
 

Effect of spin on the inspiral of binary neutron stars
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We perform long-term simulations of spinning binary neutron stars, with our highest dimensionless spin
being χ ∼ 0.32. To assess the importance of spin during the inspiral, we vary the spin and also use two
equations of state, one that consists of plain nuclear matter and produces compact stars (SLy) and a hybrid
one that contains both nuclear and quark matter and leads to larger stars (ALF2). Using high resolution that
has grid spacing Δx ∼ 98 m on the finest refinement level, we find that the effects of spin in the phase
evolution of a binary system can be larger than the one that comes from tidal forces. Our calculations
demonstrate explicitly that although tidal effects are dominant for small spins (≲0.1), this is no longer true
when the spins are larger, but still much smaller than the Keplerian limit.
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I. INTRODUCTION

The 2017 discovery of a binary neutron star (NS) merger
by Advanced LIGO and Advanced Virgo [1,2] marked a
“golden moment” in the era of multimessenger astronomy,
since for the first time a gravitationalwave (GW) signal from
amerging binary system that includedmatter was detected at
the same time as its electromagnetic counterpart [3–8].
Although a neutron star-black hole systemwas not ruled out
completely [9], the measured individual masses suggested
that GW170817 was more likely produced by a binary NS
system, without excluding more exotic objects [3].
One outstanding problem in current astrophysics is the

determination of the equation of state at supranuclear
densities, like the ones present in binary NS systems
[10–14]. To tackle this problem, one needs to measure
accurately the masses and radii of the component stars [15].
For a binary system like the one that produced the event
GW170817, although the chirp mass is accurately deter-
mined, the degeneracy between the mass ratio of the
component objects and their spins along the orbital angular
momentum prevents the precise measurement of their
individual masses or the total mass of the system. Also,
for the radii extraction, the most promising method is based
on the measurement of the tidal deformability parameter
[16–21]. Tidal effects become important at the end of the
inspiral (for GW frequencies fgw > 500 Hz where LIGO
sensitivity is decreased), and they depend on the masses,

the equation of state, and likely the spins of the component
objects.
Although the magnitude of spin in binary NS systems is

largely unknown, it is important to realize that since
discoveries are based on the identification of the acquired
waveform with a corresponding one from a bank of
templates, failing to incorporate waveforms of spinning
binary NSs will result in a possible reduction or misinter-
pretation of observations in those cases where such systems
are realized. Thus, although there is the expectation that any
initial spin an NS exhibits at the moment of its genesis will
decay by the time it enters the LIGO band [22], the unbiased
approach is to anticipate the physics of a spinning binary in
order to maximize our potential discoveries [23]. On the
other hand, given the fact that the number of the currently
known binaryNS systems is very small compared to isolated
ones, it is not difficult to expect that there should exist binary
NSs with significant rotation. For an NS in isolation, its
rotational frequency has been observed to be as high as
fmax ¼ 716 Hz, corresponding to a period of 1.4ms for PSR
J1748-2446ad [24].Assuming amass ofm ∼ 1.36 M⊙ and a
moment of inertia I ∼ 1.1 × 1045 gr cm2, this yields a
dimensionless spin of χ ∼ Iωmax=m2ðc=GÞ ≈ 0.3.
For the 18 currently known binary NS systems in the

Galaxy [25,26], the rotational frequencies are typically
smaller. The NS in the system J1807-2500B has a period of
4.2 ms, while systems J1946þ 2052 [27], and J1757-1854
[28], J0737-3039A [29] have periods 16.96, 21.50, and
22.70 ms, respectively. According to Ref. [26], the periods
of these systems at merger will be 18.23, 27.09, and
27.17 ms, respectively. When one performs numerical*tsokaros@illinois.edu
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relativistic simulations and tries to do accurate GW
analysis, one cannot model these binaries as irrotational
(something that is done in the majority of simulations), and
the spin of each NS must be taken into account.
In order to perform a constraint-satisfying evolution of

spinning binary NSs, initial data that incorporate spin must
be constructed. A self-consistent formulation for such
disequilibrium was first presented in [30,31] using the
pseudospectral SGRID code and the first evolutions of
the last orbits before merger in [32] using the BAM code.
The authors found that accurate GWmodeling of themerger
requires the inclusion of spin, even for moderatemagnitudes
expected in binary NS systems. First evolutions of self-
consistent binary NS initial data with spins in arbitrary
directions were presented in [33] where eccentricity-
reduced techniques also were successfully implemented.
Long-term binary NS evolutions geared toward precise

