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In this paper, we investigate the effects of electromagnetic field on the isotropic spherical gravastar
models in metric fðR; TÞ gravity. For this purpose, we have explored singularity-free exact models of
relativistic spheres with a specific equation of state. After considering Reissner-Nordström spacetime as an
exterior region, the interior charged manifold is matched at the junction interface. Several viable realistic
characteristics of the spherical gravastar model are studied in the presence of electromagnetic field through
graphical representations. It is concluded that the electric charge has a substantial role in the modeling of
the proper length, energy contents, entropy, and equation of state parameter of the stellar system. We have
also explored the stable regions of the charged gravastar structures.
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I. INTRODUCTION

Recent interesting outcomes from a few observational
experiments like cosmic microwave background radiation,
type Ia supernovae, etc., [1], claimed that our cosmos is in
the phase of accelerating expansion. The observational
ingredients from the BICEP2 experiment [2–4], the Planck
satellite [5–7], and the Wilkinson Microwave Anisotropy
Probe [8,9] state that our cosmos is composed of only 5%
baryonic matter and the rest is composed of dark matter and
dark energy (DE). Their percentages are observed to be
27% and 68%, respectively.
A popular approach to understanding the structure

formation and evolution of the Universe is modified gravity
theories. Such theories are obtained by generalizing the
usual Einstein-Hilbert action. The importance as well as the
need of such theories have been discussed in detail by
Nojiri and Odintsov [10]. The fðRÞ (R is the Ricci scalar)
[11], fðT Þ (T is the torsion scalar) [12], fðR;□R; TÞ (□ is
the de Alembert’s operator, and T is the trace of energy-
momentum tensor) [13], fðGÞ (G is the Gauss-Bonnet
term) [14], fðG; TÞ [15], etc., are among the most attractive
models of modified theories (for further reviews on such
models, see, for instance, Ref. [16]). Harko et al. [17]
introduced a notion of fðR; TÞ theory by introducing T in
the well-known theory of fðRÞ gravity. This quantity T may
be considered by exotic imperfect fluids or quantum effects.
They presented dynamical equations and the associated
equations of motion for a test particle. Houndjo [18] did
reconstruction in order to solve cosmological issues in this

gravity and found some models that could be useful to
understand matter-dominated eras of our Universe. Jamil
et al. [19] did the same process and found some quite
consistent outcomes with low-redshifts surveys.
Adhav [20] studied the homogeneous and anisotropic

cosmic model with the help of a constant deceleration
parameter and presented a few analytical fðR; TÞ solutions
under some conditions. Shabani and Farhoudi [21] examined
the cosmological solutions of fðR; TÞ gravity for a perfect
fluid using a spatially Friedmann-Lemaître-Robertson-
Walker universe. To simplify equations, they presented some
dimensionless parameters and variables. Baffou et al. [22]
analyzed the stability of power-law models with the help of
de Sitter cosmic models against linear perturbations. They
concluded that these models could be taken as an efficient
candidate forDE.Das andAli [23] elaborated the anisotropic
and homogeneous axially symmetric Bianchi type-I bulk
viscous cosmological models using the time-varying cos-
mological and gravitational constant. By using the Hubble
parameter, they solved the field equations and discussed the
kinematical and physical properties of the models. Kiran and
Reddy [24] investigated the Bianchi type III in the presence
of viscous fluid and concluded that this model does not exist
in fðR; TÞ gravity. Momeni et al. [25] analyzed the Noether
symmetry problem for two types ofmodified theories. First is
mimetic fðRÞ, and second is a nonminimally coupledmodel,
which is known as fðR; TÞ. Pankaj and Singh [26] discussed
the viscous cosmology with matter creation under fðR; TÞ
gravity. Sun andHuang [27] studied the issues of an isotropic
and homogeneous universe under modified fðR; TÞ gravity
with nonminimal coupling. Moraes et al. [28] studied the
hydrostatic equilibrium conditions of compact objects by
relating their pressure and density through an equation of
state.
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A gravastar (gravitational vacuum star) is an astronomi-
cal substance hypothesized as a substitute to the black hole.
The conception of a gravastar was established from the
theory of Mazur and Mottola [29,30]. By increasing the
idea of Bose-Einstein, this new form of the solution was
introduced as a consequence of gravitational collapse. Such
a kind of model is hypothesized to contain no event
horizon. Though the gravastar may look identical to a
black hole, there are certain experiments, such as x-ray
radiations by infalling matter, that may allow one to
discriminate them. As such, gravastars are of interest from
a purely theoretical perspective. Such a kind of stellar
structures could be used to explain the role of DE in the
accelerating expansion of the Universe. These could be
helpful to explain why some galaxies have high or low DM
concentrations. The gravastars could be described with the
help of three different zones, in which I is the interior region
(0 ≤ r, r < r1); II is the intermediate thin shell, with
r1 < r, r < r2; while III is an exterior region (r2 < r). It
so happens that in the region I the isotropic pressure
produces a force of repulsion over the intermediate thin
shell, which is equal to -ρ (where ρ is the energy density).
This intermediate thin shell is supposed to be supported by
a fluid pressure and ultrarelativistic plasma. However,
region III can be represented by the vacuum solution of
the field equations. The pressure has zero value at this zone.
It contains a thermodynamically stable solution and maxi-
mum entropy under small fluctuations [29,30].
Visser [31] developed a simple mathematical model for

