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We study spherically symmetric solutions in a four-parameter Einstein-Cartan–type class of theories. These
theories include torsion, as well as the metric, as dynamical fields and contain only two physical excitations
(around flat spacetime): a massless spin-2 excitation and a massive spin-2 one (of massm2 ≡ κ). They offer a
geometric framework (which we propose to call “torsion bigravity”) for a modification of Einstein’s theory
that has the same spectrum as bimetric gravity models. We find that the spherically symmetric solutions of
torsion bigravity theories exhibit several remarkable features: (i) they have the same number of degrees of
freedom as their analogs in ghost-free bimetric gravity theories (i.e., one less than in ghostfull bimetric gravity
theories); (ii) in the limit of a smallmass for the spin-2 field (κ → 0), no inverse powers of κ arise at the first two
orders of perturbation theory (contrary to what happens in bimetric gravity where 1=κ2 factors arise at linear
order, and 1=κ4 ones at quadratic order). We numerically construct a high-compactness (asymptotically flat)
star model in torsion bigravity and show that its geometrical and physical properties are significantly different
from those of a general relativistic star having the same observable Keplerian mass.
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I. INTRODUCTION

Einstein’s theory of gravitation, i.e., general relativity
(GR), has, so far, been found to be in excellent accord with
all gravitational observations and experiments. In particular,
its foundational stone, the weak equivalence principle,
has recently been confirmed at the 10−14 level [1], while
gravitational-waveobservationshave confirmed several basic
dynamical predictions of GR [2,3]. (See, e.g., Chap. 20 in
Ref. [4] for a review of the experimental tests of GR.)
However, since the discovery of GR more than a century

ago, the quest for possible extensions of GR has been going
on. We shall not discuss here the various motivations under-
lying the study of modified theories of gravity (see Ref. [5]
for a review). Let us only mention that, from a pragmatic
point of view, it is useful to have alternative theories of
gravity to conceive and interpret tests of gravity [6].
Here, we study a class of geometric theories of gravitation

that generalize the Einstein-Cartan theory. The original idea
of Cartan [7–9] was to extend GR by considering the metric
and the (affine) connection as a priori independent fields
(first-order formalism), and by allowing the connection1 to
have nonzero torsion. Cartan added the idea that torsion
might be sourced by some sort of intrinsic spin density along
the matter worldlines.2 Later, Weyl pointed out that it is

natural, in such a first-order formalism, to consider that
fermions (Dirac spinors) directly couple to the connection,
so that the torsion Ti½jk� ¼ −Ti½kj� is sourced by the micro-
scopic (quantum) spin density of fermions ∼ 1

2
ψ̄γiγ½jγk�ψ .

(As explained in detail below, the latin indices i; j; k;…,
denote frame indices.) He also showed that if one follows
Einstein and Cartan in using as gravitational action the first-
order formof the scalar curvature, the torsion is algebraically
determined by its source and the first-order action is
equivalent to a second-order (purely metric) action contain-
ing additional “contact terms” quadratic in the torsion
source, and therefore quartic in fermions. The ideas of
Cartan and Weyl were further developed by Sciama [10],
Kibble [11], and many others (see [12] for a review of
later work on this approach based on gauging the Poincaré
group).
A new twist in the story started after the discovery of

supergravity [13], and especially of its first-order formu-
lation [14]. Indeed, the first-order formulation of super-
gravity is similar to the Einstein-Cartan-Weyl approach,
with a gravitational term linear in the scalar curvature and a
nonzero torsion Ti½jk� algebraically determined in terms of
its gravitino source ∼ψ̄ jγ

iψk, leading, after replacement in
the action, to contact terms quartic in the gravitino. How-
ever, quantum loops generate an effective action containing
terms at least quadratic in the curvature. When considered
in a purely metric, second-order formulation, terms quad-
ratic in the curvature lead to higher-order field equations,
which raise difficulties [15], in the form of “ghosts”
(negative-energy modes), even at the classical level [16].

1Cartan worked within a vielbein formalism, in which the
affine connection is naturally restricted to be metric preserving;
see below.

2“En admettant la possibilité d’ éléments de matière doués de
moments cinétiques non infiniment petits par rapport à leur
quantité de mouvement.”; bottom of p. 328 in [7].
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This raised the issue of finding ghost-free theories of
gravity with an action containing terms quadratic in cur-
vature, but treated in a first-order formulation. Indeed, such
a formulation leads to second-order-only field equations for
the metric and the connection [17,18], so that the torsion
now propagates away from its source. The most general
solution to finding such ghost-free and tachyon-free
(around Minkowski spacetime) theories with propagating
torsion was obtained in parallel work by Sezgin and van
Nieuwenhuizen [19,20], and by Hayashi and Shirafuji
[21–24]. It was found that there are 12 six-parameter
families of ghost-free and tachyon-free theories with
propagating torsion [20,24]. These theories always contain
an Einstein-like massless spin-2 field, together with some
(generically) massive excitations coming from the torsion
sector. The possible spin-parity labels of the excitations
propagated by the torsion sector are 2þ, 2−, 1þ, 1−, 0þ, 0−.
Only certain combinations of these spin parities can be
present in the various six-parameter families of ghost-free
and tachyon-free theories with propagating torsion (see
Table I in [24] or Table I in [20]).
One of these classes of theories (with torsion propagating

both massive 2þ and massive 0− excitations) has recently
been studied with the hope that the massive spin-2 field it
contains will define a new, more geometric, solution to
having a healthy and cosmologically relevant infrared
modification of gravity [25,26]. We recall that the physics
of an ordinary, massive3 Fierz-Pauli–type [27–29] spin-2
field raises many subtle issues going by the names of van
Dam–Veltman–Zakharov discontinuity [30,31], Vainshtein
(conjectured) mechanism [32], and Boulware-Deser ghost
[33]. A breakthrough in the problem of defining a class of
consistent, ghost-free nonlinear theories of a massive spin-2
field was achieved in Ref. [34]. This then allowed the
construction of a class of consistent, ghost-free nonlinear
theories of bimetric gravity [35].
The aim of the present paper is to study the four-

parameter subclass of the propagating-torsion models of
Refs. [19–26] that is similar to the bimetric gravity models
of [35] in the sense that it contains only two types of
excitations: an Einstein-like massless spin-2 excitation, and
a positive-parity massive spin-2 one. To emphasize this
similarity we shall often refer to the models we study as
defining a theory of torsion bigravity. We think that the
geometric origin of the massive spin-2 additional field
(contained among the torsion components, rather than
through a second metric) makes such a torsion bigravity
model an attractive alternative to the usually considered
bimetric gravity models. In particular, the fact that massive
gravity is described in these models by a different Young
tableau than the more familiar (symmetric tensor) models
completely changes the various issues linked to nonlinear
effects and renders the study of their physical properties

a priori interesting. Some of the results of previous work on
such models [25,26,36–39] has shown them to be remark-
ably healthy and robust around various backgrounds
(though Ref. [39] found the presence of gradient insta-
bilities around the self-accelerating torsionfull cosmologi-
cal solution found in [36]; but these instabilities might be
due to the endemic stability problems of self-accelerating
cosmological universes rather than to the theory itself).
Anyway, let us emphasize here that the existence of the
self-accelerating solution of Ref. [36] necessarily relied on
the presence in the spectrum of both 2þ and 0− excitations.
In the present work we focus on the minimal model
containing only the 2þ excitation (besides the Einstein
massless graviton). This minimal torsion bigravity model
has not yet received any specific attention in the literature
beyond its linearized approximation (which follows from
the general linearized-limit results of Refs. [23,26,40]).
Let us note in passing, for the cognoscenti, that we are

talking here about positive-parity spin-2 excitations con-
tained in the torsion field Ti½jk�, and not of the “dual
gravity,” negative-parity spin-2 excitation contained in the
irreducible SO(3,1) Young tableau T ½ab�c (satisfying T ½ab�cþ
T ½bc�a þ T ½ca�b ¼ 0) introduced by Curtright [41,42].
Among the propagating torsion models of Refs. [20,24]
some give rise to massive 2− excitations and some to
massive 2þ ones, but the two parities cannot be simulta-
neously present in ghost-free models.
As we started this Introduction by recalling that the

source of torsion is the microscopic (quantum) spin of
elementary fermions, the reader might worry that this
would prevent the existence of phenomenologically rel-
evant, macroscopic torsion fields in ordinary, non-spin-
polarized systems, such as stars, planets, or even neutron
stars.4 However, as was already noticed in Refs. [23,26],
and as will be clear in the present work, the mere presence
of a usual, Einstein-like energy-momentum tensor Tμν

suffices to generate macroscopic torsion fields. In the
following, we shall then, for simplicity, set the torsion
source to zero and consider only the effect of the energy-
momentum source Tμν.

II. FORMALISM AND ACTION
OF TORSION BIGRAVITY

Here, we essentially follow the notation of Refs. [21–24]
(which we also used in our previous paper [39]). Latin
indices i; j; k;… ¼ 0, 1, 2, 3 (moved by the Minkowski
metric ηij; ηij) are used to denote Lorentz-frame indices
referring to a vierbein eiμ (with inverse eiμ), while Greek
indices μ; ν;… ¼ 0, 1, 2, 3 (moved by the metric
gμν ≡ ηijeiμejν) are used to denote spacetime indices linked
to a coordinate system xμ. When there is a risk of

3Especially with a very small mass, say of cosmological scale.

4We leave to future work a study of the amount of spin
polarization in a strongly magnetized neutron star.
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confusion, we add a hat, e.g., eîμ, on the frame indices. The
signature is mostly plus.
The (first-order) action is expressed in terms of two basic

independent fields: (i) the (inverse) vierbein eiμ; and (ii) a
general SO(3,1) connection Ai

jμ, which is metric preserv-
ing (i.e., Aijμ ¼ −Ajiμ, where Aijμ ≡ ηisAs

jμ). The most
general ghost-free and tachyon-free (around Minkowski
spacetime) action containing only a massless spin-2 exci-
tation and a (positive-parity) massive spin-2 one has four
parameters5 and can be written as

Stotal ¼ STBG½eiμ; Aijμ� þ Smatter: ð2:1Þ

The torsion bigravity part, STBG, of the action reads

STBG½eiμ;Aijμ� ¼
Z

d4x
ffiffiffi
g

p
LTBG½e;∂e;∂2e;A;∂A�; ð2:2Þ

where
ffiffiffi
g

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

p ≡ det eiμ, and

LTBG ¼ cRR½e; ∂e; ∂2e� þ cFF½e; A; ∂A�
þ cF2

�
FðijÞFðijÞ −

1

3
F2

�
þ c34F½ij�F½ij�: ð2:3Þ

Here, we use the letter R to denote the various curvatures
defined by the Riemannian structure (curvature tensor
Ri

jkl ≡ Ri
jμνekμelν, Ricci tensor Rij ¼ Rk

ikj, and curvature
scalarR ¼ ηijRij), and the letterF to denote the correspond-
ing Yang-Mills–type curvatures defined by the SO(3,1)
connection Ai

jμ [curvature tensor Fi
jkl ≡ Fi

jμνðAÞekμelν,
Ricci tensor FijðAÞ ¼ Fk

ikj, and curvature scalar FðAÞ ¼
ηijFij]. Note that, because of the projections on the frame, the
frame components of the F-type curvature depend algebrai-
cally on the vierbein eiμ, besides depending on Ai

jμ and its
first derivatives. See Appendix A for more details on the
definition of these objects and for the relation with the
notation used in our previous paper [39]. (An explicit form of
the general field equations can also be found in the latter
reference.)
The torsion bigravity Lagrangian (2.3) a priori depends

on four parameters: cR, cF, cF2 , and c34. Actually, the last
one, c34, will not enter in the discussion of spherically
symmetric solutions. This leaves us with three relevant
parameters. The analysis of Refs. [20,24] has shown that
the absence (around a Minkowski background) of pathol-
ogies (ghosts or tachyons) require the three parameters cR,
cF, cF2 to be positive. Actually, they are related to the
gravitationlike coupling constants G0 (linked to massless
spin-2 exchange) and Gm (linked to massive spin-2

exchange), and to the mass6 κ ≡m2 of the massive
spin-2 excitation, by the relations

cR þ cF ≡ λ ¼ 1

16πG0

;

cF
cR

≡ η ¼ 3

4

Gm

G0

;

cF2 ¼ ηλ

κ2
¼

cFð1þ cF
cR
Þ

κ2
: ð2:4Þ

Here, we have introduced (following [19]) the notation λ
for the sum cR þ cF of the two curvature coefficients. It is
indeed this sum which measures (at least in the weak field
limit) the usual Einsteinian gravitational coupling constant
1=ð16πG0Þ. We have also introduced the notation η for the
dimensionless ratio cF=cR, which measures (within a factor
4
3
linked to the difference between the massless, Sμν0 ¼ Tμν−

1
2
Tημν, and massive, Sμνm ¼ Tμν − 1

3
Tημν, spin-2 matter

couplings7) the ratio of couplings to matter. It is tempting
to conjecture that, for general solutions, the ultraminimal
class of theories defined by the three parameters G0, Gm,
and κ ¼ m2, taking c34 ¼ 0, will have the best possible
nonlinear behavior.
The difference between the affine connection Ai

jμ and
the torsionless Levi-Civita connection ωi

jμðeÞ defined by
the vierbein eiμ is called the contorsion tensor,

Ki
jμ ≡ Ai

jμ − ωi
jμðeÞ: ð2:5Þ

The frame components Ki
jk ≡ ekμKi

jμ of the contorsion
tensor are related to the frame components Ti½jk� ¼ −Ti½kj�
of the torsion tensor by the relations

Kijk ¼
1

2
ðTi½jk� þ Tj½ki� − Tk½ij�Þ;

Ti½jk� ¼ Kijk − Kikj: ð2:6Þ
(Note that Ti½jk� ¼ −Ti½kj� while Kijk ¼ −Kjik.) The field
equations are linear in the second-order derivatives of eiμ
and Ai

jμ when using these quantities as basic fields in the
action. One should avoid the use of the vierbein and the
torsion as basic fields because this introduces, in view of
the link (2.5) which involves first derivatives of the
vierbein, third derivatives of the vierbein in the field
equations. One should rather consider the torsion as a field
that is a posteriori derived from the basic fields.
Let us emphasize that the first-order formalism

used in the Einstein-Cartan(-Weyl-Sciama-Kibble) theory

5See the Appendix B for a discussion and the link with our
previous notation.

6Here, the “mass,” κ, of the massive spin-2 field refers to the
inverse of its (reduced) Compton wavelength, i.e., the parameter
entering the exponential decay ∝ e−κr of a static torsion field.