GW waveform construction where pursued by several
groups (see [13] for a recent review). The most accurate
of them used nonspinning initial data and tracked the
binaries for more than 15 orbits with a subradian-order
error [34]. The authors used high resolution (Δx ≈ 63–86 m
inside the NSs) together with eccentricity-reduced initial
data. For such high resolutions, they found that the phase
error in the GW is ∼0.1 rad among a total phase of
≳210 rad. On the other hand, they report that even with
a small residual eccentricity, of the order of ∼10−3, it is still
difficult to get accurate quasicircular waveforms. Accurate
models of GWs from irrotational binary NSs studying tidal
effects were constructed in [35–40]. The longest irrotational
binary NS simulations were presented in [41] where for the
first time more than 22 orbits were tracked for a Γ ¼ 2
polytropic equation of state (EoS) using the SPEC code.
On the other hand, spinning binary NS systems have

been examined in detail in Refs. [42,43] with all possible
configurations of aligned and misaligned spin as well as
with unequal masses. A high-resolution study is presented
in Ref. [44]. For dimensionless spin magnitudes of χ ∼ 0.1,
the authors found that both spin-orbit interactions and spin
induced quadrupole deformations affect the late-inspiral
dynamics, which however is dominated by tidal effects
(approximately 4 times larger). Closed-form tidal approx-
imants for GWs have been presented in Refs. [40,45]. For
other dynamical spacetime simulations with spinning
binary NSs, see also [32,46–57].
In this paper, we use the ILLINOIS GRMHD code to

compare the GW of a long inspiral coming from an
irrorational binary NS with a highly spinning one. The
initial spinning configurations have been constructed with
the COCAL code [58,59] whose accuracy has been tested
extensively [60] and has been used to evolve one of the
highest spinning binary NSs to date [56]. The simulations
performed here are the longest using the ILLINOIS GRMHD

code, and they provide a benchmark in order to go to larger
orbital separations and to construct reliable waveforms.

We use two piecewise polytropic EoS and a high spin
(χ ∼ 0.32 for one binary configuration) to assess its influ-
ence in the latest ∼12–17 orbits before merger. We find that
although tidal terms dominate when the NS spins are small,
this is no longer true for higher spins. This is in qualitative
accordance with the post-Newtonian analysis [23] who
found that large spins could cause significant mismatches.
In our study, a soft EoS (SLy, compact star) with a χ ∼ 0.2
spin produced a phase difference with respect to the irrota-
tional case of∼23 radians, while a stiffer EoS (ALF2, larger
NS radius) with a χ ∼ 0.32 spin, produced∼40 radians. This
phase difference is expected to be even larger for higher
spins and highlights the fact that GW data analysis will be
compromised if spin effects are neglected.
The present study has two main caveats. First, our initial

quasiequilibrium models exhibit residual eccentricity which
contaminates late inspiral waveforms and prevents an accu-
rate GW analysis. As mentioned in [34], even when eccen-
tricity reduction was implemented, there was still existing
artifacts that necessitated the removal of the first couple of
orbits in the GW analysis. Currently, our initial data solver
does not account for eccentricity. Second, due to our limited
resources we have not performed a resolution study to test for
convergence and quantify errors. In spite of these caveats, we
employ the highest resolution used to date for highly spinning
binary systems with our finest grids having Δx ∼ 98 m.
According to [34] employing Δxmin ≤ 100 m, one achieves
subradian accuracy (∼0.2 rad) and nearly convergent wave-
forms in approximately 15 orbits. Finally, we do not test if
there are any outer boundary effects in these simulations. We
plan to address these shortcomings in the near future.
Here we employ geometric units in which G ¼ c ¼

M⊙ ¼ 1, unless stated otherwise. Greek indices denote
spacetime dimensions, while Latin indices denote spatial
ones.

II. NUMERICAL METHODS

The numerical methods used here are those implemented
in the COCAL and ILLINOIS GRMHD codes and have been
described in great detail in our previous works [58–65].
Therefore, we will only summarize the most important
features here. In the following sections, we describe our
initial configurations, the grids used in our simulations, the
EoSs, and how we compute the GWs.

A. Initial data

To probe the effect of spin during the inspiral phase of a
merging binary, we evolve irrotational as well as spinning
configurations that are constructed with our initial data
solver COCAL [58–61] in order to make a critical comparison.
The simplest spinning configurations are the so-called
corotating solutions, that were historically the first ones to
be computed [66–68], and describe two NSs tidally locked,
as the Moon is in the Earth-Moon system. Although this
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state of rotation is considered unrealistic since the viscosity
in NSs is too small to achieve synchronization [69,70], it is
still a viable choice to investigate when the separation
(orbital velocity) is large but not extremely large so that
the NSs have a reasonable spin. In this work, we consider
binaries starting at an orbital angular velocityΩ ¼ 6 × 10−3,
which translates into f ¼ 194 Hz for the NS rotation rate.
This frequency is well within the realistic regime of spins for
NSs which, as mentioned in the introduction, is observed to
be as high as fmax ¼ 716 Hz. Assuming a spinning binary
NS system is formed with individual NS frequencies at
f ¼ 194 Hz, then from that point on the corotating state is
no longer preserved in a perfect fluid evolution, and there-
fore the argument about synchronization is not applicable.
Apart from the corotating solutions, we construct generic