the description of Mazur-Mottola scenario and described
the stability of gravastars after exploring some realistic
values of the equation of state (EoS) parameter. Cattoen
et al. [32] extended their results for the case of anisotropic
gravastar structures. They calculated the anisotropic factor
Δ from the equations of motion for the spherically
symmetric spacetime and analyzed the inclusion of pres-
sure anisotropy could be useful to support relatively high
compact gravastars. Based upon the ranges of the param-
eters involved, Carter [33] studied the stability of the
gravastar and checked the existence of thin shell. He used
the Israel junction condition in order to join de Sitter
spacetime (interior) with a Reissner-Nordström exterior
metric. He also analyzed the role of the EoS parameter in
the modeling of gravastar structures.
Horvat et al. [34] presented two different theoretical

models of the gravastars in the presence of an electromag-
netic field. After joining the interior metric with an
appropriate exterior vacuum geometry, they obtained
viability constraints for the stability of the gravastar though
dominant energy conditions. They also studied the effects
of electromagnetic field on the formulations as well as
graphical representations of the EoS, the speed of sound
and the surface redshift. Rahaman et al. [35] discussed the
existence of a charged gravastar in an environment of
(2þ 1)-dimensional spacetime. They studied various

physical properties like length and energy within the thin
shell and entropy of the charged gravastars and claimed that
their solutions are nonsingular and could present a viable
alternative to the black hole.
De Felice et al. [36] found exact solutions of the

spherically symmetric spacetimes in the presence of electric
charge and also compared their results with the existing
black holes models. It can be concluded that one can
mollify the phenomenon of gravitational collapse to a great
extent in the presence of a electric charge. Yousaf and
Bhatti [37] investigated the modeling of relativistic struc-
tures in the presence of electromagnetic field. They con-
cluded that the electric charge has greatly weakened the
influence of modified gravity, leading to the production of a
repulsive field. Turimov et al. [38] studied the slowly
rotating magnetized gravastars in the presence of electro-
magnetic field.
Rahaman et al. [39] studied the three-dimensional

neutral spherically symmetric model of a gravitational
vacuum star of which the exterior region is elaborated
by the Bañados-Teitelboim-Zanelli metric. He presented a
nonsingular and stable model and discussed various physi-
cal features, for example, length, energy conditions,
entropy, and junction conditions of the spherical distribu-
tion by using static spherically symmetric matter distribu-
tion as an interior spacetime. Lobo and Garattini [40]
performed linearized stability analysis with noncommuta-
tive geometry of gravastars and investigated a few exact
solutions of the gravastar after exploring their physical
features and characteristics.
Usmani et al. [41] studied a charged gravastar experienc-

ing conformal motion and elaborated the dynamics of the
formation of the thin shell and the entropy of the system.
Herrera and de León [42] discussed the role of anisotropic/
isotropic pressure on charged spheres and found some exact
solutions of the nonlinear field equations by assuming
spherical symmetry spacetime. The same authors [43] also
analyzed the dynamics of anisotropic spheres by introducing
the one-parameter group of conformal motions. They
inferred that on the boundary of matter all of their calculated
solutions can exist on the Schwarzschild exterior metric.
Esculpi and Aloma [44] studied the conformal motion of the
charged fluid sphere with a linear EoS. They also discussed
the dynamical stability analysis of the relativistic structures.
The process of dynamical instability [45] and the regularity
of certain physical quantities [46] on the surface of evolving
matter distribution are also discussed in the literature. Ray
andDas [47] discussed the electromagnetic massmodel with
the help of the conformal killing vector. By considering the
existence of a one-parameter group, the corresponding
conformal motion have been described for the charged
strange quark star model.
This paper is devoted to understanding the existence of a

gravastar under spherically symmetric spacetime in the
realm of Maxwell-fðR; TÞ gravity. The paper is arranged as
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follows. In Sec. II, we shall describe the basic frame work
of fðR; TÞ theory and their conservation equation.
Section III is based on the formulation of field/conservation
equations and gravitational mass of the static spherically
symmetric manifold. In Sec. III, we shall calculate the mass
of the thin shell by using certain matching conditions. The
Sec. V is aimed at discussing the effects of charge on the
various physical features of the gravastar. Finally, we
summarize our findings.

