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The 6D (2,0) theory has codimension-one symmetry defects associated to the outer-automorphism group
of the underlying the simply-laced Lie algebra of ADE type. These symmetry defects give rise to twisted
sectors of codimension-two defects that are either regular or irregular corresponding to simple or higher
order poles of the Higgs field. In this paper, we perform a systematic study of twisted irregular
codimension-two defects generalizing our earlier work in the untwisted case. In a class S setup, such
twisted defects engineer 4D N ¼ 2 superconformal field theories of the Argyres-Douglas type whose
flavor symmetries are (subgroups of) nonsimply laced Lie groups. We propose formulas for the conformal
and flavor central charges of these twisted theories, accompanied by nontrivial consistency checks. We also
identify the 2D chiral algebra (vertex operator algebra) of a subclass of these theories and determine their
Higgs branch moduli space from the associated variety of the chiral algebra.
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I. INTRODUCTION

The six-dimensional (2,0) superconformal theories
(SCFT) are mysterious quantum field theories that arise
either as low energy descriptions of five branes in M-theory
or in a decoupling limit of type-IIB string probing ADE
singularities [1–3]. They are rigid strongly coupled fixed
points in six dimensions that are believed to be determined
by an ADE Lie algebra and have no relevant deformations
that preserve the (2,0) supersymmetry [4–6]. Residing in a
highly constrained structure, the richness of the (2,0)
theories lies in the collection of extended defects and their
dynamics [7]. In particular, a plethora of lower dimensional
supersymmetric theories have been constructed by com-
pactifications of the (2,0) theory on manifolds with defect
insertions. The sheer existence of the 6D parent has lead to
many highly nontrivial predictions for the physics of the
lower dimensional theories as well as dualities between
ostensibly different field-theoretic descriptions. For many
cases, these predictions are verified by techniques that are
accessible in the lower dimensions. In this way, even though
the (2,0) SCFT itself does not have a simple field-theoretic

construction that allows direct access to its dynamics,1 we
can gain valuable insights by studying its daughter theories.
Among all defects in (2,0) SCFTs, the half-Bogomol’nyi–

Prasad–Sommerfield (BPS) codimension-two defects com-
prise one of the central focuses of investigation in recent
years. They play a crucial role in the class S construction of
4D N ¼ 2 SCFTs by compactifying (2,0) SCFT on a
Riemann surface with punctures [10–12]. In this setup,
the codimension-two defects that extend in the 4D spacetime
directions produce the punctures.2 They often give rise to
global symmetries in the 4D theory and supply degrees of
freedom that carry symmetry charges. As we review in
Sec. II, these codimension-two defects in the (2,0) SCFT can
be described by the singularities of a Lie algebra valued one-
form field, the Higgs field Φ, on the Riemann surface.
Furthermore, these defects come in two families: the regular
(tame) defects corresponding to simple poles for Φ, and
the irregular (wild) defects associated to higher order
singularities. Classification of the regular defects was given
in [11,13,14] and the irregular defects were studied in
[15,16]. In particular, the regular defects carry flavor
symmetries that are subgroups of ADE Lie groups.
The (2,0) SCFT also has codimension-one defects that

correspond to the discrete global symmetries associated to*yifanw@princeton.edu
†dxie@cmsa.fas.harvard.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The conformal bootstrap has proven to be an efficient tool to
probe the fixed point physics. See [8] for an overview and, in
particular, [9] for the application of bootstrap methods to the 6D
(2,0) SCFT.

2For this reason, we use defect, puncture, and singularity
interchangeably when referring to the codimension-two defects.
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the outer-automorphism group of the ADE Lie algebra (see
Table I).3 Thus we can consider twisted codimension-two
defects that live at the ends of these symmetry defects.4 On
the Riemann surface in a class S setup, the codimension-
one defect is represented by a twist line that either wraps a
nontrivial cycle or connects a pair of twisted punctures
(see Fig. 1).
Twisted regular defects carry (subgroups of) nonsimply

laced BCFG flavor symmetry groups and they were studied
extensively in [14,19–23]. Note that the maximalZ2 twisted
regular defects in type-A2N andDNþ1 (2,0) SCFTs share the
same flavor symmetry USpð2NÞ but differ in Witten’s
global anomaly for the said symmetry [17,24].
One of main purposes of this paper is to classify twisted

irregular defects in (2,0) SCFTs. Before we summarize the
results, let us briefly recall the classification of untwisted
irregular defects performed in [15,16] since the method we
pursue here is a direct generalization.
The classification of codimension-two defects in [15,16]

was based on analyzing consistency conditions on the
higher order singularities of the Higgs field Φ on a
Riemann surface with a local holomorphic coordinate z.
After the singularity is put into the convenient semisimple
form by a gauge transformation,

ΦzðzÞ ¼
T

z2þk
b

þ � � � ; with b ∈ Zþ; k ∈ Z and k > −b;

ð1:1Þ
where T is a semisimple element of j, the consistency
condition on Φ simply says

Φðe2πizÞ ¼ σg ·ΦðzÞ ð1:2Þ
for some inner automorphism σg of the Lie algebra j. This
puts constraints on the defining data ðT; k; bÞ of the
singularity, which are then solved systematically by
Kac’s classification of finite-order (torsion) inner auto-
morphisms of simple Lie algebras [25]. Generic 4DN ¼ 2
SCFTs engineered by such irregular defects are of the
Argyres-Douglas (AD) type, which have fractional scaling
dimensions in the half-BPS Coulomb branch (CB) spec-
trum and are intrinsically strongly coupled [26–28].
A distinguished class of solutions to (1.1) and (1.2),

known as the regular-semisimple type,5 gives rise to
irregular codimension-two defects that are in one-to-one
correspondence with three-fold quasihomogeneous isolated
singularities of the compound Du Val (cDV) type (see
Table III).6 This connection between the two very different
types of singularities is established by the observation that
identical 4D N ¼ 2 SCFTs are engineered by (i) compac-
tifying (2,0) SCFT on P1 with such a irregular defect
inserted, and (ii) the decoupling limit of IIB string probing
a cDV singularity. We review the general untwisted
irregular defects, the resulting 4D N ¼ 2 SCFTs, as well
as their physical data in Sec. II.
In this paper, we incorporate outer-automorphism twists

into the configurations of codimension-two irregular
defects in the (2,0) SCFT. The consistency condition for
the Higgs field singularity at z ¼ 0 on the Riemann surface
(1.2) is modified to

Φðe2πizÞ ¼ σgo ·ΦðzÞ; ð1:3Þ
where σgo labels an outer-automorphism of j with o
generating automorphisms of the Dynkin diagrams (see
Table I) and the parameter b in (1.1) is replaced by bt. As
we explain in Sec. III, this constraint can be solved by
invoking the classification of finite-order (torsion) outer-
automorphisms of simple Lie algebras, which is also given
in [25]. Restricting the polar matrix T in (1.1) to be regular
semisimple again gives rise to a distinguished class of
twisted irregular defects, which can be put into the three-
fold form in Table IV.7 We also explicitly identify the

TABLE I. Outer-automorphisms of simple Lie algebras j, its
invariant subalgebra g∨, and flavor symmetry g from the Lang-
lands dual.

j A2N A2N−1 DNþ1 E6 D4

Outer-automorphism o Z2 Z2 Z2 Z2 Z3

Invariant subalgebra g∨ BN CN BN F4 G2

Flavor symmetry g CN BN CN F4 G2

3In the Sec. II B setup, these discrete global symmetries come
from discrete isometries of the ADE singularity that preserve the
hyper-Kähler structure (see Table II and [17]). A careful reader
may notice some peculiarity about the A2N case. For A2N
singularity, the relevant discrete isometry is a Z4 generated by
σ∶ðx; y; zÞ → ðy;−x;−zÞ. But since σ2∶ðx; y; zÞ → ð−x;−y; zÞ is
part of the connected Uð1Þ isometry that acts by x →
eiαx; y → e−iαy, combined with the fact that the (2,0) SCFT
has no global currents (non-R symmetry), it should act trivially
on the (2,0) SCFT in the decoupling limit. Therefore we only
expect to see the Z2 symmetry in the (2,0) A2N SCFT. We thank
Edward Witten for helpful discussions on this point.

4This is a higher dimensional generalization of the familiar
twisted sector operators in a 2D orbifold CFT. Similarly there
should also be twisted codimension-two defects in 4D N ¼ 4
super-Yang Mills theories. It would be interesting to understand
their roles in S-duality and the geometric Langlands program [18].

5T is a regular semisimple element of the Lie algebra j.
6More explicitly, the moduli space of complex structure

deformations (more precisely miniversal or semiuniversal defor-
mations) of a cDV singularity is identified with the Hitchin
moduli space of the Higgs bundle on a sphere with one irregular
puncture of the regular-semisimple type. This identification can
also be interpreted as a correspondence between noncompact
“CY3” integrable systems and Hitchin integrable systems in the
sense of [29] (see also [30] for a review and some recent
developments). It would be interesting to make this more precise.

7We emphasize here that, although suggestive, we do not yet
understand the physical meaning of the singular geometries of
Table IV in type-IIB string theory as they involve branch cuts.
Nevertheless, for practical purposes, we find them to be a useful
mnemonic for the 4D SCFTs engineered by such twisted irregular
defects (along with another twisted regular defect).
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continuous free parameters of these defects with flavor
symmetry masses and exactly marginal couplings.
Moving onto Sec. IV, we classify 4DN ¼ 2 SCFTs that

are engineered by such twisted irregular defects in class S
setups that we refer to as twisted theories. The twisted
theories come in infinite families (labeled by bt) for each
choice of the simple Lie algebra j (see Table IV). We spell
out a simple procedure to extract physical data of such
theories from our descriptions and propose formulas for the
conformal and flavor central charges. Most of the theories
we construct here are new but we identify in our setups
several (sequences of) known constructions that only
involve regular defects. They provide a nontrivial consis-
tency check of our construction and central charge
formulas.

A general 4DN ¼ 2 SCFT is known to have a nontrivial
protected sector described by a 2D chiral algebra [31].
Recent developments indicate that it captures information
of both Coulomb branch and Higgs branch physics of the
4D theory [32–40]. In particular, the Higgs branch of the
4D theory is identified with the associated variety of the 2D
chiral algebra [41]. In Sec. V, we identify the associated 2D
chiral algebra or vertex operator algebra (VOA) for a
subclass of the twisted theories and determine the Higgs
branch of these theories from the associated variety of
the VOA. We end in Sec. VI with a summary and future
directions.

II. BACKGROUND REVIEW

In this section, we review the description of codimen-
sion-two BPS defects in 6D (2,0) SCFTs in terms of the
Higgs field and explain the class S construction of 4DN ¼
2 SCFTs using the Hitchin system on a Riemann surface
with defect insertions. We also summarize the classification
of untwisted defects in the last subsection. Readers familiar
with these topics may safely skip this section.

A. Hitchin system and 4D N = 2 SCFTs

A large class of 4DN ¼ 2 superconformal field theories
can be engineered by the twist compactification of the 6D
(2,0)-type J ¼ ADE theories on a Riemann surface C,

FIG. 1. Local configurations of the codimension-one symmetry defects (red line) and codimension-two twisted defects (blue dot) on
the Riemann surface in a class S setup.

