin
B⃗ ¼ 0 of the parameter space to infinity. Thus, no topology
change from a monopole to a dipole takes place. From
Figs. 5 and 7, one can see a clear difference between
Berry’s phase and a genuine Dirac monopole.

C. Explicit forms of Berry’s phase

Finally we comment on the more explicit forms of
Berry’s phase which may be useful in practical applica-
tions. In the adiabatic limit T ¼ 2π=ω → ∞ (with B ≠ 0),

η ¼ μTB
π

→ ∞; ð53Þ

and the parameter α → 0 in (5). Berry’s phase then gives

Aφ ¼ ℏ
2B sin θ

ð1 − cos θÞ: ð54Þ

Namely, one obtains the Dirac monopole-type potential in
the parameter space B⃗. But it is important to recognize that
the Dirac monopolelike configuration of Berry’s phase is
realized only in the constrained one-dimensional subspace
μTB=π ¼ ∞ (T ¼ ∞ and finite B in the present example
[3]) unlike the full two-dimensional parameter space ðB; TÞ
in the case of the genuine Dirac monopole.
In contrast, in the nonadiabatic limit T ¼ 2π=ω → 0 (or

B → 0),

η ¼ μTB
π

→ 0; ð55Þ

and then the parameter Θ ¼ θ − α → 0 using (16). The
potential associated with Berry’s phase (21) thus becomes
trivial,

Aφ ¼ 0: ð56Þ

Namely, Berry’s phase is smoothly connected to a trivial
value for a continuous variation of B → 0 with finite T, as
is physically expected for the vanishing (real) magnetic
field B with fixed ω in Berry’s model (1) [2]. To be more
explicit, we have a useful relation in the nonadiabatic
domain η ≪ 1 using (16),

Aφ ¼ ℏ
2B sin θ

ð1 − cosðθ − αÞÞ

≃
ℏ
4B

ðμTB=πÞ2 sin θ; ð57Þ

which has no singularity associated with the Dirac string
at θ ¼ π.

III. GENERIC MODEL

We have so far analyzed an exactly solvable model. We
now discuss the generality of the results obtained by the
specific model. The generic model of Berry’s phase is given
by the model2

H ¼ −μσ⃗ · p⃗ðtÞ ð58Þ

which appears in the context of band-crossing problems in
condensed matter physics [10,11]. This model is also
related to the model analyzed by Stone [12], and to the
general level-crossing problem which has been analyzed
using the technique of second quantization [13,14]. In
condensed matter physics p⃗ðtÞ stands for the Bloch
momentum. We analyze this model following the

FIG. 7. Genuine Dirac monopole in the parameter space.

2Note that jp⃗ðtÞj corresponds to ℏB in the exactly solvable
model (1), and the parameter η in (6) is replaced by
η ¼ μTjp⃗ðtÞj=πℏ. The magnetic potential and flux are defined
by
H
A⃗ · dp⃗ to conform to the convention in [7], in comparison toH

A⃗ · dB⃗ in (1).
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procedure adopted by Stone [12]. This analysis has been
presented in [7], and thus we recapitulate the essence of the
analysis.
We start with the Schrödinger equation iℏ∂tψðtÞ ¼

HðtÞψðtÞ or the Lagrangian

L ¼ ψðtÞ†½iℏ∂t −HðtÞ�ψðtÞ ð59Þ

where the field ψðtÞ stands for the two-component spinor
which describes the movement of a two-level crossing at
the vanishing momentum.
We first perform a time-dependent unitary transformation

ψðtÞ ¼ Uðp⃗ðtÞÞψ 0ðtÞ; ψ†ðtÞ ¼ ψ 0†ðtÞU†ðp⃗ðtÞÞ ð60Þ

with

Uðp⃗ðtÞÞ†p⃗ðtÞ · σ⃗Uðp⃗ðtÞÞ ¼ jp⃗ðtÞjσ3: ð61Þ

This unitary transformation is explicitly given by a 2 × 2
matrix Uðp⃗ðtÞÞ ¼ ðvþðp⃗Þv−ðp⃗ÞÞ, where

vþðp⃗Þ¼
�
cosθ

2
e−iφ

sinθ
2

�
; v−ðp⃗Þ¼

�
sinθ

2
e−iφ

−cosθ
2

�
: ð62Þ

This unitary transformation corresponds to the use of
instantaneous eigenstates of the operator μp⃗ðtÞ · σ⃗ where
p⃗ðtÞ ¼ jp⃗ðtÞjðsin θ cosφ; sin θ sinφ; cos θÞ.
Based on this transformation, the equivalence of two

