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Spin foam models (SFMs) are covariant formulations of loop quantum gravity (LQG) in four
dimensions. This work studies the perturbations of SFMs on a flat background. It demonstrates for
the first time that smooth curved spacetime geometries satisfying the Einstein equation can emerge from
discrete SFMs under an appropriate low energy limit, which corresponds to a semiclassical continuum limit
of SFMs. In particular, we show that the low energy excitations of SFMs on a flat background give all
smooth solutions of linearized Einstein equations (spin-2 gravitons). This indicates that at the linearized
level, classical Einstein gravity can arise as a low energy effective theory from SFMs. Thus our result
heightens the confidence that covariant LQG is a consistent theory of quantum gravity. As a key technical
tool, a regularization/deformation of the SFM is employed in the derivation. The deformation parameter δ
becomes a coupling constant of a higher curvature correction term to Einstein gravity from SFM.
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I. INTRODUCTION

The spin foam program is a covariant approach towards a
nonperturbative and background-independent quantum
theory of gravity [1–4]. Spin foam models (SFMs), there-
fore, provide a powerful formalism to analyze the dynamics
of loop quantum gravity (LQG) [5–8]. As state-sum lattice
models inspired by topological quantum field theory,
SFMs are a LQG analog of the Feynman path integral
description of quantum gravity [9,10]. In particular they
describe the histories of evolving quantum geometries of
space [1,11]. The study of SFMs has uncovered many
remarkable properties in the last two decades. Amongst
others, SFMs are finite in the presence of the cosmological
constant [12,13] and have an interesting semiclassical
behavior that relates to general relativity (GR) [14–21].
Moreover, SFMs are well behaved at curvature singularities
[22]. This enables us to study singularities in a concrete
quantum gravity model. The above properties make SFMs
stand out among lattice quantum gravity models.
The semiclassical consistency is one of the most crucial

requirements for a candidate quantum gravity theory. Recent
results show that SFMs give rise to discrete spacetime
geometries in a large spin limit (e.g., [14–16]). The dis-
creteness of the geometries is a consequence of the lattice
dependenceofSFMs. If SFMsdo indeedqualify asmodels of
quantum gravity, then there should also exist a continuum
limit under which smooth general relativity arises as an
effective low energy theory. The construction of such a limit
has been a long-standing issue in SFMs [23–26].
In this paper, we show for the first time that smooth

solutions of the four-dimensional Einstein equation emerge

from SFMs under an appropriate semiclassical continuum
limit (SCL). The limit combines the large spin limit and
lattice refinement in a coherent manner; it also can be
interpreted as a low energy limit of SFMs. We focus on
the perturbations of SFMs on a flat background, and we find
that the low energy excitations from the SCL give all smooth
solutions of the linearized Einstein equation. This work
indicates that at the linearized level, classical Einstein gravity
can arise as a low energy effective theory from SFMs.
This work can be also understood along the lines of the

emergent gravity program. An idea in this program is
that gravity, which is geometrical and smooth, might
emerge as the low energy excitations from fundamentally
entangled qubits (or generally qudits), which are algebraic
and discrete [27–32]. In this paper, we show that SFMs
can be rewritten in terms of spacetime tensor networks
(TNs), whose fundamental degrees of freedom (DOFs)
are entangled qudits at different spacetime locations.
Therefore, our results prove to be a working example for
the above idea.
The architecture and results of this paper are summarized

as follows: In Sec. II we review the definition of the SFM as
a state sum, and its integral representation, which is useful
in the semiclassical analysis. In this section we relate SFM
to tensor networks whose fundamental degrees of freedom
are maximally entangled intertwiners.
In Sec. III we propose a new treatment of the spin sum in

the SFM, in which we apply the Poisson resummation to
the spin sum and a regularization/deformation parametrized
by δ ≪ 1. Several important roles played by δ are discussed
in this section.
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In Sec. IV we point out that the deformation δ manifests
the higher curvature correction to Einstein gravity from
SFM. In Sec. V we review some key results in the large-J
asymptotic analysis of the SFM on a simplicial complex,
and we set up the language for the following discussion.
This section also contains some new results which have not
been published in the literature: in particular, the one-to-
one correspondence in the Euclidean SFM between a sector
of large-J critical points to 4d simplicial geometries with
orientations, and a cohomological argument for lift ambi-
guities of critical points on a simplicial complex.
In Sec. VI we set up the scheme for our studies of

perturbations on the flat (discrete) spacetime, and we show
that given the background as a critical point corresponding
to the simplicial geometry with a global orientation, small
perturbations in SFM variables only reach critical points
corresponding to perturbations of the background geometry
with the same global orientation.
In Sec. VII we derive equations of motion at the

perturbative level and identify them as the Regge equation
of discrete geometry and an upper bound of the deficit
angle by δ.
In Sec. VIII we define the SCL of SFMs. The SCL is

definedwith a sequence of refined triangulationsKN with the
continuum limit N → ∞. A sequence of SFMs is defined
on the sequence KN and we give simplicial geometries as
large-J critical points. All SFM quantities, e.g., the spins
Jf ¼ JfðNÞ, the regulator δ ¼ δðNÞ, the critical points, etc.,
depend on N and flow with N → ∞ in a certain manner,
which defines the SCL. The SCL relates the SFM continuum
limit to the continuum limit of Regge calculus.
In Sec. IX we apply the SCL to the SFM perturbations

on the flat geometry and find the convergence to smooth
solutions of the linearized Einstein equation. Demonstrating
the convergence employs the existing results of the con-
tinuum limit of linearized Regge calculus in [33,34], and the
relation between the SCL and Regge continuum limit.
Finally, in Sec. X we conclude and remark on a few

future perspectives.

II. SPIN FOAM MODELS

SFMs are defined over 4-dimensional (4d) simplicial
triangulations K, which are obtained by gluing 4-simplices
σ along their common tetrahedra τ, quite similar to the
gluing of tetrahedra in 3d triangulation or triangles in 2d
triangulation. Thus a triangulation K consists of simplices
σ, tetrahedra τ (boundaries of σ’s), triangles f (boundaries
of τ’s), edges (boundaries of f’s) and vertices. Our analysis
focuses onK adapted to a hypercubic lattice inR4 in such a
way that each hypercube is triangulated identically by 24
four-simplices [see Fig. 1(b)]. The same triangulation has
been employed in e.g., [33,35] to study perturbations on a
flat background. Here K is a finite lattice with its boundary
in a region of R4.

A SFM is obtained by associating a state sum,

ZðKÞ ¼
X
J⃗;⃗i

Y
f

AfðJfÞ
Y
σ

AσðJf; iτÞ; ð1Þ

to K and can be interpreted as the path integral of a
triangulated manifold (here R4). In the above state sum,
each triangle f is colored by an SU(2) representation Jf ∈
Zþ=2 and each tetrahedron τ is colored by an SU(2)
intertwiner (invariant tensor) iτ. They are quantum numbers
labeling histories of LQG quantum geometry states, which
are the intermediate states of the path integral. Jf, iτ can be
related to the area of f and the shape of τ in the
semiclassical interpretation [36–38]. The dynamics of
the model is captured in the 4-simplex amplitudes
AσðJf; iτÞ ∈ C associated to each σ. In particular,
AσðJf; iτÞ ∈ C describes the local transition between the
quantum geometry states labeled by fJf; iτg for f, τ on
the boundary of σ. The weights of the spin sum AfðJfÞ are
the face amplitudes.