TABLE II. Discrete symmetries of ADE two-fold singularities.

j Singularity Symmetry Action of generators

A2N x2Nþ1 þ yz ¼ 0 Z4 ðx; y; zÞ → ð−x; z;−yÞ
A2N−1 x2N þ yz ¼ 0 Z2 ðx; y; zÞ → ð−x; z; yÞ
DNþ1 xN þ xy2 þ z2 ¼ 0 Z2 ðx; y; zÞ → ðx;−y;−zÞ
E6 x4 þ y3 þ z2 ¼ 0 Z2 ðx; y; zÞ → ð−x; y;−zÞ
D4 x3 þ y3 þ z2 ¼ 0 S3 ðx; y; zÞ → ðy; x;−zÞ

ðx; y; zÞ → ðωx;ω2y; zÞ

TABLE III. Three-fold isolated quasihomogeneous singular-
ities of the cDV type corresponding to the JðbÞ½k� irregular
punctures of the regular-semisimple type in [16].

j b Singularity

AN−1 N x21 þ x22 þ xN3 þ zk ¼ 0

N − 1 x21 þ x22 þ xN3 þ x3zk ¼ 0

DN 2N − 2 x21 þ xN−1
2 þ x2x23 þ zk ¼ 0

N x21 þ xN−1
2 þ x2x23 þ zkx3 ¼ 0

E6 12 x21 þ x32 þ x43 þ zk ¼ 0

9 x21 þ x32 þ x43 þ zkx3 ¼ 0

8 x21 þ x32 þ x43 þ zkx2 ¼ 0

E7 18 x21 þ x32 þ x2x33 þ zk ¼ 0

14 x21 þ x32 þ x2x33 þ zkx3 ¼ 0

E8 30 x21 þ x32 þ x53 þ zk ¼ 0

24 x21 þ x32 þ x53 þ zkx3 ¼ 0

20 x21 þ x32 þ x53 þ zkx2 ¼ 0

TABLE IV. Seiberg-Witten (SW) geometry of twisted theories
at the SCFT point.

j with twist bt SW geometry at SCFT point Δ½z�
A2N=Z2 4N þ 2 x21 þ x22 þ x2Nþ1 þ zk

0þ1
2 ¼ 0

4Nþ2
4Nþ2k0þ3

2N x21 þ x22 þ x2Nþ1 þ xzk
0 ¼ 0 2N

k0þ2N

A2N−1=Z2 4N − 2 x21 þ x22 þ x2N þ xzk
0þ1

2 ¼ 0
4N−2

4Nþ2k0−1
2N x21 þ x22 þ x2N þ zk ¼ 0 2N

2Nþk0

DNþ1=Z2 2N þ 2 x21 þ xN2 þ x2x23 þ x3zk
0þ1

2 ¼ 0
2Nþ2

2k0þ2Nþ3

2N x21 þ xN2 þ x2x23 þ zk
0 ¼ 0 2N

k0þ2N

D4=Z3 12 x21 þ x32 þ x2x23 þ x3zk
0�1

3 ¼ 0
12

12þ3k0�1

6 x21 þ x32 þ x2x23 þ zk
0 ¼ 0 6

6þk0

E6=Z2 18 x21 þ x32 þ x43 þ x3zk
0þ1

2 ¼ 0
18

18þ2k0þ1

12 x21 þ x32 þ x43 þ zk
0 ¼ 0 12

12þk0

8 x21 þ x32 þ x43 þ x2zk
0 ¼ 0 8

12þk0
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usually referred to as the UV curve or Gaiotto curve
[10,11]. The Riemann surface C can come with punctures
at isolated points fpig, which correspond to codimen-
sional-two BPS defects in the 6D SCFT. In M-theory, the
AN-type (2,0) SCFT captures the low energy dynamics of a
stack of fivebranes and the codimensional-two defect is

described by another stack of fivebranes that share four
longitudinal directions with the former. To produce 4D
theories with N ¼ 2 supersymmetry, we have the first
stack of fivebranes wrapping C, whereas the defect five-
branes extend along the cotangent fibers of C at the
singularities pi.

ð2:1Þ

To decode information about the 4D N ¼ 2 SCFT from
this construction where the 6D parent has no explicit
description (e.g., in terms of a Lagrangian), it is useful
to consider the alternate compactification of the 6D theory
on a circle transverse to the Riemann surface C. The
resulting 5D theory is believed to be the N ¼ 2 super
Yang-Mills (MSYM) with gauge group J (up to higher
derivative corrections) [42–45].
Upon twisted compactification of the 5D theory on the

Riemann surface C with holomorphic coordinate z, there is
a natural principal J-bundle E over C with gauge con-
nection A ¼ Azdzþ Az̄dz̄ and two of the five 5D scalars
combine into a (1,0)-form Φ ¼ Φzdz valued in the adjoint
bundle adðEÞ. The supersymmetric configurations of the
twisted theory are governed by the Hitchin equations

Fþ½Φ;Φ̄� ¼ 0; ∂̄AΦ¼ dz̄ð∂ z̄Φþ½Az̄;Φ�Þ ¼ 0; ð2:2Þ

where F denotes the curvature two-form of A. The pair
ðE;ΦÞ subject to (2.2) is referred to as the Higgs bundle and
Φ is the Higgs field. In particular, the second line of (2.2)
impliesΦ is a holomorphic section ofK ⊗ adðEÞ, whereK
denotes the canonical bundle on C. For a fixed structure
group J, the moduli space of Higgs bundles over C
[solutions to Hitchin equations (2.2) modulo gauge
redundancy] corresponds to the Hitchin moduli space
MHðCÞ.
The twisted compactification of 5D MSYM leads to a

particular description of the 3D N ¼ 4 SCFT in the IR,
with a Higgs branch identical to MHðCÞ thanks to
supersymmetry. Meanwhile the other order of compactifi-
cations in (2.1) (first on C then S1) provides another
description of the same 3D SCFT related by mirror
symmetry, where MHðCÞ now describes the Coulomb
branch.

ð2:3Þ

MHðCÞ is a hyper-Kähler manifold of rich structure
that encodes dynamics of the 4D theory T 4½C� as well
as its 3D descendant. In one complex structure, MHðCÞ is
equivalent to the moduli space of jC-valued flat connec-
tions A ¼ Aþ iΦþ iΦ̄ on C. For example, when C has
genus g with no punctures, MHðCÞ is parametrized
by the holonomies around the 2g cycles labeled by

elements U1≤i≤g and V1≤i≤g in JC that are subject to the
constraint

1 ¼ U1V1U−1
1 V−1

1 …UgVgU−1
g V−1

g ; ð2:4Þ

and modulo JC gauge transformations. In particular,
MHðCÞ has complex dimension
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dimMHðCÞ ¼ ð2g − 2Þ dim J: ð2:5Þ

In another complex structure,8 MHðCÞ exhibits a natural
fibration structure

π∶ MHðCÞ → B ð2:6Þ

by taking Casimirs of Φ (gauge invariant differentials),
known as the Hitchin fibration [47,48]. The base manifold
(a complex affine space) B is special Kähler and identified
with the Coulomb branch of the 4D theory T 4½C�, while the
fiber is (generically) a complex torus of dimension
1
2
dimMHðCÞ and corresponds to the electric and magnetic

holonomies9 on S1. In this complex structure, there is a
holomorphic symplectic form ΩI that defines a Poisson
bracket for functions onMHðCÞ. Hence the Hitchin moduli
space MHðCÞ becomes a complex integrable system with
commuting Hamiltonians given by the Casimirs of Φ and
the fibers of MHðCÞ are identified with the orbits of the
Hamiltonian flows, which are special Lagrangian with
respect to ΩI [49].
We can recover the usual SW description [50,51] of

the low energy dynamics of the 4D theory T 4½C� as
follows. The SW curve Σ governing the Coulomb branch
dynamics is equivalent to the spectral curve of the Hitchin
system,10

detðxdz −ΦÞ ¼ 0; ð2:7Þ

and the SW differential is identified with λ ¼ xdz. More
explicitly, the SW curves can be put in the following forms:

AN−1∶ xN þ
XN
i¼2

ϕiðzÞxN−i ¼ 0;

DN∶ x2N þ
XN−1

i¼1

ϕ2iðzÞx2N−2i þ ðϕ̃NÞ2 ¼ 0;

E6∶ ϕ2ðzÞ;ϕ5ðzÞ;ϕ6ðzÞ;ϕ8ðzÞ;ϕ9ðzÞ;ϕ12ðzÞ;
E7∶ ϕ2ðzÞ;ϕ6ðzÞ;ϕ8ðzÞ;ϕ10ðzÞ;ϕ12ðzÞ;ϕ14ðzÞ;ϕ18ðzÞ;
E8∶ ϕ2ðzÞ;ϕ8ðzÞ;ϕ12ðzÞ;ϕ14ðzÞ;ϕ18ðzÞ;ϕ20ðzÞ;

ϕ24ðzÞ;ϕ30ðzÞ: ð2:8Þ

Here ϕiðzÞ is a degree i differential on C and they generate
the ring of fundamental invariants (Casimirs) of the Lie
algebra. For the EN case, we only list the independent

differentials. The coefficients ui;j of these differentials in
the z expansion,

ϕiðzÞ ¼
X
j

ui;jzj; ð2:9Þ

encode the Coulomb branch parameters of the theory.11

Since the integral of the SW differential along a one-
cycle gives the mass of a BPS particle, the SW differential
λ ¼ xdz has scaling dimension 1 and consequently

Δ½x� þ Δ½z� ¼ 1: ð2:10Þ

This allows us to determine the scaling dimensions of ui;j
by demanding each term of (2.9) to have the same scaling
dimensions:12 relevant chiral couplings are given by those
with Δ½ui;j� < 1, Coulomb branch operators if Δ½ui;j� > 1

and masses if Δ½ui;j� ¼ 1.13

B. Review of untwisted (ir)regular defects

The relevant codimension-two defects in the 6D (2,0)
theory of type j can be characterized by singular boundary
conditions for the Higgs field Φ on C. Supposing the defect
is located at z ¼ 0 on C, it is convenient to perform a gauge
transformation (that may involve fractional powers of z) to
put Φz in the following form:

Φz ¼
X

k≥l≥−b

Tl

z2þl=b þ � � � ; b ∈ Zþ; k ∈ Z; ð2:11Þ

where each Tl is a semisimple element of j. In other words,
by a gauge transformation, we have Tl ∈ h, a Cartan
subalgebra of j, for all l [18]. We have suppressed the
nondivergent terms in (2.11).14 To ensure the Higgs field Φ
is well defined on C, we require

Φðe2πizÞ ¼ gΦðzÞg−1 ⇒ gTlg−1 ¼ ωlTl ð2:12Þ

for some g ∈ J and ω ¼ e
2πi
b .

8The two complex structures relevant for (2.4) and (2.6) are
usually referred to as the J and I complex structures respectively
in the literature [46].

9In the 3D perspective, they are parametrized by the additional
(dual) scalars in the dimensional reduced vector multiplet and are
part of the moduli space.

10The sheets of the SW curve Σ viewed as a branched cover of
C are labeled by eigenvalues of Φz.

11Some of these coefficients are redundant (unphysical) and
can be fixed by a coordinate change of ðx; zÞ that preserves the
SW differential λ up to an exact term.

12This is meaningful since the theory T 4½C� is assumed to be
conformal.

13There are two caveats to this prescription: (i) ui;j with
integral scaling dimension Δ½ui;j� ≥ 2 may correspond to a
homogeneous polynomial (flavor Casimir) in the mass param-
eters; (ii) there can be constraints among ui;j. Both subtleties can
be taken care of systematically from information of the puncture
(s) on C [14].