II. f ðR; TÞ GRAVITY

The action of the fðR; TÞ theory is given as

S ¼ 1

16π

Z
fðR; TÞ ffiffiffiffiffiffi

−g
p

d4xþ
Z

Łm
ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where fðR; TÞ is the arbitrary function of R and T with R as
the Ricci scalar and T as the trace of the energy-momentum
tensor, Łm is the Lagrangian matter density, and g is the
determinant of metric tensor gζη. In this paper, we have
consider G ¼ c ¼ 1. By varying the action of fðR; TÞ with
respect to the metric gζη, we can deduce the field equations
of fðR; TÞ of gravity as

fRðR; TÞRζη −
1

2
fðR; TÞgζη − ð∇ζ∇η − gζη□ÞfRðR; TÞ

þ fTðR; TÞðTζη þ ΘζηÞ ¼ 8πTgζη; ð2Þ

where fRðR; TÞ is the derivative of generic function f with
respect to the Ricci scalar R, fTðR; TÞ is the derivative of
generic function with respect to trace of the energy-
momentum tensor T, and □ is the product of the contra-
variant and covariant derivative,

Θζη ¼ gζη
∂Tζη

∂gζη ; ð3Þ

where the stress-energy tensor is defined below:

Tζη ¼ gζηŁm − 2
∂Łm

∂gζη : ð4Þ

We assume perfect fluid as the energy-momentum tensor

Tζη ¼ ðρþ pÞUζUη − pgζη; ð5Þ

where ρ is the density, p is the pressure, and Uζ is the
4-velocity vector. It is interesting to mention that here the
equations of motion are dependant on the role of fluid
distribution. Therefore, one can take specific equations of
motion by choosing Łm. In the literature, researchers have
chosen Łm ¼ p and Łm ¼ ρ [17,18,22,48,49]. Here, we are
interested in studying the charged isotropic fluid; therefore,
we shall take Łm ¼ −ðpþ F Þ, where F shows the

contribution of electromagnetic field and is defined through
Maxwell tensor ðFαβÞ as F ¼ 1

16πFαβFγσgαγgβσ . The
Maxwell field tensor is defined through the 4-potential
ϕα as Fαβ ¼ ϕβ;α − ϕα;β. The Maxwell equations of motion
are

Fξβ
;β ¼ K0Jξ; F½ξβ;γ� ¼ 0; ð6Þ

in which Jξ is the 4-current and K0 indicates the per-
meability of the magnetic field. In view of this scenario,
Eq. (3) reduces to

Θζη ¼ −2Tζη − pgζη − Fgζη:

In this work, we use the functional form of fðR; TÞ ¼
2χT þ R. Substituting this relation in Eq. (2), we get

Gζη ¼ 8πðTζη þ EζηÞ þ χTgζη

þ 2χðTζη þ Eζη þ pgζη þ FgζηÞ; ð7Þ

where Gζη is the Einstein tensor and Eζη is the energy-
momentum tensor for an electromagnetic field and is given
by [50]

Eξβ ¼
1

4π

�
Fγ
ξFβγ −

1

4
FγδFγδgαξ

�
: ð8Þ

In this paper, we consider a scenario in which the system is
evolving by keeping the charged particles at the state of
rest. This will give zero contribution to the magnetic field.
Therefore,

ϕξ ¼ Φðt; rÞδ0ξ ; Jξ ¼ K1ðt; rÞVξ;

where Φ represents the corresponding scalar potential and
K1 indicates the charge density.
To understand fðR; TÞ theory as an appropriate gravi-

tational theory, one must consider a viable and effective
distribution of the fðR; TÞ function. Besides its physical
consistency with the observations of current cosmic accel-
eration, it should pass the stability tests and should meet the
viability requirements from solar and terrestrial static/
nonstatic systems. Usually, the fðR; TÞ models are pre-
sented in the following different ways:
(1) fðR; TÞ ¼ Rþ 2gðTÞ. Such a kind of selection in

the geometric part of the Lagrangian describes
cosmological constant Λ as a time-dependent entity
and hence represents the ΛCDM model.

(2) fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ. This type of choice cor-
responds to the minimal knowledge to understand
modified relativistic dynamics. This could be re-
garded as the corrections to the notable fðRÞ theory.
By considering any linear combination of f2,
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various distinct results can be obtained from the
choices of the fðRÞ function.

(3) fðR; TÞ ¼ f1ðRÞ þ f2ðTÞf3ðRÞ. This explicitly de-
scribes the nonminimal coupled matter-geometry
theory of gravity. The comparison of results found
from this selection may be different from the
minimal interacting choices.

The criteria for understanding the viability of f1ðRÞ model
are as follows:

(i) For a positive value of f1RðRÞ with R > R, whereR
represents today’s choice of the Ricci scalar. This
condition is necessary to prevent the appearances of
a ghost state. Ghosts that notify that DE is respon-
sible for cosmic acceleration under modified gravity
theories often appear. This state could be induced by
a mysterious force that creates a repulsion between
the supermassive or massive stellar object. For
retaining the attractive feature of gravity, the con-
straint should maintain a positive sign with a
consistent gravitational constant, Geff ¼ G=f1R.