êi

(b) (c)

(a)

FIG. 1. (a) The 5-valent vertex in a 4-simplex illustrates a rank-
5 tensor jAσi. Gluing 4-simplices σ in K gives a tensor network
TNðK; J⃗Þ, where each link associates to a maximally entangled
state of a pair of iτ ’s. (b) A triangulation of the hypercube. The 4d
hypercubic lattice with the triangulated hypercube makes K.
(c) An illustration of the neighborhoodN (the region bounded by
blue dashed lines) in the space of J⃗. The red curve illustrates

MRegge, including J⃗ðlÞ as the perturbation of J⃗ðl∘ Þ. The black

and blue arrows are basis vectors êiðlÞ and ∂J⃗ðlÞ=∂l, transverse
and tangent to MRegge.
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The amplitudes AσðJf; iτÞ depend linearly on the inter-
twiners iτ and thus are rank-5 tensors on intertwiner spaces.
The 4-simplices in K are glued by identifying a pair of τ’s
in σ and σ0. This implies that

P⃗
i Aσ is equivalent to the

inner products between the tensors jAσi at all σ’s and the
maximally entangled states jτi ¼ P

iτ jiτi ⊗ jiτi, where iτ
are shared by pairs of σ’s. This yields a spacetime tensor
network [Fig. 1(a)]

TNðK; J⃗Þ ≔ ⊗τ hτj ⊗σ jAσðJfÞi: ð2Þ

Note that the entangled intertwiners (the qudits) are the
fundamental DOFs of the TN. Moreover the state sum
ZðKÞ can now be expressed in terms of these TNs, that is,
ZðKÞ ¼ P

J⃗ TNðK; J⃗ÞQf AfðJfÞ. More details on SFM
and TNs are given in Appendix A.
The following demonstrates that smooth Einstein sol-

utions can emerge from the fundamentally entangled
intertwiners. Thus it realizes the idea of emergent gravity
from entangled qubits. In order to show this, we employ the
integral representation of ZðKÞ [15,17,39]:

ZðKÞ ¼
X
J⃗

Y
f

AfðJfÞ
Z

½dX�e
P

f
JfFf ½X�: ð3Þ

Here Ff is a function that only depends on a set of spin
foam variables

X ≡ ðg�στ; ξτfÞ; ð4Þ

which includes ðgþστ; g−στÞ ∈ Spinð4Þ at pairs of ðσ; τÞ with
τ ⊂ σ, and ξef ∈ CP1 at pairs of ðτ; fÞ with f ⊂ τ. The
details of Af and Ff depend on the specific SFM. Af is
often chosen as ð2Jf þ 1Þαf .
Here for the purpose of large-J analysis, we set Af

as ð2JfÞαf .
Here, we focus on the Euclidean Engle-Pereira-Rovelli-

Livine/Freidel-Krasnov (EPRL/FK) model (γ < 1) [40,41]
where

Ff ¼
X
σ;f⊂σ

½ð1 − γÞ ln hξτfjðg−στÞ−1g−στ0 jξτ0fi

þ ð1þ γÞ ln hξτfjðgþστÞ−1gþστ0 jξτ0fi�; ð5Þ

but our results can be generalized to other SFMs, e.g.,
[18,42,43].
We have γ ¼ p=q (p; q ∈ Zþ). Also, J ∈ qZ when

pþ q is odd J ∈ qZ), and J ∈ qZ=2 when pþ q is even.
We assume even pþ q in the following computation. One
may replace q → 2q to obtain results for odd pþ q.
The integrand in Eq. (3) is manifest periodic by

Ff ∼ Ff þ 4πi=q. So we set ImðFfÞ ∈ ½−2π=q; 2π=q�.
It also has a discrete symmetry gþστ → �gþστ and

independently g−στ → �g−στ. The transformation simultane-
ously shifts Ff → Ff þ πið1� γÞ for all f ⊂ τ and gives a

factor e2πi
P

f⊂τ
J�f (J�f ¼ 1�γ

2
Jf ∈ Z=2). This factor equals

1 because
P

J⃗ is constrained by
P

f⊂τ J
�
f ∈ Z:

X
J⃗

¼
Y
f;τ;�

X
Jf∈N=2

X
n�τ ∈Z

δn�τ ;
P

f⊂τ
J�f

¼ 1

2Nτ

Y
f;τ;�

X
Jf∈N=2

X
m�

τ ∈0;1

e2πim
�
τ

P
f⊂τ

J�f ; ð6Þ

where Nτ is the number of τ ⊂ K. Although the integral
vanishes for J⃗ violating this constraint, it is useful to
explicitly impose this constraint on

P
J⃗ for the purpose of

asymptotic analysis of the integral.

III. SPIN SUM AND REGULARIZATION

LQG predicts that the geometrical areas are fundamen-
tally discrete at the Planck scale. The area spectrum [36,37]
relates to the spins via af¼γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JfðJfþ1Þp

l2
P, where γ ∈ R

is the Barbero-Immirzi parameter and l2
P ≡ 8πGNℏ. Since

the semiclassical area af ≫ l2
P implies Jf ≫ 1, the semi-

classical analysis of SFMs is built on uniformly large (but
finite) spins Jf ¼ λjf where λ ≫ 1 is the typical value of
the spins.
For the following argument, it is important to note that

small perturbations J
∘ þ δJ of a given background spin

J
∘
∼ λ ≫ 1will still be inside this large-J regime. Moreover,

the sum
P

J⃗ can be replaced through an integral by the
Poisson resummation formula. By Eq. (6),

ZðKÞ ¼
X

kf;m�
τ ∈Z=∼

2Nf−Nτ

qNf

Z
∞

0

½dJ�

×
Z

½dX�
Y
f

AfðJfÞe
P

f
JfðFf ½X�þ4πi

kf
qþπi

P
� m�

τ
q�p
q Þ;

ð7Þ

where Nf denotes the number of internal f’s in K.

4πi kfq þ 2πi
P

� m�
τ

q�p
q in the exponent and

P
kf;mτ

mani-
fest the periodicity of the integrand discussed above.P

kf;mτ∈Z=∼ sums kf, mf ∈ Z modulo an equivalence
because the exponent has gauge transformations

fkfgf⊂τ→
�
kfþ

X
�
ðq�pÞM

�
τ

2

�
f⊂τ

; m�
τ →m�

τ −2M�
τ ;

ð8Þ

where Mτ ∈ Z and q� p are even numbers. Note that in
Eq. (7) we only focus on the terms from internal f and
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neglect the boundary terms, since they are not involved in
most of the following analysis.
Equation (7) treats J’s as continuous variables. From

previous results e.g., [15,17,39] it follows that there is a
subspace of large J⃗ ∈ RNf that determines classical triangle
areas. These spin configurations are called “Regge-like”
and satisfy the triangle area-length relation

γJfðlÞ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2

ijl
2
jkþl2

ikl
2
jkþl2

ijl
2
ikÞ−l4

ij−l4
ik−l4

jk

q
:

ð9Þ

The right-hand side determines the area afðlÞ=l2
P of the

triangle f in terms of lij;lik;ljk being the lengths (in lP

unit) of three edges of a triangle. Since there are fewer
edges than triangles in the bulk ofK, Regge-like spins form
a proper subset and Eq. (9) defines an embedding map
RNl ↪ RNf . Nl is the number of internal edges in K.
Here, we want to consider perturbations on a flat

(triangulated) hypercubic lattice with constant spacing

ðγλÞ1=2 (in lP unit), which fixes all edge lengths l
∘
in K,

e.g., ðγλÞ−1=2l∘ ¼ 1;
ffiffiffi
2

p
;

ffiffiffi
3

p
; 2 for the cube edges, face

diagonals, body diagonals, and hyperbody diagonals,
respectively. These edge lengths in turn determine the