7In the Newtonian limit, we have, indeed, S000 ¼ 1
2
T00 while

S00m ¼ 2
3
T00 ¼ 4

3
S000 .
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considered here (which is often called “Poincaré gauge
theory”) is fundamentally different from the often consid-
ered Palatini-type (“metric-affine”) first-order formalism.
In both formalisms one independently varies the metric and
the connection, and one a priori allows for the presence of
torsion, i.e., for a nonsymmetric part of the connection:

Tλ
μν ≡ Γλ

μν − Γλ
νμ ≡ 2Γλ½μν�: ð2:7Þ

However, in the Palatini approach (which is usually
performed in a coordinate frame) one independently varies
all the components of a (symmetric metric) gμν and of a
(nonsymmetric) connection Γλ

μν. This yields 10 equations
obtained by varying gμν together with 43 ¼ 64 equations
obtained by varying the connection Γλ

μν. By contrast, in the
Cartan-type approach used here, one gets 16 equations by
varying eiμ and only 24 equations by varying Aijμ ¼ −Ajiμ.
Because of the (chosen) local-Lorentz invariance of the
action the 16 vierbein equations are submitted to 6 Noether
identities (linked to infinitesimal local Lorentz rotations
ω½ij�; see, e.g., [12,21,37]) and are therefore essentially
equivalent to 10 field equations obtained by varying gμν. By
contrast, the 64 connection equations of the Palatini
approach are stronger than the 24 equations obtained by
varying A½ij�μ. For instance, if the connection does not
directly couple to matter, it has been shown [43,44] that a
general Palatini action of the

ffiffiffi
g

p
fðRðμνÞÞ type (whereRðμνÞ

denotes the symmetric part of the Ricci tensor defined by
the nonsymmetric connection Γλ

μν) yields algebraic equa-
tions for the connection that determine it (modulo an
additional “projective” term δλμAν) to be the torsionless
Levi-Civita connection of the auxiliary gothic metricffiffiffi
q

p
qμν ≡ δ½ ffiffiffi

g
p

fðRðμνÞÞ�=δRðμνÞ. As the projective term
drops out of the action (because it does not contribute to
RðμνÞ and is assumed not to couple directly to matter), one
ends up with a theory of gravity where the metric qμν is an
Einstein-frame metric having the usual Einstein-Hilbert
dynamics, but where the matter is coupled to the different
metric gμν, with some nonlinear relation between these two
metrics and the matter stress-energy tensor Tμν. In these
theories, there are no dynamical effects linked to a
propagating torsion. On the other hand, in the generalized
Cartan-type theories considered here, the torsion field is a
dynamical field, which is generated by the matter stress-
energy tensor Tμν even in the absence of direct coupling of
the connection to matter, which propagates away from the
material sources, and which has physical effects via its
coupling to the physical metric gμν.
From the technical point of view, the crucial difference

between the Cartan-type and Palatini-type approaches is
that the SO(3,1) connection A½ij�μ is algebraically con-
strained to be metric preserving. This means that, in
order to derive the Cartan-type field equations within a

coordinate-based Palatini approach one needs to add to the
action density a Lagrange multiplier term, sayZ

d4xΛλðμνÞQλ;ðμνÞ ≡
Z

d4xΛλμν∇Γ
λ gμν; ð2:8Þ

where Qλ;ðμνÞ ≡∇Γ
λ gμν denotes the covariant derivative of

the metric with respect to the general (a priori nonsym-
metric) affine connection Γλ

μν. Note that the presence of
this term in the action then contributes to the 64 equations
obtained by varying the connection by additional terms
involving the 40 unknown Lagrange multipliers ΛλðμνÞ.

III. STATIC SPHERICALLY SYMMETRIC
METRICS AND CONNECTIONS

In the present paper, we investigate static spherically
symmetric solutions of torsion bigravity. We assume
from the beginning that the solutions are the following:
(i) time-reversal invariant; (ii) SO(3) invariant; and (iii) par-
ity invariant. Under these assumptions, we can use a
Schwarzschild-like radial coordinate and denote

e2Φ ≡ −g00; ð3:1Þ

e2Λ ≡ grr; ð3:2Þ

so that the metric reads

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð3:3Þ

We then correspondingly define the co-frame eî ¼ eîμdxμ

as

e0̂ ¼ eΦdt; e1̂ ¼ eΛdr;

e2̂ ¼ rdθ; e3̂ ¼ r sin θdϕ: ð3:4Þ

The structure of a general (possibly torsionfull) connection
under the just stated assumptions (i)–(iii) has been deter-
mined by Rauch and Nieh [45]. This structure is clear when
using Cartesian-like coordinates x0, xa (with a ¼ 1, 2, 3),
and a corresponding Cartesian-like co-frame e0̂; eâ. Time-
reversal invariance implies that the only nonvanishing
components of a general connection must form a vector
Aâ 0̂ 0̂ ¼ −A0̂ â 0̂ and a three-index tensor Aâ b̂ ĉ ¼ −Ab̂ â ĉ.
Then spherical symmetry implies that the vector Aâ 0̂ 0̂ must
be in the radial direction na, say

Aâ 0̂ 0̂ ¼ V̄ðrÞna; ð3:5Þ

with some radial function V̄ðrÞ, while spherical symmetry,
and parity invariance (which forbids the presence of the
Levi-Civita tensor ϵâ b̂ ĉ) imply that the three-index tensor
A½â b̂�ĉ must be of the form
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A½â b̂�ĉ ¼ W̄ðrÞðnaδbc − nbδacÞ; ð3:6Þ

with a second radial function W̄ðrÞ. Therefore the most
general affine connection [under the assumptions (i)–(iii)]
involves two a priori unknown radial functions. When
reexpressing these results in terms of the polar-type frame
(3.4), one finds that the two unknown radial functions
parametrizing a general affine connection can be chosen as
being

VðrÞ ¼ A1̂
0̂ 0̂ ¼ þA0̂

1̂ 0̂; ð3:7Þ

WðrÞ ¼ A1̂
2̂ 2̂ ¼ A1̂

3̂ 3̂ ¼ −A2̂
1̂ 2̂ ¼ −A3̂

1̂ 3̂: ð3:8Þ

Note that V and W are components along our basic
orthonormal frame (3.4).
Then the nonvanishing components of the connection

one-form are found to be

A1̂
0̂ ¼ þA0̂

1̂ ¼ VðrÞe0̂;
A1̂

2̂ ¼ −A2̂
1̂ ¼ WðrÞe2̂;

A1̂
3̂ ¼ −A3̂

1̂ ¼ WðrÞe3̂;
A2̂

3̂ ¼ −A3̂
2̂ ¼ −r−1 cot θe3̂: ð3:9Þ

Note that the last component (in the θ;φ 2-plane)
is independent of the unknown functions V, W, but
depends only on the use of a polar-type frame, with a
Schwarzschild-like radial coordinate.
The nonzero components of the torsionless Levi-Civita

connection one-form, ωi
jμðeÞ, defined by the metric (3.3),

are found to be [using Eq. (A9)]

ω1̂
0̂ ¼ þω0̂

1̂ ¼ Φ0e−Λe0̂;

ω1̂
2̂ ¼ −ω2̂

1̂ ¼ −r−1e−Λe2̂;

ω1̂
3̂ ¼ −ω3̂

1̂ ¼ −r−1e−Λe3̂;

ω2̂
3̂ ¼ −ω3̂

2̂ ¼ −r−1 cot θe3̂: ð3:10Þ

Note that the last component is (as necessary) the same as
for the general affine connection A, and that the nonzero
components of the contorsion tensor are then found to be
(modulo the antisymmetry with respect to the first two
spatial indices in the second equation)

K1̂
0̂ 0̂ ¼ K0̂

1̂ 0̂ ¼ V − e−ΛΦ0;

K1̂
2̂ 2̂ ¼ K1̂

3̂ 3̂ ¼ W þ r−1e−Λ: ð3:11Þ

Because of the restricted number of nonzero components,
the nonzero components of the torsion tensor Ti½jk� (which
is antisymmetric with respect to the last two indices) are the
same (modulo some permutation of indices) as those of the

contorsion tensor Kijk ¼ K½ij�k (which is antisymmetric
with respect to the first two indices), e.g.,

T 0̂½1̂ 0̂� ¼ K0̂ 1̂ 0̂ ¼ −K1̂ 0̂ 0̂ ¼ −K1̂
0̂ 0̂;

T 2̂½1̂ 2̂� ¼ K2̂ 1̂ 2̂ ¼ K3̂ 1̂ 3̂ ¼ T 3̂½1̂ 3̂� ¼ −K1̂
2̂ 2̂: ð3:12Þ

Using (3.9) we can construct the Einstein tensor of the A
connection:

GijðAÞ≡ FijðAÞ −
1

2
ηijFðAÞ: ð3:13Þ

This tensor happens to be symmetric, GijðAÞ ¼ GjiðAÞ,
under our (static, spherically symmetric) assumptions. Its
nonzero components read

Gt̂ t̂ ¼
1

r2
−W2 þ 2e−Λ

ðrWÞ0
r

;

Gr̂ r̂ ¼ −2VW −
1

r2
þW2;

Gθ̂ θ̂ ¼ Gϕ̂ ϕ̂ ¼ −VW − e−Λ
ðrWÞ0
r

þ e−Φ−ΛðeΦVÞ0: ð3:14Þ

For additional clarity, we used here a more explicit notation
for the frame indices:

t̂ ¼ 0̂; r̂ ¼ 1̂; θ̂ ¼ 2̂; ϕ̂ ¼ 3̂: ð3:15Þ

IV. TORSION BIGRAVITY ACTION

Using the previous formulas we can now write down the
action and derive from it the field equations. (We have
checked that varying the spherically symmetric-reduced
action does yield field equations that are equivalent to the
spherically symmetric-reduced field equations, as derived
directly from the general field equations in Ref. [45].) We
recall that the structure of the action is

S ¼ Sfield þ Sm: ð4:1Þ

The variation of the matter action Sm with respect to the
metric reads

δSm ¼
Z

δð ffiffiffi
g

p
LmÞd4x ¼ 1

2

Z ffiffiffi
g

p
Tμνδgμνd4x; ð4:2Þ

while we assume here that its variation with respect to the
SO(3,1) A connection (linked to the local, quantum, spin
density) vanishes.
The field action is the sum of various contributions:

Sfield ¼ SR þ SF þ SF2 ¼
Z

d4x
ffiffiffi
g

p fLR þ LF þ LF2g:

ð4:3Þ
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Here (neglecting to write the “double-zero” term ∝ F2
½ij�)

LR ¼ cRR½g�;
LF ¼ cFF½g; A�;

LF2 ¼ cF2

�
F2
ðijÞ −

1

3
F2

�
; ð4:4Þ

and

d4x
ffiffiffi
g

p ¼ dtðwðrÞdrÞðsin θdθdϕÞ; ð4:5Þ

where

wðrÞ≡ r2eΦþΛ: ð4:6Þ

For notational simplicity, we shall often omit below in the
action the trivial (field-independent) volume factor
dtðsin θdθdϕÞ, so as to work with a radial action
S0 ¼ R

drwðrÞL.
The usual Einstein-Hilbert term is explicitly computed as

being

wRðgÞ ¼ r2eΦþΛ
�
−4e−Λ

ðe−ΛÞ0
r

− 2e−Φ−ΛðeΦ−ΛΦ0Þ0

þ 2

r2
−
2e−2Λ

r2
− 4

e−2Λ

r
Φ0
�
; ð4:7Þ

which can be rewritten in the form

wRðgÞ ¼ 2eΦþΛ d
dr

½rð1 − e−2ΛÞ� þ d
dr

QðrÞ; ð4:8Þ

where

QðrÞ ¼ −2r2eΦ−ΛΦ0: ð4:9Þ

Note that in this form, the first term is linear in the first
derivatives of the metric variables (actually linear in Λ0).
The affine-connection analog of the Einstein-Hilbert term is
obtained by inserting Eqs. (3.14) in

wFðAÞ ¼ −wGðAÞ ¼ w½Gt̂ t̂ −Gr̂ r̂ − 2Gθ̂ θ̂�; ð4:10Þ

where we used the fact that

GðAÞ ¼ ηij
�
FijðAÞ −

1

2
ηijFðAÞ

�
¼ −FðAÞ: ð4:11Þ

To streamline the structure of the terms depending on the
derivatives of V andW, it is useful to introduce a shorthand
notation for the kind of covariant derivatives of V and W
entering Eqs. (3.14), namely

∇V ≡ e−Φ−ΛðeΦVÞ0 ¼ e−ΛðV 0 þΦ0VÞ; ð4:12Þ

∇W ≡ e−Λ
ðrWÞ0
r

¼ e−Λ
�
W0 þW

r

�
: ð4:13Þ

We also introduce a shorthand notation for the term
involving the square of W, namely

W2
− ≡W2 −

1

r2
: ð4:14Þ

With this notation, we have

FðAÞ ¼ 4∇W − 2∇V þ 4VW − 2W2
−: ð4:15Þ

Concerning the contribution quadratic in FijðAÞ, it is
easy to see that

F2
ij ¼

�
Fij −

1

2
ηijF

�
2

¼ G2
ij ð4:16Þ

so that LF2 can be directly expressed in terms of GijðAÞ as

LF2 ¼ cF2

�
G2

ðijÞ −
1

3
G2

�
: ð4:17Þ

Inserting the expressions (3.14) for the components of Gij,
and using the shorthand notation introduced above, leads to

3

2

�
G2

ðijÞ −
1

3
G2

�
¼ ð∇V þ∇WÞ2 þ 2∇VðVW − 2W2

−Þ

þ 2∇Wð−5VW þW2
−Þ

þ ðVW þW2
−Þ2: ð4:18Þ

At this stage, the various contributions to the action take the
form

wLR ¼ 2cReΦþΛ d
dr

ðrð1 − e−2ΛÞÞ þ d
dr

ðcRQðrÞÞ;
wLF ¼ cFr2eΦþΛð4∇W − 2∇V þ 4VW − 2W2

−Þ;

wLF2 ¼ 2

3
cF2r2eΦþΛfð∇V þ∇WÞ2

þ 2∇VðVW − 2W2
−Þ þ 2∇Wð−5VW þW2

−Þ
þðVW þW2

−Þ2g: ð4:19Þ

A remarkable fact about this action is that the only term
containing the square of derivatives is the contribution ∝
ð∇V þ∇WÞ2 in LF2 . It is then convenient to add a so-
called “double-zero” term to the action, so as to end up with
an equivalent action which is only linear in derivatives.
(In the present case, this is also equivalent to making a
Legendre transform.)
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To explain the idea behind this transformation, let us first
consider a toy model with the Lagrangian

Lold
toy ¼ _q2 þ 2AðqÞ _q − VðqÞ: ð4:20Þ

We can eliminate the square of the derivative of q by adding
the following double-zero term to the Lagrangian, involv-
ing a new, independent variable π:

ΔLðπ; _q; qÞ ¼ −½π − ð _qþ AðqÞÞ�2: ð4:21Þ

Indeed, the equation of motion of π obtained by varying
Lold
toy þ ΔL is

−2½π − ð _qþ AðqÞÞ� ¼ 0: ð4:22Þ

Then themodification of the equation ofmotion of q coming
from varying ΔLðπ; _q; qÞ will involve [because of the
quadratic nature of ΔLðπ; _q; qÞ] a factor ½π − ð _qþ AðqÞÞ�,
which vanishes when π is on-shell. This shows that the
action

Lnew
toy ðπ; _q; qÞ ¼ Lold

toyð _q; qÞ þ ΔLðπ; _q; qÞ ð4:23Þ

leads to equivalent equations of motion. But the latter action
is first order in derivatives. Indeed,

Lnew
toy ðπ; _q; qÞ ¼ Lold

toy − ½π − ð _qþ AðqÞÞ�2
¼ 2π½ _qþ AðqÞ� − π2 − AðqÞ2 − VðqÞ
¼ 2π _q − ðπ − AðqÞÞ2 − VðqÞ: ð4:24Þ

On the last linewe recognize the result ofmaking aLegendre
transformation from _q to 2π ¼ δLold

toy=δ _q.
In our case, we choose to introduce as a new variable the

only combination of covariant derivatives of V and W that
enters quadratically in the action, namely

π ¼ ∇V þ∇W: ð4:25Þ

We then add to the original action the double-zero term

−
2

3
cF2r2eΦþΛð∇V þ∇W − πÞ2;

which yields

wLnew
F2 ¼ 2

3
cF2r2eΦþΛf2πð∇V þ∇WÞ

−π2 þ 2∇VðVW − 2W2
−Þ

þ2∇Wð−5VWþW2
−Þ þ ðVW þW2

−Þ2g: ð4:26Þ

The field action then looks as follows:

S0field ¼
Z

drf2cReΦþΛ∂r½rð1 − e−2ΛÞ�

þ cFr2eΦþΛð4∇W − 2∇V þ 4VW − 2W2
−Þ

þ 2

3
cF2r2eΦþΛ½2πð∇V þ∇WÞ − π2

þ 2∇VðVW − 2W2
−Þ þ 2∇Wð−5VW þW2

−Þ
þðVW þW2

−Þ2�g: ð4:27Þ

We use the macroscopic energy-momentum tensor,

Tμν ¼ ½ρðrÞ þ PðrÞ�uμuν þ PðrÞgμν; ð4:28Þ

i.e., using u0 ¼ e−Φ,

T00 ¼ ½ρðrÞ þ PðrÞ�e−2Φ − PðrÞe−2Φ ¼ ρðrÞe−2Φ;
Trr ¼ PðrÞgrr ¼ PðrÞe−2Λ;