aligned and antialigned spinning solutions using the for-
mulation developed by Tichy [30]. Following [59] the
calibration of the spin is done with the use of the circulation
concept along an equatorial ring of fluid. The COCAL code
can produce binaries of a prescribed circulation (along with
the rest mass and orbital separation). Therefore, for each
EoS, we compute the corotating binary and measure its
circulation Ccor. Having that value we compute generic
spinning binaries whose circulation is some multiple of the
corotating one. In particular, aligned binaries have a
circulation which is approximately 2Ccor, while the anti-
aligned binaries −Ccor. Thus, our binary systems exhibit a
wide range of spins, which, in addition, fall into the realistic
regime of rotation rates.
Regarding the EoSs in this work we choose the ALF2

[71] (a hybrid EoS with mixed APR [72] nuclear matter and
color-flavor-locked quark matter) and the SLy [73] (pure
hadronic matter) EoSs. An NS with Arnowitt-Deser-Misner
(ADM) mass of 1.4 M⊙ for these EoSs has the character-
istics shown in Table I. The tidal deformability parameter is
given by Λ ¼ 2k2ðM=RÞ−5=3, with k2 the tidal Love
number computed from linear perturbations of the spherical
solution [74]. As shown in Table I, the ALF2 EoS is stiffer
than the SLy EoS, in the sense that it predicts larger radii for
the same gravitational mass and larger tidal deformability.
The purpose of our work is to understand the importance of
spin on the observed waveforms; therefore, our choice of
EoS was dictated on the one hand from the need to explore
typical neutron matter (SLy) as well as more exotic
compositions (ALF2), and on the other hand from current
EoS constraints. These two EoSs are broadly consistent

with a number of studies that use the GW170817 event to
constrain the radii and tidal deformabilities of NSs [75–80].
In Table II, we report the eight initial configurations we

consider in this work. We fix the ADM mass of the binary
systems to beM ¼ 2.72 and their orbital angular velocity at
Ω ¼ 6 × 10−3. For the ALF2 EoS, a spherical isolated NS
with ADM mass 1.361 has compactness 0.1625, tidal Love
number k2 ¼ 0.1191, and tidal deformability Λ ¼ 701.3.
For the SLy EoS with the same spherical mass (1.36), we
have a higher compactness 0.1752, smaller tidal Love
number k2 ¼ 0.09298, and smaller tidal deformability
parameter Λ ¼ 371.2. Following the argument of the
previous paragraph, we notice that the most extreme
dimensionless spins χ ≡ Jql=ðMADM=2Þ2 (here Jql refers
to the quasilocal angular momentum [59]) happen in the
ALF2 EoS (−0.1703 and 0.3206), which are the highest
evolved for a period of 16 orbits. In the maximum spin
case, the quasilocal spin is ∼6.5% of the ADM angular
momentum of the system. The spin period of each NS is
computed as P ¼ 2π=Ωz

s where Ωz
s is the parameter that

controls the spin of the NS [59]. This is an approximate
measure of the rotation period of the NS not rigorously
defined in general relativity, except in the corotational case.

B. Evolution

We use the ILLINOIS GRMHD adaptive-mesh-refinement
code that has been embedded in the CACTUS/CARPET
infrastructure [81–84] and employs the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation of the
Einstein’s equations [85,86] (for a detailed discussion
see also [87]) to evolve the spacetime and matter fields.
Fourth-order, centered finite differences are used for spatial
derivatives, except on shift advection terms, where we
employ fourth-order upwind differencing. Outgoing wave-
like boundary conditions are applied to all BSSN evolved
variables. These variables are evolved using the equations
of motion (9)–(13) in [88], along with the 1þ log time
slicing for the lapse α and the “Gamma-freezing” condition
for the shift βi cast in first order form (see Eqs. (2)–(4) in
[88]). For numerical stability, we set the damping parameter
η appearing in the shift condition to η ¼ 2.312=M. For
further stability, we modify the equation of motion of the
conformal factor ϕ by adding a constraint-damping term
(see Eq. (19) in [89]) which damps the Hamiltonian
constraint. We set the constraint damping parameter to
cH ¼ 0.08. Time integration is performed via the method of
lines using a fourth-order accurate Runge-Kutta integration
scheme with a Courant-Friedrichs-Lewy factor set to 0.5.
We use the Carpet infrastructure [83,84] to implement
moving-box adaptive mesh refinement and add fifth-order

TABLE I. Characteristics of a spherical M ¼ 1.4 M⊙ NS for
the 2 EoSs used in this work.