(ii) The positive value of f1RRðRÞ with R > R. This
requirement is introduced for making the evolving
system not to conceive situations in which tachyons
appear. A hypothetical object that could move faster
than the speed of light is known as a tachyon.

If a model of f1ðRÞ does not fulfill those conditions, it
would not be considered viable. Haghani et al. [51] as well
as Odintsov and D. Sáez-Gómez [52] proposed that
Dolgov-Kawasaki instability in fðR; TÞ gravity requires
a similar sort of limitations as in fðRÞ gravity, and one
needs to satisfy 1þ fT > 0 with Geff > 0. Thus, in the
realm of fðR; TÞ models, the following conditions should
be fulfilled:

fR > 0; 1þ fT > 0; fRR > 0; R > R:

Thus, throughout in our paper, we assume that 1þ 2χ > 0.
One thing that must be taken into account is that the
divergence of the energy-momentum tensor is not zero in
fðR; TÞ gravity and is defined as

∇ζTζη ¼
fT

8π − fT

�
ðTζη þ ΘζηÞ∇ζ ln fT

þ∇ζΘζη −
1

2
gζη∇ζT

�
: ð9Þ

The non-zero value of divergence of energy momentum
tensor causes the breaking of all equivalence principle in
fðR; TÞ gravity. According to the weak equivalence prin-
ciple, “All test particles in a given gravitational field will
undergo the same acceleration, independent of their proper-
ties, including their rest mass [53].” In this modified theory,
the equation of motion is based on those features of the
particle that are thermodynamic in nature, e.g., pressure,
energy density, etc. Further, the strong equivalence

principle states that “The gravitational motion of a small
test body depends only on its initial position and velocity,
and not on its configuration.” This principle also does not
hold in fðR; TÞ theory, thus causing the particles to
experience nongeodesic motion along the world lines. In
the background of quantum theory, one can relate the
nonzero divergence of the effective energy-momentum
tensor with the violation of energy conservation in the
scattering phenomenon. In this theory, the energy non-
conservation can cause an energy flow between the four-
dimensional spacetime and a compact extra-dimensional
metric [54]. It is worth noting that the constraint fðTÞ ¼ 0
in Eq. (9) would reduce our dynamics to that of fðRÞ
gravity. One can write Eq. (9) as follows:

∇ζTζη ¼
−2χ

8π þ 2χ

�
∇ζðpgζηÞ þ∇ζðFgζηÞ þ

1

2
gζη∇ζT

�
:

ð10Þ
It is worth stressing that Eq. (9) corresponds to a general
fðTÞ part, while Eq. (10) describes the covariant divergence
of stress-energy tensor with a linear contribution on the
fðTÞ model.

III. SPHERICALLY SYMMETRIC
SPACETIME MODELS

This section is devoted to exploring modified equations
of motion, including field and conservation laws. By
simultaneously solving these equations, we evaluate the
evolution equation. After using a specific combination of
EoS, we shall evaluate the value of the corresponding scale
factors that would eventually lead to gravitational mass of
the relativistic structure. We consider an irrotational static
form of the spherically spacetime as follows:

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2ðdθ2 þ sin θ2dϕ2Þ: ð11Þ

The nonzero components of the Einstein tensor for above
equation are

G00 ¼ λ0rþ eλ − 1

r2eνeλ
; ð12Þ

G11 ¼ ν0r − eλ þ 1

r2eλ
2 ; ð13Þ

G22 ¼ −2λ0 − 2ν0 þ ð2ν00 þ ν02 − ν0λ0Þr
4r3eλ

: ð14Þ

The nonzero components of Eq. (8) are given as

E00 ¼ 2πE2eν; E11 ¼ 2πE2eλ; E22 ¼ 2πE2r2; ð15Þ

where E is the electric intensity, which is defined via
electric charge (q) as
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E ¼ q
4πr2

:

After using Eqs. (12)–(15) in Eq. (6), we get

λ0rþ eλ − 1 ¼ r2eλ
�
8πρþ χð3ρ − pÞ

þ q2

r4
þ χ

r4

�
1

4π
þ 1

�
q2
�
; ð16Þ

−ν0rþ eλ − 1 ¼ r2eλ
�
−8πpþ χðρ − 3pÞ

þ q2

r4
þ χ

r4

�
1

4π
þ 1

�
q2
�
; ð17Þ

−
r
2
ðν0 − λ0Þ þ r2

4
ðν0λ0 − 2ν00 − ν02Þ

¼ r2eλ
�
−8πpþ χðρ − 3pÞ − q2

r4
þ χ

r4

�
−

1

4π
þ 1

�
q2
�
:

ð18Þ

The hydrostatic equilibrium condition can be evaluated
with the help of the conservation law as

ν0

2
ðρþ pÞ þ dp

dr
þ 3q2

8πr5
þ χ

4π þ χ

�
2q2

r5
þ 1

2
ðρ0 − p0Þ

�
¼ 0:

ð19Þ

With the help of the Misner-Sharp formula [55] and G00

component of the Einstein tensor, the corresponding
component of the line element g00 becomes

e−λ ¼ 1 −
2m
r

− χ

�
ρ −

p
3

�
r2 þ 2q2

r4
þ χ

r4

�
1

4π
þ 1

�
q2:

ð20Þ
Using Eq. (17) in Eq. (19), we get

dp
dr

¼
− 2q2χ

r5ð4πþχÞ −
3q2

8πr5
− ν0

2
ðρþ pÞ

½1þ χ
2ð4πþχÞ ð1 − dρ

dpÞ�
; ð21Þ

where

ν0 ¼ r½8πp − χðρ − 3pÞ − q2

r4 −
χ
r4 ð 1

4π þ 1Þq2� þ 1
r ½2mr þ χðρ − p

3
Þ − 2q2

r4 − 2χ
r4 ð 1

4π þ 1Þq2�
½1þ 2q2

r4 − 2m
r − χðρ − p

3
Þr2 þ 2χ

r4 ð 1
4π þ 1Þq2�

:

Gravastars [29,30] consist of three regions characterized by
an EoS p ¼ ωρ, where ω is constant. Here, we assume that
the interior region is filled with an enigmatic gravitational
source. The corresponding EoS for the dark energy model
is given as

p ¼ −ρ; with ω ¼ −1: ð22Þ

Using ρ ¼ ρ0 (constant) in Eq. (22), we get

p ¼ −ρ0: ð23Þ

After using Eq. (22) in Eq. (16), it follows that

e−λ ¼ 1 −
4r2ρ0
3

ð2π þ χÞ þ q2

r2
þ χ

r2

�
1

4π
þ 1

�
q2 þH

r
;

ð24Þ

whereH is an integration constant, the value of which, after
applying the regularity condition, is found to be zero.
Therefore, Eq. (25) becomes

e−λ ¼ 1 −
4r2ρ0
3

ð2π þ χÞ þ q2

r2
þ χ

r2

�
1

4π
þ 1

�
q2: ð25Þ

Substituting an EoS in Eqs. (16) and (17), we have

e−λ ¼ Ieν; ð26Þ

where I is an integration constant. The gravitational mass
MðDÞ can be found as

MðDÞ ¼
Z

r¼D

0

4π

�
ρ0 þ

q2

2r2

�
r2dr ¼ 2πD

�
2

3
D2 þ q2

�
;

ð27Þ
where ρ0 is the constant density. Equation (27) describes
that the interior gravitational mass and radius of the stellar
system are directly proportional to each other. This is the
characteristic feature of the stellar compact object. Fur-
thermore, the above equation also states the substantial
dependence of M on the specific value r ¼ D in the pre-
sence of electric charge. This integral becomes improper on
substituting r ¼ ∞. However, this choice is not realistic as
one cannot consider the infinite radius of the stellar body.

IV. INTERMEDIATE SHELL OF THE
CHARGED GRAVASTAR

In this section, we tend to discuss the effect of electro-
magnetic charge on the formulation of the intermediate
shell of the corresponding gravastars. We shall also explore
the smooth matching conditions for the joining of interior
and exterior manifolds of the gravastar structures by using
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Darmois-Israel formalism. For this purpose, we assume that
the intermediate shell is formed by an ultrarelativistic fluid
with nonvacuum background with an equation of state
p ¼ −ρ. It is hard to calculate the solution of the cum-
bersome set of field equations in the nonvacuum region. To
avoid this query, we will use some approximation and find
the analytical solution, i.e., 0 < e−λ ≪ 1. By solving field
Eqs. (16)–(18) under the EoS, we end up with the following
two equations:

de−λ

dr
¼ −

2q2

r3
−
2χ

r3

�
1

4π
þ 1

�
q2 þ 2

r
; ð28Þ

�
3

2r
þ ν0

4

�
de−λ

dr
¼ −

2χq2

r4
þ 1

r2
: ð29Þ

Integrating Eq. (28), we get

e−λ ¼ q2

r2
þ 2χ

r2

�
1

4π
þ 1

�
q2 þ 2lnrþ B; ð30Þ

where B is an integration constant and r is the radius
belonging to D ≪ r ≪ Dþ ϵ, under ϵ ≪ 1. To get analyti-
cal values of the pressure and radius of the thin shell, we use
Eqs. (28) and (29) in Eq. (19), and we get the behavior of the
pressure with respect to radius, which are shown in Fig. 1.
To discuss the structure of the gravastar, we take static