Regge-like spins J⃗
∘
¼ J⃗ðl∘ Þ by Eq. (9). The flat triangulated

hypercubic lattice geometry is a large-J critical point of the

SFM and determines the critical data X
∘
. In this paper, we

focus on the perturbations

ðJ; XÞ ¼ ðJ∘ þ δJ; X
∘ þ δXÞ: ð10Þ

When J
∘
∼ λ ≫ 1, J

∘ þ δJ are also large. The perturbations
restrict us in the large-J regime of ZðKÞ. By considering
perturbations of the flat geometry, we would like to extract
solutions of equations of motion from SFM and find their
continuum limit to give the smooth linearized Einstein
gravity.
For the study of perturbations around J⃗

∘
, it is sufficient to

consider a neighborhood N ⊂ RNf of J⃗
∘
. N is constructed

as follows: Firstly, smooth perturbations l ¼ l
∘ þ δl and

the embedding Eq. (9) define a submanifoldMRegge ⊂ RNf

of dimension Nl. We choose êi (i ¼ 1;…; Nf − Nl) basis
vectors transverse to MRegge. All

J⃗ ¼ J⃗ðlÞ þ
X
i¼1

tiêi ð11Þ

defines N , with J⃗ðlÞ ∈ MRegge and ti ∈ R. ðl; tiÞ form a
local coordinate system inN [see Fig. 1(c)]. J’s with ti ≠ 0

are called “non-Regge-like.” êi can be chosen as constant

vectors transverse toMRegge since we focus on a neighbor-

hood at l
∘
∈ MRegge (the space of J⃗ is a flat spaceRNf ). For

instance, we can choose êi to be vectors normal to MRegge

at l
∘
, and extend every êi to a constant vector field trivially

by parallel transport inRNf . êi are transverse toMRegge in a

neighborhood of l
∘
.

The integral over J⃗ can now be split into transverse and
Regge-like parts as well. That is,

R
dJ⃗ ¼ R ½dldt�J ðlÞ,

where the Jacobian J ðlÞ ¼ j∂J⃗ðlÞ=∂l; êij. J ðlÞ only
depends on l because êi are constant vectors. We regularize
the transverse integral

R∞
−∞ ti by inserting a Gaussian factor

parametrized by 0 < δ ≪ 1:Z
dJ⃗¼

Z
½dldt�J ðlÞ→

Z
½dl�J ðlÞ

Z
½dt�e−δ

4

P
i
t2i : ð12Þ

The t-integral has a lower bound since J ∈ ½0;∞Þ. But
extending the t-integral to −∞ only adds a negligible

contribution when J
∘
is large.

Inserting Eq. (12) into ZðKÞ defines

ZδðKÞ ≔ 2Nf−Nt

qNf

X
kf;m�

τ ∈Z=∼

Z
∞

0

½dl�J ðlÞ

×
Z

½dXdt�e−δ
4

P
i
t2i
Y
f

AfðJfÞ

× e
P

f
JfðFf ½X�þ4πi

kf
q þπi

P
� m�

τ
q�p
q Þ; ð13Þ

where we can interchange
R ½dX� and R ½dt� since R ½dX� is

over a compact space and e−
δ
4

P
i
t2i decays at infinity.

The regulator δ plays a key role in ourwork. The following
explains several roles played by this regularization:

(i) Inserting the Gaussian modifies the sum over spinsP∞
Jf¼0 along a certain direction in the space of spins.

Indeed if we perform the Poisson resummation
backward after inserting the Gaussian in Eq. (7),
using the relation

P
k∈Z e2πikx ¼ P

n∈Z δðx − nÞ
recovering J ∈ Z=2 and

P
f⊂τ J

� ∈ Z from con-
tinuous J in Eq. (7),

ZδðKÞ¼ 2Nf−Nτ

qNf

Z
½dl�J ðlÞ

Z
½dXdt�e−δ

4

P
i
t2i

×
Y
f

AfðJfÞe
P

f
JfFf ½X�

×
Y
f

X
nf∈Z

δð2Jf=q−nfÞ
Y
τ;�

X
n�τ ∈Z

δn�τ ;
P

f⊂τ
J�f
:

ð14Þ

It is clear thatZδðKÞmodifiesZðKÞ by damping down
spinswith large t (far away fromMRegge transversely).
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Integrating delta functions in Eq. (14) then sending
δ → 0 reduces ZδðKÞ to ZðKÞ [comparing to Eq. (6)].
TheGaussianwith small δ is a “smooth cutoff”of large
spins (in the direction transverse to MRegge).

(ii) ZδðKÞ is a one-parameter deformation from ZðKÞ,
and δ is a parameter deciding how many non-Regge-
like J’s are contributing ZδðKÞ. From δ ¼ 0 to
δ → ∞, ZδðKÞ has a less and less non-Regge-like
contribution. δ → ∞ removes the entire non-Regge-
like contribution from ZðKÞ. However in the follow-
ing discussion, we focus on small δ and send δ → 0
in the end. Namely we only ignore spins very far

away fromMRegge and J
∘
(at discrete level), which is

qualified because we study perturbative effects

around J
∘
, as will be clarified in a moment.

(iii) Although ZδðKÞ ≠ ZðKÞ at the discrete level, they
may have the same continuum limit if we turn off the
regulator δ → 0 together with refining the lattice K,
as we will do in the following. Eventually the theory
of spin foams should be defined in the continuum
limit to remove the triangulation dependence. All
physical quantities computed in the continuum limit
will not depend on δ.

(iv) As we see in a moment, another important
role played by δ ≪ 1 is to make deficit angles εf
of emergent Regge geometries to be small but
nonzero, as a resolution of the “flatness problem”
in SFM [21,44–46]. The detailed discussion is given
momentarily below Eq. (70).

(v) It is discussed shortly below that δ reveals the high
curvature corrections to Einstein gravity derived
from SFM. It is demonstrated in Eq. (16) and
explained shortly below. It is closely related to
[47]. δ ∈ ½0;∞Þ is essentially a parameter interpo-
lating from SFMs to quantum Regge calculus.

(vi) Note that inserting the Gaussian with δmay not make
the SFM finite, since the domain of

R
∞
0 ½dl� still

contains theorbits of thevertex translationgroup (zero
modes in aHessianmatrix inSec.VIII B). This orbit is
noncompact and not restricted by δ.

IV. HIGHER CURVATURE CORRECTION

We compute the term in ZδðKÞ at kf ¼ mτ ¼ 0
(all other terms can be obtained by shifting Ff →

Ff þ 4πi kfq þ πi
P

�m�
τ

q�p
q ):

Z
½dldX�J ðlÞ

Z
½dt�e−δ

4

P
i
t2i

×
Y
f

Af

�
JfðlÞ þ

X
i¼1

tiêif

�
e
P

f
½JfðlÞþ

P
i¼1

tiêif �Ff ½X�:

ð15Þ

The ti-integral in ZðKÞ is a Gaussian integral and yields

Z
½dldX�eλhj⃗ðlÞ;F⃗½X�iDδðl; XÞ; Dδ ¼ e

P
M
i¼1

1
δhêi;F⃗½X�i2J 0;

ð16Þ

where J 0 ¼ ð4πδ ÞMJ ðlÞQf AfðJfðlÞ þ 2
δ

P
i ê

i
fhêi; F⃗½X�iÞ.