Tθθ ¼ PðrÞgθθ ¼ PðrÞ
r2

; ð4:29Þ

so that the variation of the matter action reads

δS0m ¼ 1

2

Z
drw½ρðrÞe−2Φδð−e2ΦÞ þ PðrÞe−2Λδðe2ΛÞ�

¼
Z

dr r2eΦþΛ½−ρðrÞδΦþ PðrÞδΛ�: ð4:30Þ

V. TORSION BIGRAVITY FIELD EQUATIONS

Let us now write down the equations obtained from
varying the action S0field þ S0m ¼ R

drwðrÞL (considered in
its first-order form, with π as an independent variable) with
respect to the five field variables xa ¼ ðΦ;Λ; V;W; πÞ,
a ¼ 1, 2, 3, 4, 5. Note that, introducing x0 ≡ r, as a
fictitious sixth timelike variable, the latter first-order action
has the structure

S0 ¼
Z

dx0½AaðxÞ_xa þ A0� ¼
Z

AμðxÞdxμ: ð5:1Þ

Here, we denoted _xa ¼ dxa=dx0, and xμ ¼ ðx0; xaÞ, with
μ ¼ 0, 1, 2, 3, 4, 5. The six components AμðxνÞ of the one-
form AμðxÞdxμ depend on the six variables xν. The one-
form AμðxÞdxμ is just the usual Hamilton-Cartan one-form
padqa −Hdt of a first-order action, but we find it useful to
view it as the Maxwell-like action for a massless charged
particle of worldline xμ interacting with an external electro-
magneticlike potential AμðxνÞ.
Let us write separately the contributions coming from

varying thevarious pieces of the actionS0 ¼ R
drwðrÞLwith

respect to the five field variables xa ¼ ðΦ;Λ; V;W; πÞ:
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δðwLRÞ
δΦ

¼ 2cReΦþΛ∂r½rð1 − e−2ΛÞ�; ð5:2Þ

δðwLRÞ
δΛ

¼ 2cReΦþΛ½1 − e−2Λð1þ 2rFÞ�; ð5:3Þ

δðwLFÞ
δΦ

¼ cF½r2eΦþΛð4∇W þ 4VW − 2W2
−Þ þ 4reΦV�;

ð5:4Þ

δðwLFÞ
δΛ

¼ cFr2eΦþΛð4VW − 2W2
−Þ; ð5:5Þ

δðwLFÞ
δV

¼ 4cFr2eΦþΛW þ 4cFreΦ; ð5:6Þ

δðwLFÞ
δW

¼ − 4cFrðreΦÞ0 þ 4cFr2eΦþΛðV −WÞ; ð5:7Þ

δðwLF2Þ
δΦ

¼ 2

3
cF2f−eΦVð2r2πÞ0 þ r2eΦþΛ½2π∇W − π2

þ 2∇Wð−5VW þW2
−Þ þ ðVW þW2

−Þ2�
− eΦV½2r2ðVW − 2W2

−Þ�0g; ð5:8Þ

δðwLF2Þ
δΛ

¼ 2

3
cF2r2eΦþΛ½−π2 þ ðVW þW2

−Þ2�; ð5:9Þ

δðwLF2Þ
δV

¼ 2

3
cF2 ½−eΦð2r2πÞ0 þ 2r2WðeΦVÞ0

− eΦð2r2VWÞ0 þ eΦð4W2
−r2Þ0

− 10r2eΦþΛ∇WW þ 2r2eΦþΛðVW þW2
−ÞW�;
ð5:10Þ

δðwLF2Þ
δW

¼ 2

3
cF2 ½−rð2reΦπÞ0 þ 2r2eΦþΛ∇VV

− 8r2eΦþΛ∇VW − 10reΦVðrWÞ0
þ 10rðreΦVWÞ0 þ 4reΦWðrWÞ0
− 2rðreΦW2

−Þ0 þ 2r2eΦþΛðVW þW2
−Þ

× ðV þ 2WÞ�; ð5:11Þ

δðwLF2Þ
δπ

¼ 4

3
cF2r2eΦþΛð∇V þ∇W − πÞ; ð5:12Þ

δðwLmÞ
δΦ

¼ −r2eΦþΛρðrÞ; ð5:13Þ

δðwLmÞ
δΛ

¼ r2eΦþΛPðrÞ: ð5:14Þ

Here we have introduced (after variation) the shorthand
notation F for the radial derivative of Φ:

F≡Φ0: ð5:15Þ

We use as basic equations for the five field variables
xa ¼ ðΦ;Λ; V;W; πÞ the five first-order equations

Ea

�
dxb

dr
; xc; r

�
¼ 0; a ¼ 1; 2; 3; 4; 5; ð5:16Þ

with (denoting c≡ cF, so that λ − c≡ cR)

E1≡ −
3κ2

2
r2ðc − λÞeΛ−Φ δðwLÞ

δΛ
; ð5:17Þ

E2≡ −
3κ2

2
r2ðc − λÞeΛ−Φ δðwLÞ

δΦ
; ð5:18Þ

E3≡ −
3κ2

2c
rðc − λÞe−Φ

�
δðwLÞ
δV

−
δðwLÞ
δW

�
; ð5:19Þ

E4 ≡ 3κ2

4c
rðc − λÞe−Φ δðwLÞ

δW
; ð5:20Þ

E5 ≡ 3κ2ðc − λÞ
4crλ

e−Φ
δðwLÞ
δπ

; ð5:21Þ

where each term δðwLÞ=δxa is obtained by summing the
corresponding terms among Eqs. (5.2)–(5.14). [The factors
κ2ðc − λÞ ¼ −κ2cR have been included to eliminate the
denominator implicitly present in cF2 ¼ ηλ

κ2
¼ cλ

ðλ−cÞκ2.]
The five (geometric) field equations above must be

supplemented (when considering the interior of a star)
by the usual (universal) matter equation following from the
(radial) conservation law ∇g

μTμν ¼ 0 for a spherically sym-
metric configuration with macroscopic energy-momentum
tensor, Eqs. (4.29), namely

Em ¼ 0; ð5:22Þ

with

Em ≡ P0 þ ðρþ PÞ dΦ
dr

≡ P0 þ ðρþ PÞF: ð5:23Þ

VI. REDUCTION OF THE FIELD EQUATIONS
TO A GHOST-FREE-LIKE SYSTEM OF THREE

FIRST-ORDER EQUATIONS

Let us recall that the basic aim of the present work is to
study the geometric torsion bigravitymodel as an alternative
to the usually considered bimetric gravity models. The latter
models are defined by considering two independent dynami-
cal metric tensors, say gμν and fμν, having separate Einstein-
Hilbert actions, and being coupled to each other (besides
some matter coupling) via some generalized Fierz-Pauli
potential Vðf; gÞ. These models are generalizations of the
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massive-gravity models where the metric fμν is nondynam-
ical and frozen into some given background value (e.g., a
Minkowski background fμν ¼ ημν). For many years, it was
thought that massive-gravity models (and, consequently,
their bimetric generalizations) were plagued by the neces-
sary presence of an additional, ghostlike, degree of freedom
(d.o.f.) [33,46,47]. The latter Boulware-Deser ghost enters
only at the nonlinear level (because, at the linear level, the
Fierz-Pauli potential [27–29] ensures the presence of only
five healthy d.o.f. in the massive-gravity sector).
It was emphasized by Babichev, Deffayet, and Ziour [48]

that the presence of the Boulware-Deser ghost in generic
massive-gravity models8 is already apparent when consid-
ering (codiagonal) spherically symmetric solutions. More
precisely, a generic massive-gravity model has (when using
a Schwarzschild radial coordinate r for the physical metric
gμν) three variables: ΦðrÞ, ΛðrÞ [defined as in Eq. (3.3)
above] together with a third “gauge” variable μðrÞ relating
the Schwarzschild-like radius r to the “flat” radial variable
rf defined by the background metric fμν, namely
rf ¼ re−μðrÞ=2. The crucial point (which can also be seen
in the explicit field equations of Ref. [49]) is that the
massive-gravity field equations are first order in ΦðrÞ and
ΛðrÞ, but second order in μðrÞ. This means that the total
differential order of the massive-gravity ΦðrÞ, ΛðrÞ, μðrÞ
system is four. Equivalently, the general9 exterior spheri-
cally symmetric solution of a generic massive-gravity
model contains four arbitrary integration constants. One
of them will be an additional constant c0 in ΦðrÞ, which is
physically irrelevant because it can be gauged away by
renormalizing the time variable: t → t0 ¼ e−c0=2t. We con-
clude that the general exterior spherically symmetric
solution of a generic (ghostfull) massive-gravity model
contains three physically relevant arbitrary integration
constants. This is one more constant than for the general
exterior spherically symmetric solution of the Fierz-Pauli
linearized massive-gravitymodel. Indeed, the latter general
linearized solution for hμν ¼ gμν − fμν is (see [33])

h00 ¼ 2YκðrÞ;
h0i ¼ 0;

hij ¼ δijYκðrÞ −
1

κ2
∂i∂jYκðrÞ; ð6:1Þ

where κ denotes the mass of the massive graviton, and
where YκðrÞ is the general exterior spherically symmetric
solution of the Yukawa equation

ðΔ − κ2ÞYκ ¼
16πGκT

μ
μ

3
; ð6:2Þ

which contains two integration constants, cþ; c−, namely

YκðrÞ ¼ cþ
eþκr

r
þ c−

e−κr

r
: ð6:3Þ

We recall in passing that the trace of hμν is locally related to
the matter density via

hμμ ¼ −
16πGκT

μ
μ

3κ2
: ð6:4Þ

Summarizing: the presence of a sixth field d.o.f. in a
generic (ghostfull) massive-gravity model is visible when
considering the general exterior spherically symmetric
solution: indeed, the latter solution generically involves
three physically relevant integration constants, which is one
more than the two physically relevant integration constants
cþ, c− entering the corresponding linearized solution of the
5-d.o.f. Fierz-Pauli model. In addition, we recall that the
linearized massive-gravity solution necessarily involves a 1

κ2

factor in some of its components, and that this feature is the
origin of the appearance of a Vainshtein radius below which
one cannot trust the usual weak-field perturbation expan-
sion of massive gravity [32,49].
Let us emphasize that the ability of the spherically

symmetric limit to detect the presence of the Boulware-
Deser ghost is somewhat obscured if one focuses, from the
beginning, on exponentially decaying solutions, rather
than on general exterior solutions. (See, in this respect,
Refs. [48–50].)
When extending a massive-gravity model into a corre-

sponding bimetric gravity one, we must add to the count of
the physically relevant integration constants entering a
general exterior solution the Schwarzschild-like mass m
parametrizing the physics of the massless spin-2 sector. We
therefore conclude that the general exterior solution of a
ghostfull bimetric gravity model will involve four physi-
cally relevant integration constants, while the general
exterior solution of a ghost-free bimetric gravity model
will involve only three physically relevant integration
constants (corresponding to m, cþ, c− parametrizing the
corresponding linearized system). [We recall that we dis-
counted here the physically irrelevant additional constant
enteringΦðrÞ.] The fact that the general exterior solution of
ghost-free bimetric gravity models [using the restricted
class of potential Vðf; gÞ discovered in [34] ] indeed
involves only three physically relevant integration constants
has been explicitly shown by Volkov [51]. Indeed, he
showed how to reduce the (codiagonal) field equations to
a system of three first-order differential equations, for
the three variables N, Y, and U; see Eqs. (5.7) in [51].

8We start by considering generic massive-gravity (and bimet-
ric) models containing a Boulware-Deser ghost to contrast them
with the properties of ghost-free massive-gravity (and bimetric)
models.

9Here, “general” means that we do not impose boundary
conditions at infinity.
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[The variable Φ ¼ lnQ is then obtained by a quadrature:
Φ ¼ R

drF 5 þ c0; see Eq. (5.3c) in [51].]
We are now going to show that the torsion bigravity

model is similar to the ghost-free bimetric gravity models
in that its general exterior spherically symmetric solution
only involves three physically relevant integration con-
stants. (We will see later that these three integration
constants do correspond to the constants m, Cþ, C−
parametrizing the corresponding linearized torsion bigrav-
ity system.) This will be shown by reducing the system of
five first-order field equations E1–E5 written in the pre-
vious section to a system of three first-order differential
equations [together with a quadrature for ΦðrÞ]. In view of
the fact, recalled above, that the presence of the Boulware-
Deser ghost was visible in spherically symmetric solutions
of generic ghostfull bimetric gravity models, we consider
this property of torsion bigravity as a suggestion (though
not a proof) that it might be ghost-free in a general (time-
dependent and nonspherically symmetric) situation.
As our reduction process is algebraically involved, we

will not display all the technical details, but only explain
the algorithm by which we could explicitly derive a reduced
system of three first-order equations for three unknowns.
Explicit calculations are better done anyway by using
algebraic manipulation programs, starting from the explicit
basic field equations written in the previous section.
Before explaining the explicit reduction process we used,

let us briefly indicate how the reduction issue could be
formulated in terms of the Hamilton-Cartan action (5.1).
The variational equations of motion coming from the first-
order action (5.1) are

Eμ ≡ FμνðxÞ
dxν

dx0
¼ 0; ð6:5Þ

where FμνðxÞ ¼ ∂AνðxÞ=∂xμ − ∂AμðxÞ=∂xν are the com-
ponents (with μ ¼ 0, 1, 2, 3, 4, 5) of the two-form F ¼ dA,
and where we recall that x0 simply denotes the radial
variable r, which plays the role of time in our action.
Because of the antisymmetry of Fμν, there are only five
independent equations among the equations Eμ, Eq. (6.5)
(say Ea, for a ¼ 1, 2, 3, 4, 5). A necessary condition for the
variational equations (6.5) to have nontrivial solutions in
the phase-space “velocity” vμ ¼ dxν

dx0 is that the determinant
of the six-by-six matrix Fμν be vanishing. As Fμν is
antisymmetric and even, its determinant is the square of
its Pfaffian

Pf½F�≡ ϵμ1ν1μ2ν2μ3ν3Fμ1ν1Fμ2ν2Fμ3ν3 : ð6:6Þ

This shows that a necessary condition following from the
five equations Ea ¼ 0 (which are equivalent to the equa-
tions Ea ¼ 0 of the previous section) is the constraint

Pf½FðxÞ� ¼ 0: ð6:7Þ

The latter constraint is purely algebraic in the five variables
xa ¼ ðΦ;Λ; V;W; πÞ (and depends on x0 ¼ r). In turn, the
(primary) constraint (6.7) implies as the secondary con-
straint an equation linear in the velocities va ¼ dxa

dx0 [i.e., the
radial derivatives of ðΦ;Λ; V;W; πÞ], namely

0 ¼ dPf½FðxÞ�
dx0

¼ dxμ

dx0
∂Pf½FðxÞ�

∂xμ : ð6:8Þ

This argument indicates that the basic system of five
equations E1–E5 of the previous section implies (at least)
one algebraic constraint, Eq. (6.7), together with the extra
differential condition (6.8). To check what is the precise
import of these constraints on the number of free data
determining the general exterior solution of our system we
need to explicitly write down and study these constraints, as
we will do next [starting directly from the explicit form
(5.17)–(5.21) of our five basic equations E1–E5].
When doing so, it is convenient to start by noticing that

the gauge symmetry t → t0 ¼ e−c0=2t, which corresponds to
changing ΦðrÞ into ΦðrÞ þ c0 shows that our basic five
field equations can be entirely expressed in terms of
FðrÞ≡Φ0, without any explicit appearance of the undif-
ferentiated variable ΦðrÞ. Actually, the various e−Φ factors
in our definitions (5.17)–(5.21) were designed to realize
this disappearance ofΦðrÞ. In other words, we can consider
the system E1–E5 as being algebraic in F, and differential
(of first order) only in the four variables Λ, V, W, and π.
It is also useful to work with a slightly modified set of

variables. In the following we shall replace the set of
variables F,Λ, V,W, and π by the new set F, L, V, Ȳ, and π
where