EOS Ma RðkmÞb M=R Λ

ALF2 1.40 12.39 0.1670 589.4
SLy 1.40 11.46 0.1804 306.4

aADM mass.
bAreal radius.

1The maximum spherical ADM mass for the ALF2 EoS is
1.99 M⊙ and the maximum compactness 0.26, while for the SLy
EoS the corresponding values are 2.06 M⊙, 0.33, respectively.
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Kreiss-Oliger dissipation [90] to spacetime and gauge field
variables.
The equations of hydrodynamics are solved in conserva-

tion-law form adopting the high-resolution shock-capturing
methods described in [91,92]. The primitive, hydrodynamic
matter variables are the rest mass density, ρ0, the pressure P,
and the coordinate three velocity vi ¼ ui=u0. The specific
enthalpy is written as h ¼ 1þ ϵþ P=ρ0, and therefore the
stress energy tensor is Tαβ ¼ ρ0huαuβ þ Pgαβ. Here, ϵ is the
specific internal energy. To close the system, an EoS needs to
be provided and for that we follow [93,94] where the
pressure is decomposed as a sum of a cold and a thermal
part,

P ¼ Pcold þ Pth ¼ Pcold þ ðΓth − 1Þρ0ðϵ − ϵcoldÞ; ð1Þ

where

ϵcold ¼ −
Z

Pcolddð1=ρ0Þ ¼
k

Γ − 1
ρΓ−10 þ const: ð2Þ

Here k, Γ are the polytropic constant and exponent of the
cold part (same as the initial data EoS) and Γth ¼ 5=3 [93].
The constant that appears in the formula above (which is
zero for a single polytrope) is fixed by the continuity of
pressure at the dividing densities between the different pieces
of the piecewise polytropic representation of the ALF2 and
SLy EoSs.
The grid hierarchy used in our simulations is summa-

rized in Table III. It consists of three sets of nested mesh
refinement boxes, two of them centered on the locations of

the two density maxima on the grid (the “centers” of the
NSs), and the third one at the origin of the computational
domain ½−1024; 1024�2 × ½0; 1024�. For each case listed in
Table II, halving the value under “Separation” column
provides the initial coordinate location of the centers of the
NSs (one is on the positive x axis and the other on the
negative x axis), which is the coordinate onto which two of
our nested refinement levels are centered on. Each nested
set consists of eight boxes that differ in size and in
resolution by factors of 2. The half-side length of the
finest box (which in our case is 8.0) is covered by 120
points which results in Δxmin ∼ 8.53̄=27 ¼ 0.06̄ ≈ 98 m.
The half-side length of the finest box is chosen according to
the initial neutron star equatorial radius Rx and typically is
1.2–1.3 times Rx. This means that the neutron star radius
is initially covered by 92–104 points. Reflection symmetry
is imposed across the orbital plane.
In comparison with other works, the resolution is 2.5

finer than the highest resolution used in [95] and slightly
higher than the high-resolution spinning runs in Ref. [44].
According to [34] that has presented the most accurate
gravitational waveforms for irrotational binaries to date,
one needs Δxmin ≤ 100 m to achieve subradian accuracy
(∼0.2 rad) and nearly convergent waveforms in approx-
imately 15 orbits. Although we haven’t done a resolution
study, we used a very high resolution in order to fulfill the
requirement of Ref. [34].
In Fig. 1, we plot the constraint violations for all models

using the diagnostics of Ref. [88]. Models spALF2-1c,
spSLy-1c, and irSLy collapse promptly to a black hole upon
merger, while the others lead to hypermassive NSs. As we

TABLE II. Eight initial data configurations used in this work. The first four lines correspond to antialigned spinning, irrotational,
corotating, and aligned spinning for the ALF2 EoS. Similarly, the next four lines correspond to the SLy EoS. All binary sets have ADM
massM ¼ 2.72 and Ω ¼ 6 × 10−3.M0 is the rest mass of each NS, χ the dimensionless spin, P the NS spin period in milliseconds, J the
ADM angular momentum, Rx, Ry, Rz the coordinate radii, ρ0 the maximum rest-mass density, and C the equatorial circulation. To
convert to cgs units, multiply mass, density, and distance by 1.989 × 1033 g, 6.173 × 1017 g=cm3, and 1.477 × 105 cm, respectively.