Here, F⃗ ¼ fFfgf is treated as a complex Nf-dimensional
vector, and h·; ·i denotes the Euclidean inner product.
Furthermore, we have ignored the boundary terms in
the exponent because they are unimportant in the main
discussion.
We can combine the exponent of Dδ and define an

effective action Seff , so we write Eq. (16) as

Z
½dldX�eSeff ½l;X�J 0½l; X�; where

Seff ¼ λ

�
hj⃗ðlÞ; F⃗½X�i þ 1

λδ

XM
i¼1

hêi; F⃗½X�i2
�
; ð17Þ

where we have written Jf ¼ λjf (λ ≫ 1 is the typical value

of J
∘
over K).

In the SFM large-J asymptotics, Ff ¼ iγεf at a subclass
of geometrical large-J critical points of the integral (see
e.g., [17] and Secs. V B and V C), where εf is the deficit
angle in Regge geometry. Therefore in Seff , ðδλÞ−1 is a
coupling constant for a ε2f correction, while the first term in
Seff reduces to the Regge action at the critical point. The
details of this argument are given in the following sections.
The ε2f term corresponds to higher curvature corrections in
Regge calculus [48], although here the ε2f term is likely
nonlocal due to the appearance of êi.
The above argument is obviously perturbative, because

treating the second term in Eq. (17) nonperturbatively
modifies the critical equation and critical points in the
large-J asymptotics. This term contains corrections from
SFM degrees of freedom X other than ε2f. However in this
paper, we still treat this term perturbatively; i.e., we
consider the regime

λ ≫ δ−1 ≫ 1: ð18Þ

which makes the coupling constant ðλδÞ−1 small. All non-
ε2f corrections are restored in the perturbative expansion in
the coupling constant. The nonperturbative study of Seff
beyond the above regime will be reported in the future.
Note that given any arbitrarily small δ ≠ 0, the above
regime always exists because Jf is summed toward infinity.
Recall that 1

δ

P
M
i¼1hêi; F⃗½X�i2 in Seff comes from the

t-integrals which are contributions from non-Regge-like
J’s. Treating this correction term perturbatively in Seff
means that we treat the contribution from non-Regge-like
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J’s perturbatively. It reflects our proposal mentioned above

that we focus on perturbations at J
∘
.

ZδðKÞ has the following gauge symmetry:
(i) Continuous: The following transformations leave all

FfðXÞ invariant: (i) a diagonal Spin(4) action at σ,
g�στ → h�σ g�στ for all τ ⊂ σ by ðhþσ ; h−σ Þ; (ii) at an
internal τ, jξτfi → hτjξτfi and g�στ → g�στh−1τ for all σ
having τ at boundaries; and (3) jξτfi → eiθτf jξτfi at
any internal jξτfi.

(ii) Discrete: gþστ → �gþστ and independently g−στ →
�g−στ shift Ff → Ff þ πið1� γÞ for all f ⊂ τ.
Simultaneously m�

τ → m�
τ − 1 leaves the integrand

invariant.

V. CRITICAL EQUATIONS AND
GEOMETRICAL CORRESPONDENCE

Since the exponent in Eq. (16) scales linearly in λ, we
can apply the stationary phase method to Eq. (16). As long
as the exponent in Dδ is subleading, we can directly take
over the result in [15,17,39]. In the regime of Eq. (18), the
dominant contributions of Eq. (16) come from the critical
points ðlc; XcÞ, i.e., the solutions of the critical equations
ReS ¼ δXS ¼ δlS ¼ 0, of S ¼ hj⃗; F⃗i.
We firstly discuss the subset of critical equations ReS ¼

δXS ¼ 0 and postpone discussion of the other critical
equation δlS ¼ 0 to Sec. VII. ReS ¼ δXS ¼ 0 has been
studied extensively in the spin-foam asymptotic analysis on
simplicial complexes with fixed Jf e.g., [15–17,49].
Section VA reviews some key results useful in our
derivation, while some details are provided in Secs. V B
and V C.

A. Classification of solutions to ReS= δXS= 0

Recall Eq. (4); δXS ¼ 0 includes δg�στS ¼ δξτfS ¼ 0. But
δξτfS ¼ 0 is implied by ReS ¼ 0 so does not give a new
constraint [17]. These critical equations are equivalent to
the following equations:

ĝ�στn̂τf ¼ ĝ�στ0 n̂τ0f;
X
f⊂τ

jfετfðσÞn̂τf ¼ 0 ð19Þ

where ĝ�στ ∈ SOð3Þ is the three-dimensional representation
of g�στ, and n̂τf ¼ hξτfjσ⃗jξτfi is a unit 3-vector (σ⃗ are
Pauli matrices). ετf ¼ �1 satisfying ετfðσÞ ¼ −ετ0fðσÞ
(τ ∩ τ0 ¼ f) and ετfðσÞ ¼ −ετfðσ0Þ (σ ∩ σ0 ¼ τ). We
denote a solution to the above equations by

Xc ≡ ðg�στ; ξτfÞc modulo gauge: ð20Þ

Note that jf enters as a parameter in these critical
equations. A bad choice of jf may not lead to any solution.

But in our case Eq. (16), jf ¼ jfðlÞ implies solutions
always exist.
At jf ¼ jfðlÞ, there is a subclass G of solutions Xc

which can be interpreted as nondegenerate simplicial
geometries on K. A useful quantity classifying solutions
is sgnðVσÞ where Vσ is the oriented 4-volume:

sgnðVσÞ ¼ sgn½det ðN1ðσÞ; N2ðσÞ; N3ðσÞ; N4ðσÞÞ�; ð21Þ

where NτðσÞ is the 4d normal of tetrahedron τ ⊂ σ outward
pointing from σ. NτðσÞ is computed by N0

τðσÞ1þ
iNi

τðσÞσi ¼ g−στðgþστÞ−1 (σi are Pauli matrices). The subclass
G is defined as solutions with sgnðVσÞ ≠ 0.
Equation (19) obviously has aZ2 symmetry: n̂τf → −n̂τf

(ξτf → Jξτf) globally on the entire K. K triangulates a
region in R4 and has a boundary; this symmetry is broken
by the boundary condition which fixes ξτf at the boundary.
The following one-to-one correspondence is valid within

the subclass G (see Sec. V B for a proof, and see [49] for a
proof in Lorentzian signature):

Solutions Xc ∈ G

↕

4d nondegenerate simplicial geometry on K

and 4-simplex orientations: ð22Þ

Xc’s reconstruct nondegenerate simplicial geometries on K
made by geometrical 4-simplices at all σ, while every pair
of 4-simplices are glued by sharing a geometrical tetrahe-
dron. Simplicial geometries are parametrized by edge
lengths. Some solutions give precisely the simplicial
geometry l in jðlÞ, although some other solutions may
give different geometries. But all geometries have the same
set of areas af ¼ γλjfðlÞl2

P. ξτf in the solution data give
tetrahedron face normals n̂τf of the simplicial geometry.
A simple way to see the appearance of 4-simplex

orientations in the above equivalence is that the geometrical
data (edge lengths) are invariant under local orthogonal
O(4) transformations in σ. Discrete O(4) transformations
(parity transformations) acting on the geometry can lead to
different Xc’s since Xc is only Spin(4) invariant.
The local parity P in O(4) leads to the “cosine problem”

in SFM [39]. Any Xc ∈ G gives ðgþστ; g−στÞ in every σ with
gþστ ≠ g−στ. A parity transformation at a σ flips gþστ; g−στ and
leaves ξτf invariant:

Pσ∶ ðgþστ; g−στÞ → ðg−στ; gþστÞ ð23Þ

and maps Xc to another solution X̃c ∈ G corresponding to
the same simplicial geometry. Xc, X̃c give opposite
4-orientations to 4-simplex σ, sinceP flips the 4-orientation.
Local parities give all orientations in Eq. (22) onK. sgnðVσÞ
characterizes the 4d orientation.Pσ gives the parity refection
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of NτðσÞ and thus flips sgnðVσÞ. sgnðVσÞ in general is not
equal to sgnðV 0

σÞ for σ ≠ σ0.
The above shows that a solution with ðgþστ; g−στÞ and ξτf

associates another solution ðg−στ; gþστÞ with the same ξτf for
the same nondegenerate simplicial geometry. But it is easy
to see that ðgþστ; gþστÞ and ðg−στ; g−στÞwith the same ξτf are also
solutions of Eq. (19). ðgþστ; gþστÞ and ðg−στ; g−στÞ have
sgnðVσÞ ¼ 0 so they do not belong to the subclass G.
They are called BF-type solutions, since they also appear in
the asymptotics of SU(2) BF theory.
Another subclass of solution is called vector geometries,

which happen when Eq. (19) has only a single solution
with ðgστ; gστÞ in a σ with some ξτf. The vector
geometry corresponds to a degenerate 4-simplex and has
sgnðVσÞ ¼ 0. Generally speaking, critical equations with
jðlÞ (l is a nondegenerate simplicial geometry) may still
have vector geometry solutions.
The subclass G of geometrical solutions satisfying

Eq. (22), BF-type solutions, and vector geometry solutions
completely classifies all solutions to Eq. (19) on K [17,39],
assuming ξτf (internal and at the boundary) do not give
degenerate tetrahedra. Solutions to Eq. (19) with degener-
ate tetrahedra have not been studied in the literature. Given
a generic solution, K may need to be divided into regions,
such that the solution data restricted into every region are of
a single type [16,17].

B. Geometrical correspondence of critical solutions

The following presents a proof of Eq. (22) of the
geometrical correspondence of critical solutions. In this
subsection and Sec. V C, we assume that K is a generic
simplicial complex with or without a boundary. The
discussions are valid for the triangulation in Fig. 1(b)
and also for arbitrary triangulations.
1. Reconstructing individual 4-simplices: Given a sol-

ution ðg�στ; ξτfÞc (modulo gauge) to Eq. (19) with J⃗ðlÞ, we
firstly construct five 4-vectors NτðσÞ at every σ by

N0
τðσÞ1þ iNi

τðσÞσi ¼ g−στðgþστÞ−1; ð24Þ

where σi are Pauli matrices.
Definition V.1. A subclass G collects solutions

ðg�στ; ξτfÞc satisfying

sgn½det ðN1ðσÞ; N2ðσÞ; N3ðσÞ; N4ðσÞÞ� ≠ 0: ð25Þ

for all τ ¼ 1, 2, 3, 4 out of 5.
Note that due to gauge equivalence g�στ ∼ κ�στh�σ g�στ

[κ�στ ¼ �1, ðhþσ ; h−σ Þ ∈ Spinð4Þ] of ZδðKÞ, five NτðσÞ’s
at σ are defined up to individual � and a global SO(4)
rotation.
We focus on solutions in the subclass G. We construct at

every σ20 bivectors

XτfðσÞ ¼ ðX⃗þ
τf; X⃗

−
τfÞ ¼ γJfðĝþστn̂τf; ĝ−στn̂τfÞ; ð26Þ

where ĝ�στ ∈ SOð3Þ are three-dimensional representations
of g�στ. X⃗

�
τf are self-dual and anti-self-dual parts: X�i ¼

�X0i þ 1
2
εijkXjk.

Any three out of four n̂τf at every τ are assumed to span a
3d space. In other words, we assume that the tetrahedra
reconstructed from the second equation in Eq. (19) are all
nondegenerate and

trðXτf1 ½Xτf2 ; Xτf3 �ÞðσÞ ≠ 0; ∀ τ: ð27Þ

Critical equations (19) imply the following properties of
XτfðσÞ: (i) XτfðσÞ ∧ XτfðσÞ ¼ 0; (ii) NτðσÞ · XτfðσÞ ¼ 0

for all f ⊂ τ; (iii) XτfðσÞ ¼ Xτ0fðσÞ≡ XfðσÞ for all pairs of
τ; τ0 ⊂ σ with τ ∩ τ0 ¼ f; and (iv)

P
f⊂τ ετfðσÞXτfðσÞ ¼ 0.

ετf ¼ �1 satisfying ετfðσÞ ¼ −ετ0fðσÞ (τ ∩ τ0 ¼ f) and
ετfðσÞ ¼ −ετfðσ0Þ (σ ∩ σ0 ¼ τ). ετfðσÞ is defined up to a
global sign on the entire K.
By Eqs. (25) and (27) and properties (i)–(iv) of XτfðσÞ,

the solution ðg�στ; ξτfÞc (modulo gauge) reconstructs a
unique 4-simplex geometry whose triangle areas are
γJfl2

P on every σ ⊂ K [39]. Here each 4-simplex geometry
is labeled by 10 edge lengths. Every geometrical 4-simplex
gives 4d outward pointing normals UτðσÞ to 5 boundary
tetrahedra, such that UτðσÞ satisfy a 4d closure condition
and relate to the oriented 4-simplex volume

X
τ⊂σ

UτðσÞ ¼ 0;
1

Vσ
¼ det ðU1; U2; U3; U4ÞðσÞ: ð28Þ

The nondegeneracy Vσ ≠ 0 by Definition V.1. Vσ relies on
a consistent choice of ordering 4-simplex vertices (there is
a one-to-one correspondence between vertices and tetra-
hedra in a 4-simplex); e.g., if σ ¼ ½1; 2; 3; 4; 5� with
τ ¼ ½1; 2; 3; 4�, a neighboring 4-simplex sharing τ has to
be σ0 ¼ −½1; 2; 3; 4; 50�, inducing an opposite ordering to τ.
Geometrical 4d unit normals ÛτðσÞ ¼ UτðσÞ=jUτðσÞj

are determined by the geometry up to global O(4) rotations
at σ. Relating to NτðσÞ by ÛτðσÞ ¼ �NτðσÞ reduces the
ambiguity to global SO(4) rotations. There is also a gauge
transformation on g�στ to set ÛτðσÞ ¼ NτðσÞ.
On the other hand, every geometrical 4-simplex give 20

bivectors BτfðσÞ by

BτfðσÞ ¼ γJf �
ÛτðσÞ ∧ Ûτ0 ðσÞ
jÛτðσÞ ∧ Ûτ0 ðσÞj

¼ 1

2
jVσj � UτðσÞ ∧ Uτ0 ðσÞ: ð29Þ
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The norm of a bivector X is jXj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
XIJXIJ

q
. BτfðσÞ

relates to “spin foam bivectors” XτfðσÞ by1

ετfðσÞXfðσÞ ¼ μðσÞBτfðσÞ

¼ 1

2
εðσÞVσ � UτðσÞ ∧ Uτ0 ðσÞ; ð30Þ

where

εðσÞ ¼ μðσÞsgnðVσÞ ¼ �1: ð31Þ

μðσÞ ¼ 1 or −1 relates to that ετfðσÞn̂τf are outward or
inward pointing 3d face normals in all τ ⊂ σ.
2. Gluing 4-simplices: Given neighboring σ; σ0

sharing τ, Eq. (26) implies XfðσÞ ¼ ðgþσσ0 ; g−σσ0 Þ · Xfðσ0Þ
with g�σσ0 ¼ g�στg�σ0τ

−1. Then Eq. (30) and ετfðσÞ ¼ −ετfðσ0Þ
imply

BτfðσÞ ¼ −μðσÞμðσ0Þðgþσσ0 ; g−σσ0 Þ · Bτfðσ0Þ: ð32Þ

So BτfðσÞ ¼ ðĝþστb⃗τfðσÞ; ĝ−στb⃗τfðσÞÞ where b⃗τfðσÞ is the
geometrical face normals of τ from the 4-simplex geometry
on σ. Then b⃗τfðσÞ satisfies the closure

P
f⊂τ b⃗τfðσÞ ¼ 0.