Schwarzschild spacetime as an exterior geometry given as
follows:

ds2 ¼
�
1 −

2M
r

þ q2

D2

�
dt2 −

�
1 −

2M
r

þ q2

D2

�−1
dr2

− r2ðdθ2 þ sin θ2dϕ2Þ: ð31Þ

Darmois [56] and Israel [57] introduced conditions for the
matching of interior and exterior geometries over the
surface. The metric coefficients are continuous at the
junction surface (Σ); i.e., their derivatives might not be
continuous at interior surfaces. The surface tension and
surface stress energy of the joining surface S may be
resolved from the discontinuity of the extrinsic curvature of
S at r ¼ D. The field equation of the intrinsic surface is
defined by the Lanczos equation as

Sβα ¼ −
1

8π
ðΥβ

α − δαβΥκ
κÞ; ð32Þ

where Sji is the stress-energy tensor for the surface, ϒαβ ¼
ηþαβ − η−αβ tells the extrinsic curvatures or second funda-
mental forms, and the (þ) sign indicates the interior surface
while the (−) sign indicates the exterior surface. The second
fundamental forms connect the interior and exterior surfa-
ces of the thin shell and are defined as

η�μν ¼ −n�i

� ∂2xi
∂ξμ∂ξν þ Γi

γδ

∂xγ
∂ξμ

∂xδ
∂ξν

�
Σ
; ð33Þ

where ξμ represents the coordinate of intrinsic metric and
n�i describes the unit normals on the surface of gravastar.

n�i ¼ �
����gαβ ∂fðrÞ∂xα

∂fðrÞ
∂xβ

����−
1
2 ∂fðrÞ
∂xi ; njnj ¼ 1; ð34Þ

where fðrÞ illustrates the coordinate of the exterior metric.
Using the Lanczos equations, we can get the surface energy
density (φ) and surface pressure ψ as

φ ¼ −
1

4πD
½

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
�þ− ; ð35Þ

ψ ¼ −
φ

2
þ 1

16π

�
fðrÞ0ffiffiffiffiffiffiffiffiffi
fðrÞp �þ

−
: ð36Þ

Making use of Eqs. (35) and (36), we get

φ ¼ −
1

4πD

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
D

þ q2

D2

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4D2ρ0
3

ð2π þ χÞ þ q2

D2
þ χ

D2

�
1

4π
þ 1

�
q2

s #
; ð37Þ

ψ ¼ 1

8πD

2
64 ð1 − M

DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

D þ q2

D2

q −
½1 − 8D2ρ0

3
ð2π þ χÞ þ q2

2D2 þ χ
2D2 ð 1

4π þ 1Þq2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4D2ρ0

3
ð2π þ χÞ þ q2

D2 þ χ
D2 ð 1

4π þ 1Þq2
q

3
75: ð38Þ

FIG. 1. Plot of pressure pwithin the shell with respect to radius
r (km) with different charges.
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One can find the mass of the intermediate thin shell by using the areal density as

ms ¼ 4πD2φ ¼ −D

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
D

þ q2

D2

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4D2ρ0
3

ð2π þ χÞ þ q2

D2
þ χ

D2

�
1

4π
þ 1

�
q2

s #
; ð39Þ

where

M ¼ ms

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4D2ρ0
3

ð2π þ χÞ þ q2

D2
þ χ

D2

�
1

4π
þ 1

�
q2

s
−
m2

s

2D
þ 2ρoD3

3
ð2π þ χÞ

−
χ

2D

�
1

4π
þ 1

�
q2

represents the total mass of the gravitational vacuum star
with ms ¼ m. It can be noticed that one can calculate the
value of M, once the mass of the intermediate thin shell
(ms), the radial distance (D), and the value of the fðR; TÞ
correction term (χ) or electric charge (q) are known. It also
indicates that the physical quantities ms, D, and q have
dominated their influence over the fðR; TÞ dark source

terms. This is because one can diminish the role of χ by
substituting zero to ms, D, and q. This situation could be
different if one considers the Palatini fðR; TÞ gravity [58]
instead of the metric fðR; TÞ gravity [17].
It will be very useful to understand the stability of

gravastars by defining a parameter (η) as the ratio of the
derivatives of ψ and φ as follows:

S

4 2 0 2 4

0.4

0.2

0.0

0.2

0.4

D

D

S

S
4 2 0 2 4

0.4

0.2

0.0

0.2

0.4

D

D

FIG. 2. Stability regions of the charged gravastar in terms of η ¼ ψ
0

φ
0 . We have chosen χ ¼ 0.2, M ¼ 1.2, and ρ ¼ 0.002 at q ¼ 1 and

q ¼ 1.5.