Name Separation M0½M⊙� χ P[ms] J Rx Ry Rz ρ0ð×10−3Þ C

spALF2-1c 39.98 1.511 −0.1703 −4.898 7.779 6.791 6.668 6.621 1.043 −2.809
irALF2 39.94 1.512 −0.0020 N/A 8.176 6.747 6.635 6.661 1.050 0.000
coALF2 39.89 1.511 0.1637 5.159 8.571 6.785 6.675 6.621 1.043 2.813
spALF2þ 2c 40.08 1.510 0.3206 2.522 9.054 6.904 6.788 6.513 1.025 5.618
spSLy-1c 39.97 1.518 −0.1006 −4.844 7.843 6.161 6.078 6.051 1.403 −2.433
irSLy 39.92 1.519 −0.0016 N/A 8.171 6.130 6.051 6.074 1.408 0.000
coSly 39.88 1.519 0.0982 5.159 8.503 6.158 6.081 6.050 1.403 2.436
spSLyþ 2c 40.05 1.517 0.1805 2.481 8.906 6.247 6.168 5.981 1.387 4.866

TABLE III. Grid parameters used for the evolution of each binary configuration of Table II. The computational grid consists of three
sets of eight nested refinement boxes, the innermost ones centered on each star and on the origin of the computational domain. Parameter
Δxmax is the step interval in the coarser level, while Δxmin in the finer. To convert to physical units, multiply by 1.477 km.

xmin xmax ymin ymax zmin zmax Grid hierarchy (Box half-length) Δxmax Δxmin

−1024 1024 −1024 1024 0 1024 f8.0; 16.0; 32.0; 64.0; 128.0; 256.0; 512.0; 1024.0g 8.53̄ 0.06̄
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can see the violations coming from the spinning cases are
identical to those of the irrotational or corotating ones. The
magnitude of the violations differs from those reported in
[60] since the ILLINOIS GRMHD code uses different nor-
malization factors than the WHISKYTHC code [96,97]. The
eccentricity content and the conservation of ADMmass and
angular momentum of our simulations are reported in the
Appendix.

C. GW extraction

Extraction of GWs is performed using the complex Weyl
scalar Ψ4 and the fact that Ψ4 ¼ ḧþ − iḧ× [87,98,99].
Expanding in terms of the spin-weighted spherical har-
monics with spin weight −2,

Ψ4ðt; r; θ;ϕÞ ¼
X∞
l¼2

Xl
m¼−l

Ψlm
4 ðt; rÞ−2Ylmðθ;ϕÞ; ð3Þ

and the strain h ¼ hþ − ih× of the GW will be

hðt; r; θ;ϕÞ ¼
Z

t

−∞
dt0

Z
t0

−∞
dt00 Ψ4ðt00; r; θ;ϕÞ: ð4Þ

For the eight simulations performed here (with outer
boundary at x ¼ y ¼ z ¼ 1024), we extract the GW
coefficients Ψlm

4 ðt; rÞ at seven radii, Rgw ∈ f120; 240;
300; 460; 600; 720; 840g, in order to make sure that we
have a waveform converged with radius. These coefficients
are then expressed in terms of the retarded time tret ¼ t − r⋆
where r⋆ ¼ rA þ 2M ln ðrA=ð2MÞ − 1Þ is the so-called
tortoise coordinate. Here rA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Agw=ð4πÞ
p

is the areal

(Schwarzschild) coordinate and Agw the proper area of a
coordinate sphere of radius Rgw.
In order to calculate the strain, Eq. (4), we have to

perform the double time integrations of the coefficients
Ψlm

4 ðt; rÞ and for that we follow the recipe of Ref. [100]
which strongly reduces spurious secular nonlinear drifts of
the waveforms. First, the Fourier transform Ψlm

4 ðω; rÞ of
Ψlm

4 ðt; rÞ is calculated and then the strain coefficients are
computed according to

hlmðt; rÞ ¼ −
1

2π

Z þ∞

−∞

Ψlm
4 ðω; rÞ

maxðω;ω0Þ2
eiωtdω: ð5Þ

We choose ω0 ¼ Ωðt ¼ 0Þ. Since in this work we simulate
equal mass binaries and we are interested in the inspiral
phase (up to merger) of identical stars, we will focus only at
the ðl; mÞ ¼ ð2; 2Þmode. From now on we will denote this
GW mode by h ¼ h22þ − ih22× and Φ the phase of h at a
specific radius; therefore, we will write

hðtÞ ¼ AðtÞeiΦðtÞ: ð6Þ

The GW angular frequency is defined as

Ωgw ¼ 2πfgw ¼ dΦ
dt

: ð7Þ

III. RESULTS

In Fig. 2, we plot the real part of the gravitational wave
strain h vs the retarded time for the eight simulations of
Table II. The left column corresponds to the ALF2 models
while the right to the SLy ones. From top to bottom, we plot
the spinning binaries with their spin antialigned with the
orbital angular momentum, the irrotational, the corotating,
and the aligned spinning ones. All waveforms are termi-
nated at their peak amplitude (peak of h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2×

p
) that

corresponds to the merger of the two neutron stars). The
time of the peak amplitude of h is not identical with
the time of the peak amplitude of hþ, but very close to it.2