L≡ eΛ; ð6:9Þ

Ȳ ≡ Y þ 1

r
≡ V þW þ 1

r
; ð6:10Þ

where we used also the intermediate notation

Y ≡ V þW: ð6:11Þ

The usefulness of this change of variables is that it allows
one to easily show that two combinations of our five basic
equations E1–E5, (5.17)–(5.21), yield two algebraic con-
straints in the five variables F, L, V, Ȳ, π.
On the one hand, the equationE1 turns out to be algebraic

in F, L, V, Ȳ, π (without involving any derivative):

E1 ¼ E1ðF; L; V; Ȳ; π;PÞ: ð6:12Þ

Moreover E1 is linear inF and quadratic in L. As indicated,
E1 also involves the pressure PðrÞ as a matter source. The
constraint E1 ¼ 0 will be used to algebraically eliminate F
by expressing it in terms of the other variables.
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On the other hand, the only derivative entering the two
equations E3 and E5 is Ȳ 0. This implies that a linear
combination of E3 and E5 yields an algebraic constraint.
More precisely the new expression

E35 ≡ rE3 − 2r3λYE5 ð6:13Þ

is an algebraic expression in our (redefined) variables,
namely

E35 ¼ E35ðF; L; V; Ȳ; πÞ; ð6:14Þ

which is linear in both F and L.
The reduction process we use is then the following. First,

we solve the algebraic constraint E1ðF; L; V; Ȳ; πÞ ¼ 0
(which is linear in F) with respect to F to get

F ¼ Fsol½L; V; Ȳ; π;P�: ð6:15Þ

Then, we replace F → Fsol½L; V; Ȳ; π;P� in the other
algebraic constraint E35, Eq. (6.14), to get a reduced
algebraic constraint involving only the four geometric
variables L; V; Ȳ; π, say

Ered
35 ðL; V; Ȳ; π;PÞ≡ E35ðFsol½L; V; Ȳ; π;P�; L; V; Ȳ; πÞ:

ð6:16Þ

The so-obtained algebraic constraint Ered
35 ðL; V; Ȳ; πÞ ¼ 0

turns out to be quadratic in L. There is a unique root of this
quadratic equation in L,10 say

L ¼ L−
sol½V; Ȳ; π;P�; ð6:17Þ

which is such that it has the physically desirable feature of
asymptotically behaving like its Schwarzschild counterpart

LSðrÞ ¼ eΛSðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2mS=r

p → 1 as r→þ∞ ð6:18Þ

when the arguments V; Ȳ; π asymptotically decay at infinity
in a Schwarzschild-like manner. This requirement follows
from the physical requirement that the contorsion tensor
(being entirely generated, at the linear level, via a massive-
spin-2 excitation; see below) must decay ∝ e−κr so that V
and W, and the corresponding Ȳ; π, must asymptotically
decay as their Schwarzschild counterparts, i.e., as the
corresponding frame components of the Levi-Civita con-
nection; see (3.10).
Then, by substituting L → L−

sol½V; Ȳ; π;P�, from
Eq. (6.17), into the expression (6.19), we get an explicit

expression for F in terms of the three geometric variables
V; Ȳ; π, say

F ¼ Fred
sol ½V; Ȳ; π;P�≡ Fsol½L−

sol½V; Ȳ; π;P�; V; Ȳ; π;P�:
ð6:19Þ

The final stage of our reduction process consists of
replacing F → Fred

sol ½V; Ȳ; π� and L → L−
sol½V; Ȳ; π� into

the remaining equations E2, E4, and E5 to get three
first-order equations for the three unknowns V, Ȳ, and π
(involving also P and ρ as source terms), say

0 ¼ Ered
2 ½V 0; Ȳ 0; π0; P0; V; Ȳ; π; ρ; P�;

0 ¼ Ered
4 ½V 0; π0; V; Ȳ; π;P�;

0 ¼ Ered
5 ½Ȳ 0; V; Ȳ; π;P�: ð6:20Þ

By construction, these three equations are linear in all the
radial derivatives. When replacing the radial derivative of
the pressure which appears in Ered

2 by the matter equa-
tion (6.22) discussed next, one can solve the three equa-
tions (6.20) for the three derivatives V 0, Ȳ 0; π0 so as to get an
explicit first-order radial-evolution system, say

V 0 ¼ DV½V; Ȳ; π; ρ; P�;
Ȳ 0 ¼ DȲ½V; Ȳ; π; ρ; P�;
π0 ¼ Dπ½V; Ȳ; π; ρ; P�: ð6:21Þ

When considering the solution inside a star one must
augment this system by the reduction of Eq. (5.23) con-
straining the radial evolution of the pressure, namely

P0 ¼ −ðρþ PÞFred
sol ½V; Ȳ; π;P�; ð6:22Þ

and by giving an equation of state relating ρ to P,
say ρ ¼ ρðPÞ.
After integrating the system (6.21), (6.22), for the four

variables V; Ȳ; π; P, one can compute the values of the
variables F, L (or Λ), and W by using Eqs. (6.19), (6.17),
and (6.9). Finally, the value of the gravitational potential
ΦðrÞ is obtained by a quadrature,

ΦðrÞ ¼ −
Z

∞

r
dr0Fðr0Þ; ð6:23Þ

where we fixed the arbitrary additional constant inΦ by the
requirement that ΦðrÞ → 0 at radial infinity.

VII. LINEARIZED APPROXIMATION

Let us study the linearized approximation to our five
basic field equations E1–E5, (5.17)–(5.21). We are, in
particular, interested in understanding how the linearized
solutions behave in the small-mass limit κ → 0. In the next

10This is the smallest root, i.e., the root with a negative
coefficient in front of the discriminant when writing the equation
with a positive coefficient for L2.
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section we will then consider the second-order (postlinear)
solutions. We will see that, both at the linear level and at
the postlinear level, the limit κ → 0 of torsion bigravity is
much better behaved than in massive gravity and bimetric
gravity. Some aspects of the linearized approximation of
dynamical-torsion models have already been considered in
Refs. [23,26], and in Ref. [40] for the spherically sym-
metric solution, but our treatment will be more extensive
and detailed.
In the absence of a material source (i.e., when ρ → 0 and

P → 0), the torsion bigravity field equations admit the
solution Φ ¼ 0, F≡Φ0 ¼ 0, Λ ¼ 0, V ¼ 0, W ¼ − 1

r,
Ȳ ≡ V þW þ 1

r ¼ 0. We denote with a subscript 1 a
first-order deviation from this trivial solution, i.e., F1,
Λ1, V1, and Ȳ1. The explicit form of the linearized
approximation of the field equations looks as follows:

δS
δΛ

∶ Êlin
1 ≡ 2crV1 − crȲ1 þ Λ1ðc − λÞ

− F1rðc − λÞ − r2

4
P ¼ 0; ð7:1Þ

δS
δΦ

∶ Êlin
2 ≡ cV 0

1r
2 − cȲ 0

1r
2 þ Λ0

1rðc − λÞ þ ρr2

4

þ 2crV1 − 2crȲ1 þ Λ1ðc − λÞ ¼ 0; ð7:2Þ

δS
δV

−
δS
δW

∶ Êlin
3 ≡ Ȳ 0

1rλ− π1rλþ 6κ2rðc− λÞΛ1

þ ð9cκ2r2 − λ− 9κ2r2λÞV1

− 3κ2r2ðc− λÞF1

þ ð−6cκ2r2 þ λþ 6κ2r2λÞȲ1 ¼ 0; ð7:3Þ

δS
δW

∶ Êlin
4 ≡ V 0

1rλþ π01r
2λþ π1rλ

þ 3κ2rðc − λÞΛ1 þ 6κ2r2ðc − λÞV1

− 3κ2r2ðc − λÞF1

þ ð−3cκ2r2 − 2λþ 3κ2r2λÞȲ1 ¼ 0; ð7:4Þ

δS
δπ

∶ Êlin
5 ≡ Ȳ 0

1r − π1r − V1 þ Ȳ1 ¼ 0: ð7:5Þ

The hat added on the Êlin
n ’s indicate that these equations

differ by a factor from the linearization of the correspond-
ing equations En, as defined in Eqs. (5.17)–(5.21) above.
In keeping with what was already the case at the nonlinear
level, the first equation Êlin

1 is algebraic in the variables Λ1,
F1, V1, Y1 and thus can be used to express F1 in terms of
the other three, F1 ¼ F1ðΛ1; V1; Y1Þ. Furthermore, the
equation Êlin

5 is algebraic in π1 and can be used to express
π1 in terms of the variables V1, Y1, and Y1

0. Henceforth, we
solve Êlin

1 ¼ 0 for F1, and Ê
lin
5 ¼ 0 for π1 so as to eliminate

F1 ¼ F
Êlin
1

1 ðΛ1; V1; Y1;PÞ; ð7:6Þ

π1 ¼ π
Êlin
5

1 ðV1; Y1; Y1
0Þ; ð7:7Þ

from the system.
It is then easily seen that the replacement of Eq. (7.7) in

Eq. (7.3) eliminates the derivative Y1
0 and yields an

equation which is algebraic in Λ1, V1, Y1. We can then
use the latter algebraic equation (which is equivalent to the
combination Êlin

35 ≡ Êlin
3 − λÊlin

5 ) to express Λ1 in terms of
V1 and Y1, say

Λ1 ¼ Λ1
Êlin
1 ∪Êlin

35 ðV1; Y1;PÞ: ð7:8Þ

After inserting all the replacements Eqs. (7.6)–(7.8), one
ends up with two remaining equations to solve: Eq. (7.4),
which is second order in Ȳ1 and first order in V1, and
Eq. (7.2), which is first order in Ȳ1 and V1. The explicit
form of the latter two equations is streamlined by intro-
ducing the new variables,

Vm0 ≡ −3V1 þ 2Y1; ð7:9Þ

Vmk ≡ 2V1 − Y1: ð7:10Þ

We find that these variables must satisfy the following
equations:

V 0
m0 þ

2

r
Vm0 ¼

ρðrÞ
4λ

−
3

4λ
PðrÞ − r

4λ
P0ðrÞ; ð7:11Þ

V 00
mk þ

2

r
V 0
mk −

�
2

r2
þ κ2

�
Vmk

¼ −
ρ0ðrÞ
6λ

−
κ2r
4λ

PðrÞ þ 2

3λ
P0ðrÞ þ r

6λ
P00ðrÞ: ð7:12Þ

Given a solution of these two linear equations, the full
linearized solution is given by the inverse of Eqs. (7.9) and
(7.10), i.e.,

Y1 ¼ 2Vm0 þ 3Vmk;

V1 ¼ Vm0 þ 2Vmk; ð7:13Þ

as well as by

1

r
Λ1 ¼ Vm0 − ηVmk þ

r
4ðλ − cÞPðrÞ; ð7:14Þ

F1 ¼ Vm0 − 2ηVmk þ
r

2ðλ − cÞPðrÞ: ð7:15Þ

The total differential order of the system Eqs. (7.11), (7.12)
is three, i.e., the same order as we found above for the full,
nonlinear system.
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One should note the remarkable fact that these linear-
ized-approximation equations never involve the inverse of
the squared mass κ2 of the massive spin-2 excitation. This is
in sharp contrast with the corresponding linearized mas-
sive-gravity, or bimetric gravity, equations which always
involve an inverse power of κ2; see, e.g., Eqs. (6.1) and
(6.4). We will see below that the absence of inverse powers
of κ2 persists at the postlinear order.
Let us recall the structure of the solutions of equations of

type (7.11) and (7.12), with general source terms on the
right-hand sides,

V 0
m0 þ

2

r
Vm0 ¼ Sm0ðrÞ; ð7:16Þ

V 00
mk þ

2

r
V 0
mk −

�
2

r2
þ κ2

�
Vmk ¼ SmkðrÞ: ð7:17Þ

These equations have unique solutions that are regular at
the origin and decaying at infinity. They are given by the
following formulas:

Vm0ðrÞ ¼
1

r2

Z
r

0

r̂2Sm0ðr̂Þdr̂; ð7:18Þ

VmkðrÞ ¼
Z

∞

0

r̂2Gκðr; r̂ÞSmkðr̂Þdr̂: ð7:19Þ

In the second equation, the Green’s function Gκðr; r̂Þ,
satisfying the equation

�
∂2
r þ

2

r
∂r −

�
2

r2
þ κ2

��
Gðr; r̂Þ ¼ 1

r2
δðr − r̂Þ; ð7:20Þ

is constructed as

Gκðr; r̂Þ≡ 1

W
½X>ðrÞX<ðr̂Þθðr− r̂Þ þX<ðrÞX>ðr̂Þθðr̂− rÞ�;

ð7:21Þ

where θðxÞ denotes Heaviside’s step function, while

X>ðrÞ¼∂r

�
e−κr

r

�
and X<ðrÞ¼∂r

�
sinhðκrÞ

r

�
ð7:22Þ

are two appropriate homogeneous solutions, incorporating
the boundary conditions. Namely, X>ðrÞ decays at infinity,
while X<ðrÞ is regular at r ¼ 0. In addition,

W ≡ r2ðX0
>ðrÞX<ðrÞ − X>ðrÞX0

<ðrÞÞ ¼ κ3 ð7:23Þ

is the appropriate (constant) Wronskian of the two
solutions.
Note that Vm0 and Vmk are “pure” variables correspond-

ing to the massless and massive linear excitations,

respectively. We then see on Eqs. (7.13)–(7.15), how each
metric or connection variable is some combination of these
two pure variables.
Let us explicitly display the above linearized solution in

the simple case where the source is a constant density
star, say

ρðrÞ ¼ e0: ð7:24Þ

But, first, let us note that the source terms in the linearized
equations (7.11), (7.12) have different perturbative orders
of magnitude. Indeed, we can consider that the primary
source of all the variables is the matter density ρðrÞ, and that
it defines the formal expansion parameter ε of our weak-
field expansion: ρ≡ ερ1. Here, ε is a bookkeeping device,
which will be set to one at the end. The linearized variables
Φ1, F1, V1, etc., are first order in ε. For example, Φ ¼
εΦ1 þOðε2Þ, F ¼ εF1 þOðε2Þ (where F1 ¼ Φ0

1), etc. On
the other hand, the pressure-gradient equation (5.23) has
the structure

P0 ¼ −ðρþ PÞF
¼ −ðερ1 þ PÞðεF1 þOðε2ÞÞ: ð7:25Þ

The boundary condition that PðrÞ vanishes at the surface of
the star then shows that the pressure P is actually of second
order in ε: P ¼ P2ε

2 þOðε3Þ, with

P0
2 ¼ −ρ1F1: ð7:26Þ

To determine P2 we must first determine the value of F1

generated by ρ≡ ερ1. We shall take into account, in the
next section, the second-order effects induced by the
source terms involving the pressure P ¼ P2ε

2 þOðε3Þ in
the linearized equations (7.11), (7.12), (7.14), (7.15). In the
present section, we can define the pure linearized fields F1,
V1, etc., by neglecting all the pressure-related source terms
in the field equations (7.11), (7.12), (7.14), (7.15), and by
using the constant density ansatz (7.24). This leads to the
following explicit solutions of the system (7.11), (7.12):

Vm0 ¼
( m1r

R3
s
; r ≤ Rs;

m1

r2 ; r ≥ Rs;
ð7:27Þ

Vmk ¼

8>>><
>>>:

e−κRs ð1þκRsÞ
r2

×
h
− 2m1

κ3R3
s
ðκr coshðκrÞ − sinhðκrÞÞ

i
; r ≤ Rs;

e−κrð1þκrÞ
r2 Cmk; r ≥ Rs:

ð7:28Þ

Here, we recall that λ≡ 1=ð16πG0Þ, while Rs denotes the
radius of the star, and we have defined
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m1 ≡ e0R3
s

12λ
¼ 4πG0

3
e0R3

s ; ð7:29Þ

Cmk ¼ −
2

3
m1F ðzsÞ; ð7:30Þ

zs ≡ κRs; ð7:31Þ

F ðzÞ≡ 3fz coshðzÞ − sinhðzÞg=z3: ð7:32Þ

The “form factor” F ðzÞ, entering the magnitude Cmk of
Vmk outside the star, has been defined so that F ðzÞ → 1
when its argument z ¼ κRs → 0.
There are apparent factors ∝ 1=κ3 entering the inner

solution for Vmk. However, these factors (which come from
the Wronskian W ¼ κ3 in Green’s function) are canceled
by Oðκ3Þ terms in the numerators. Indeed, the Green’s
function itself is seen to have a finite limit as κ → 0,
because

lim
κ→0

X>ðrÞ ¼ ∂r

�
1

r

�
¼ −

1

r2
; ð7:33Þ

lim
κ→0

X<ðrÞ
κ3

¼ lim
κ→0

∂r

�
sinhðκrÞ

κ3r

�
¼ r

3
: ð7:34Þ

This ensures that the linearized solution has a finite limit
when κ → 0 (at a fixed value of r). In the limit κ → 0
(keeping fixed both Rs and r) one has indeed the following
limit for Vmk:

Vκ→0
mk →

(
− 2m1r

3R3
s
;

− 2m1

3r2 :
ð7:35Þ

Let us also give the expression for F1,

F1 ¼
8<
:

m1r
R3
s

h
1þ 4

3
ηe−zsð1þ zsÞF ðzÞ

i
; r ≤ Rs;

m1

r2 þ CF
1 ðzsÞ e

−zð1þzÞ
z2 ; r ≥ Rs;

ð7:36Þ

where

z≡ κr; zs ≡ κRs; ð7:37Þ

and

CF
1 ðzsÞ ¼

4

3
ηm1κ

2F ðzsÞ: ð7:38Þ

The full (interior and exterior) solutions for theother variables
are easily derived from the expressions given above. Let us
onlywrite downhere the exterior (r ≥ Rs) solutions for all the
variables. [We recall in passing that all variables have zero
background values, except for W ¼ − 1

r þ εW1 þOðε2Þ.]