Equation (32) implies

b⃗τfðσÞ ¼ −μðσÞμðσ0Þb⃗τfðσ0Þ; ð33Þ

where the sign difference is independent of f. So tetrahe-
dron geometries (labeled by edge lengths) from b⃗τfðσÞ and
b⃗τfðσ0Þ coincide. Therefore 4-simplex geometries on σ; σ0

are glued with their induced tetrahedron geometries on τ
matching in shape. By gluing many 4-simplices to build K,
the above shows that the solution ðg�στ; ξτfÞc reconstructs a
unique simplicial geometry labeled by edge lengths.
LemmaV.1. εðσÞ ¼ εðσ0Þ ¼ ε for all σ; σ0 ⊂ K; i.e., ε is

a global sign on the entire K.
Proof: Equation (24) implies that NτðσÞ ¼ ðgþσσ0 ; g−σσ0 Þ ·

Nτðσ0Þ for τ shared by σ; σ0, and that

ÛτðσÞ ¼ sσσ0 ðgþσσ0 ; g−σσ0 Þ · Ûτðσ0Þ; sσσ0 ¼ �1; ð34Þ

where sσσ0 comes from the sign gauge ambiguity relating
Ûτ and Nτ. Moreover by XfðσÞ ¼ ðgþσσ0 ; g−σσ0 Þ · Xfðσ0Þ,

ετfðσÞXfðσÞ ¼
1

2
εðσÞVσ � UτðσÞ ∧ Uτ1ðσÞ

¼ −
1

2
εðσ0ÞVσ0 �U0

τðσÞ ∧ U0
τ0
1
ðσÞ; ð35Þ

where U0
τðσÞ ¼ ðgþσσ0 ; g−σσ0 Þ · Uτðσ0Þ. Since U0

τðσÞ ∝ UτðσÞ,
U0

τ0
1
ðσÞ is a linear combination of UτðσÞ; Uτ1ðσÞ. Explicitly

U0
τ0
1
ðσÞ ¼ −sσσ

εðσÞjUτðσÞjVσ

εðσ0ÞjUτðσ0ÞjVσ0
Uτ1ðσÞ þ a1UτðσÞ: ð36Þ

Vσ, Vσ0 are given by

V−1
σ ¼ detðUτ1 ; Uτ2 ; Uτ3 ; Uτ4ÞðσÞ

V−1
σ0 ¼ − detðU0

τ0
1
; U0

τ0
2
; U0

τ0
3
; U0

τ0
4
ÞðσÞ ð37Þ

since the det of the U’s is invariant under SO(4) rotations.
The minus sign comes from the ordering σ ¼ ½1; 2; 3; 4; 5�
and σ0 ¼ −½1; 2; 3; 4; 50�. Equation (36) is also valid for
U0

τ0
2
; U0

τ0
3
; U0

τ0
4
. Because

P
τ0U

0
τ0 ¼ 0,

V−1
σ0 ¼ − det ðU0

τ; U0
τ0
1
; U0

τ0
2
; U0

τ0
3
ÞðσÞ ð38Þ

¼ εðσÞ
εðσ0Þ

� jUτðσÞjVσ

jUτðσ0ÞjVσ0

�
2

V−1
σ0 ð39Þ

which implies εðσÞ¼εðσ0Þ and jUτðσÞjVσ¼�jUτðσ0ÞjVσ0 . ▪
The appearance of global sign ambiguity ε comes from

the fact that critical equation (19) is invariant under a global
refection n̂τf → −n̂τf or ξτf → Jξτf on the entireK (named
“global J-parity” in [49]). But this invariance is broken
when K has a boundary where some n̂τf’s are fixed by the
boundary condition. In this case, we can set e.g., ε ¼ 1 by
redefining ετfðσÞ globally. If K has no boundary, ε ¼ �1

corresponds to two different solutions related by this global
refection of n̂τf.
When εðσÞ ¼ ε ¼ 1, Eq. (31) gives

μðσÞ ¼ sgnðVσÞ: ð40Þ

The above proves the forward direction in the corre-
spondence Eq. (22):
Theorem V.2. Given any solution ðg�στ; ξτfÞc ∈ G (mod-

ulo gauge) to critical equations (19), it reconstructs
uniquely a nondegenerate simplicial geometry labeled by
edge lengths on K, and it determines all 4-simplex
orientations sgnðVσÞ ¼ �1, which are not constant in
general. The solution also gives a global sign ε ¼ 1 or
−1 when ∂K ¼ ∅.
The reconstruction defines a map

C∶ G → the space of ðl; sgnðVσÞ; εÞ; ð41Þ

where l labels a simplicial geometry on K, and sgnðVσÞ
labels the 4-simplex orientation. The following discusses
the injectivity and surjectivity of C.
3. Injectivity and surjectivity of C: Given data

ðl; sgnðVσÞ; εÞ where l is a nondegenerate simplicial
1Here ετfðσÞXfðσÞ, BτfðσÞ and μðσÞ correspond to Bab, BabðσÞ

and μ, respectively, in Barrett et al. [39].
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geometry on K with edge lengths l and triangle areas
γJfðlÞ, sgnðVσÞ are orientations at all σ’s, and ε is a global
sign (ε ¼ −1 when K has a boundary), we suppose that
ðl; sgnðVσÞ; εÞ can be reconstructed by two different
solutions ðg�στ; ξτfÞc; ðg0�στ; ξ0τfÞc ∈ G.
Thus, ðl; sgnðVσÞ; εÞ determines 4d unit normals UτðσÞ

outward pointing from every σ, up to global SO(4) rotations
at σ by Eq. (28). We set ÛτðσÞ ¼ NτðσÞ ¼ ĜστN where
Ĝστ ∈ SOð4Þ and N ¼ ð1; 0; 0; 0Þ. Individual Ĝστ’s are
fixed by this relation up to SO(3) rotations leaving N
invariant. Up to this SO(3), Ĝστ is the four-dimensional
representation of both g�στ and g0�στ up to gauge freedom.
ÛτðσÞ ¼ NτðσÞ fixes the discrete gauge freedom of g�στ up
to g�στ → κστg�στ, κστ ¼ �1 leaving NτðσÞ invariant.
The geometrical bivectors BτfðσÞ given by UτðσÞ in

Eq. (29) and acted by Ĝ−1
στ give a bivector orthogonal toN :

Ĝ−1
στ BτfðσÞ¼ ðb⃗τfðσÞ; b⃗τfðσÞÞ; jb⃗�τfðσÞj ¼ γJfðlÞ: ð42Þ

A set of four 3d vectors b⃗τfðσÞ and b⃗τfðσ0Þ are related by an
SO(3) rotation leavingN invariant, because all of them are
face normals of a geometrical tetrahedron shared by σ; σ0.
So we can implement this SO(3) rotation to Ĝστ or Ĝσ0τ to
make

b⃗τfðσÞ ¼ �b⃗τfðσ0Þ: ð43Þ

This reduces ambiguities of Ĝστ and Ĝσ0τ from SOð3Þ ×
SOð3Þ to SO(3): Ĝστ; b⃗τfðσÞ ∼ Ĝστĥτ; ĥ