The so-called hang-up effect [101], which was identified in
BNS simulations [46,50,56,95,102], is clear in these wave-
forms. Comparing the irrotational waveforms of the two
EoSs we see that the ALF2 binary merges earlier than the
SLy one, in agreement with the fact that the tidal deform-
ability of ALF2 is larger than the SLy one (see Table IV for
exact merger times and frequencies3). Among the corotat-
ing models, the ALF2 merges earlier than the SLy even
though its spin is much larger (0.16 vs 0.098) implying that

FIG. 1. Top two panels show the Hamiltonian and momentum
violations for all models of the ALF2 EoS. Bottom two panels
similarly for the SLy EoS.

2In Fig. 2, these 2 times are indistinguishable and essentially
coincide with the dashed vertical lines.

3For the irrotational cases, the frequencies are in agreement
with tmrg − Λ relations reported in [103–105], where tmrg marks
the time of the peak amplitude h.
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the combination of tidal effects and the larger orbital
separation at merger (in the ALF2 case) dominate over
spin effects. However, the model spALF2þ 2c merges
later than spSLyþ 2c; therefore, here the much higher spin
of spALF2þ 2c overcomes the tidal interactions.
The effect of spin can be seen most clearly in Fig. 3

where the phase evolution of the gravitational wave signal
is plotted vs the retarded time (top panels). At any given
time, the slope of the curves decreases with increasing
aligned spin, with the steepest slope corresponding to the
antialigned models (spALF2-1c, spSLy-1c) and the smaller

for the aligned cases (spALF2þ 2c,spSLyþ 2c). A steeper
phase slope (antialigned spins) leads to more bound
systems, faster phase evolution, and thus earlier merger
[106]. In the bottom panels of Fig. 3, we plot the phase
difference between the irrotational models and the spinning
ones, ΔΦ ¼ Φirrot −Φspin, vs fgw, the gravitational wave
frequency of the (2,2) mode, in the LIGO band. The
transition from retarded time to frequency has been
accomplished using the relations shown in Fig. 4. Color
lines represent raw data which exhibit a slight oscillatory
behavior that is characteristic of the presence of eccentricity
in the initial data. More accurate future evolutions will
improve this artifact. In order to remove this residual
eccentricity, we perform fittings inspired by the post-
Newtonian formalism [107],

2πfgw ¼ 1

20M
z3ðc0 þ c2z2 þ c3z3 þ c4z4Þ; ð8Þ

where z ¼ ½ðtc − tÞ=ð20MÞ�−1=8 and tc the coalescence
time (maximum amplitude of the strain). The fitted curves
(black lines in Fig. 4 that essentially coincide with the
colored ones) are used in Fig. 3. By direct comparison of
the two panels in the bottom row of Fig. 3, one can see that
for small spins (antialigned [blue] and corotating [green])

FIG. 2. The strain of the plus polarization of the (2,2) GW mode for the ALF2 (left column) and the SLy (right column) EoSs. From
top to bottom the binaries correspond to antialigned spinning, irrotational, corotating, and aligned spinning, respectively. Dashed
vertical lines denote the time of the maximum amplitude h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2×

p
.

TABLE IV. Retarded time of the peak of the 2,2 mode as well as
the corresponding frequencies for the eight initial data configu-
rations used in this work.

Name tmrg=M fmrg [kHz]

spALF2-1c 3405 1.62
irALF2 3536 1.72
coALF2 3630 1.75
spALF2þ 2c 4607 1.78
spSLy-1c 3495 1.47
irSLy 3630 1.98
coSly 3724 2.00
spSLyþ 2c 4262 2.15

ANTONIOS TSOKAROS et al. PHYS. REV. D 100, 024061 (2019)

024061-6



the two EoSs yield small differences with respect to the
irrotational case. For higher spins, significant deviations
from the irrotational models appear. In the post-Newtonian
approximation, one can identify the magnitude of the
contributions due to different mechanisms, and to lowest
order one can calculate the point particle (like a binary black
hole), tidal, spin-orbit, spin-spin from self-interactions, and

spin-spin frommutual interactions [95]. In our case, we find
that although small spins (depending also on the EoS) result
to phase differences of the order of ∼5 radians (in accor-
dance with Ref. [95]), higher spins can produce phase
differences as large as ∼40 radians within the 1 KHz band
which are much larger than the tidal effects.
To see this, note that tidal contributions enter the