14We emphasize here that from the perspective of the resulting
4D theory, the coefficient matrices fTlg of the polar terms
correspond to parameters such as chiral couplings and masses,
whereas the Coulomb branch moduli are encoded in the non-
divergent terms of (2.11).
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The usual regular (tame) punctures correspond to b ¼
−k in which case Φ has a simple pole (go to a branch cover
if necessary)

Φz ¼
T
z
þ � � � ð2:13Þ

and the constraint (2.12) is trivialized by taking g ¼ 1. The
regular punctures are thus classified by the conjugacy
classes of T. When j is a classical Lie algebra, these
conjugacy classes are labeled by the Hitchin partitions,
which are related to the Nahm partitions by the Spaltenstein
map. The generalization to exceptional Lie algebras
involves the Bala-Carter labels [14]. The flavor symmetry
associated to the puncture can be directly read off from the
Nahm label and the entries of T correspond to the mass
parameters. The local contributions to the conformal and
flavor central charges can also be computed systemati-
cally [14].
The irregular (wild) punctures arise when k > −b where

Φ has a higher order pole.15 Now (2.12) puts nontrivial
constraints on Tl and b, which were solved by Kac [52].16

One can associate to g an inner automorphism of order b
(torsion automorphism) σg of j, which then introduces a
grading on j,

j ¼ ⨁
m∈Z=bZ

jm: ð2:14Þ

In particular, Tl is a semisimple element in jl. Such finite-
order inner automorphisms are classified by Kac (see
Sec. VIII of the textbook [52]).17

Since we are interested in 4D N ¼ 2 SCFTs, the
configurations of defects on the Riemann surface C must
be consistent with a Uð1ÞR symmetry. In the absence of
irregular punctures on C, the Uð1ÞR generator is identified
with the rotation generator R45 for the SOð5Þ R-symmetry
group of the 5D MSYM that acts on the Higgs field as
½R45;Φ� ¼ Φ. The regular codimension-two defects are
conformal18; thus the number and positions of the regular
punctures on C as well as the topology of C are uncon-
strained.19 On the other hand, in the presence of an irregular

defect defined by (2.11), the potential 4D Uð1ÞR generator
involves a combination of R45 and Uð1Þz that acts as

Uð1ÞR ⊂ SOð2Þ45×Uð1Þz∶Φ→ eiαΦ;z→ eiα
b

kþbz; ð2:15Þ

so that the leading polar matrix Tk in (2.11) is preserved.
For this to be globally defined on C, we are restricted to
consider C ¼ P1 with either a single irregular puncture, or
an irregular puncture accompanied by a regular puncture,
located at the two fixed points z ¼ 0;∞ of Uð1Þz
(see Fig. 2).
A distinguished class of irregular punctures (2.11) of

the regular semisimple type in general 6D (2,0) SCFTs
were classified in [16], generalizing earlier work for
A-type (2,0) theories [15]. The Hitchin pole in these cases
is characterized by a regular semisimple element Tk in j.
The commutant of Tk in j is a Cartan subalgebra
h ∋ Tk. Restricted to h, the inner automorphism σg with
a regular eigenvector Tk corresponds to a regular element
in the Weyl group WðhÞ in Springer’s classification of
regular elements for complex reflection groups [55].
The orders of these regular elements (known as regular
numbers d in [55]) are listed in Table V and each order is
associated to a unique regular element up to conjugation
by WðhÞ.
The corresponding torsion automorphisms have the same

orders except for j ¼ A2N and d ¼ 2N − 1 in which case σg
has order 4N − 2.20 Each regular element induces a grading
of its commutant Cartan subalgebra

h ¼ ⨁
m∈Z=dZ

hm; ð2:16Þ

where h1 contains the regular semisimple element.
The corresponding irregular Hitchin pole is determined
by21

FIG. 2. The class S setup that involves one irregular defect
(star) with or without one regular defect (dot) on a sphere. They
engineer JðbÞ½k� and ðJðbÞ½k�; YÞ theories in [16], respectively.
Here JðbÞ½k� labels the irregular defect and Y labels the regular
defect.

15The Hitchin pole in the original holomorphic form [as
opposed to (2.11)] will have higher integral pole orders but
the coefficient matrices are not necessarily semisimple [18].

16Here we assume that the Hitchin pole is irreducible. In other
words, the structure group J associated to the Higgs bundle is not
reduced.

17See [53,54] for a recent discussion relevant for 4D N ¼ 2
SCFTs.

18The more precise statement is that the boundary condition
that defines a regular defect (2.13) is scale invariant. In 4D we
expect this further implies conformal invariance.

19This is true as long as the Hitchin moduli spaceMHðCÞ has a
non-negative dimension. For example, one cannot have three
simple punctures on a P1 in the AN>1 (2,0) SCFT.

20In this case, since the Weyl group WðhÞ acts faithfully on
Tl ∈ h we can effectively identify b with d as opposed to the
order of σg, which is twice as big.

21Recall that Tk ¼ T1 here since the subscript takes value
mod b.
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b ¼ d; gcdðk; bÞ ¼ 1; and Tm ∈ hm with T1 regular semisimple: ð2:17Þ

This class of irregular punctures and the resulting 4D
theories were labeled by JðbÞ½k� in [16] where b takes the
values of the regular numbers in Table V including their
divisors.22 The Coulomb branch spectrum and conformal
central charges were computed in [16], where it was shown
that these theories are in one-to-one correspondence with
those constructed by IIB string probing three-fold isolated
quasihomogeneous singularities of cDV type (see
Table VI). The case of including a regular puncture with
nontrivial flavor symmetry was also considered in [16]. In
particular, a class of theories denoted by ðJðbÞ½k�; FÞ with
non-Abelian ADE flavor symmetry was constructed by
including an additional maximal (full) regular puncture. A
nice feature of these JðbÞ½k� and ðJðbÞ½k�; FÞ theories is
that many of them have simple 2D chiral algebras that
correspond to either W-algebra minimal model or affine
Kac-Moody algebra. In particular, the flavor central charge
of the ðJðbÞ½k�; FÞ theory [35,53,54,56],

kF ¼ h −
b

bþ k
; ð2:18Þ

was identified with the level of the affine Kac-Moody
algebra ĵ by k2d ¼ −kF. In Sec. V, we see how the twisted
theories realize the other types of affine Kac-Moody
algebra and W-algebra associated to nonsimply laced
simple Lie algebras.

III. TWISTED IRREGULAR DEFECTS

In this section, we study the classification of general
twisted codimension-two BPS defects in 6D (2,0) SCFTs.
Along the way, we make a connection to known results in
the literature. We then describe in detail the classification of
a distinguished class of twisted irregular defects of the
regular-semisimple type. The physical interpretation for the
parameters of the twisted irregular defect is explained in
the last subsection.

A. Classification of general twisted defects

When j has a nontrivial outer-automorphism group
OutðjÞ, we can decorate the puncture (defect) with a

monodromy twist by o ∈ OutðjÞ around the singularity
(see Table I). In the IIB realization of the (2,0) SCFT from
the decoupling limit of string probing an ADE singularity,
the above outer-automorphism group arises from the
symmetry of the singularity [57] (see Footnote 3 and
Table II).
Locally the Higgs field behaves as

Φz¼
X
k≥l

Tl

z2þl=bt
þ��� ; bt ∈Zþ;k≥−bt ∈Z; ð3:1Þ

and the twist amounts to modifying the requirement (2.12)
to

Φðe2πizÞ ¼ g½oðΦðzÞÞ�g−1 ⇒ g½oðTlÞ�g−1 ¼ ωlTl ð3:2Þ

for some g ∈ J=G∨ whereG∨ is the invariant subgroup of J
with respect to o [14]. Globally the twisted punctures must
come in pairs connected by twist lines.

TABLE VI. Three-fold isolated quasihomogeneous singular-
ities of cDV type corresponding to the JðbÞ½k� irregular punctures
of the regular semisimple type in [16].

j Singularity b

AN−1 x21 þ x22 þ xN3 þ zk ¼ 0 N
x21 þ x22 þ xN3 þ x3zk ¼ 0 N − 1

DN x21 þ xN−1
2 þ x2x23 þ zk ¼ 0 2N − 2

x21 þ xN−1
2 þ x2x23 þ zkx3 ¼ 0 N

E6 x21 þ x32 þ x43 þ zk ¼ 0 12
x21 þ x32 þ x43 þ zkx3 ¼ 0 9
x21 þ x32 þ x43 þ zkx2 ¼ 0 8

E7 x21 þ x32 þ x2x33 þ zk ¼ 0 18
x21 þ x32 þ x2x33 þ zkx3 ¼ 0 14

E8 x21 þ x32 þ x53 þ zk ¼ 0 30
x21 þ x32 þ x53 þ zkx3 ¼ 0 24
x21 þ x32 þ x53 þ zkx2 ¼ 0 20

TABLE V. Regular numbers (orders of regular semisimple
elements) of Weyl groups.

j d (is divisor of)

AN−1 N;N − 1
DN 2N − 2; N
E6 12, 9, 8
E7 18, 14
E8 30, 24, 20

22The associated torsion inner automorphism has order b
gcdðk;bÞ

(see around Footnote 20 for a caveat for A2N). We could have
restricted to gcdðk; bÞ ¼ 1 in the regular semisimple case and
consider all possible values of b (including the divisors of the
entries in Table V) when defining the JðbÞ½k� punctures. However
in writing down formulas (e.g., for central charges), we find it
more convenient to allow gcdðk; bÞ ≠ 1 while keeping in mind
the identification JðbÞ½k� ¼ Jðb0Þ½k0� for b0 ¼ b

gcdðb;kÞ, k
0 ¼ k

gcdðb;kÞ.
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Compared to the untwisted case, the gauge transforma-
tion required for the Higgs field to be well defined is now
σgo, which is a twisted torsion automorphism of j of order
bt that projects to a nontrivial element in OutðjÞ.23 It
induces a grading on the Lie algebra

j ¼ ⨁
m∈Z=btZ

jm; ð3:3Þ

such that Tl is a semisimple element of jl that has
eigenvalue ωl under σgo.

24 The twisted torsion automor-
phisms for simple Lie algebras were classified in [52].
A subclass of twisted punctures with leading simple

pole comprises what are called regular twisted punctures
in which case the constraint (3.2) is solved by σg ¼ 1
and

Φz ¼
T−2

z
þ T−1

z1=2
þ T0 þ � � � ; T−2; T0 ∈ j0 and T−1 ∈ j1

ð3:4Þ

for o of order 2 in the case of j ¼ An;Dn; E6 and

Φz ¼
T−3

z
þ T−2

z2=3
þ T−1

z1=3
þ T0 þ � � � ;

T−3; T0 ∈ j0; T−2 ∈ j2 and T−1 ∈ j1 ð3:5Þ

for o of order 3 in the case of j ¼ D4. Varied physical
information associated to these twisted punctures was
studied in [14], including the local contributions to the
Coulomb branch and Higgs branch, flavor symmetry, and
central charges. The 4D class S theories constructed from
these punctures were studied extensively [21–23,58,59].
More generally, we have a twisted irregular puncture

from (3.1). In the presence of outer-automorphism twist, to
construct 4D N ¼ 2 SCFT with one twisted irregular
puncture, we must pair it with a regular twisted puncture
on P1.

B. Twisted irregular defects of regular
semisimple type

Similar to the JðbÞ½k� type of untwisted irregular punc-
tures (defects) introduced in [16], there is a distinguished
class of twisted irregular punctures of the regular semi-
simple type. This is achieved when Tk is a regular semi-
simple element satisfying

ðσgoÞTk ¼ ωkTk; ð3:6Þ

for ω ¼ e
2πi
bt and a twisted torsion automorphism σgo

of j.