Lagrangians is derived: L in (59) and

L0 ¼ψ 0†½iℏ∂tþμjp⃗ðtÞjσ3þUðp⃗ðtÞÞ†iℏ∂tUðp⃗ðtÞÞ�ψ 0: ð63Þ

The starting Hamiltonian (58) is thus replaced by

H0ðtÞ ¼ −μjp⃗ðtÞjσ3 þ Uðp⃗ðtÞÞ† ℏ
i
∂tUðp⃗ðtÞÞ

¼ −μjp⃗ðtÞjσ3 − ℏ

 ð1þcos θÞ
2

_φ _φ sin θþi_θ
2

_φ sin θ−i_θ
2

ð1−cos θÞ
2

_φ

!
: ð64Þ

In the adiabatic approximation,

μjp⃗ðtÞjT ≫ 2πℏ; ð65Þ

where T is the period of the dynamical system p⃗ðtÞ, and
2πℏ stands for the magnitude of the geometric term times
T; namely, we estimate _φ ∼ 2π=T. We then have

H0
ad ≃ −μjp⃗ðtÞjσ3 − ℏ

 ð1þcos θÞ
2

_φ 0

0
ð1−cos θÞ

2
_φ

!
ð66Þ

since if T is sufficiently large one may neglect the off-
diagonal parts in (64) and retain only the diagonal
components.
Stone [12] then finds that the adiabatic Berry’s phase for

the þþ component

exp

�
−i=ℏ

I
H0ðþþÞ

ad dt

�

¼ exp

�
iμ
I

jp⃗ðtÞj=ℏþ i
I ð1þ cos θÞ

2
dφ

�
; ð67Þ

namely, the flux generated by a formal singularity located
at the origin of the parameter space μp⃗ where two levels
cross,

Ωmono ¼ −ℏ
I ð1þ cos θÞ

2
dφ; ð68Þ

is recognized as a monopole flux. In terms of the vector
potential we have

Aφ ¼ ℏ
2jp⃗ðtÞj sin θ ð−1 − cos θÞ ð69Þ

in the lower hemisphere, which is gauge equivalent to

Aφ ¼ ℏ
2jp⃗ðtÞj sin θ ð1 − cos θÞ ð70Þ

in the upper hemisphere with a Dirac string located at
θ ¼ π, since the magnetic charge is given by eM ¼ 2πℏ as
in (47) and thus satisfies the Wu-Yang gauge invariance
condition [6]. The adiabatic formula (70) agrees with the
adiabatic limit in the solvable model (54).
It is shown using the relation (64) that if ℏ times the

frequency of p⃗ðtÞ, 2πℏ=T, is much larger than the level
crossing energy μjp⃗ðtÞj or close to the level crossing point
jp⃗ðtÞj → 0 with fixed T, namely,

μjp⃗ðtÞjT ≪ 2πℏ; ð71Þ

then the geometric term dominates the μjp⃗ðtÞj term. To see
the implications of the condition (71) explicitly, one may
perform a further (regular) unitary transformation of the
fermionic variable [13,14]

ψ 0ðtÞ ¼UðθðtÞÞψ 00ðtÞ; ψ 0ðtÞ† ¼ ψ 00†ðtÞU†ðθðtÞÞ ð72Þ

with

UðθðtÞÞ ¼
�
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

�
ð73Þ

in addition to (60), which diagonalizes the dominant Berry
phase term. The Hamiltonian (64) then becomes
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H00ðtÞ ¼−UðθðtÞÞ†μjp⃗ðtÞjσ3UðθðtÞÞ