GW phase at the 5PN order and are partially known up
to 7.5PN [108],

ϕT ¼
X2
i¼1

κiciNewtx
5=2ð1þ ci1xþ ci3=2x

3=2 þ ci2x
2

þ ci5=2x
5=2Þ; ð9Þ

where x ¼ ðMπfgwÞ2=3 and the tidal deformability enters
through the coefficient κ1 ¼ 3Λ1X4

1X2 (similarly for κ2).
Here Xi ¼ Mi=M, with Mi the individual gravitational
masses, and all the coefficients ci are functions of Xi (see
[108]). Equation (9) is plotted with solid lines in Fig. 5 for
the two EoSs considered here.
In addition to the PN formula, tidal effects can be

described based on numerical relativity simulations using
the approximants derived in Refs. [40,45] either in the
frequency or in the time domain. The basic idea of these
approximants is to use binary black hole models in order to
provide analytical closed-form expressions correcting the
GW phase to include tidal effects. Here we use the
approximant ϕNR

T [45,109] referred to as NRTidal, which
models the tidal effects in the time domain, Eq. (6). In
Fig. 5, we plot ϕNR

T (dashed lines) with respect to the

FIG. 3. Left (right) column ALF2 (SLy) EoS. Top panels show the phase evolution with respect to the retarded time, while the bottom
panels the phase difference between the irrotational and spinning models vs the GW frequency of the (2,2) mode.

FIG. 4. The gravitational wave frequency for the l ¼ 2, m ¼ 2
mode with respect to the retarded time for both the ALF2 (top
panel) and SLy (bottom panel) EoSs. The black curves running
through and practically overlapping with the colored ones are the
fits using Eq. (8).
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frequency for the ALF2 and SLy models used in our
simulation. As shown in the plot, the NRTidal phase shift
between fgw ¼ 0.4 kHz and fgw ¼ 1 kHz is ≲8 radian for
ALF2 and ≲4 radians for SLy. The aforementioned
NRTidal phase shift for SLy (ALF2) is comparable with
the phase shift due to spin for the SLy models spSLy-1c and
coSly (ALF2 models spALF2-1c and coALF2) as shown in
the bottom row of Fig. 3. For frequencies beyond the LIGO
band, tidal effects still prevail over the spin for those cases.
However, for our highest spinning models, the picture is

completely different. At 1 KHz both the ALF2 and SLy
EoSs develop a phase shift due to spin approximately 4
times larger than the one coming from tidal effects alone.
Even for larger frequencies the shift due to spin in those
cases will be larger than the corresponding one due to tidal
effects, despite the fact that the slopes of the curves of
Fig. 3 are smaller than those of Fig. 5 in the 1–2 KHz
regime.
Another interesting feature of Fig. 3 is the fact that for a

given EoS the phase difference of a spinning model with
respect to the irrotational one does not scale linearly with
the spin, a reminder of its nonlinear nature. For example,
although the antialigned and corotating ALF2 models have
an absolute value of spin which is approximately half of the
spALF2þ 2c model, the phase difference of the latter is
approximately 8 times larger. For the SLy EoS, the
antialigned and corotating models have an absolute value
of spin which is almost half of the spSLyþ 2c model, but
the phase difference of the latter is approximately 4 times
larger. Also, by observing the antialigned and corotating
ALF2, SLy models we can see that they produce similar
phase shifts with respect to the irrotational case although
their corresponding spins are jχALF2j ≈ 1.6jχSLyj. In other
words, for smaller spins softer EoSs produce the same
phase shift as a stiffer one with a higher spin.
The power spectral density of the models we simulated

together with the ZERO_DET_HIGH_P aLIGO noise curve
(

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
) is plotted in Fig. 6. Spin effects are clearly not

distinguishable on this plot.