F1 ¼
m1

r2
þ 2ηC1

e−κrð1þ κrÞ
r2

; ð7:39Þ

Λ1 ¼
m1

r
þ ηC1

e−κrð1þ κrÞ
r

; ð7:40Þ

V1 ¼
m1

r2
− 2C1

e−κrð1þ κrÞ
r2

; ð7:41Þ

Y1 ¼
2m1

r2
− 3C1

e−κrð1þ κrÞ
r2

; ð7:42Þ

W1 ¼ Y1 − V1 ¼
m1

r2
− C1

e−κrð1þ κrÞ
r2

; ð7:43Þ

where

C1 ≡ 2m1

3
F ðzsÞ ¼ −Cmk: ð7:44Þ

It is important to display also the linearized values of the two
independent components of the contorsion (and torsion), as
defined in Eq. (3.11),

Kr̂
t̂ t̂ ¼ V − e−ΛF;

Kr̂
θ̂ θ̂ ¼ W þ r−1e−Λ: ð7:45Þ

They read

½Kr̂
t̂ t̂�1 ¼ V1 − F1 ¼ −2C1ð1þ ηÞ e

−κrð1þ κrÞ
r2

;

½Kr̂
θ̂ θ̂�1 ¼ W1 −

Λ1

r
¼ −C1ð1þ ηÞ e

−κrð1þ κrÞ
r2

: ð7:46Þ

Note that the (con)torsion components are exponentially
decaying. (This remains true at all orders of perturbation
theory.) By contrast, the geometric variables Φ1, F1, Λ1,
V1, W1 contain an additive mixture of massless (power-law
decaying) and massive (exponentially decaying) spin-2
excitations.

VIII. SECOND-ORDER PERTURBATIONS

Let us consider the solutions of torsion bigravity at the
second order in the source ρ ¼ ερ1 [for the case of a
constant density star: ρðrÞ ¼ e0]. Each variable (except
ρ ¼ e0 itself which is left unexpanded) is now written as

F ¼ εF1 þ ε2F2 þOðε3Þ; etc: ð8:1Þ

At second order, we define the second-order values of the
functions Vm0 and Vmk, by (conventionally) using the same
formulas as at first order, i.e.,

Vm0ð2Þ ≡ −3V2 þ 2Ȳ2; Vmkð2Þ ≡ 2V2 − Ȳ2: ð8:2Þ
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We can use the inverse of these equations [see Eqs. (7.13)]
to express V2 and Ȳ2 in terms of Vm0ð2Þ and Vmkð2Þ.
When expanding to second order our basic field equa-

tions E1–E5, (5.17)–(5.21), we first get algebraic equations
for F2 and Λ2 of the form

F2 ¼ Vm0ð2Þ − 2ηVmkð2Þ þ NF
2 ;

1

r
Λ2 ¼ Vm0ð2Þ − ηVmkð2Þ þ NΛ

2 ; ð8:3Þ

whereNF
2 andNΛ

2 are additional second-order contributions
which are either quadratic in the first-order variables F1,
Λ1; V1; Ȳ1 (and, eventually, their derivatives), or linear in
the pressure P2.
We also get differential equations for Vm0ð2Þ and Vmkð2Þ

of the form

V 0
m0ð2Þ þ

2

r
Vm0ð2Þ ¼ Sm0ð2Þ;

V 00
mkð2Þ þ

2

r
V 0
mkð2Þ −

�
2

r2
þ κ2

�
Vmkð2Þ ¼ Smkð2Þ; ð8:4Þ

where the second-order source terms Sm0ð2Þ and Smkð2Þ
consist of terms bilinear in V1, Ȳ1, F1, Λ1, together with
additional contributions linear in the pressure P2 (remem-
bering that P is second order; see Sec. VII). We recall that
P2 is obtained by solving the matter equation

P0
2 ¼ −ρF1; ð8:5Þ

with the condition that P2 vanishes at the radius of the
star r ¼ Rs.
The second-order solution is then explicitly obtained by

using our general Green’s function representation

Vm0ð2ÞðrÞ ¼
1

r2

Z
r

0

r̂2Sm0ð2Þðr̂Þdr̂; ð8:6Þ

Vmkð2ÞðrÞ ¼
Z

∞

0

r̂2Gκðr; r̂ÞSmkð2Þðr̂Þdr̂: ð8:7Þ

We found that it was possible to explicitly compute all the
integrals generated by inserting the first-order solution in
the source terms Sm0ð2Þ, Smkð2Þ entering the latter second-
order expressions. The final expressions involve, besides
elementary functions, some exponential-integral functions
Eið−xÞ with various arguments proportional to z ¼ κr or
zs ¼ κRs. We recall that, with x > 0,

Eið−xÞ≡ −
Z

∞

x
dt

e−t

t
: ð8:8Þ

It would take too much space to display here in full detail
the second-order solutions (both in the interior and in the

exterior of the star) for all our variables. We will only
display here the function of most physical importance at the
second order, namely the variable F2, which is the radial
derivative of the second-order gravitational potential
Φ ¼ εΦ1 þ ε2Φ2 þOðε3Þ. As we shall explicitly discuss
below, this is indeed the only variable whose second-order
value is needed to discuss the usual first post-Newtonian
approximation. In addition, it is enough to know its value
outside the star to discuss its phenomenological implica-
tions as a modification of the usual Schwarzschild metric
outside a spherical mass distribution.
The full, second-order exterior solution F2 has a rather

complicated structure, which can, however, be explicitly
displayed as follows:

F2ðrÞ ¼
m2ðzsÞ
r2

þ 2m2
1

r3
þ e−zð1þ zÞ

z2
CF
2 ðzsÞ þ

e−z

z2
J 0ðzÞ

þ e−2z

z
P0ðzÞ þ ln

�
z
zs

�
e−zð1þ zÞ

z2
CLNðzsÞ

þ Eið−zÞ e
−zð1þ zÞ

z2
CE1ðzsÞ

þ Eið−2zÞ e
zðz − 1Þ
z2

CE2ðzsÞ

þ Eið−3zÞ e
zðz − 1Þ
z2

CE3ðzsÞ; ð8:9Þ

where z≡ κr, zs ≡ κRs, and where the dependence on the
source characteristics of the various coefficients can be
expressed in terms of two form factors: the previously
defined form factor F ðzsÞ, (7.32), and a new one denoted
EðzsÞ and defined as

EðzsÞ ¼ −
e−2zs

z5s
ð6 − 6e2zs þ 12zs þ 9z2s þ 3e2zsz2s

þ 3z3s − e2zsz3sÞ: ð8:10Þ

With this notation, the various terms in Eq. (8.9) are

m2ðzsÞ ¼
ηm2

1

Rs
EðzsÞ; ð8:11Þ

CLNðzsÞ ¼ −
4

3
ηm2

1κ
3F ðzsÞ; ð8:12Þ

CE1ðzsÞ ¼
ηð10 − 13ηÞ

12
m2

1κ
3F 2ðzsÞ; ð8:13Þ

CE2ðzsÞ ¼ −
4

3
ηm2

1κ
3F ðzsÞ; ð8:14Þ

CE3ðzsÞ ¼ CE1ðzsÞ; ð8:15Þ
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P0ðzÞ ¼
m2

1ηκ
3

9z4

�
−24ð1þ ηÞ − 48zð1þ ηÞ − 34z2

�
1þ η

2

�
− z3ð4 − 15ηÞ þ 16z4η

�
F 2ðzsÞ; ð8:16Þ

CF
2 ðzsÞ ¼

3e−2zsm2
1κ

3η

16z6s
ð13η − 10Þ

�
−3ð1þ zsÞ2 þ

4

9
e2zsz6sF 2ðzsÞ

�
Eið−zsÞ −

4κ3m2
1η

3
F ðzsÞEið−2zsÞ −

3m2
1κ

3ðzs − 1Þ
16z6s

× ð2 − e2zs þ 2zs þ e2zszsÞηð13η − 10ÞEið−3zsÞ −
3e−2zsm2

1κ
3ð1þ zsÞ2ηð13η − 10Þ

16z6s
½Eið3zsÞ − 3EiðzsÞ�

þ e−3zsκ3m2
1η

12z7s
½−36þ 72e2zs − 36e4zs − 3zs þ 102e2zszs − 99e4zszs þ 39z2s þ 294e2zsz2s þ 3e4zsz2s − 6z3s

þ 240e2zsz3s þ 42e4zsz3s − 12z4s − 40e2zsz4s − 12e4zsz4s − 16e2zsz5s − 108ηþ 216e2zsη − 108e4zsη − 204zsη

þ 201e2zszsηþ3e4zszsη − 72z2sη − 15e2zsz2sηþ 105e4zsz2sηþ 24z3sηþ 60e2zsz3sη − 36e4zsz3sη�; ð8:17Þ

J 0ðzÞ ¼ 2κ3m2
1ηF ðzsÞ þ

2κ3m2
1η

3z3
½4ð1þ ηÞ þ 4zð1þ ηÞ þ z2ð7þ ηÞ�F ðzsÞ: ð8:18Þ

In order to better understand the structure of F2, let us
study it under the two limits: (i) r → ∞ at fixed κ (so that
z ¼ κr → ∞); and (ii) κ → 0 at fixed r > Rs (so that
z ¼ κr → 0 and zs ¼ κRs → 0). The first limit studies
the asymptotic structure of the solution at spatial infinity,
while the second one would be the relevant one if (as is
often done in massive-gravity studies) one would consider
a Compton wavelength κ−1 for the massive-gravity exci-
tation of cosmological size.

A. Limit r → ∞ at fixed κ

Let us start by recalling that the first-order approximation
to the exterior solution for F ¼ F1 þ F2 þ � � � reads,
according to (7.36), as follows:

F1 ¼
m1

r2
þ e−zðzþ 1Þ

z2
CF
1 ðzsÞ;

CF
1 ðzsÞ ¼

4κ2m1η

3
F ðzsÞ: ð8:19Þ

F1 is the sum of a usual Newton-like (and Schwarzschild-
like) power-law contribution m1=r2 and of a decaying
Yukawa contribution ∝ ∂rðe−κr=rÞ ¼ −e−κrð1þ κrÞ=r2.
Let us now consider the spatial asymptotics r → ∞ of
the second-order exterior solution F2. To this end, we must
take into account the asymptotic behavior of the exponen-
tial integral Eið−zÞ (when z → þ∞)

Eið−zÞ ≃ −
e−z

z

�
1 −

1!

z
þ 2!

z2
þ � � �

�
: ð8:20Þ

Using the latter asymptotic behavior, one concludes that
F2, (8.9), contains four types of terms with different
behaviors at infinity:

power-law∶
m2ðzsÞ
r2

þ 2m2
1

r3
; ð8:21Þ

∝ e−z∶
e−zð1þ zÞ

z2
CF
2 ðzsÞ þ

e−z

z2
J 0ðzÞ

þ Eið−2zÞ e
zðz − 1Þ
z2

CE2ðzsÞ; ð8:22Þ

∝e−z ln

�
z
zs

�
∶ ln

�
z
zs

�
e−zð1þzÞ

z2
CLNðzsÞ; ð8:23Þ

∝ e−2z∶
e−2z

z
P0ðzÞ þ Eið−zÞ e

−zð1þ zÞ
z2

CE1ðzsÞ

þ Eið−3zÞ e
zðz − 1Þ
z2

CE3ðzsÞ: ð8:24Þ

As a consequence the leading terms in the limit r → ∞ of
F1 þ F2 read

F1 þ F2 ¼
m1 þm2

r2
þ 2m2

1

r3
þ e−zðzþ 1Þ

z2

×

�
CF
1 ðzsÞ þ CF

2 ðzsÞ þ ln

�
z
zs

�
CLNðzsÞ

�

þO

�
e−z

z2

�
þO

�
e−2z

z

�
; ð8:25Þ

where m2 ≡m2ðzsÞ is given by Eq. (8.11), while CF
1 ðzsÞ,

CF
2 ðzsÞ, and CLN are given by Eqs. (7.38), (8.17),

and (8.12).
We see that if we define the total mass parameterm of the

star in torsion bigravity (in the Schwarzschild sense of
m ¼ GM, i.e., a length scale associated with the mass) as
the coefficient of 1=r2 in FðrÞ, as r → ∞ [i.e., ΦðrÞ ≈
−m=r in this limit], we have
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m ¼ m1 þm2 þOðε3Þ: ð8:26Þ

Here, we set the bookkeeping parameter ε back to 1 in the
first two terms, but kept it in the error term as a reminder
that there are higher-order contributions that are at least
cubic in the matter-density source ρ.
Before looking at the value of m2 in various limits, let us

note that the term 2m2
1

r3 is the second-order term in the m=r
expansion of a Schwarzschild solution, say FSðrÞ, of mass
m1, indeed,

FSðrÞ ¼
m

rðr − 2mÞ ¼
m
r2

þ 2m2

r3
þ � � � : ð8:27Þ

More generally, one can show by considering the structure
of perturbation theory in torsion bigravity that, to all orders
of perturbation theory, the asymptotic spatial behavior of
the solution will be such that the two independent (con)
torsion components (3.11) are exponentially decaying
(modulo power-law and logarithmic factors),

Kr̂
t̂ t̂ ¼
r→∞

Oðe−κrÞ; Kr̂
θ̂ θ̂ ¼ Kr̂

ϕ̂ ϕ̂ ¼
r→∞

Oðe−κrÞ: ð8:28Þ

As a consequence, the variables Φ, F, Λ, V, W will
asymptotically approach (modulo exponentially small cor-
rections) some Schwarzschild-like geometric data (for
some mass parameter m)

ΦSðrÞ ¼ þ 1

2
ln

�
1 −

2m
r

�
;

FSðrÞ ¼
m

rðr − 2mÞ ;

ΛSðrÞ ¼ −
1

2
ln

�
1 −

2m
r

�
;

VSðrÞ ¼ exp½−ΛSðrÞ�FSðrÞ ¼
m
r2

�
1 −

2m
r

�
−1=2

;