Restricted to the commutant Cartan subalgebra h of Tk,
σgo induces an element in the twisted Weyl group
WtðhÞ≡WðhÞ ⋊ OutðjÞ. In particular, it corresponds to
a twisted regular element of WtðhÞ in Springer’s classi-
fication that generalizes the (untwisted) regular elements of
WðhÞ, which are associated to inner torsion automorphisms
of j (for all simple Lie algebras) with regular eigenvectors
[55]. Since we always work with semisimple elements of h
in this paper, we abuse the notation and use σgo to denote
both the twisted torsion automorphism and the correspond-
ing twisted regular element ofWtðhÞ, similarly for σg in the
untwisted case.25 As in the untwisted case, each twisted
regular element is determined uniquely (up to conjugation)
by a positive integer dt such that its regular eigenvector in h

has eigenvalue e
2πi
dt . The order of the twisted regular element

is d0t ¼ lcmðdt; jojÞ.26 In particular, the twisted regular
element σgo from (3.6) is associated with

dt ¼
bt

gcdðbt; kÞ
: ð3:7Þ

The twisted regular numbers dt were classified by Springer
[55] and summarized in Table VII.
In particular, the maximal values for dt correspond to the

orders of twisted Coxeter elements and are called twisted
Coxeter numbers ht of j in [55] (see the second column of
Table VII). In general, a twisted regular element induces a
grading on the Cartan subalgebra

h ¼ ⨁
m∈Z=d0tZ

hm; ð3:8Þ

such that hd
0
t=dt contains a regular semisimple element. The

corresponding twisted irregular Hitchin pole is specified by

TABLE VII. Twisted regular numbers dt for twisted Weyl
groups.

dt
jojj dt ≡ 0ðmod jojÞ is a divisor of dt is a divisor of
2A2N 4N þ 2 2N
2A2N−1 4N − 2 2N
2DN 2N 2N − 2
2E6 18 12, 8
3D4 12 6

23In particular bt is always a multiple of joj.
24In the superscript of jl, l is understood to be mod bt.

25For j ¼ E6 or E7 there are examples of a regular element
(also twisted regular element for E6) in the Weyl group that lift to
two torsion automorphisms σg, σ0g or σgo, σ0go for the twisted case
(see Table 6.1, 6.2 and 6.6 in [60]). However we do not see any
differences in the 4D theories engineered by punctures that are
compatible with either σg or σ0g.

26We emphasize that unlike in the untwisted case, the order
does not determine the twisted regular element in general.
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bt ¼ d0t; gcdðk; btÞ ¼ d0t=dt; and Tm ∈ hm with Tk regular semisimple: ð3:9Þ

We group these Hitchin poles into class I and II for
2AN; 2DN; 3D4, and class I, II, and III for 2E6 according to
the values of dt listed in the Table VII, with the under-
standing that their allowed divisors fall into the correspond-
ing classes.27 Below we give explicitly the Hitchin pole for
A2N−1; A2N and DN when the associated twisted torsion
automorphism σgo has the maximal order in each class.
For example, consider the case j ¼ A2N−1. There are two

classes of twisted irregular punctures. Denoting the stan-
dard basis of R2N by fe1; e2;…; e2Ng and the Cartan
subalgebra of A2N−1 by R2N=fP2N

i¼1 eig, the generator of
OutðA2N−1Þ ¼ Z2 is defined by

ei → −e2Nþ1−i ð3:10Þ

while the Weyl groupWðA2N−1Þ acts by permutation on ei.

1. A2N − 1 Class I

Φ ¼ T

z2þ k
4N−2

þ � � � ð3:11Þ

for gcdðk; 4N − 2Þ ¼ 1, where

T ¼

0
BBBBBB@

0

1

ω2

. .
.

ω4N−4

1
CCCCCCA
; ω4N−2 ¼ 1: ð3:12Þ

The required gauge transformation σg corresponds to a
permutation in the Z2N−1 subgroup ofWðA2N−1Þ acting the
lower right 2N − 1 diagonal entries of T.

2. A2N − 1 Class II

Φ ¼ T

z2þ k
2N

þ � � � ð3:13Þ

for gcdðk; 2NÞ ¼ 1, where

T ¼

0
BBBBBB@

1

ω

ω2

. .
.

ω2N−1

1
CCCCCCA
; ω2N ¼ 1: ð3:14Þ

The required σg now corresponds to a permutation in the
Z2N subgroup of WðA2N−1Þ.
The case j ¼ A2N is similar and again has two classes of

twisted irregular punctures. The generator of OutðA2NÞ ¼
Z2 defined by28

ei → −e2Nþ2−i; ð3:15Þ

while the Weyl group WðA2Nþ1Þ acts by permutation on ei
with 1 ≤ i ≤ 2N þ 1.

3. A2N Class I

Φ ¼ T

z2þ
k

4Nþ2

þ � � � ð3:16Þ

for gcdðk; 4N þ 2Þ ¼ 1, where

T ¼

0
BBBBBB@

1

ω2

ω4

. .
.

ω4N

1
CCCCCCA
; ω4Nþ2 ¼ 1: ð3:17Þ

4. A2N Class II

Φ ¼ T

z2þ k
2N

þ � � � ð3:18Þ

for gcdðk; 2NÞ ¼ 1, where

27We emphasize here that class I and II (and III for 2E6) of
twisted defects are not always distinguishable. If dt is a divisor of
more than one entry in Table VII, it defines a unique defect that
appears in multiple classes.

28A special feature of the Z2 outer-automorphism of A2N
compared to the other cases in Table I is that it does not fix any
simple root; instead it exchanges the pair of simple roots αN ¼
eN − eNþ1 and αNþ1 ¼ eNþ1 − eNþ2. This has important conse-
quences on the 4D theories engineered by such punctures, which
we explain later in the paper.
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T ¼

0
BBBBBB@

0

1

ω

. .
.

ω2N−1

1
CCCCCCA
; ω2N ¼ 1: ð3:19Þ

For j ¼ DN there are two classes of twisted irregular
punctures. Identifying the Cartan subalgebra of DN with
RN in the standard basis fe1; e2;…; eNg, OutðD2NÞ ¼ Z2

is generated (up to conjugation) by

e1 → −e1; ei → ei for 2 ≤ i ≤ N; ð3:20Þ

while the Weyl group WðD2NÞ acts by permutation and
even number of sign flips on ei.

5. DN Class I

Φ ¼ T

z2þ k
2N

þ � � � ð3:21Þ

for gcdðk; 2NÞ ¼ 1, where

T ¼

0
BBBBBBBBBBBB@

0 1

−1 0

0 ω

−ω 0

. .
.

0 ωN−1

−ωN−1 0

1
CCCCCCCCCCCCA
; ω2N ¼ 1:

ð3:22Þ

6. DN Class II

Φ ¼ T

z2þ k
2N−2

þ � � � ð3:23Þ

for gcdðk; 2N − 2Þ ¼ 1, where

T¼

0
BBBBBBBBBBBB@

0 0

0 0

0 1

−1 0

. .
.

0 ωN−1

−ωN−1 0

1
CCCCCCCCCCCCA
; ω2N−2¼ 1:

ð3:24Þ

C. Physical parameters from the punctures

The defining data of the punctures can be identified with
the parameters of the resulting 4D theories. In particular, for
SCFTs, we are interested in the masses for flavor sym-
metries and exactly marginal couplings. Of course one can
enumerate such parameters in the SW (spectral) curve.
Here we describe how these data can be extracted directly
from the punctures.
The grading (3.3) induces a natural conjugation action of

a reductive Lie group J0 associated to j0 on jl. Therefore jl

are J0-modules of finite ranks. Furthermore, the Uð1ÞR
symmetry associated with the singularity acts by

Uð1ÞR ⊂ SOð2Þ45 × Uð1Þz∶ Φ → eiαΦ; z → eiα
bt

kþbtz;

ð3:25Þ

such that Tk ∈ jd
0
t=dt has zero Uð1ÞR charge. In general Tl

has Uð1ÞR charge

qR½Tl� ¼
k − l
kþ bt

: ð3:26Þ

Hence T−bt ∈ j0 has Uð1ÞR charge qR ¼ 1. From N ¼ 2

superconformal symmetry, we deduce that T−bt contains
the mass parameters of the theory, whereas Tk is associated
to exactly marginal couplings.
The maximal number of exactly marginal couplings is

determined by the rank of jd
0
t=dt as a J0-module to be

nmarg ¼ rankðjd0t=dt jJ0Þ − 1 ¼ dimðhd0t=dtÞ − 1: ð3:27Þ

Note that we have fixed the redundancy due to conjugation
by J0 as well as rescaling of the z coordinate.
The maximal number of mass parameters is captured by

the dimension of the intersection between the centralizer of
the semisimple part of jd

0
t=dt and j0,

nmass ¼ dimðCðjd0t=dts Þ ∩ j0Þ ¼ dimðh0Þ: ð3:28Þ

Both nmarg and nmass can be extracted from the grading (3.3)
of h described in [55]. We summarize the results in
Tables VIII–XII.

TABLE VIII. Marginal couplings and mass parameters from
twisted A2N punctures.

dt
Number of marginal

couplings
Number of mass

parameters

dt ¼ 1 N − 1 N
dt ∈ 2Zþ 1, dtjN N=dt − 1 N=dt
dt ∈ 4Z, dtj2N 2N=dt − 1 2N=dt
dt ∈ 4Zþ 2, dtj2ð2NÞ 4N=dt − 1 0
dt > 2 ∈ 4Zþ 2,
dtj2ð2N þ 1Þ

2ð2N þ 1Þ=dt − 1 0
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IV. TWISTED THEORIES
AND CENTRAL CHARGES

Given the classification of the twisted irregular defects in
the previous section, we now use them to construct 4D
N ¼ 2 SCFTs and study properties of the resulting
theories. In particular, we determine their flavor symmetry
and Coulomb branch spectrum, and propose conjectured
formulas for the flavor and conformal central charges. We
later offer nontrivial checks for these conjectures.

A. Classification of theories from
twisted irregular defects

We are interested in 4D N ¼ 2 SCFTs engineered by
compactifiying six-dimensional (2,0) SCFT of ADE type
on twice-punctured P1 with outer-automorphism twist. The
twist line connects one twisted irregular singularity and one
twisted regular singularity on P1. We refer to such 4D
theories as twisted theories (see Fig. 3). One common
feature of the twisted theories is their nonsimply laced
flavor groups G (see Table I) coming from the twisted
regular punctures.
As we have reviewed in the last section, the classification

of twisted irregular punctures is reduced to that of torsion
outer-automorphisms of the Lie algebra j and the associated
gradings (3.3). In this section, we focus on the regular
semisimple type (see Sec. III B). The torsion outer-auto-
morphism in this case corresponds to a regular element of
the twisted Weyl group WtðhÞ and induces a grading (3.8)
on the Cartan subalgebra h, labeled by dt in Table VII.
The corresponding twisted irregular singularity of the

Higgs field takes the following forms,

Φz ¼
T

z2þ
2k0þ1
bt

þ � � � ; jojj ¼ 2AN; 2DN; 2E6 and bt ¼ ht;

Φz ¼
T

z2þ
3k0�1
bt

þ � � � ; jojj ¼ 3D4 and bt ¼ ht;

Φz ¼
T

z2þ
k0
bt

þ � � � ; bt ≠ ht: ð4:1Þ

Here T is regular semisimple, bt takes the values of d0t as in
(3.9), and k0 is an arbitrary integer such that the leading pole
order is larger than 1. Recall that ht denotes the twisted
Coxeter number.