þ ðUðθðtÞÞUðn⃗ðtÞÞÞ†ℏ
i
∂tðUðn⃗ðtÞÞUðθðtÞÞÞ

¼−μjp⃗ðtÞj
�

cosθ − sinθ

− sinθ −cosθ

�
−ℏ

�
_φ 0

0 0

�
: ð74Þ

Note that the first term is bounded by μjp⃗ðtÞj, and the
second term is dominant for μjp⃗ðtÞjT ≪ 2πℏ. We empha-
size that both (64) and (74) are exact expressions.
The Hamiltonian in the nonadiabatic approximation then

becomes

H00
nonad ≃ −μjp⃗ðtÞj

�
cos θ 0

0 − cos θ

�
− ℏ

�
_φ 0

0 0

�
: ð75Þ

The topological Berry’s phase, which is independent of μ
and T after integration, thus either vanishes or becomes
trivial independently of θ,

expfi
I

_φdtg ¼ expf2iπg ¼ 1 ð76Þ

for the very rapid movement T → 0 of p⃗ðtÞ or very close to
the monopole position jp⃗ðtÞj → 0 with fixed T. Berry’s
phase is thus topologically trivial [i.e., transformed to a
trivial value under the continuous variation of the parameter
T → 0 with fixed μjp⃗ðtÞj or μjp⃗ðtÞj → 0 with fixed T], and

the monopole disappears
H
A⃗ · dp⃗ ¼ 0 up to 2πℏ [13,14].

We emphasize that the nonadiabatic formula of Berry’s
phase (75) agrees with the nonadiabatic limit of the exactly
solvable model (11). In the two limiting cases, namely, at
the adiabatic limit and the nonadiabatic limit, the solvable
model (11) agrees with the present generic model.
We have demonstrated that the topology change from the

configuration with a Dirac monopolelike singularity to the
topologically trivial configuration is smooth, in agreement
with the analysis of an exactly solvable model (1); thus, this
behavior is generic. This smooth transition in the present
generic model is facilitated by the regular transformation
(73). The transformation (73) may be called a resolution of
monopole singularity in Berry’s phase for the generic
Hamiltonian (58) which is regular in the variable p⃗ðtÞ
[7]. We emphasize that all the precise formulas (58), (64)
and (74) are unitary equivalent.

IV. CONCLUSION

We have analyzed the basic properties of Berry’s phase
from the point of view of topology and topology change in a
very explicit manner. We have identified a new kind of
“monopole” in the sense that the geometrical center of a
monopolelike configuration and the origin of the Dirac
string, which appears when the net outgoing flux is non-
vanishing, are displaced in the parameter space as in Fig. 5.
Gauss’s theorem for a volume containing no singularity then
shows that the basic topology of Berry’s phase, which
consists of a monopolelike configuration and a Dirac string,
is always dipolelike. Only when the Dirac string satisfies the
unobservability condition of Dirac [5] andWu and Yang [6]
is a monopolelike object identified, and otherwisewe have a
dipolelike object. We also mentioned the appearance of an
interesting half-monopolewith a magnetic charge eM=2 and
an observable Dirac string. We have thus revealed remark-
ably rich topological properties of the monopolelike object
in Berry’s phase and a novel mechanism of the smooth
topology change from a monopole to a dipole when one
approaches the monopole position in the parameter space.
This smooth topology change is consistent with the reso-
lution of the monopole singularity in Berry’s phase [7]. The
main topological features that are established by an exactly
solvable model have been shown to be supported by a
generic model of Berry’s phase in Sec. 3; this is expected
since the topological properties are not very sensitive to the
smooth deformation of various parameters.
These explicit analyses should be useful to understand

precisely what the monopolelike object associated with
Berry’s phase is. The presence of the topology change
shows that Berry’s phase is different from the genuine
Dirac monopole. The present analyses are expected to be
useful in the analysis of other basic aspects of Berry’s
phase, such as the consistency of adding Berry’s phase to
the canonical form of semiclassical equations of motion in
condensed matter physics [7,15,16]. These topological
properties may also be useful in the analysis of the possible
connection (or not) of Berry’s phase with the notion of
quantum anomalies [12,17].
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