WSðrÞ ¼ −
exp½−ΛSðrÞ�

r
¼ −

1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
: ð8:29Þ

Let us look more closely at the value of the asymptotic
mass m ¼ m1 þm2 þOðε3Þ, and in particular at its sec-
ond-order contribution m2ðzsÞ. We recall that

m1 ¼ G0Mbare; ð8:30Þ

where G0 ¼ 1=ð16πλÞ is the (conventionally defined)
massless spin-2 gravitational constant, and where

Mbare ≡ e0 × ðvolumeÞ ¼ e0
4πR3

s

3
ð8:31Þ

is the (conventionally defined) bare mass energy of the
constant-density star. We recall in this respect that in GR,

the total Schwarzschild mass of a constant-density star is
actually, simply given by the Newton-like expression

mGR ¼ GNMbare ¼
4πGN

3
e0R3

s ; ð8:32Þ

where GN denotes Newton’s gravitational constant. If we
identify the torsion bigravity massless spin-2 gravitational
constant G0 ¼ 1=ð16πλÞ with Newton’s constant, GN , we
see that our first-order mass parameter m1 (with units of
length) is equal to the (full) general relativistic mass
parameter mGR.
On the other hand, the second-order contribution to the

torsion-bigravity mass reads

m2 ¼
ηm2

1

Rs
EðzsÞ; ð8:33Þ

where the form factor EðzsÞ (with zs ¼ κRs) was defined
in Eq. (8.10).
We recall that the dimensionless parameter

η ¼ cF
cR

¼ 3

4

Gm

G0

ð8:34Þ

is a measure of the ratio between the coupling constant Gm
of the massive graviton and the coupling constant G0 of the
massless one. Therefore the ratio between m2 and m1 can
be written as

m2

m1

¼ 3

4

GmMbare

Rs
EðzsÞ: ð8:35Þ

This expression is compatible with the idea that in the limit
where Gm=G0 → 0 (at fixed κ) the torsion d.o.f. decouple
from the matter so that torsion bigravity reduces to GR with
GN ¼ G0, and the total mass parameter m ¼ m1 þm2 þ
� � � reduces to its general relativistic value (8.32).
It is interesting to discuss the physical consequences of

the form factor EðzsÞ ¼ EðκRsÞ entering m2. It is easily
checked that the form factor EðzsÞ ¼ EðκRsÞ has the
following properties: (i) in spite of the prefactor z−5s in
its definition, EðzsÞ is regular when zs → 0 and has the
finite limit

lim
zs→0

EðzsÞ ¼ −
2

5
; ð8:36Þ

(ii) EðzsÞ is negative in the interval 0 ≤ zs < z�, and
positive for zs > z�, where z� ≈ 1.6969326; and (iii) EðzsÞ
tends to zero like þ1=z2s when zs → ∞.
As a consequence of this behavior of the form factor

EðzsÞ we have the following limiting value for m2 as κ → 0
(i.e., zs → 0):
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m2 ∼
κ→0

−
2m2

1η

5Rs
þ 2

3
m2

1ηκ þ � � � : ð8:37Þ

(We will discuss the small κ limit in more detail in the next
section.) The negative value of m2 in this limit is probably
due to the fact that the massive-gravitational binding energy
− 3

5
GmM2

bare=Rs (due to the exchange of massive spin-2
excitations, in the small mass limit) dominates over other
forms of binding energy (e.g., pressure-related energy).
Another limit is the limit of very heavy massive spin-2

excitation (κ → ∞), i.e., of a very short-range modification
of gravity, κ−1 ≪ Rs. In this case the second-order correc-
tion to the mass parameter mass is found (as expected) to go
to zero,

m2 ∼
κ→∞

m2
1η

R3
s
κ−2 þOðκ−3Þ: ð8:38Þ

B. Limit κ → 0 with fixed r > Rs

Let us now study in more detail the limit where κ
becomes very small, i.e., where the Compton wavelength
1=κ is much larger than all the other scales of the problem
(and notably Rs), being, e.g., of cosmological magnitude.
This is the situation which is usually considered for massive
gravity and bimetric gravity. As is well known since the
work of Vainshtein [32], the perturbation expansion of
massive gravity (and bimetric gravity) involves negative
powers of κ2, which render the perturbative expansion
invalid for radii r smaller than some Vainshtein radius RV
given, in generic (ghostfull) massive-gravity theories, by
the formula

R5
V ∼

GM
κ4

∼
m
κ4

: ð8:39Þ

More precisely, at the second-order approximation inG, the
perturbative solution of the field equations of generic
massive-gravity (and bimetric gravity) theories contain
terms that fractionally modify the linear approximation,
say Φ1 ∼m=r by terms of the type (see, e.g., [52])

Φ ¼ Φ1 þΦ2 þ � � � ∼m
r

�
1þ R5

V

r5
þ � � �

�

∼
m
r
þ m2

κ4r6
þ � � � : ð8:40Þ

The latter expansion is performed in the domain Rs < r ≪
κ−1, in the limit where κ−1 is much larger Rs. (In this
domain, and in this limit, one does not see the Yukawa
exponential decay ∝ e−κr.)
By contrast, we found the rather remarkable fact that,

when considering the same limit, no terms involving
inverse powers of κ enter the perturbative expansion of

torsion bigravity (in the domain Rs < r ≪ κ−1) up to the
second order included.
For instance, the second-order contribution to F, con-

sidered in this limit, takes the following form:

Fκ→0
2 out ¼ −

2

15
ηð3þ 4ηÞ m2

1

r2Rs
þ 18þ 44ηþ 25η2

9

m2
1

r3

−
4ηð1þ ηÞ

15

m2
1R

2
s

r5
þOðκ ln κÞ; ð8:41Þ

where the κ-dependent piece tends to zero as κ → 0. We
have shown that, similarly, all the other field functions in
second-order perturbation theory, i.e., V2, Ȳ2, Λ2, have
finite limits (i.e., contain no denominators ∝ 1=κ2) as
κ → 0. Such a result was a priori not all guaranteed
because the field equations of torsion bigravity do contain
denominators ∝ 1=κ2. Indeed, such denominators come
from the fact that the coefficient cF2 of the F2

ij terms in the
action is proportional to 1=κ2; see Eq. (2.4).
The absence ofOð1=κ2Þ terms at second order is due to a

special cancellation. Let us explain it. We recall that the
second-order variables F2 and Λ2 are expressed in terms of
the second-order potentials Vm0ð2Þ and Vmkð2Þ via the
equations

F2 ¼ Vm0ð2Þ − 2ηVmkð2Þ þ NF
2 ;

1

r
Λ2 ¼ Vm0ð2Þ − ηVmkð2Þ þ NΛ

2 : ð8:42Þ

Here, the additional (nonlinear) terms NF
2 ; N

Λ
2 (which are

bilinear in V1, Ȳ1, F1, Λ1 and their derivatives) do contain
some 1=κ2 factors, but all these factors have a special
structure: each monomial containing a factor κ−2 simulta-
neously contains at least one power of Ȳ1 or of one of its
derivatives. Similarly, the potentials Vm0ð2Þ and Vmkð2Þ
satisfy the differential equations (8.4) where the source
functions Sm0ð2Þ and Smkð2Þ consist of terms bilinear in V1,
Ȳ1, F1, Λ1 and their derivatives. Again the latter bilinear
expressions Sm0ð2Þ, Smkð2Þ do contain some 1=κ2 factors, but
the latter a priori dangerous (when κ → 0) terms have the
same special structure as NF

2 ; N
Λ
2 . Each factor κ−2 multi-

plies a monomial which is at least linear in Ȳ1 or one of its
derivatives.
In turn, the reason why the terms ∝ κ−2Ȳ1 or ∝ κ−2Ȳ 0

1;…
turn out to be innocuous in the limit κ → 0 is that the
variable Ȳ1 happens to be of order Oðκ2Þ as κ → 0, so that
κ−2Ȳ1 has a finite limit as κ → 0. Indeed, from the
definition (7.9) one gets that

Ȳ1 ¼ 2Vm0 þ 3Vmk:

Then, using Eq. (7.17) and the derivative of Eq. (7.16), one
can see that Ȳ1 satisfies the following differential equation:
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Ȳ 00
1 þ

2

r
Ȳ 0
1 −

2

r2
Ȳ1 ¼ 3κ2Vmk þ 2S0m0 þ 3Smk: ð8:43Þ

At the linear level, the source terms Sm0ð1Þ, Smkð1Þ, read,
according to Eqs. (7.11) and (7.12),

Sm0ð1Þ ¼
ρðrÞ
4λ

; Smkð1Þ ¼ −
ρ0ðrÞ
6λ

; ð8:44Þ

so that the combination of source terms entering the
equation for Ȳ1 cancels:

2S0m0ð1Þ þ 3Smkð1Þ ¼ 0: ð8:45Þ

Finally, Ȳ1 satisfies an equation whose right-hand side is
explicitly Oðκ2Þ, namely

Ȳ 00
1 þ

2

r
Ȳ 0
1 −

2

r2
Ȳ1 ¼ 3κ2Vmk: ð8:46Þ

This explains why Ȳ1 is of order Oðκ2Þ, thereby ensuring
the absence of denominators 1=κ2 in the second-order
solution.
It is not a priori clear whether this (or a similar)

cancellation mechanism will continue to work at the third
order of perturbation theory. [The specific property (8.45)
does not seem to persist for Sm0ð2Þ and Smkð2Þ.] We note that
one cannot apply the same reasonings to the next (third)
order of perturbations because the property (8.45) is not
true for Sm0ð2Þ and Smkð2Þ. This means that it is a priori
possible that the perturbation theory will involve 1=κ2

factors in the third order. We leave the investigation of this
subject to future work, and comment below on what would
be the consequences of the presence of 1=κ2 factors at the
third order of perturbation theory. For the time being, we
shall continue studying the consequences of our results at
the second order of perturbation theory.

IX. NUMERICALLY CONSTRUCTING EXACT
STAR SOLUTIONS

In GR, it is possible to write down analytically the exact
solution for the metric generated by a constant-density
perfect fluid [53]. Though the exterior Schwarzschild
solution [54] is an exact exterior solution of torsion
bigravity (with zero contorsion), this is not true for the
interior Schwarzschild solution. Indeed, as we saw in our
perturbation theory analysis, the presence of a nonzero Tμν

in space necessarily generates some nonzero contorsion
field, i.e., a difference between the affine connection Ai

jμ

and the Levi-Civita connection ωi
jμ. And indeed, one can

check that the interior Schwarzschild solution (with zero
contorsion) does not satisfy the field equations of torsion
bigravity.

As the analytic construction of an exact analytical
solution of the complicated system of torsion bigravity
spherically symmetric field equations discussed in Sec. VI
seems difficult, we have appealed to numerical methods to
confirm the global existence of regular solutions of torsion
bigravity satisfying the boundary conditions imposed in our
perturbation theory. Let us recall that these boundary
conditions are as follows: (1) geometric regularity of all
our variables at the origin r → 0, and (2) decay of all our
variables at spatial infinity r → ∞.
We recall that the system of equations to be satisfied (in

the presence of matter) consists either of (i) the original six
field equations comprising E1–E5, together with the matter
equation Em (knowing that this system is constrained by
two other equations that must be satisfied); or (ii) a reduced
system made of the three radial-evolution equations (6.21),
plus the radial-evolution equation (6.22) for the pressure
PðrÞ. In our numerical simulations, we have used the
reduced first-order system of four ordinary differential
equations defined by Eqs. (6.21) and (6.22), for the four
variables V; Ȳ; π; P. This system is completed by giving an
equation of state for the matter. In our simulations we use
the simple condition of constant density: ρðrÞ ¼ e0. After
integrating this system, the values of the variables F, L (or
Λ), and W were obtained by using Eqs. (6.19), (6.17),
and (6.9).
As we have seen in Sec. VII, in perturbation theory the

boundary conditions (1) and (2) (together with the choice of
the radius Rs of the star) uniquely determine (at each order
of perturbation theory) a torsion bigravity solution. The
main motivation for constructing numerical solutions was
to prove that this uniqueness property holds in the full
nonlinear theory. To do this we need to study what the
conditions of regularity at the origin impose as constraints
on the initial conditions (at r → 0) of our four variables
VðrÞ; ȲðrÞ; πðrÞ; PðrÞ. First, the geometric character
(scalar, vector, tensor, etc.) of our variables show that,
near the origin, they must admit general Taylor expansions
of the following restricted type:

VðrÞ ¼ v1rþ v3r3 þOðr5Þ;
ȲðrÞ ¼ y1rþ y3r3 þOðr5Þ;
πðrÞ ¼ π0 þ π2r2 þOðr4Þ;
PðrÞ ¼ P0 þ P2r2 þOðr4Þ; ð9:1Þ

together with

FðrÞ ¼ f1rþ f3r3 þOðr5Þ;
ΛðrÞ ¼ Λ2r2 þ Λ4r4 þOðr6Þ: ð9:2Þ

[Λð0Þ ¼ 0 is necessary to have a locally flat metric at the
origin.] By inserting these expansions into the equations of
our system, we get, at each order in r some relations
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between the various expansion coefficients. The crucial
point is that, if we consider the central value P0¼Pðr¼0Þ
of the pressure as a given quantity (that will determine the
radius, given the constant density e0), the equations of our
system give enough relations to determine all the other
expansion coefficients vn, yn, πn, Pn in terms of only one of
them. We have chosen v1 as unique free initial datum. For
instance, at the lowest order in the r expansion, one finds
that y1, π0, f1, and Λ2 are determined by v1 and P0 (and e0)
by the following formulas:

y1 ¼
1

24λ
ðe0 − 3P0 þ 36λv1Þ;

π0 ¼
1

12λ
ðe0 − 3P0 þ 24λv1Þ;

f1 ¼
1

12ðλ − cÞ ðe0 þ 3P0 − 12cv1Þ;

Λ2 ¼
1

24λðc − λÞ ½ðc − 2λÞe0 − 3cP0 þ 12cλv1�: ð9:3Þ

Similar formulas also determine the next order coefficients
in the r expansion: v3, y3, π2, P2, etc.
In other words, a single “shooting parameter” at the

origin, namely v1, uniquely determines (after having
chosen P0) the solution of torsion bigravity. When inte-
grating the system, the value RsðP0; v1Þ of the star radius
will be obtained as the (first) radius where PðrÞ (vanishes).
For r > RsðP0; v1Þ one sets ρðrÞ ¼ 0 and PðrÞ ¼ 0 and

continues integrating the three field equations (6.21) to get
the exterior solution for the three variables V; Ȳ; π. For a
generic value of v1, the so-constructed exterior solution for
V; Ȳ; π (and the associated values of F, W, and Λ) will not
decay at infinity, but will contain some growing exponen-
tial pieces ∝ eþκr. We have seen in Sec. VII that the general
exterior solution contains three parameters: one parameter,
say m (Schwarschild-type total mass), parametrizing all
the power-law behavior of the solution (asymptotically
described by a Schwarzschild metric and connection);
together with two parameters, say Cþ and C−, respectively,
parametrizing the exponentially growing, and decaying,
Yukawa-type contributions to the solution. At the linear
level, each variable contains different coefficients Cþ and
C−, e.g.,

F1ðrÞ ≈
m
r2

þ CF
−
e−κrð1þ κrÞ

r2
þ CFþ

eþκrð1 − κrÞ
r2

; ð9:4Þ

but all the exponential-mode coefficients are related
between themselves by the field equations, so that only
two of them are independent.
In order to satisfy the decaying boundary condition at

spatial infinity, we finally have a one-parameter shooting
problem; namely it is enough to impose that (given some
value of P0) the coefficient Cþðv1Þ of one variable
vanishes. To numerically extract from numerical data an

estimate of the (common, underlying) Cþðv1Þ coefficient,
we worked with the variable VmkðrÞ≡ 2VðrÞ − ȲðrÞwhich
does not contain a mass-type, power-law contribution. In
practical terms, this meant tuning the value of v1 at r ¼ 0
until reducing essentially to zero the value of, say