TABLE IX. Marginal couplings and mass parameters from
twisted A2N−1 punctures.

dt
Number of marginal

couplings
Number of mass

parameters

dt ¼ 1 N − 1 N
dt > 1 ∈ 2Zþ 1, dtjN N=dt − 1 N=dt
dt ∈ 4Z, dtj2N 2N=dt − 1 2N=dt
dt > 2 ∈ 4Zþ 2,
dtj2ð2NÞ

4N=dt − 1 0

dt ∈ 4Zþ 2,
dtj2ð2N − 1Þ

2ð2N − 1Þ=dt − 1 0

TABLE X. Marginal couplings and mass parameters from
twisted DN punctures.

dt

Number of
marginal
couplings

Number
of mass

parameters

dt ¼ 1 N − 2 N − 1
dt ∈ 2Zþ 1, dtjðN − 1Þ ðN − 1Þ=dt − 1 ðN − 1Þ=dt
dt∈2Z, ð2ðN−1ÞÞ=dt∈2Zþ1 2ðN − 1Þ=dt 0
dt ∈ 2Z, ð2ðN − 1ÞÞ=dt ∈ 2Z 2ðN − 1Þ=dt − 1 1
dt>2∈2Z, 2N=dt∈2Zþ1 2N=dt − 1 0

TABLE XI. Marginal couplings and mass parameters from
twisted E6 punctures.

dt
Number of marginal

couplings
Number of mass

parameters

1 3 4
2 5 0
3 1 0
4 1 0
6 2 0
8 0 1
12 0 0
18 0 0

TABLE XII. Marginal couplings and mass parameters from
twisted D4 punctures.

dt
Number of marginal

couplings
Number of mass

parameters

1 1 2
2 1 2
3 1 0
6 1 0
12 0 0

FIG. 3. The class S setup for twisted theories: one twisted
irregular defect (star) and one twisted regular defect (dot) on a
sphere.
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For simplicity we take the regular twisted puncture to be
maximal. Some physical properties of the resulting twisted
theories can be extracted as follows:

(i) The SW curve at the conformal point takes the forms
listed in Table IV. Note that now the z variable
admits fractional powers.

(ii) The regular twisted puncture gives rise to non-
Abelian flavor symmetry G (see Table I). There
are two cases with CN flavor symmetry from Z2

twisted defects in A2N and DNþ1 (2,0) theories. We

label them by Canom
N and Canom

N , respectively.29 They
differ by Witten’s global anomaly for USpð2NÞ
[24]: the former carries a nontrivial anomaly
whereas the latter is nonanomalous.

(iii) The number of mass parameters for Uð1Þ flavor
symmetries associated to the twisted irregular punc-
ture comes from Δ ¼ 1 parameters in the Hitchin
poles, as summarized in Tables VIII–XII.

(iv) The dimension of the conformal manifold can be
extracted from Δ ¼ 0 parameters for the Hitchin
poles, as summarized in Tables VIII–XII.

(v) The full Coulomb branch spectrum can be found by
expanding the degree di differentials ϕdiðzÞ in z,
where di labels the degrees of the Casimirs of the
parent ADE theory; see Table XIII for these numbers.
The novelty here is that some of the differentials are
no longer holomorphic and they often have a Laurent
expansion with half integral (or plus minus one third)
powers of z, according to their transformation rule
under the outer-automorphism in Table XIII. The
spectrum of half-BPS Coulomb branch chiral pri-
maries is then summarized in Table XIV.

(vi) We present conjectures for the flavor and conformal
central charges with nontrivial evidences in the next
section.

B. Flavor and conformal central charges

Before we state the conjectural formulas for the flavor
and conformal central charges, let us provide some moti-
vations for how they come about. The important observa-
tion is that in all previously known class S constructions
that involve maximal regular punctures, it appears that the
flavor central charge is determined by certain maximal
scaling dimension among the CB spectrum contributed by
the maximal puncture,30

kG ¼ Δmax; G ¼ AN;DN; EN

kG ¼ Δ̃max; G ¼ BN; Canom
N ; F4; G2

kG ¼ 1

2
Δ̃max þ

1

2
; G ¼ Canom

N : ð4:2Þ

Here Δmax denotes the maximal scaling dimension con-
tributed by the maximal regular puncture that determines
the flavor central charge in the untwisted theories. In
twisted theories, empirical evidence suggests that one
should instead take the maximal scaling dimension Δ̃max
from the twisted differentials (i.e., a differential that trans-
forms nontrivially under the twist; see Table XIII) at the
maximal puncture. The Z2 twisted maximal punctures of
A2N type requires special attention.31 For example, in a Z2

twisted A2N type class S construction without irregular
punctures, the maximal scaling dimension contributed by
the twisted differentials at the maximal twisted regular
singularity is 2N þ 1 from ϕ2Nþ1, and the USpð2NÞ flavor

TABLE XIII. Casimirs and their transformations under outer-
automorphisms.

j Degrees of the Casimirs di Transformation under o

AN 2; 3;…; N ϕdi → ð−1Þdiϕdi
DN 2; 4;…; 2N − 2; N ϕ̃N → −ϕ̃N
D4 2, 4, 4 ϕ4 → e

2πi
3 ϕ4, ϕ̃4 → e

4πi
3 ϕ̃4

E6 2, 5, 6, 8, 9, 12 ϕdi ¼ ð−1Þdiϕdi

TABLE XIV. Coulomb branch spectrum of the twisted theories
from a twisted irregular puncture of the regular-semisimple type
and a maximal twisted regular puncture. The Coulomb branch
chiral primaries are constrained to have Δ > 1 by unitarity.

Flavor group G Coulomb branch spectrum Δ

Canom
N di −

2jþ1
2

Δ½z� > 1; di ¼ 3; 5;…; 2N þ 1; j ≥ 0

di − jΔ½z� > 1; di ¼ 2; 4;…; 2N; j ≥ 1

BN di −
2jþ1
2

Δ½z� > 1; di ¼ 3; 5;…; 2N − 1; j ≥ 0

di − jΔ½z� > 1; di ¼ 3; 5;…; 2N; j ≥ 1

Canom
N di −

2jþ1
2

Δ½z� > 1; di ¼ N þ 1; j ¼ 0;…
di − jΔ½z� > 1; di ¼ 2;…; 2N; j ¼ 1;…

G2 di −
3jþ1
3

Δ½z� > 1; di ¼ 4; j ≥ 0

di − 3jþ2
3

Δ½z� > 1; di ¼ 4; j ≥ 0

di − jΔ½z� > 1; di ¼ 2; j ≥ 1

F4 di −
2jþ1
2

Δ½z� > 1; di ¼ 5; 9; j ≥ 0

di − jΔ½z� > 1; di ¼ 2; 6; 8; 12; j ≥ 1

29We thank Yuji Tachikawa for suggesting these names.
30Note that our normalization of the flavor central charges is

related to the one in [14,22] by koursG ¼ 1
2
ktheirsG .

31Note that the 1
2
shift in the third equation of (4.2) is exactly

the contribution from a half-hyper multiplet in the fundamental
representation of USpð2NÞ, which would also saturate Witten’s
global anomaly for these punctures [24]. Thus it is tempting to
say that this 1

2
contribution comes from the minimal boundary

modes of Z2 symmetry defect. The other 1
2
factor in (4.2) should

be related to the fact that the Langlands dual SOð2N þ 1Þ of the
USpð2NÞ has an index of embedding equal to 1 in DNþ1 but 2 in
A2N . A better understanding of the anomaly inflow from 6D
along the lines of [61] should give a rigorous argument for (4.2).
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central charge computed in [22] is equal to (in our
normalization) h∨ðUSpð2NÞÞ ¼ N þ 1 in agreement with
(4.2). The introduction of irregular punctures into the setup
modifies the Uð1ÞR symmetry of the 4D theory, but we
expect that (4.2) continues to hold. The formula for 2a − c
is given in [62] while our new formula for c has a close
relation to the 2D chiral algebra, which we explain in
Sec. V.32

Conjecture 1 (Flavor central charge kG). The central
charge of the flavor symmetryG of a twisted theory defined
by a twisted irregular defect of the regular semisimple type
in (4.1) and a maximal twisted regular defect takes the
following form:

kG ¼ h∨ −
1

n
b

lþ b
;

8<
:

l ¼ 2k0 þ 1bt ¼ ht; G ≠ G2

l ¼ 3k0 � 1bt ¼ ht; G ¼ G2

l ¼ k0bt ≠ ht:

ð4:3Þ

The Lie algebra data h∨ and n are listed in Table XV.
Conjecture 2 (Conformal central charges a and c).

The conformal central charges of a general twisted theory
are determined by

2a − c ¼ 1

4

X
ð2Δ½ui� − 1Þ; c ¼ 1

12

kG dimðGÞ
−kG þ h∨ −

f
12

:

ð4:4Þ

Here f is the number of mass parameters contributed by the
irregular singularity, kG denotes the flavor symmetry
central charge listed in (4.3), and Δ½ui� are the Coulomb
branch scaling dimensions listed in Table XIV.
Let us provide some evidences for the above conjectures

by considering twisted theories defined with integral order
Hitchin poles, in which case the irregular singularity takes
the form

Φz ¼
T

z2þk þ � � � ; ð4:5Þ

where T is regular semisimple and the associated grading of
h corresponds to dt ¼ 1. We use the following formula,

2a−c¼ 1

4

X
i

ð2½ui�−1Þ; a−c¼−
dimHHiggs

24
; ð4:6Þ

to compute their central charges. The second equation
above is known to hold for the untwisted irregular puncture

defined by integral order Hitchin poles [15] and we assume
that it is also valid for the current situation.33

Here we take the regular twisted puncture to be maximal
in which case the Higgs branch dimension is [14,16]

dimHHiggs ¼
1

2
ðdimðGÞ − rankðGÞÞ þ rankðGÞ: ð4:7Þ

The last term above comes from the twisted irregular
puncture.
On the other hand, since the irregular singularity

contributes f ¼ rankðGÞ mass parameters (see top rows
of Tables VIII–XII), the conjectural formula (4.4) for
central charge c takes the following form:

c ¼ 1

12

kG dimðGÞ
−kG þ h∨ −

1

12
rankðGÞ: ð4:8Þ

Here the conjectured flavor central charge (4.3) takes the
form

kG ¼ h∨ −
1

n
1

kþ 1
: ð4:9Þ

We have verified that the two formulas (4.8) and (4.6) give
the same answers. Below we give some details for two
instances of such checks for illustration.
Example 1. Let us consider the Canom

N−1 theory, which
is constructed by Z2 twist of the DN (2,0) theory. The
Hitchin pole (4.5) fixes the Uð1ÞR charge (hence scaling
dimension) of z,

TABLE XV. Some useful Lie algebra data. h is the Coxeter
number and h∨ is the dual Coxeter number. r∨ is the lacety of the
Lie algebra and n is equal to r∨ except for Canom

N .

Dimension h h∨ r∨ n

AN−1 N2 − 1 N N 1 1
BN ð2N þ 1ÞN 2N 2N − 1 2 2
Canom
N ð2N þ 1ÞN 2N N þ 1 2 4

Canom
N

ð2N þ 1ÞN 2N N þ 1 2 2

DN Nð2N − 1Þ 2N − 2 2N − 2 1 1
E6 78 12 12 1 1
E7 133 18 18 1 1
E8 248 30 30 1 1
F4 52 12 9 2 2
G2 14 6 4 3 3

32The essential statement here is that the 2D chiral algebra
contains the affine Kac-Moody algebras associated to both the
simple andUð1Þ factors of the flavor symmetry, and the 2D stress
tensor is given by the Sugawara construction.