−1
τ b⃗τfðσÞ where

ĥτ ∈ SOð3Þ independent of σ.
Lemma V.3. b⃗τfðσÞ ¼ −sgnðVσÞsgnðVσ0 Þb⃗τfðσ0Þ is

implied by ðl; sgnðVσÞ; εÞ.
Proof: Ĝ−1

στ BτfiðσÞ ¼ �N ∧ b⃗τfiðσÞ so Ĝ−1
στ Ûi ∝

b⃗τfiðσÞ þ αiN for τi¼1;2;3;4 ⊂ σ sharing fi with τ.
Equation (28) implies that Ûτ; sgnðVσÞÛ1; sgnðVσÞÛ2;
sgnðVσÞÛ3 form a right-hand frame at σ. Rotating by
Ĝστ ∈ SOð4Þ implies that

N ; sgnðVσÞb⃗τf1ðσÞ;
sgnðVσÞb⃗τf2ðσÞ; sgnðVσÞb⃗τf3ðσÞ ð44Þ

form a right-hand frame. By Eqs. (37) and (38), from σ0 we
obtain the right-hand frame

N ; −sgnðVσ0 Þb⃗τf1ðσ0Þ;
− sgnðVσ0 Þb⃗τf2ðσ0Þ; −sgnðVσ0 Þb⃗τf3ðσ0Þ:

By Eq. (43) and comparing to (44), we obtain

sgnðVσÞb⃗τfðσÞ ¼ −sgnðVσ0 Þb⃗τfðσ0Þ: ð45Þ

▪
Lemma V.3 is consistent with Eq. (30) which implies

εsgnðVσÞετfðσÞb⃗τfðσÞ ¼ γJfðlÞn̂τf ð46Þ

since Ĝστ is the four-dimensional representation of g�στ or
g0�στ. It determines n̂τf up to ĥτ ∈ SOð3Þ.
As a result, ðl; sgnðVσÞ; εÞ determines ðĜστ; n̂τfÞ up to

gauge freedom ðĜστ; n̂τfÞ ∼ ðĥσĜστĥτ; ĥ
−1
τ n̂τfÞ with ĥσ ∈

SOð4Þ and ĥτ ∈ SOð3Þ. Therefore modulo the gauge free-
dom, g�στ and g0�στ are two different lifts from Ĝστ ∈ SOð4Þ to
Spin(4); thus g�στ ¼ κστg0�στ, κστ ¼ �1. But g�στ → κστg�στ is a
discrete gauge transformation of the SFM. Moreover n̂τf
determines that ξτf ¼ eiθτfξ0τf, while ξτf → eiθτfξτf is again a
gauge transformation for internal ξτf, and the phase ambi-
guity of ξτf at the boundary is fixed in any boundary
condition. Therefore ðg�στ; ξτfÞc ¼ ðg0�στ; ξ0τfÞc modulo con-
tinuous and discrete gauge transformations. Nondegeneracy
of the simplicial geometry l implies that ðg�στ; ξτfÞc ∈ G.
The above proves that the map C is injective. It also

proves C is surjective because we start from arbitrary data
ðl; sgnðVσÞ; εÞ and recover a solution ðg�στ; ξτfÞc ∈ G.
Theorem V.4. Themap C relating solutions ðg�στ; ξτfÞc ∈

G to nondegenerate simplicial geometries and orientations
ðl; sgnðVσÞ; εÞ is a bijection.

C. Deficit angles

Given a critical solution Xc ≡ ðg�στ; ξτfÞc ∈ G corre-
sponding to ðl; sgnðVσÞ; εÞ with sgnðVσÞ ¼ 1 at all σ
and ε ¼ 1, Ff evaluated at Xc gives [15,17,21]

Ff½Xc� ¼ iðΦþ
f þΦ−

f Þþ iγðΦþ
f −Φ−

f Þ; γ¼p=q; ð47Þ

where p=q ∈ Zþ and pþ q is an even numberΦ�
f is given

by

Φ�
f ¼

X
σ;f⊂σ

ϕ�
τστ0 ;

iϕ�
τστ0 ¼ ln hξτfjðg�στÞ−1g�στ0 jξτ0fijXc

∈ iR ð48Þ

Recall that the integrand in ZδðKÞ depends on Ff through

Ff þ 4πikf=qþ πi
P

�mτ
q�p
q , and ZδðKÞ sums kf,

mτ ∈ Z. The integrand in ZδðKÞ is invariant under the
following shifts:

Φþ
f þΦ−

f →Φþ
f þΦ−

f þ4π; or Φþ
f −Φ−

f →Φþ
f −Φ−

f þ4π;

and kf→kf−q; or kf→kf−p ð49Þ

and
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Φþ
f þΦ−

f →Φþ
f þΦ−

f þ2π; and Φþ
f −Φ−

f →Φþ
f −Φ−

f þ2π;

and kf→kf−ðqþpÞ=2: ð50Þ

The above gauge invariance allows us to fix the following
range of angles:

Φþ
f þΦ−

f ∈ ½−2π; 2π�; Φþ
f −Φ−

f ∈ ½−π; π�: ð51Þ

At Xc, ϕ�
τστ0 relates to the 4d dihedral angle θfðσÞ

between the two tetrahedra τ and τ0 within σ [39]:

ϕþ
τστ0 − ϕ−

τστ0 ¼ π − θfðσÞ ∈ ½0; π�: ð52Þ

We define nf to be the number of σ sharing an internal f. nf
is always even for the triangulation K adapted to a hyper-
cubic lattice (see Appendix C). Then shifting by multiples
of 2π and 4π gives

Φþ
f −Φ−

f ¼ nfπ −
X
σ;f⊂σ

θfðσÞ − 4πu − 2πv

¼ 2π −
X
σ;f⊂σ

θfðσÞ ¼ εf ð53Þ

for certain u; v ∈ Z. The deficit angle εf hinged by f is a
discrete description of Riemann curvature in simplicial
geometry Fig. 2.
To determine Φþ

f þΦ−
f , we consider all g�στ whose σ’s

and τ’s share a single internal triangle f. At the solution,

g�τσg�στ0 jξτ0fi ¼ eiϕ
�
τστ0 jξτfi where g�τσ ¼ ðg�στÞ−1, so

g�τσ1g
�
σ1τ1…g�τkσg

�
στjξτfi ¼ eiΦ

�
f jξτfi; ð54Þ

which gives

g�τσ1g
�
σ1τ1…g�τkσg

�
στ¼gðξτ;fÞ

�
eiΦ

�
f 0

0 e−iΦ
�
f

�
gðξτ;fÞ−1 ð55Þ

where gðξÞ ¼ ðξ; JξÞ ∈ SUð2Þ. We define

G�
f ðσÞ≡ g�στg�τσ1g

�
σ1τ1…g�τkσ ¼ exp ðiΦ�

f X̂
�
f ðσÞÞ ð56Þ

where Φ�
f ∼Φ�

f þ 2π and

X̂�
f ðσÞ¼g�στgðξτ;fÞσ3gðξτ;fÞ−1ðg�στÞ−1¼g�στðn̂τf · σ⃗Þðg�στÞ−1:

Comparing to Eq. (26), X̂�
f ðσÞ ¼ X⃗�

f ðσÞ · σ⃗=jX⃗�
f ðσÞj.