IV. DISCUSSION

In this work, we performed long-term inspiral simula-
tions of irrotational and highly spinning binary neutron
stars using the ILLINOIS GRMHD code in an effort to assess
the importance of high spin. We used two EoSs represent-
ing NSs of different compactions and three different spins
in order to compare the phase evolution with respect to the
irrotational case. Our spinning models range from binaries
with a spin ∼0.32 aligned with the orbital angular momen-
tum, to antialigned binaries with a spin of ∼ − 0.17, all of
them of equal mass. We employed high resolution with our
finest grid spacing Δx ¼ 98 m, motivated by the study of
[34]. We find that our highest spinning binary exhibits a
phase difference of ∼40 radians with respect to the irrota-
tional one. This shift grows nonlinearly with the spin and
depends on the EoS too. Our findings indicate in full
general relativity that the effect of moderate to high spin in
the inspiral can be larger than the tidal effects alone, even
when the rotation of the stars is far from their Keplerian
limit. The dephasing due to spin is in accordance with post-
Newtonian analysis [23], and this work underlines the
importance of taking it into account for more reliable GW
data analysis.
Despite the fact that our calculations employ among the

highest resolutions adopted in numerical relativity simu-
lations of inspiraling binary neutron stars to date, we find
that our irrotational models complete about 0.5–1 fewer
orbits when compared to previous studies, e.g., [34]. This
would suggest a maximum phase error of about 4π ≈ 12.6
radians. To obtain a better handle on the phase error in our
calculations, and test whether a phase difference between a
spin 0.32 and spin 0 binary can be as high as ∼40 radians,
we used the IMRPHENOMD approximant [110] as imple-
mented in PyCBC [111] to construct time domain binary

FIG. 5. The 7.5PN tidal part (solid lines) of the GW phase for
the two EoSs used in this work, together with the tidal
approximant of Dietrich et al. [45] (dashed lines).

FIG. 6. GW spectra of the ALF2 and SLy numerical waveforms
at 50 Mpc and aLIGO ZERO_DET_high_P noise curve (thick
gray lines).
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black hole waveforms. The results suggest that for a total
mass of 2.72 M⊙, starting 400 Hz and ending at 1 kHz, the
phase difference between an equal-mass, nonspinning
binary black hole and a binary black hole with dimension-
less spin parameters 0.32 is ∼25 radians. This suggests that
the phase difference of ∼40 radians between our highest
spin and irrotational ALF2 cases is likely an overestimate,
indicating that the phase error in our calculations is
possibly as high as ∼15 radians for the ALF2 EoS. A
similar calculation for the spins we treat in the SLy EoS
shows a phase difference in the binary black hole case of
∼15 radians, suggesting an error in our SLy phase differ-
ence calculations possibly as high as 5 radians. Regardless,
the main result of our work is intact: the effect of spin in the
inspiral of a binary neutron star system can be larger than
the tidal effects and depends of the EoS; hence, its inclusion
in the GW data analysis is important. While this result may
sound obvious, we point out that the spacetime outside a
rotating NS is not Kerr, and hence one cannot a priori
expect that spin effects in binary neutron stars will be the
same as those in binary black holes. Thus, our calculations
provide an explicit demonstration that spin effects can be
very important during the inspiral of a binary neutron star.
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APPENDIX: DIAGNOSTICS

In order to understand the eccentricity content of our
initial data, we show in Fig. 7 (left panels) the coordinate
orbital separation D and its time derivative versus time for
all models with the SLy EoS. The magnitude of the
oscillations, which quantifies the eccentricity, is similar
to what is found in previous binary black hole [112] and
binary neutron star [113] studies. A simple fit with a
functional of the form _D ¼ A0 þ A1tþ B sinðωtþ ϕÞ
leads to an estimate of the eccentricity e ¼ B=ðωDÞ ≈
0.005 for all our models.
As additional error estimates for our simulations,

we report the level of conservation of ADM energy and
angular momentum in the right panels of Fig. 7. In the top

FIG. 7. Left column: coordinate distance, D, and radial velocity, dD=dt, for the SLy models. Right column: angular momentum and
mass vs time for the same binaries. Dashed lines correspond to the angular momentum Jv and mass Mv of the system inside the
computational domain at each instant of time, while solid lines to Jv þ Jgw and Mv þMgw, respectively.

EFFECT OF SPIN ON THE INSPIRAL OF BINARY NEUTRON … PHYS. REV. D 100, 024061 (2019)

024061-9



right panel, we plot the angular momentum inside our
computation domain Jv (dashed lines) vs time, as well as
the total angular momentum Jv þ Jgw (solid lines) which
includes the angular momentum Jgw radiated way in
gravitational waves. It is clear that even for the spinning
models the angular momentum is conserved to an accuracy
better than 2.5% where the upper limit is set by the
antialigned case. In the bottom panel, we plot similarly
the total mass inside the computational domainMv (dashed

lines) as well as the total mass Mv þMgw (solid lines)
which includes the radiated energy. Here the conservation
of energy is better than 0.2%. These results are in
accordance with previous studies using the ILLINOIS
GRMHD code [114]. Note, that a 2.5% error in a 16-orbit
long calculation would translate to a gravitational wave
phase error of ∼2π rad, i.e., consistent with our error
estimates in the main text.
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