33The equation that relates a − c to the Higgs branch dimen-
sion is a simple consequence of anomaly matching [63]. It should
hold whenever the Higgs branch is pure: the low energy theory
on the Higgs branch is described just by hypermultiplets. It would
be interesting to understand how it gets modified for general
Argyres-Douglas-type SCFTs.
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Δ½z� ¼ 1

kþ 1
; ð4:10Þ

and the Coulomb branch spectrum can be enumerated using
Table XIV,

Δ ¼
�
2i −

j
kþ 1

> 1ji ¼ 1; 2;…; N − 1; j ≥ 1

�

⨆
�
N −

2jþ 1

2ðkþ 1Þ > 1jj ≥ 0

�
: ð4:11Þ

Therefore,

2a − c ¼ 1

4

X
i

ð2Δ½ui� − 1Þ

¼ 1

12
ðN − 1ÞNð4kN − 2kþ 4N − 5Þ: ð4:12Þ

Along with the Higgs branch dimension from (4.7),

dimHHiggs ¼ ðN − 1ÞN; ð4:13Þ

we obtain from (4.6)

a ¼ 1

24
ðN − 1ÞNð8kN − 4kþ 8N − 9Þ;

c ¼ 1

6
ðN − 1ÞNð2kN − kþ 2N − 2Þ; ð4:14Þ

which is in agreement with (4.8) where the flavor central
charge is determined by (4.9) to be

kCN−1
¼ N −

1

2ðkþ 1Þ : ð4:15Þ

Example 2. Similarly let us consider the F4 theory,
which is engineered by the Z2 twist of the E6 (2,0) theory
with irregular punctures. Once again

Δ½z� ¼ 1

kþ 1
ð4:16Þ

and the Coulomb branch spectrum is

Δ ¼
�
d −

j
kþ 1

> 1jd ¼ 2; 6; 8; 12 and j ≥ 1

�

⨆
�
d −

2jþ 1

2ðkþ 1Þ > 1jd ¼ 5; 9 and j ≥ 0

�
ð4:17Þ

from Table XIV, which gives

2a − c ¼ 1

4

X
i

ð2½ui� − 1Þ ¼ 78kþ 71: ð4:18Þ

Next the Higgs branch dimension follows from (4.7)

dimHHiggs ¼ 28: ð4:19Þ

We thus obtain from (4.6)

a ¼ 78kþ 433

6
; c ¼ 78kþ 220

3
; ð4:20Þ

which is in agreement with (4.8) where

kF4
¼ 9 −

1

2ðkþ 1Þ : ð4:21Þ

from (4.9).

C. Twisted theories with Lagrangians

It turns out that many subfamilies of the theories engi-
neered from twisted irregular defects actually have
Lagrangian descriptions.34 Since the Coulomb branch spec-
trum for Lagrangian theories has integral scaling dimen-
sions, a necessary condition isΔ½z�≡ 0ðmod 2Þ for An,Dn,
E6 theories withZ2 twist, andΔ½z�≡ 0ðmod 3Þ forD4 with
Z3 twist. This can be achieved by choosing k appropriately
with respect to bt in the Hitchin pole (4.1).
Since such theories have a weakly coupled frame, we can

use the formulas

a ¼ 5nv
24

þ nh
24

; c ¼ nv
6
þ nh
12

ð4:22Þ

to compute the conformal central charges. Here nv and nh
count the number of vector and hypermultiplets in the
quiver gauge theory description. Similarly the central
charges associated to the Gflavor flavor symmetry of hyper-
multiplets can be obtained straightforwardly from identi-
fying the embedding Gflavor ×Ggauge ⊂ USpð2nhÞ. This
allows us to verify the conjectured formulas (4.3) and (4.4).
As we see, oftentimes the Lagrangian description only

makes manifest a subgroup of the full flavor symmetry,
which is realized in our description by the single regular
puncture.
Example 3. Let us take Canom

N , which comes from the
Z2 twist of DNþ1 (2,0) theory. The twisted irregular
puncture is specified by

bt ¼ 2N; k ¼ −N ð4:23Þ

so that we have the scaling dimension Δ½z� ¼ 2. The
Coulomb branch spectrum for this theory (using
Tables IV and XIV) is

34In this paper, we implicitly assume that the SW geometry
together with all of its N ¼ 2 deformations fixes the N ¼ 2
SCFT uniquely. To our best knowledge there is no counterex-
ample but it would be interesting to prove this rigorously.
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Δ ¼ ⨆
N−1

j¼1

f2ij1 ≤ i ≤ jg ⨆ fN − 2i > 1jji ≥ 0g: ð4:24Þ

The central charges from (4.4) and (4.3) are

N even∶ kUSpð2NÞ ¼ N; a ¼ 1

24
Nð1þ N þ 4N2Þ;

c ¼ 1

12
N2ð1þ 2NÞ;

N odd∶ kUSpð2NÞ ¼ N; a ¼ 1

24
ð−4þ N þ N2 þ 4N3Þ;

c ¼ 1

12
ð−1þ N2 þ 2N3Þ: ð4:25Þ

Note that from Table X, the N even case has N marginal
couplings and no mass parameters from the irregular punc-
ture, whereas the N odd case has N − 1 marginal couplings
and an extra mass parameter. This results in the different
expressions for the conformal central charges above.
On the other hand, this theory has a quiver gauge theory

description by

USpð2NÞ − SOð2NÞ−USpð2N − 4Þ− SOð2N − 4Þ− � � �
− SOð8Þ−USpð4Þ− SOð4Þ

for N even, and

USpð2NÞ − SOð2NÞ−USpð2N − 4Þ− SOð2N − 4Þ− � � �
− SOð6Þ−USpð2Þ− SOð2Þ

for N odd. It is easy to see that the quiver is balanced; thus
all vector multiplets are conformally gauged.
The boxed nodes label the flavor symmetry of hyper-

multiplets. Here the symmetry is USpð2NÞ with central
charge

kUSpð2NÞ ¼ N ð4:26Þ

as provided by 2N hypermultiplets in the fundamental
representation of USpð2NÞ. We can also count the number
of hyper and vector multiplets from the quiver.

N even∶ nh ¼
1

3
Nð−2þ 3N þ 2N2Þ; nv ¼

1

3
ðN þ 2N3Þ

N odd∶ nh ¼ 1þ 2

3
Nð−2þ N þ 2N2Þ;

nv ¼
1

3
ð−3þ N þ 2N3Þ; ð4:27Þ

which gives the central charges by (4.22)

N even∶ a ¼ 1

24
Nð1þ N þ 4N2Þ; c ¼ 1

12
N2ð1þ 2NÞ

N odd∶ a ¼ 1

24
ð−4þ N þ N2 þ 4N3Þ;

c ¼ 1

12
ð−1þ N2 þ 2N3Þ: ð4:28Þ

Both the flavor and conformal central charges from the
Lagrangian are in agreement with (4.25) obtained from our
conjectured formulas (4.3) and (4.4).
Example 4. Let us takeG ¼ Canom

N , which comes from
the Z2 twist of A2N (2,0) theory. The twisted irregular
puncture is specified by

b ¼ 4N þ 2; k ¼ −2N − 1 ð4:29Þ

so that Δ½z� ¼ 2. As before, the Coulomb branch spectrum
(from Table XIV) and central charges [from (4.3) and (4.4)]
are

Δ¼ ⨆
N−1

j¼1

f2ij1≤ i≤ jg ⨆
N−1

j¼1

f2ij1≤ i≤ jg⨆ f2ijj1≤ i≤Ng

kG ¼Nþ1

2
; a¼Nð8N2þ7Nþ3Þ

24
; c¼Nð1þ2NÞ2

12
:

ð4:30Þ

In particular, the irregular singularity contributes no addi-
tional mass parameters and the theory has 2N − 1 marginal
couplings (see Table XIII). The theory has a Lagrangian
description by

USpð2NÞ −SOð2Nþ1Þ−USpð2N−2Þ−SOð2N−1Þ− ���
−SOð5Þ−USpð2Þ−SOð3Þ

so we can compute the central charges using the field
content

nv ¼
Nð4N2 þ 3N þ 2Þ

3
; nh ¼

Nð4N2 þ 6N − 1Þ
3

;

ð4:31Þ

which gives

a ¼ Nð8N2 þ 7N þ 3Þ
24

; c ¼ Nð1þ 2NÞ2
12

: ð4:32Þ

Moreover, the flavor central charge is supplied by 2N þ 1
half-hypers in the fundamental representation ofUSpð2NÞ;
thus

k ¼ N þ 1

2
: ð4:33Þ

Everything above is consistent with (4.30).
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Example 5. Let us take G ¼ BN , which is derived
from the Z2 twist of A2N−1 (2,0) theory. The twisted
irregular puncture is specified by

bt ¼ 2N; k ¼ −N ð4:34Þ

and then Δ½z� ¼ 2. The Coulomb branch spectrum and
central charges from our general formulas

Δ ¼ ⨆
N−1

j¼1

f2ij1 ≤ i ≤ jg ⨆
N−1

j¼1

f2ij1 ≤ i ≤ jg

kSOð2Nþ1Þ ¼ 2N − 2; a ¼ Nð8N2 − 5N − 3Þ
24

;

c ¼ Nð2N2 − N − 1Þ
6

: ð4:35Þ

From Table IX the irregular singularity contributes no
additional mass parameters and 2N − 2marginal couplings.
The theory has a Lagrangian description as

SOð2N þ 1Þ −USpð2N − 2Þ − SOð2N − 1Þ − � � �
− SOð5Þ −USpð2Þ − SOð3Þ

so we can compute the central charges using the field
content

nv ¼
Nð4N2 − 3N − 1Þ

3
; nh ¼

4NðN2 − 1Þ
3

: ð4:36Þ

Hence

a¼ Nð8N2 − 5N − 3Þ
24

; c¼ Nð2N2 −N − 1Þ
6

: ð4:37Þ

Moreover, the flavor central charge is supplied by
2N − 2 half-hypers in the fundamental representation of
SOð2nþ 1Þ; thus

kSOð2Nþ1Þ ¼ 2N − 2: ð4:38Þ

Again we see they are in agreement with (4.35),
Example 6. Half-hypermultiplet A free half-hyper-

multiplet in the fundamental representation of USpð2NÞ
flavor symmetry can be constructed using A2N (2,0)
theory with Z2 twist. The irregular puncture is specified
by

bt ¼ 4N þ 2; k ¼ 1 − ð4N þ 2Þ: ð4:39Þ

It is easy to see from our general formulas that the Coulomb
branch is empty in this case and the central charges are

kUSpð2NÞ ¼
1

2
; 2a ¼ c ¼ N

12
ð4:40Þ

as expected for a half-hyper in the fundamental represen-
tation of USpð2NÞ (or N free half-hypers).
We emphasize here that this is the only twisted theory

within our construction that has an empty Coulomb branch
yet nonvanishing central charge.
Example 7. Let us take G ¼ Canom

N−1 , which is derived
from the Z2 twist of DN (2,0) theory. We take N ¼ 3nwith
n ∈ Zþ and the irregular puncture is specified by

bt ¼ 6n; k ¼ 3 − 6n ð4:41Þ

so that Δ½z� ¼ 2n. The Coulomb branch spectrum and
central charges from our general formulas

Δ ¼ f2; 4;…; 2ng ⨆ f2; 4;…; 4n − 2g

kUSpð6n−2Þ ¼ 2n; a ¼ 1

24
ð66n2 − 33nþ 5Þ;

c ¼ 3n2 −
3n
2
þ 1

6
: ð4:42Þ

From Table X the irregular singularity contributes no
additional mass parameters and two marginal couplings.
The theory has a Lagrangian description by

We can then check the central charge by counting the
multiplets

nv ¼ ðn − 1Þð2n − 1Þ þ 2nð4n − 1Þ;
nh ¼ 2ðn − 1Þ · 2nþ 2n · 2ð3n − 1Þ; ð4:43Þ

which gives

a¼ 1

24
ð66n2 − 33nþ 5Þ; c¼ 3n2 −

3n
2
þ 1

6
: ð4:44Þ

Furthermore, the flavor central charge for USPð6N − 2Þ is

kG ¼ 2N ð4:45Þ

from the quiver, in perfect agreement with (4.42).
The simplest example in this sequence of theories is

when n ¼ 1, which can be equivalently described by a
cyclic quiver with two SUð2Þ nodes,

and comes from type A1 (2,0) theory on T2 with two
punctures. This theory has USpð4Þ enhanced flavor
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symmetry, which is manifest in our description from type
D3 (2,0) theory on P1 with twisted irregular punctures.35

Example 8. Let us take G ¼ Canom
N , which is engi-

neered from the Z2 twist of DNþ1 (2,0) theory. We take
N ¼ 3n and the irregular singularity specified by

bt ¼ 6n; k ¼ 3 − 6n ð4:46Þ

so that Δ½z� ¼ 2n. The Coulomb branch spectrum and
central charges from our general formulas

Δ ¼ f2; 4;…; 2ng ⨆ f2; 4;…; 4ng ⨆ f2nþ 1g

kUSpð6nÞ ¼ 2nþ 1; a ¼ 1

24
ð66n2 þ 45nþ 5Þ;

c ¼ 3n2 þ 3n
2
þ 1

6
: ð4:47Þ

From Table X the irregular singularity contributes one mass
parameter and two marginal couplings.