Ceffþ ðr0Þ≡ Vmkðr0Þ
eþκr0ð1 − κr0Þr−20

; ð9:5Þ

taken at some large value of r0 (such that eþκr0 ≫ 1, so that
the exponentially decaying contribution to Vmkðr0Þ is
fractionally negligible). (In practice, we used κr0 ¼ 10

corresponding to eþκr0 ≈ 2 × 104.) The tuning of v1 is
obtained by a simple dichotomy procedure, i.e., alternating
the signs of Ceffþ ðr0; v1Þ by changing the value of v1 until
Ceffþ ðr0; v1Þ is smaller than what is permitted by the
numerical accuracy of our simulation.
We implemented this simple, one-parameter shooting

strategy for several star models, of various radii and
compactnesses. Let us only indicate here our results for
one such star model. Without loss of generality, we used
units where κ ¼ 1 and λ ¼ 1. The first condition says that
we measure lengths in units of κ−1, while the second one
defines the (independent) unit for the Newtonian constant
such that 16πG0 ¼ 1. Here, we shall exhibit a specific star
model having the following physical characteristics. First
we set the dimensionless torsion bigravity parameter η to
the value η ¼ 1, i.e., cF ¼ cR (both being equal to 1

2
in our

units where λ ¼ cF þ cR ¼ 1). The other physical choices
concern the following: (a) the radius of the star in units of
κ−1, i.e., the dimensionless quantity zs ¼ κRs, and (b) the
value of the star compactness,11 Cs ≃ 2G0Ms=Rs, with
Ms ≡ 4π

3
e0R3

s . The two quantities zs and Cs are dimension-
less and physically depend on the two independent values
of e0 and P0. We have chosen (in our units) the specific
values

e0 ¼ 3; P0 ¼ 0.866020112678: ð9:6Þ

These values were chosen by using, as a guideline, our
perturbation-theory expressions, with the aim of getting a
star model having κRs ∼ 1 and a sufficiently high compact-
ness Cs ∼ 0.3 (comparable to the expected compactness of
a neutron star in GR).
Anyway, after doing the choices (9.6), we found that we

needed to tune v1 to the value

vtuned1 ≈ 0.05367018; ð9:7Þ

to get a sufficiently small value of Ceffþ ðr0Þ, i.e., a solution
exhibiting numerical decay up to r ∼ 10=κ. As said above,

11We normalize the definition of the compactness so that it is
equal to 1 for a black hole in GR. See below the exact definition
of Cs.
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we obtained vtuned1 by dichotomy, using as first guesses the
analytical estimates of v1 obtained either directly from
linearized perturbation theory, namely

vlin1 ¼ m1

R3
s

�
1 −

4

3
e−κRsð1þ κRsÞ

�
; ð9:8Þ

or, alternatively, by combining the relation between v1 and
the value f1 of F0jr→0 with the analytical estimate for f1
deduced from our linear solution (7.36), i.e.,

flin1 ¼ m1

R3
s

�
1þ 4

3
ηe−κRsð1þ κRsÞ

�
: ð9:9Þ

The numerical solution was found to have a star radius
equal to (in our units where κ ¼ 1)

Rs ≈ 0.739525: ð9:10Þ

The value of the star radius was numerically determined by
looking at the point where the pressure PðrÞ vanishes.
We display in Fig. 1 the numerical values (both inside

and outside the star) of four variables encapsulating the
essential geometrical properties of our solution, namely
FðrÞ, ΛðrÞ, and the two independent (con)torsion compo-
nents, namely K1̂

0̂ 0̂ and K1̂
2̂ 2̂, as defined in Eq. (3.11).

While FðrÞ and ΛðrÞ decay for large r in a power-law
fashion [FðrÞ ∝ 1=r2 and ΛðrÞ ∝ 1=r], the torsion compo-
nents decay exponentially. Note that the order of magnitude
of the torsion inside the star is comparable to the value of F.
As K1̂

0̂ 0̂ ¼ V − e−ΛF [from (3.11)], we see that the matter
density of the star generates a torsion which is of roughly
the same magnitude as the component ω1̂

0̂ 0̂ ¼ e−ΛF of the

Levi-Civita connection. [From Eqs. (7.46), this remains
true even when η → 0.]
In order to measure the deviation from GR implied by

our numerical star model, we have extracted several
observable, gauge-invariant characteristics of our solution.
First, we extracted an estimate of the total Keplerian-
Schwarzschildian mass parametermS (as measured faraway)
by fitting (in the interval 6 < r < 10) the numerical value of
r2FðrÞ to its analytically predicted asymptotic expansion
∼mSð1þ2mS=rÞþCF

−e−κrð1þ κrÞþCFþeþκrð1− κrÞ. This
gave us

mS ¼ 0.1005ð3Þ; ð9:11Þ

where the digit in parentheses is a rough measure of the
uncertainty (in the last digit) on the numerical determination
ofmS. Note that this is only slightly smaller than what would
be the value of the total mass in Einstein’s theory, namely
mGR ¼ e0R3

s=12 ≈ 0.101111. We have verified that such a
value is compatible with our second-order-corrected mass
value, m1 þm2, with m2 given by Eq. (8.35). [It happens
that the form factor EðzsÞ, though still negative, is quite
small, thereby explaining why one does not see the expected
larger self-gravity binding effect due to a high compact-
ness ∼0.3.]
The formally defined compactness 2mS=Rs would then

be 2mS=Rs ≈ 0.272. However, such a formal definition
(directly copied on GR expressions) does not correspond to
any observable characteristics of a star in torsion bigravity.
We therefore extracted other (in principle) observable
features and numbers from our solution.
We have seen above that if one probes our bigravity field

at, say, distances r≳ 5=κ, the geometry will look like a GR
metric of mass mS. On the other hand, the exact torsion
bigravity metric functions F ¼ Φ0 and Λ start significantly
differing from their GR counterparts FSðrÞ≡ FGRðr;mSÞ
and ΛSðrÞ≡ ΛGRðr;mSÞ as r gets smaller and comparable
to 1=κ. This is illustrated in Figs. 2 and 3. These figures
show that, near the star, the torsion bigravity solution
differs by ≳100% from its GR counterparts.
Let us observationally define the compactness of a star

by the surface value of

Cs ≡ 1 − e2ΦðRsÞð¼ 2GM=Rsin GRÞ: ð9:12Þ

In our torsion bigravity model, we can compute the surface
value ΦðRsÞ of Φ [relative to a zero value at infinity:
Φð∞Þ ¼ 0] by integrating FðrÞ, namely

ΦðRsÞ ¼ −
Z

∞

Rs

Fdr: ð9:13Þ

A numerical evaluation of this integral gave us

FIG. 1. Starting from the top left, one displays four functions
characterizing our numerical star solution: the two independent
metric functions FðrÞ≡Φ0ðrÞ, ΛðrÞ, and (in the lower part of the
graph) the two independent (con)torsion components K1̂

0̂ 0̂ and

K1̂
2̂ 2̂. The inset contrasts the power-law decay of the metric

functions with the exponential decay of the torsion ones.
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ΦðRsÞ ≈ −0.302028; ð9:14Þ

and therefore

Cs ≡ 1 − e2ΦðRsÞ ≈ 0.453410: ð9:15Þ

Note that this is significantly larger than the corresponding
value in GR for a star having the same mass and the same
radius, namely

CGRs ¼ 2mS

Rs
¼ 0.271796: ð9:16Þ

As a supplementary measure of the strong-gravity nature of
our torsion-bigravity star model, let us also cite the value of

the geometric-deformation quantity 1 − e−2ΛðRsÞ (which is
also equal to the compactness 2mS

Rs
in GR),

1 − e−2ΛðRsÞ ¼ 0.444855: ð9:17Þ

This value confirms that our torsion bigravity model
induces large deformations of the geometry.
Another quantity of direct observational significance is

the radius of the innermost (or last) stable circular orbit
(LSO). From Eq. (4.14) of Ref. [55], the condition defining
the LSO reads (in terms of the variables A≡ e2Φ and u≡ 1

r)

2A
∂A
∂u þ 4u

�∂A
∂u

�
2

− 2uA
∂2A
∂u2 ¼ 0: ð9:18Þ

Transcribed in terms of the function FðrÞ, this yields

−3FðRLSOÞ þ 2RLSOF2ðRLSOÞ − RLSOF0ðRLSOÞ ¼ 0:

ð9:19Þ

Solving this equation gave us

RLSO ≈ 1.549 ≈ 15.4mS: ð9:20Þ

Note that the ratio RLSO=mS ≈ 15.4 is about 2.57 larger than
thewell-known corresponding GR valueRGR

LSO=mS ¼ 6. This
difference is linked to the fact (already apparent in Fig. 2) that
the gravitational field near a torsion bigravity star (of a given
Keplerian mass) is significantly more attractive than in GR.
[This increase in the strength of the gravitational attraction is
essentially due to the extra (short-range) attraction provided
by the massive spin-2 excitation.] Note that the value of the
ratioRLSO=mS is in principle extractable from the observation
of an accretion disk around a neutron star.
In the following section, we shall discuss more potential

phenomenological aspects of torsion bigravity.

X. PHENOMENOLOGY OF TORSION BIGRAVITY

We present a preliminary analysis of the phenomenology
of torsion bigravity based on the first two orders of
perturbation theory, focusing on solar-system tests of gravity.

A. Assuming r ∼ 1=κ

Let us first consider the case where r ∼ 1=κ, i.e., when
the exponential decrease of the massive spin-2 excitation is
important in the considered physical situation. In that case,
torsion bigravity already introduces a modification of
Einstein’s (purely massless) theory at the Newtonian level,
i.e., when considering the linearized-gravity interaction
between two slowly moving massive objects. As already
mentioned, previous studies of the linearized approxima-
tion [23,26] have shown that the linearized interaction
between two massive objects (with stress-energy tensor

FIG. 2. Comparing FðrÞ (upper blue curve), for our exterior
solution, with FSðrÞ, corresponding to an exterior Schwarzschild
solution with the same asymptotic Keplerian mass mS, Eq. (9.11)
(lower orange curve).

FIG. 3. Comparing ΛðrÞ (upper blue curve), for our exterior
solution r ≥ Rs, with ΛSðrÞ, corresponding to an exterior
Schwarzschild solution with the same asymptotic Keplerian mass
mS, Eq. (9.11) (lower orange curve).
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Tμν) involves the exchange of two fields: a massless
Einstein-like gravitational field h�μν, and a massive spin-2
field (contained within the 24 components of the contorsion
tensor). The massless field h�μν couples to Tμν with the
Newtonian-like coupling constant

G0 ¼
1

16πλ
¼ 1

16πðcR þ cFÞ
; ð10:1Þ

while the massive spin-2 excitation couples to Tμν with the
effective Yukawa-Newtonian coupling constant

Gm ¼ 4

3
ηG0 ¼

4

3

cF
cR

G0: ð10:2Þ

This means that the gravitational interaction term of the
source Tμν with itself (after integrating out the field d.o.f.)
reads

Sint ¼
Z

d4xLint ð10:3Þ

with

Lint ¼ 2G0Tμν

�
−4π
□

��
Tμν −

1

2
Tημν

�

þ 3

2
GmTμν

�
−4π

□ − κ2

��
Tμν −

1

3
Tημν

�
: ð10:4Þ

Here the extra numerical prefactors 2 and 3
2
are such that the

interaction between two nonrelativistic (Tμν ¼ T00δ
0
μδ

0
ν)

stationary (□ ¼ Δ) sources read

LNewtonian
int ¼ G0T00

�
−4π
Δ

�
T00 þ GmT00

�
−4π
Δ − κ2

�
T00:

ð10:5Þ

If we consider the interaction between a test particle of mass
M2 and a spherical object (say a nonrelativistic star) of
constant density e0 and total massM1 ¼

R
d3xe0, separated

by a distance r12 (between their centers of mass), the above
formulas yield an interaction potential V int ¼ −

R
d3xLint,

VNewtonian
int ¼ −G0

M1M2

r12
−GmF ðκR1Þ

M1M2e−κr12

r12
:

ð10:6Þ

Here the form factor F ðκR1Þ (where R1 denotes the radius
of the object M1) is the (normalized) one introduced in
Eq. (7.32). [If we were considering the interaction between
two constant-density spherical objects, we should include
two form factors: F ðκR1ÞF ðκR2Þ. In the case of a test
particle considered here, we have F ðκR2Þ → 1.] It is easily
checked that the radial force Fint ¼ −∂VNewtonian

int =∂r12

deduced from the interaction potential is simply equal to
(setting zs ¼ κR1)

Fint ¼ −M2

�
G0

M1

r212
þ CF

1 ðzsÞ
e−κr12ð1þ κr12Þ

ðκr12Þ2
�

¼ −M2F1ðr12Þ; ð10:7Þ

where the function F1ðrÞ denotes the external value of our
linearized variable FðrÞ ¼ Φ0ðrÞ, as obtained in Eq. (7.36)
above. This is a direct check of the superposition of massless
and massive spin-2 excitations in the Newtonian-like poten-
tial Φ ¼ 1

2
lnð−g00Þ.

There are many experimental data that have set upper
limits on the existence, in addition to the Newtonian 1=r
interaction, of a Yukawa-type interaction αe−κr=r coupled
with gravitational strength to matter. See Refs. [56,57]
for reviews of the experimental situation. (Note that,
when considering non-spin-polarized sources, the torsion
bigravity interaction respects the equivalence principle,
as assumed in the presently considered composition-
independent limits.) The Yukawa strength parameter α
entering these limits is simply α ¼ Gm=G0 ¼ 4

3
η. The

experimental limits on α, as a function of λ≡ 1=κ, are
summarized in Fig. 2.13 of [56] and Fig. 4 of [57] (for the
range 10−3 m < λ < 10þ15 m). We note that the less
stringent upper limits apply in the geophysical range
(i.e., for 1 m≲ κ−1 ≲ 10 km) and roughly limits η ¼ 3

4
α

to be

η≲ 3 × 10−4 for κ−1 ≲ 10 km: ð10:8Þ

A range of order κ−1 ∼ 10 km is interesting to consider if
one wishes to discuss possible deviations from GR in the
physics of neutron stars and black holes.