S

4 2 0 2 4

0.4

0.2

0.0

0.2

0.4

D

D

S

6 4 2 0 2 4 6

4

2

0

2

4

D

D

FIG. 3. Stability regions of the charged gravastar in terms of η ¼ ψ
0

φ
0 . We have chosen χ ¼ 0.2, M ¼ 1.2, and ρ ¼ 0.002 at q ¼ 2 and

q ¼ 2.5.
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ηðaÞ ¼ ψ 0ðaÞ
φ0ðaÞ

����
r¼a0

:

The stability regions can be explored by analyzing the
behavior of η as a function of r ¼ a0. Övgün et al. [59]
considered the static form of the spherically symmetric
spacetime and analyzed the stability of a charged thin-shell
gravastar with the help of a similar parameter as defined
above. We have investigated the stable regimes of grav-
astars with specific choices of parameters involved. The
letter S in Figs. 2 and 3 describes the stable epochs of
spherically symmetric gravastar structures.

V. SOME FEATURES OF GRAVASTARS

This section is devoted to examining the impact of
electromagnetic field on different physical features of the
gravastar. In this context, we shall calculate the proper
length of the thin shell as well as the energy of relativistic
structure. After examining the entropy of gravastars, the
role of the EoS parameter will be analyzed on the
dynamical formulation of gravastars. We shall also describe
our results by drawing various diagrams and graphs.

A. Proper length of the thin shell

In this subsection, we shall consider r ¼ D for describ-
ing the radius of an interior region, while r ¼ Dþ ϵ (with
ϵ ≪ 1) and ϵ represent the radius of the exterior region and
the thickness of the intermediate thin shell, respectively.
The proper thickness between two surfaces can be
described mathematically as

l ¼
Z

Dþϵ

D

ffiffiffiffiffi
eλ

p
dr

¼
Z

Dþϵ

D

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

r2 þ 2χ
r2 ð 1

4π þ 1Þq2 þ 2lnrþ C
q dr: ð40Þ

The analytic solution of the above expression with
Maxwell-fðR; TÞ gravity corrections is not possible. We
shall solve it by the numerical method and examine the
behavior of the charge. The behavior of the length of the
shell vs its thickness has been shown in Fig. 4.

B. Energy of the charged gravastar

The energy content within the shell is given as

ε ¼
Z

Dþϵ

D
4πρr2dr;

which is found after using the corresponding values from
the equation of motion as follows:

ε ¼ 4πH
7

½ðDþ ϵÞ7 −D7� þ 2q2ϵ: ð41Þ

The graphical representation about the role of energy and
thickness of the intermediate shell is being explored from
the above equation and is shown in Fig. 5. The graph 5
shows the linear relationship between the energy and
thickness of the shell, while energy of the system tends
to increase by increasing the corresponding charge values.

C. Entropy of the charged gravastars

Entropy is the disorderliness within the body of a
gravastar. It is found in the literature that the entropy
density of the interior region of the charged gravastar is
zero. The entropy relation for the shell can be calculated
through the formula

S ¼
Z

Dþϵ

D
4πr2SðrÞ

ffiffiffiffiffi
eλ

p
dr; ð42Þ

where

FIG. 4. Plot of length lðkmÞ of the shell with thickness of the
shell ϵðkmÞ. Fixing χ ¼ 1, C ¼ 0.00006, D ¼ 1.

FIG. 5. Plot of energy ε with thickness of the shell ϵðkmÞ.
Fixing H ¼ 0.00001, D ¼ 1.
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SðrÞ ¼ α2K2
BTðrÞ

4πh2
¼ α

�
KB

h

� ffiffiffiffiffiffi
P
2π

r
ð43Þ

describes the entropy density corresponding to a specific
temperature TðrÞ. In the above expression, α is a con-
stant term that has no dimension. It is noteworthy that
we are using geometrical (G ¼ C ¼ 1) as well as Planck

units (KB ¼ ℏ ¼ 1) in our computation; therefore, SðrÞ
becomes

SðrÞ ¼ α

ffiffiffiffiffiffi
P
2π

r
: ð44Þ

Then, Eq. (42) turns out to be

S ¼ ð8πHÞ12α
Z

Dþϵ

D

r4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

r2 þ 2χ
r2 ð 1

4π þ 1Þq2 þ 2lnrþ C
q dr:

ð45Þ
The above equation contains the contribution of charge as
well as corrections from fðR; TÞ gravity. The analytical
solutions of the above are not possible. After using the
numerical method, we have drawn graphs to examine the
behavior of an electric charge, which are given in Fig. 6.