The Lagrangian description is given by

From the number of multiplets

nv ¼ ð2nþ 1Þð4nþ 1Þ þ nð2nþ 1Þ;
nh ¼ 3n · ð4nþ 2Þ þ ð4nþ 2Þ · nþ 2n; ð4:48Þ

we obtain the conformal central charges from (4.22),

a¼ 1

24
ð66n2 þ 45nþ 5Þ; c¼ 3n2 þ 2nþ 1

6
; ð4:49Þ

as well as the flavor central charge

kUSpð6nÞ ¼ 2nþ 1; ð4:50Þ

in agreement with (4.47).

Example 9. Consider the F4 theory constructed from
E6 (2,0) theory with Z2 twist and the irregular puncture
specified by

bt ¼ 12; k ¼ −9: ð4:51Þ

so that Δ½z� ¼ 2. The Coulomb branch spectrum and
central charges can be read off from our general formulas

Δ ¼ f10; 8; 6; 4; 2; 8; 6; 4; 2; 6; 4; 2; 4; 2; 4; 2g

kF4
¼ 8; a ¼ 203

6
; c ¼ 104

3
: ð4:52Þ

From Table XI the irregular singularity contributes no mass
parameter and five marginal couplings.

The theory has a Lagrangian description by

By counting multiplets we obtain the conformal central charges

a ¼ 203

3
; c ¼ 104

3
; ð4:53Þ

as well as the flavor central charge for the SOð9Þ ⊂ F4,

35This theory also appears in the sequence considered in example 3 at N ¼ 1.
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kSOð9Þ ¼ 8: ð4:54Þ

They are consistent with (4.52) since the index of embed-
ding Iso9↪f4 ¼ 1 and our description with irregular punc-
ture makes manifest the enhanced F4 flavor symmetry of
the theory.36

D. Twisted theories and non-Lagrangian
conformal matter

In addition to the Lagrangian examples discussed in the
last section, our twisted theories also generalize many non-
Lagrangian conformal matter theories constructed in class
S with regular (tame) punctures. Below we provide various
examples and their reincarnation in our construction with
twisted irregular punctures. Various physical data of these
conformal matter theories have been extracted from the SW
geometry, superconformal index, and decoupling limits of
certain Lagrangian theories. We view this information as
support for our construction of the much larger class of
theories and nontrivial evidence for our conjectured for-
mulas for the central charges (4.3) and (4.4). As we see in
the examples, our construction often makes manifest the
enhanced global symmetry that is obscure in the ordinary
(regular punctures) class S setup.
Example 10. R2;2N conformal matter. The R2;2N non-

Lagrangian theory was constructed in [22] from the Z2

twist of type A2N (2,0) theory with three regular punctures
on a sphere: one minimal untwisted puncture, and two
maximal twisted punctures.37 This theory also arises in the
decoupling limit of N ¼ 2 SUð2N þ 1Þ SYM coupled to
one symmetric and one antisymmetric rank two tensor
hypermultiplets in an S-dual frame [22].
The Coulomb branch spectrum of R2;2N SCFT is

Δ ¼ f3; 5; 7;…; 2N þ 1g ð4:56Þ

and the conformal central charges are

a ¼ 14N2 þ 19N þ 1

24
; c ¼ 8N2 þ 10N þ 1

12
: ð4:57Þ

The theory has enhanced Uð1Þ × USpð4NÞ flavor
symmetry where only the maximal subgroup Uð1Þ ×
USpð2NÞ × USpð2NÞ is manifest from the regular

punctures in A2N . The USpð4NÞ factor has central
charge

kUSpð4NÞ ¼ N þ 1: ð4:58Þ

Alternatively, the R2;2N theories can be constructed from
type-A4N (2,0) theory with Z2 twist and the twisted
irregular puncture is specified by

bt ¼ 4N; k ¼ 1 − 4N ð4:59Þ

such that Δ½z� ¼ 4N. One can immediately read off the
Coulomb branch spectrum from Table XIV and the result
coincides with (4.56). The manifest USpð4NÞ flavor
symmetry comes from the regular twisted puncture and
its flavor central charge is determined by (4.3) to be (4.58).
Our description also makes obvious Witten’s global
anomaly for USpð4NÞ [24]. From Table VIII we see that
the irregular puncture provides the additional mass param-
eter responsible for the Uð1Þ factor in the flavor symmetry.
It is also easy to check that the central charges computed
from (4.4) are consistent with the result (4.57) from [22].
Example 11 USpð2NÞ conformal matter. Let us con-

sider A2N (2,0) theory with Z2 twist and the irregular
puncture is specified by

bt ¼ 2N; k ¼ 1 − 2N ð4:60Þ

which gives Δ½z� ¼ 2N. For N even this is just the R2;2N

theories in the last example. Here we focus on N odd which
has USpð2NÞ flavor symmetry. Our general prescription
for the twisted theories give

Δ ¼ fN þ 1; N − 1;…; 2g

kUSpð2NÞ ¼
N
2
þ 1; a ¼ ð7N þ 5ÞðN þ 2Þ

48
;

c ¼ ð2N þ 1ÞðN þ 2Þ
12

: ð4:61Þ

From Table VIII we see the irregular puncture contributes
one marginal coupling but no mass parameters.
For N ¼ 5, this is related to the SUð2Þ4 ×USpð10Þ7

2

SCFT of [58] with Δ ¼ f4; 6g and ðnh; nvÞ ¼ ð35; 18Þ
where the SUð2Þ4 flavor symmetry is gauged by an SUð2Þ
vector multiplet.

For N ¼ 3, this is the rank one SUð2Þ4 × USpð6Þ5
2
SCFT

of [58] with Δ ¼ f4g and ðnh; nvÞ ¼ ð15; 7Þ where the
SUð2Þ flavor symmetry is gauged by a SUð2Þ vector
multiplet.
For N ¼ 1, we get the familiar N ¼ 4 SUð2Þ SYM with

nh ¼ nv ¼ 3 ! The SUð2Þ flavor symmetry with central

36Recall from [64] that the Dynkin index of embedding for
G ⊂ J is computed by

IG↪J ¼
P

iTðriÞ
TðrÞ ; ð4:55Þ

where r denotes a representation of J that decomposes into ⊕i ri
under G, and Tð·Þ computes the quadratic index of the repre-
sentation (which can be found for example in [65]).

37The theory was also constructed by the circle compactifi-
cation of a 5D N ¼ 1 SCFT with Z2 twist [66].
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charge kSUð2Þ ¼ 3
2
is now realized manifestly by the twisted

regular puncture in A2 (2,0) theory. It also carries Witten’s
global anomaly for SUð2Þ.
Example 12. SOð2N þ 1Þ and SOð2N þ 1Þ ×Uð1Þ

conformal matter Let us consider the A2N−1 (2,0)
theory with the Z2 twist and the irregular singularity is
defined by

bt ¼ 2N; k ¼ 1 − 2N ð4:62Þ

so that Δ½z� ¼ 2N. From the general formulas, we have

Δ ¼ fN − 1 − 2i > 1ji ≥ 0g
kSOð2Nþ1Þ ¼ N − 1 ð4:63Þ

and the conformal central charges

N even∶ a ¼ 7N2 − 5N − 10

48
; c ¼ 2N2 − N − 2

12
;

N odd∶ a ¼ 7N2 − 5N − 2

48
; c ¼ 2N2 − N − 1

12
: ð4:64Þ

From Table IX, in the N even case the irregular puncture
contributes no marginal couplings but one additional mass
parameter, whereas the N odd case has one marginal
coupling and no extra mass parameter.
Upon closer inspection, it turns out that this Z2 twisted

class A2N−1 setup does not make manifest the full flavor
symmetry. For N odd, the theory is identical to the
USpðN − 1Þ SYM conformally coupled to N þ 1 funda-
mental flavors, which has SOð2N þ 2Þ symmetry. For N
even the theory is identified with the R2;N−1 theories in [67].
Our formulas above again give the correct conformal and
current central charges as computed previously with
standard methods.
Example 13 G2 conformal matter. Let us consider the

D4 (2,0) theory with Z3 twist and choose the irregular
puncture to be given by

bt ¼ 12; k ¼ −8: ð4:65Þ

Then Δ½z� ¼ 3. Our general prescription gives

Δ¼ f2;3;3g; kG2
¼ 3; a¼ 27

8
; c¼ 7

2
: ð4:66Þ

From Table XII we see the irregular puncture contributes
one marginal coupling but no mass parameters.
This is identified with the E6 Minahan-Nemeschansky

(MN) theory [68] with an SUð3Þ subgroup of E6 flavor
symmetry gauged.

More explicitly, the relevant maximal Lie algebra embed-
ding is e6 ⊃ su3 ⊕ g2 with embedding indices determined
by the branching rule 27 → ð6; 1Þ ⊕ ð3; 7Þ to be

Ig2↪e6 ¼ 1; Isu3↪e6 ¼ 2: ð4:67Þ

Therefore the gauged SUð3Þ global symmetry has central
charge kSUð3Þ ¼ 6, which ensures conformal invariance.
The commutant G2 becomes the residue global symmetry
with kG2

¼ 3 consistent with (4.66).
Example 14 F4 ×Uð1Þ conformal matter. Let us

consider the E6 (2,0) theory with Z2 twist and the irregular
singularity is defined by

bt ¼ 8; k ¼ −7 ð4:68Þ

such that Δ½z� ¼ 8. The physical data from our general
formulas

Δ ¼ f4; 5g

kF4
¼ 5; a ¼ 14

3
; c ¼ 16

3
: ð4:69Þ

The full global symmetry of the theory is Uð1Þ × ðF4Þ5
where extra Uð1Þ comes from the irregular puncture (see
Table XI).
This theory is identified with the SOð9Þ5 ×Uð1Þ SCFT

in [21]. Note that our description predicts the enhancement
of flavor symmetry from SOð9Þ5 to ðF4Þ5.
Example 15 F4 conformal matter. Let us consider

another irregular defect in the E6 theory with Z2 twist
specified by

bt ¼ 12; k ¼ −10: ð4:70Þ

Then Δ½z� ¼ 6 and the physical data from our general
formulas

Δ ¼ f2; 2; 6; 6g;

kF4
¼ 6; a ¼ 47

6
; c ¼ 26

3
: ð4:71Þ

From Table XI, the irregular puncture contributes two
marginal coupling but no mass parameters.
This theory is identified with the ðE8Þ6 MN theory and

ðD4Þ2 SW theory38 with the diagonal ðG2Þ8 flavor sym-
metry subgroup gauged

38This is the familiar Seiberg-Witten theory constructed by
SUð2ÞN ¼ 2 SYM coupled to four fundamental hypermultiplets
[51]. The theory has SOð8Þ flavor symmetry with flavor central
charge kD4

¼ 2.
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The relevant subalgebras are g2⊕ f4⊂e8 and g2⊂so7⊂so8.
It follows from the branching rules 248 → ð14; 1Þ ⊕
ð7; 26Þ ⊕ ð1; 52Þ and 8 → 7 ⊕ 1 that

Ig2↪e8 ¼ Ig2↪so8 ¼ 1: ð4:72Þ

Thus the G2 diagonal subgroup of has central charge
6þ 2 ¼ 8, which ensures conformal invariance.