B. PPN parametrization of the second-order torsion
bigravity metric when assuming Rs < r ≪ 1=κ

Let us now consider the other phenomenological sit-
uation where the massive-gravity range is much larger than
all the length scales of our system. (We exclude from our
consideration the case where 1=κ is roughly between 10 km
and 10þ11 km, for which there are very stringent limits on η
coming from Earth-satellite, lunar, and planetary data.)
If we consider the motion of classical, non-spin-

polarized, test masses in our second-order torsion bigravity
spacetime (endowed with the metric gμν and the connection
Aijμ), it is given (as shown in Ref. [22]) by geodesics of the
metric gμν. The observational differences (say for the
motion of the planets around the Sun) between torsion
bigravity and GR are then encapsulated in the difference
between our spherically symmetric metric

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ ð10:9Þ
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and the usual Schwarzschild metric. As is well known,
solar-system experiments are primarily sensitive only to
the first post-Newtonian approximation to the metric in
the solar system, which is described by the Eddington
parametrized post-Newtonian (PPN) parameters β and γ.
When using (as we do) a Schwarzschild-like radial coor-
dinate, the PPN parameters are defined by writing the first
post-Newtonian metric as (see, e.g., [58])

−gPPN00 ¼ e2Φ ¼ 1 −
2m0

r
þ 2ðβ − γÞm

2
0

r2
þO

�
m3

0

r3

�
;

gPPNrr ¼ e2Λ ¼ 1þ 2γ
m0

r
þO

�
m2

0

r2

�
; ð10:10Þ

where m0 ¼ GNM0 is some observable Keplerian mass
parameter. Such an expansion assumes the presence of only
power-law deviations from Einstein’s theory. In order to be
consistent with it, we shall therefore assume in the present
subsection that the Compton wavelength 1=κ is much larger
than the length scales that are being experimentally probed.
The first equation (10.10) implies the following second-

order expansions for Φ and its radial derivative F ¼ Φ0:

ΦPPN ¼ −
m0

r
þ ðβ − γ − 1Þm

2
0

r2
þO

�
m3

0

r3

�
ð10:11Þ

and

FPPN ¼ m0

r2
− 2ðβ − γ − 1Þm

2
0

r3
þO

�
m3

0

r4

�
: ð10:12Þ

Similarly one gets

ΛPPN ¼ γ
m0

r
þO

�
m2

0

r2

�
: ð10:13Þ

Let us now compare these expansions to the corresponding
κ → 0 limits of the torsion bigravity variables F ¼ F1 þ F2

and Λ1. According to (8.19) and (8.41), we have the
following result:

F1 þ F2 ¼
κ→0

mF

r2
þ 18þ 44ηþ 25η2

9

m2
1

r3
−
4ηð1þ ηÞ

15

m2
1R

2
s

r5
;

ð10:14Þ

where

mF ¼ m1

�
1þ 4

3
η

�
−

2

15
ηð3þ 4ηÞm

2
1

Rs
: ð10:15Þ

In addition, from Eq. (7.40) one gets the following κ → 0
solution for Λ1:

Λ1 ¼
κ→0

mΛ

r
¼ mþ ηC1

r
¼
κ→0

m
r

�
1þ 2

3
η

�
: ð10:16Þ

One should identify the observable Keplerian massm0 with
the mass parameter mF (which includes self-gravity
effects). Then one can conclude from the last equality
and Eq. (10.13) that we can indeed parametrize the
linearized torsion-bigravity metric by an Eddington γ
parameter equal to

γ ¼ mΛ

mF
¼ 1þ 2

3
η

1þ 4
3
η
; ð10:17Þ

where we consistently neglected the Oðηm1=RsÞ nonlinear,
gravitational binding energy correction term.
The expression (10.17) for γ encapsulates two main facts

related to a theory involving both a massless graviton and a
massive one. We recall that η measures the ratio between
the coupling of the massive graviton to that of the massless
one; see Eq. (2.4). When η → 0, γ → 1, which is the usual
Einstein value, while when η → ∞, γ → 1

2
, which is the

value corresponding to pure massive gravity [33].
There are stringent limits on the deviation γ − 1 between

the PPN parameter γ and its Einstein value; see notably
Refs. [59,60]. Note that the Einstein value γ ¼ 1 is obtained
for η → 0 and that γ ¼ 1 − 2η

3
þOðη2Þ as η → 0. Using the

limits from Ref. [59] we see that, in the case where κ−1 is
very large, the allowed upper limit on η is of order

η≲ 10−5: ð10:18Þ
Coming back to the second-order terms in F, Eq. (8.41),

we see that there are two types of deviations from Einstein’s
theory. First, there is a term parametrizable by the PPN
parameter β [see (10.12)] with

18þ 44ηþ 25η2

9

m2
1

r3
¼ −2ðβ − γ − 1Þm

2
0

r3
: ð10:19Þ

Using the fact that m0 ¼ mF ¼ ð1þ 4
3
ηÞm1, we get the

following value of β in torsion bigravity:

β ¼ 18þ 40ηþ 23η2

2ð3þ 4ηÞ2 : ð10:20Þ

Note that β → 23=32 as η → ∞, while in the limit η → 0
we have

β ¼ 1 −
4η

9
þOðη2Þ: ð10:21Þ

Therefore the upper limit (10.18) on η suffices to guarantee
that β − 1≲ 10−5, which is more than sufficient to be
compatible with the planetary limits on β − 1 [60].
Concerning the remaining second-order contribution ∝

ηð1þ ηÞm2
1R

2
s=r5 in Eq. (8.41), we note that it is smaller

than the non-Einsteinian term −2ðβ − γÞm2
0=r

3 by a factor
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(when η → 0) of order ðRs=rÞ2, which is much smaller than
1 in all planetary tests. It can therefore be neglected with
respect to the usual PPN terms. One should take it into
account only when discussing relativistic-gravity tests for
near-Earth satellites.
Let us finally recall that the results of the present section

have been deduced from the assumption that the second-
order perturbation theory of torsion bigravity yields a
sufficiently accurate description of the deviations from
GR. In our conclusions, we will discuss what modifications
might exist if higher-order terms in the perturbation
expansion introduce new features in the κ → 0 limit.

XI. CONCLUSIONS

We studied the spherically symmetric (and static) sector
of torsion bigravity theories, i.e., the four-parameter class
of Einstein-Cartan–type theories (with dynamical torsion)
that contain only two physical excitations (around flat
spacetime): a massless spin-2 excitation and a massive
spin-2 one (of mass κ). We found that this sector of torsion
bigravity has the same number of d.o.f. (as counted by the
total differential order of the equations, after discounting
algebraic identities) as their analogs in ghost-free bimetric
gravity theories, defined à la DeRham-Gabadadze-Tolley-
Hassan-Rosen [see Eqs. (6.21)]. Knowing that, by contrast,
spherically symmetric solutions in generic (ghostfull)
bimetric gravity theories exhibit one more d.o.f. (corre-
sponding to the Boulware-Deser ghost), this finding sug-
gests that torsion bigravity might preserve its good (2þ 5)
number of d.o.f. in the full nonlinear regime.
Another remarkable feature of torsion bigravity concerns

its behavior in the limit where the mass of the spin-2
excitation tends to zero (κ → 0). Contrary to what happens
in all bimetric gravity theories [where ordinary perturbation
theory is marred by the presence of powers of κ−2 that
increase at each order of perturbation theory; see, e.g.,
Eqs. (6.4) and (8.40)], we found that the perturbation theory
(around the flat space) of torsion bigravity involves no
powers of κ−2 at the first two orders of perturbation theory.
We numerically constructed a high-compactness (jg00þ

1jsurface ¼ 0.45) (asymptotically flat) star model in torsion
bigravity and showed that its physical properties are
significantly different from those of a general relativistic
star having the same observable Kepler-Schwarzschild
mass. See, e.g., Eqs. (9.15) and (9.16) and equations
around. We emphasized that, contrary to the Einstein-
Cartan theory (where the torsion does not propagate), the
dynamical torsion present in torsion bigravity is generated
by the stress-energy tensor Tμν of matter (even in the
absence of a spin-density distribution) and can lead (when
η ¼ 1) to significant differences between the Levi-Civita
connection and the torsionfull one. See Fig. 1.
We also briefly discussed (in Sec. X) possible phenom-

enologies of torsion bigravity (depending on the considered

range κ−1 of the massive excitation and on the value of the
ratio η between the coupling Gm of the massive graviton to
that,G0, of the massless one). As we are not assuming in this
work that an analog of theVainshteinmechanismmight be at
work in torsion bigravity, we relied on the fact that the
physical effects of torsion (for non-spin-polarized bodies)
disappear in the η → 0 limit to give upper limits on ηmaking
torsion bigravity compatible with existing solar-system tests
of GR. We leave to future work an analysis of the compat-
ibility of torsion bigravity with other tests of GR, notably in
binary-pulsar data and gravitational-wave data.
As already mentioned, remarkable cancellations of 1=κ2

factors take place at the first two orders of the perturbation
theory of torsion bigravity. If these cancellations continued
at all orders, one could use torsion bigravity to define an
infrared modification of gravity and consider its cosmo-
logical applications (as was already attempted in previous
work). On the other hand, if 1=κ2 factors arise at the third
order of perturbation theory, a preliminary analysis sug-
gests that they could generate contributions to the gravi-
tational acceleration field F ¼ Φ0 (with g00 ¼ −e2Φ) of the
type

F3 ∼
m3

κ2r6
þ m3

κ2Rsr5
: ð11:1Þ

Compared to the first-order result F1 ∼ m
r2 this would mean

that perturbation theory might lose its validity below a
Vainshtein-like radius which could be either

Rð1Þ
V ∼

�
m2

κ2

�1
4

or Rð2Þ
V ∼

�
m2

κ2Rs

�1
3

: ð11:2Þ

If we wished to consider a range 1=κ of cosmological
magnitude, both possibilities would be problematic for the
phenomenological consequences we deduced above from
second-order perturbation theory. This would then raise the
issue of whether a Vainshtein-like mechanism might be at
work in torsion bigravity. We leave to future work a
discussion of this issue, which is expected to be quite
different from the discussion of the κ2 → 0 limit in ordinary
Fierz-Pauli–type massive-gravity models because κ2 enters
the torsion bigravity action directly as a denominator (via
cF2 ¼ ηλ

κ2
), while Fierz-Pauli–type actions contain κ2 in the

numerator.
We wish, however, to recall that the issue of an eventual

bad behavior in the κ2 → 0 limit is separate from the issue
of absence of a sixth d.o.f., and of ghost-freeness, in the
nonlinear regime. In addition, it is only relevant if one
wishes to consider a range 1=κ of cosmological magnitude.
We are currently more interested in considering ranges of
relevance for modifying the gravitational interaction of
compact objects (neutron stars or black holes).
Our hope is that torsion bigravity might define a

theoretically healthy alternative to GR that could lead to
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an interesting modified phenomenology for the gravita-
tional-wave physics of coalescing binary systems of black
holes or neutron stars. The present work is just a first step in
this program. In particular, we have shown the existence of
high-compactness star models. In the present work, we
have exhibited only one model based on an unrealistic
constant-density equation of state, but we have also
constructed neutron-star models based on more realistic
nuclear equations of state (with a range κ−1 ∼ 10 km).
We have also noted that the exterior Schwarzschild

solution defines a black hole solution in torsion bigravity.
We leave to future work the issue of whether this is the
unique spherically symmetric black hole solution of
torsion bigravity, or whether there exist black holes with
torsion hair. Our hope is that the different Young tableau
description of the massive-gravity field might allow for
black-hole hair.
We leave also to future work a Hamiltonian analysis of

torsion bigravity to examine whether its good linearization
properties around simple backgrounds, together with the
good d.o.f. count in fully nonlinear static spherically
symmetric solutions, are sufficient to ensure ghost-freeness
(and mathematical well-posedness) in the full nonlinear
theory.

ACKNOWLEDGMENTS

The authors thank Cedric Deffayet, Jürg Fröhlich,
Patrick Iglesias-Zemmour, Sergiu Klainerman, and
Mikhail Volkov for useful discussions.

APPENDIX A: REMINDERS ON THE
EINSTEIN-CARTAN FORMALISM

In this Appendixwe recall some of the basic technicalities
of the Einstein-Cartan(-Weyl-Sciama-Kibble) formalism
(also called Poincaré gauge theory). We generally follow
the notation of [21–24], and of the papers [25,26,36–39],
except for the notation used for the parameters entering into
the action. We use a mostly plus signature and distinguish
Lorentz-frame indices (i; j; k;… ¼ 0, 1, 2, 3) from coor-
dinate ones μ; ν;… ¼ 0, 1, 2, 3. The co-frame (inverse of the
vierbein) is denoted eiμ (i.e., gμν ≡ ηijeiμejν), while the
independent (but metric-preserving) SO(3,1) connection is
denotedAi

jμ. These fields respectively define the one-forms
ei ¼ eiμdxμ and Ai

j ¼ Ai
jμdxμ. In turn, the basic Cartan

formulas defining the (torsionless) Levi-Civita connection
ωi

j ≡ ωi
jμdxμ (often called the Riemannian spin connec-

tion), the Riemann curvature of ei, the torsion two-form, and
the curvature two-form of Ai

j, respectively, read

deiþωi
j∧ej¼0 ðvanishingRiemannian torsionÞ; ðA1Þ

Ri
j ¼ dωi

j þ ωi
s ∧ ωs

j ¼
1

2
Ri

jμνdxμ ∧ dxν; ðA2Þ

dei þAi
jej ¼ −

1

2
Ti½jk�ej ∧ ek; ðA3Þ

F i
j ¼ dAi

j þAi
s ∧ As

j ¼
1

2
Fi

jμνdxμ ∧ dxν: ðA4Þ

The frame components Ti½jk� ¼ −Ti½kj� of the torsion tensor
can be written as

Ti½jk� ¼ Aijk − Aikj − Ci½jk�; ðA5Þ
where Ci½jk� ¼ −Ci½kj� are the structure constants of the
vierbein, defined as

Ci½jk� ≡ ð∂μeiν − ∂νeiμÞejμekν: ðA6Þ
Here, frame indices i, j, k are moved by ηij.
The explicit links between the contorsion tensor

Kijk ¼ −Kjik (defined as Kijk ≡ Aijk − ωijk) and the
torsion tensor are

Kijk ¼
1

2
ðTi½jk� þ Tj½ki� − Tk½ij�Þ; ðA7Þ

Ti½jk� ¼ Kijk − Kikj: ðA8Þ
Let us also mention the expression of the Riemannian

spin connection in terms of the vierbein and its derivatives,

ωijμ ¼ ωijkekμ ¼
1

2
ðCi½jk� þ Cj½ki� − Ck½ij�Þekμ: ðA9Þ

The frame components of the two curvature tensors,
namely Ri

jkl ≡ Ri
jμνekμelν and Fi

jkl ≡ Fi
jμνekμelν, can

then be explicitly written (in their “all indices down”
forms: Rijkl ≡ ηii0Ri0

jkl and Fijkl ≡ ηii0Fi0
jkl) as

Rijkl ¼ ekμelνð∂μωijν − ∂νωijμ þ ηmnωimμωnjν

− ηmnωimνωnjμÞ; ðA10Þ

Fijkl ¼ ekμelνð∂μAijν − ∂νAijμ þ ηmnAimμAnjν

− ηmnAimνAnjμÞ: ðA11Þ

The tensor and scalar curvatures with contracted indices are
defined as follows:

Rij ¼ ηklRkilj ¼ ηklRikjl; R ¼ ηijRij; ðA12Þ

Fij ¼ ηklFkilj ¼ ηklFikjl; F ¼ ηijFij: ðA13Þ

APPENDIX B: LINK WITH THE
NOTATION USED IN [39]

In our previous paper Ref. [39] we considered the more
general action
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L ¼ 3

2
α̃F½e; A; ∂A� þ 3

2
ᾱR½e; ∂e; ∂2e� þ c2

þ c3FijFij þ c4FijFji þ c5F2 þ c6ðϵijklFijklÞ2; ðB1Þ

containing a cosmological constant c2 and five coupling
constants α̃; ᾱ; c3; c4; c5; c6. In order to avoid pathologies
around flat spacetime, these parameters must satisfy the
equation

c3 þ c4 ¼ −3c5 ðB2Þ
and the inequalities

α̃ > 0; ᾱ > 0; c5 < 0; c6 > 0: ðB3Þ

The field content of such a model around flat space con-
sists of a massless spin-2, a massive spin-2, and a massive
pseudoscalar field. The corresponding masses are [26]

m2
2 ¼ κ2 ¼ α̃ðα̃þ ᾱÞ

2ᾱð−c5Þ
> 0; ðB4Þ

while that of the pseudoscalar field is

m2
0 ¼

α̃

16c6
> 0: ðB5Þ

We define torsion bigravity by setting c6 ¼ 0 so as to “freeze
out” the pseudoscalar field (which becomes infinitely
massive). We also set for simplicity the bare cosmological
constant c2 to zero. This leaves us with only four indepen-
dent parameters: α̃, ᾱ, c3, and c4.
We then find it convenient to change the notation of the

parameters and to introduce

cF ≡ 3

2
α̃; cR ≡ 3

2
ᾱ;

cF2 ≡ c3 þ c4 ¼ −3c5; c34 ≡ c3 − c4: ðB6Þ
In terms of these parameters, and of the symmetric (FðijÞ)
and antisymmetric (F½ij�) parts of Fij ¼ FðijÞ þ F½ij�, the
torsion bigravity Lagrangian density reads

LTBG ¼ cRR½e; ∂e; ∂2e� þ cFF½e; A; ∂A�
þ cF2

�
FðijÞFðijÞ −

1

3
F2

�
þ c34F½ij�F½ij�: ðB7Þ

This model contains only a massless spin-2 and a massive
one of squared mass

κ2 ¼ ηλ

cF2

: ðB8Þ
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