D. EoS parameter

At a particular radius r ¼ D, the EoS can written as

ωðDÞ ¼ ν

σ
: ð46Þ

Substituting the values of ν and σ in Eq. (46), we get

ωðDÞ ¼

"
ð1−M

DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2M

D þq2

D2

q − ½1−8D2ρ0
3

ð2πþχÞþ q2

2D2þ χ

2D2ð 1
4πþ1Þq2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−4D2ρ0
3

ð2πþχÞþq2

D2þ χ

D2ð 1
4πþ1Þq2

q
#

−2
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
D þ q2

D2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4D2ρ0

3
ð2π þ χÞ þ q2

D2 þ χ
D2 ð 1

4π þ 1Þq2
q i : ð47Þ

To get real solutions of the above equation, we have a tendency to use some approximations, i.e., 2M
D < 1 and

4ð2πþχÞρ0D2

3
< 1. We use binomial expansion for avoiding square root terms, which is responsible for producing increments

in the sensitivity of the equation and some approximations, i.e., M
D < 1, 4ð2πþχÞρ0D2

3
< 1, and q2

2D2 ≪ 1; then, we get

ωðDÞ ≈ −3Dq2 þ 3Mq2 þ 12ð2π þ χÞρoD5 − 2ð2π þ χÞq2ρoD2½5þ 6ð 1
4π þ 1Þχ�

2D½−4ð2π þ χÞρoD4 þ 3χð 1
4π þ 1Þq2 þ 6M� ; ð48Þ

which can be rewritten as

ωðDÞ ≈ ϕ1 − ϕ2

8D5ð2π þ χÞρo½ϕ3 − 1� ; ð49Þ

where

ϕ1 ¼ 3Mq2 þ 12ð2π þ χÞρoD5;

ϕ2 ¼ 2ð2π þ χÞq2ρoD2
h
5þ 6

� 1

4π
þ 1

	
χ
i
;

ϕ3 ¼
3χð 1

4π þ 1Þq2 þ 6M

4ð2π þ χÞρoD4
:

The sign of the EoS parameter is being controlled by the
signs of the numerator and denominator. The EoS parameter
becomes positive, if ϕ1 > ϕ2 along with ϕ3 > 1 or ϕ1 < ϕ2

with ϕ3 < 1. However, if during evolution, the stellar system
satisfies the constraints ϕ1 > ϕ2, ϕ3 < 1 or ϕ1 < ϕ2,
ϕ3 > 1, then the ω will enter into a negative phase. For
instance, the choice ω ¼ −1 incorporates the DE effects of
the cosmological constant Λ. This scenario could be helpful
in understanding the theoretical modeling of gravastars.

VI. CONCLUSION

In this work, we have investigated the role of the
electromagnetic field on an isotropic stellar model with

FIG. 6. Plot of entropy S with thickness of the shell ϵðkmÞ.
Fixing χ ¼ 1, C ¼ 0.00006, H ¼ 0.00001, D ¼ 1, and α ¼ 1.
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extra degrees of freedom coming from fðR; TÞ gravity. The
gravastar is the short form of gravitationally vacuum stars,
which takes up a new idea in the gravitational system. Such
a kind of stellar model can be considered as an alternative to
black holes. The gravastar can be described through three
different regions: first is the interior region with radius r,
second is the intermediate thin shell with thickness ϵ, and
third is the exterior region with radius rþ: The evolution of
fluid is dealt with by a specific EoS. We have worked out a
set of singularity-free solutions of the gravastar that
represents different features of the isotropic relativistic
system. Some of the discussed properties of our systems are
described below.
(1) Pressure-density profile.—The relationship between

pressure and density of the ultrarelativistic fluid
within the intermediate thin shell is shown in Fig. 1
against the radial coordinate r. We can see the effect
of electromagnetic charge on pressure and density.

(2) Proper length of the thin shell.—Figure 4 is plotted
between theproper length of the shell and the thickness
of the shell. We can conclude from the graph that if
charge within the gravastar is increasing then the
length of thin shell is decreasing, and if charge within
the gravastar is decreasing, then length of thin shell is
increasing. The electromagnetic field and thickness of
the shell are having an inverse relation.

(3) Energy content.—Energy within the shell and thick-
ness of the shell are directly proportional to each
other. It can be seen from Fig. 5 that the increase of
the charge energy would directly increase the thick-
ness of the shell. Furthermore, the thickness can be

enhanced by including a huge amount of charge in
gravastars.

(4) Entropy.—To see the role of entropy, thickness, and
electric charge, we have drawn a graph mentioned in
Fig. 6. This graph shows the linear relationship
between the entropy and thickness of the shell. By
studying the effect of electromagnetic charge, we
can conclude that if the charge in the gravastar is
increasing then the shell’s entropy is decreasing and
vice versa.

(5) Equation of state.—We use some approximation on
binomial expressions to require a real solution of
ωðDÞ. The constraints depend upon the electric
charge, fðR; TÞ corrections, mass, and radius of
the metric.

We have an overall observation regarding the contribu-
tion of fðR; TÞ gravity is that unlike GR the involvement of
extra degrees of freedom coming from χ has made our
analysis quite different in both mathematical and graphical
point of view. Assigning a zero value to this coupling
constant would eventually provide the limiting case of GR.
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