V. VERTEX OPERATOR ALGEBRA
OF TWISTED THEORIES

It was shown in [31] that for any 4D N ¼ 2 SCFT, one
can associate a 2D chiral algebra or VOA. The basic
correspondence is as follows:

(i) The 2D Virasoro central charge c2d is given in terms
of the conformal anomaly c4d of the 4D theory as

c2d ¼ −12c4d: ð5:1Þ

(ii) The global symmetry algebra g becomes an affine
Kac-Moody algebra ĝk2d and the level of affine Kac-
Moody algebra k2d is related to the 4D the flavor
central charge kF by

k2d ¼ −kF: ð5:2Þ

(iii) The (normalized) vacuum character of the chiral
algebra/VOA is identical to the Schur index of the
4D N ¼ 2 theory,

χ0ðqÞ ¼ ISchurðqÞ: ð5:3Þ

We focus on the twisted theory where there is no mass
parameter from the irregular singularity, and the regular
singularity is labeled by a nilpotent orbit Y.39 Our proposal
for the corresponding VOA is the following.
Conjecture 3. The VOA for the twisted theory is the

W-algebra Wk2dðG; YÞ. Here G is the flavor symmetry
corresponding to the maximal twisted regular puncture, and
Y labels the corresponding nilpotent orbit. This W algebra
is derived as the Drinfeld-Sokolov reduction of the Kac-
Moody algebra ĝk2d associated to the simple Lie algebra g at
level k2d.
The ADE cases of these W-algebras is considered in

[35,38], and here we discover the correspondence for

nonsimply laced simple Lie groups. We have verified the
relation between the 4D central charges and the 2D central
charges.

A. Admissible levels of the 2D current algebra

A 2D current algebra level is called admissible if it can
be written in one of the following forms:

k2d ¼ −hþ p
q
; ðp; qÞ ¼ 1; p ≥ h; G ¼ ADE;

k2d ¼ −h∨ þ p
q
; ðp; qÞ ¼ ðq; r∨Þ ¼ 1; p ≥ h∨;

G ¼ BCFG;

k2d ¼ −h∨ þ p
r∨q ; ðp;qÞ ¼ ðp; r∨Þ ¼ 1;

p ≥ h; G ¼ BCFG: ð5:4Þ

Recall the 2D levels in our case are given by the
following formula:

k2d ¼ −h∨ þ 1

n
bt

kþ bt
with kþ bt ≥ 1; ð5:5Þ

where bt takes the values of dt in Table VII and n is as listed
in Table XV. We observe that the 2D current algebra levels
of the class I twisted theories are admissible (for generic
k0 ∈ Z),

BN Class I∶ k2d¼−h∨þ 2N−1

2k0 þ1þ4N−2
;bt¼ 4N−2;

Canom
N Class I∶ k2d¼−h∨þ1

2

2Nþ1

4Nþ2þ2k0 þ1
;bt¼4Nþ2;

Canom
N Class I∶ k2d¼−h∨þ Nþ1

2Nþ3þ2k0
;bt¼ 2Nþ2;

G2 Class I∶ k2d¼−h∨þ 4

12þ3k0 �1
;bt¼ 12;

F4 Class I∶ k2d¼−h∨þ 9

18þ2k0 þ1
;bt¼ 18: ð5:6Þ

Note that for these cases the relevant torsion outer-auto-
morphism that defines the twisted irregular defect is always
generated by the twisted Coxeter element.
The Schur index of the twisted theory is then identified

with the vacuum character of vertex operator algebra,
which is particularly simple for the boundary levels [69],

k2d ¼ −h∨ þ h∨
q
; ðh∨; nÞ ¼ 1; ðh∨; qÞ ¼ 1: ð5:7Þ

39We use the Nahm label, which is classified by the nilpotent
orbits of the flavor symmetry groupG. Note that the Hitchin label
is classified by the nilpotent orbits of Langlands dual group G∨,
which is generated by the invariant subalgebra of the outer-
automorphism of ADE Lie algebra (see Table I).
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Comparing with the 2D levels in our list, we see that the
boundary levels appear for the BN , Canom

N ;G2; F4 cases.

B. Associated variety and Higgs branch

The Higgs branch of the 4D N ¼ 2 SCFT is identified
with the associated variety XV of the VOA [38,39]

MHiggs ¼ XV : ð5:8Þ

For affine Kac-Moody algebra with an admissible level [see
(5.6), which corresponds to the case Y ¼ F and we have a
maximal regular puncture], the associated variety XV ¼ XM
is found to be the closure of certain nilpotent orbits in [41],

XM ¼ Ōq for G ¼ BN; Canom
N ;G2; F4 XM ¼ LOq for G ¼ Canom

N : ð5:9Þ

We summarize the result of [41] for the relevant orbits Oq

and LOq here in Tables XVI–XIX.
For q ≥ hðgÞ, Oq is the same as the principal (maximal)

nilpotent orbit Oprin with quaternionic dimension

dimH Oprin ¼
1

2
ðdim g − rank gÞ: ð5:10Þ

Similarly for q ≥ h∨ðg∨Þ, LOq ¼ Oprin.
For other values of q, in Tables XVI and XVII, we give

the usual labeling of a nilpotent orbit of classical Lie
algebras by a partition ½ni�. The quaternionic dimension can
be easily computed by (see Sec. 6 of [70])

dimHO½ni� ¼
8<
:

Nð2Nþ1Þ
2

−1
4

P
i
s2i þ1

4

P
iodd

ri if g¼BN

Nð2Nþ1Þ
2

−1
4

P
i
s2i −1

4

P
iodd

ri if g¼CN;
ð5:11Þ

where ½si� is the transpose partition to ½ni�, and rj counts the
number of appearances of the part j in ½ni�. For exceptional
Lie algebras, we use the Bala-Carter labels [70] for the
nilpotent orbits in Tables XVI and XVII. We also include
the quaternionic dimensions for the reader’s convenience.
Near the lower end of the list of nilpotent orbits, we have

the minimal nilpotent orbit of the smallest nonzero dimen-
sion. It corresponds to the centered one-instanton moduli
space of g. Here the minimal nilpotent orbit of CN labeled
by partition ½2; 12N−2� shows up in Table XVI at q ¼ 1, in
which case the twisted theory is nothing but N free
hypermultiplets (see example 6). On the other hand, the
minimal nilpotent orbits of BN , G2 and F4 do not appear to
be Higgs branches of our twisted theories of the regular
semisimple type. These are consistent with the results of
anomaly matching on the Higgs branch in [63].
Example. For illustration we consider a class I F4 theory

in (5.6). We take k0 ¼ −7, so the 2D current algebra level

TABLE XVI. Nilpotent orbits LOq in CN Lie algebras.

Lie algebra g q odd LOq

CN q ≥ 2N − 1 Oprin ¼ ð2NÞ
q < 2N − 1 ðqþ 1; q;…; q|fflfflffl{zfflfflffl}

even

; sÞ; 0 ≤ s ≤ q − 1; s even

ðqþ 1; q;…; q|fflfflffl{zfflfflffl}
even

; q − 1; sÞ; 0 ≤ s ≤ q − 1; s even

TABLE XVII. Nilpotent orbits Oq in BN and CN Lie algebras.

Lie algebra g q odd Oq

CN q ≥ 2N Oprin ¼ ð2NÞ
q < 2N ðq;…; q|fflfflffl{zfflfflffl}

even

; sÞ; 0 ≤ s ≤ q − 1; s even

ðq;…; q|fflfflffl{zfflfflffl}
even

; q − 1; sÞ; 0 ≤ s ≤ q − 1; s even

BN q ≥ 2N Oprin ¼ ð2N þ 1Þ
q < 2N ðq;…; q|fflfflffl{zfflfflffl}

even

; sÞ; 0 ≤ s ≤ q; s odd

ðq;…; q|fflfflffl{zfflfflffl}
odd

; s; 1Þ; 0 ≤ s ≤ q − 1; s odd
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k2d ¼ −9þ 9
5
and we have q ¼ 5. Looking at Table XIX,

we conclude that the corresponding Higgs branch is the
closure of nilpotent orbit with label F4ða3Þ, which has
quaternionic dimension 20. The Coulomb branch spectrum
of this theory is Δ ¼ f6

5
; 12
5
; 16
5
; 18
5
; 22
5
; 24
5
; 36
5
; 42
5
g and the

central charges are a ¼ 247
15
, c ¼ 52

3
.

Let us consider the more general twisted theories where
the twisted irregular puncture is as before in (5.6) but the
twisted regular puncture is now labeled by a general
nilpotent orbit Y of the group G. The associated variety
XV is then given by

XV ¼ XM ∩ SY; ð5:12Þ

which describes the Higgs branch for these theories. Here
SY is the Slodowy slice defined by the nilpotent orbit
Y [38,39].

VI. CONCLUSION

We systematically studied irregular codimension-two
defects twisted by outer-automorphism symmetries in 6D
(2,0) theories. They engineer 4d N ¼ 2 AD SCFTs that
admit nonsimply laced flavor groups. We completed the
classification of twisted irregular defects of the regular
semisimple type, and the result was summarized in
Table IV. Together with the classification of the ADE cases
in [16], we have a large class of Argyres-Douglas theories

with arbitrary simple flavor groups. We outlined a simple
procedure to extract their Coulomb branch spectrum,
central charges and in some cases, the 2D chiral algebra
and Higgs branch. One can also consider the degenerations
of irregular singularities and regular singularities as in
[16,53,54], which give rise to many new AD theories.
The theories we constructed here should be thought of as

building blocks towards a better understanding of the full
space of 4D N ¼ 2 SCFTs. On one hand, by conformally
gauging the flavor symmetries of these AD theories we can
form new 4D N ¼ 2 SCFTs. On the other hand, some of
our theories admit exact marginal deformations, and it is
interesting to study S-duality and weakly coupled gauge
theory descriptions (which may involve non-Lagrangian
matters) of these theories using the method in [53,54].
In this large space of theories, we saw various relations

between the physical data, such as those between the
central charges and Coulomb branch spectrum, that call
for explanations. For example, it would be nice to develop
field-theoretic proofs for our conjectured formulas for the
central charges (4.4) and (4.3) perhaps along the lines of
[62]. It would also be interesting to verify that the vacuum
character of our proposed VOA matches with the Schur
index of the 4D theory using the 2D TQFT [71–74].
Lastly, we identified the VOA for the twisted theories

defined using irregular defects that do not carry any flavor
symmetry. It would be interesting to identify the VOA for
the remaining theories.40

We hope to address some of these directions in future
work.
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TABLE XVIII. Nilpotent orbits Oq in G2 Lie algebra.

Lie algebra g q ≠ 0 mod 3 Oq dimH

G2 ≥ 6 G2 6
4,5 G2ða1Þ 5
2 Ã1 4
1 0 0

TABLE XIX. Nilpotent orbits Oq in F4 Lie algebra.

Lie algebra g q odd Oq dimH

F4 ≥ 12 F4 24
9,11 F4ða1Þ 23
7 F4ða2Þ 22
5 F4ða3Þ 20
3 Ã2 þ A1 18
1 0 0

40This includes in particular the R2;2N theories of [22].
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