On the other hand, in terms of the corresponding
geometry,

EjkðσÞ ¼ Vσ �UlðσÞ ∧ UmðσÞ ∧ UnðσÞ ð57Þ

defines an edge vector ½jEjkðσÞj ¼ ljk� pointing to the
vertex j from the vertex i [15,17]. Here σ ¼ ½k; j; l; m; n� is
the ordering of vertices. Equation (36) implies that for all
edges of τj; k ¼ 1;…; 4

ðgþσσ0 ; g−σσ0 Þ · Ejkðσ0Þ ¼ sσσ0sgnðVσÞsgnðVσ0 ÞEjkðσÞ: ð58Þ

We have assumed sgnðVσÞ ¼ 1 at all σ, and we partially
gauge fix the discrete gauge freedom of g�στ such that
ÛτðσÞ ¼ NτðσÞ so sσσ0 ¼ 1 (the remaining discrete gauge
freedom is g�στ → κστg�στ, κστ ¼ �1). So ðgþσσ0 ; g−σσ0 Þ is a
discrete spin connection. By the parallel transport of
EjkðσÞ,

ĜfðσÞEjkðσÞ ¼ EjkðσÞ; ∀ ðj; kÞ ⊂ f: ð59Þ

Therefore ĜfðσÞ ∈ SOð4Þ [the four-dimensional represen-
tation of GfðσÞ] is a 4d rotation leaving the geometrical
triangle f invariant:

ĜfðσÞ ¼ exp ð− � X̂fðσÞϑfÞ ð60Þ

where by Vσ � UmðσÞ ∧ UnðσÞ ¼ EjkðσÞ ∧ ElkðσÞ,

ετfðσÞX̂fðσÞ¼
ετfðσÞXfðσÞ
jXfðσÞj

¼ BτfðσÞ
jBτfðσÞj

¼ EjkðσÞ∧ElkðσÞ
jEjkðσÞ∧ElkðσÞj

:

Moreover, ðGfðσÞþ; G−
f ðσÞÞ ∈ Spinð4Þ in Eq. (56) is a

lift of ĜfðσÞ ∈ SOð4Þ in Eq. (60). The angles Φ�
f and ϑf

are related by

Φþ
f −Φ−

f ¼ϑf; Φþ
f þΦ−

f ¼ 2χfπ; χf ∈ f0;1g ð61Þ

or Φ�
f ¼ � 1

2
ϑf þ χfπ, where χf labels the lift ambiguities

from SO(4) to Spin(4). Note that similar to the above, the
periodicity Φ�

f ∼Φ�
f þ 2π allows us to set ϑf ∈ ½−π; π�

and χf ∈ f0; 1g. This identifies ϑf ¼ εf.
In general most lift ambiguities can be canceled by the

remaining discrete gauge freedom g�στ → κστg�στ, κστ ¼ �1:
Lemma V.5. The lift ambiguities χf at all internal f are

removed by discrete gauge transformations g�στ → κστg�στ,

FIG. 2. The deficit angle ε in a 2d discrete surface hinged by a
point. ε ≠ 0 demonstrates that summing the angles at the hinge
fails to give 2π. One obtains a discrete curved surface when the
two edges bounding ε are glued. In higher dimensions, ε is
always hinged by a codimension-2 simplex; e.g., in 4d, εf is
hinged by a triangle f.
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κστ ¼ �1 up to H2ðK�;Z2Þ, the second cellular cohomol-
ogy group of the dual complex K�.
Proof: A spin structure on the manifold triangulated by

K defines a canonical lift of ĜfðσÞ to ðΩþ
f ðσÞ;Ω−ðσÞÞ ∈

Spinð4Þ such that the lift Ω�
f ðvÞ can be continuously

deformed to 1. Then G�
f ðσÞ ¼ eiπχfΩ�

f ðvÞ where χf ∈
f0; 1g ≃ Z2 gives the other lift of Ĝ�

f ðσÞ when χf ¼ 1.
Given a triangulated manifold K, there is a correspond-

ing dual polyhedral decomposition K�. It is given that an
edge l is shared by a number of internal f inK. l is dual to
a 3d polyhedron l� bounded by internal faces f�’s dual to
f’s in K�. G�

f ðσÞ and Ω�
f ðσÞ are along the dual face

boundary ∂f� and based at the dual vertex σ�. The
polyhedron l� gives cocycle conditions to both G�

f

and Ω�
f :

Y⃗
f

Ω�
f ¼ 1 and

Y⃗
f

G�
f ¼ 1; ð62Þ

where all Ω�
f ’s (G�

f ’s) are parallel transported by Ω�
σσ0

(G�
σσ0) to share the same base point. The above relations

may be seen by viewing Ω�
f ’s (G�

f ’s) as flat connection
holonomies on a 2-sphere with p holes [each Ω�

f (G�
f )

circles around a hole], followed by enlarging holes to
approach the skeleton of the polyhedron l� with p faces.
Parallel transports are made by a conjugate with Ω�

σσ0 or
G�

σσ0 whose sign ambiguity does not affect eiπχf .
Equations (62) result in the Z2-cocycle condition

X
f

χf ¼ 0; χf ∈ Z2: ð63Þ

If we understand χf ¼ hf�; χ2i where χ2 is a 2-cochain,
then

P
fχf ¼ h∂l�; χ2i ¼ hl�; δχ2i; i.e., δχ2 ¼ 0 where δ

is the coboundary differential.
If K� has a nontrivial second cohomology group

H2ðK�;Z2Þ, there exist η ∈ H2ðK�;Z2Þ, such that
χ2 ¼ ηþ δχ1. Evaluating at any dual face f� gives

χf ¼ hf�; ηi þ h∂f�; χ1i ¼ hf�; ηi þ
X
τ

χτ; χτ ∈ Z2;

ð64Þ

where χτ ¼ hτ�; χ1i and
P

τ is over all τ� ⊂ ∂f�.
Equation (64) implies that there exists χτ ∈ Z2 such that

eiπχf ¼ eiπhf�;ηi
Y
τ

eiπχτ : ð65Þ

The factor
Q

τ e
iπχτ can be canceled by the discrete gauge

transformation g�στ → eiπχτg�στ at one σ bounded by τ.
Therefore we obtain

G�
f ðσÞ ¼ eiπhf�;ηiΩ�

f ðσÞ; ð66Þ

where η ∈ H2ðK�;Z2Þ. ▪
When K� is a polyhedral decomposition of R4 as in our

main discussion, all lift ambiguity can be removed by
gauge transformations since H2ðR4;Z2Þ ¼ 0. When K�
has a boundary and is a polyhedral decomposition of a
(topologically trivial) compact 4d region R ⊂ R4,
we apply Lefschetz-Poincaré duality H2ðR;Z2Þ ≃
H2ðR; ∂R;Z2Þ ¼ 0 where H2ðR; ∂R;Z2Þ is the second
relative homology. Since Lemma V.5 is valid only for
internal f’s, gauge transformations may not be able to
remove lift ambiguities at boundary f’s. iðΦþ

f þΦ−Þ ¼ iπ
may present in the boundary Ff½Xc�. Boundary Ff’s do not
affect our derivation of Eqs. (68) and (70).
As a result, we conclude that when H2ðK�;Z2Þ ¼ 0, for

all internal f,

Ff½Xc� ¼ iγεf: ð67Þ

VI. BACKGROUND AND PERTURBATIONS

We define the background X
∘

as the solution in the
subclass G, corresponding [as in Eq. (22)] to the flat

simplicial geometry whose edge lengths are l
∘

on K,
and with a uniform 4-orientation at all 4-simplices

sgnðVσÞ ¼ 1. Recall that l
∘
is a flat triangulated hypercubic

lattice with constant spacing ðγλÞ1=2lP. The geometry and

orientation uniquely fix the critical point X
∘
by Eq. (22).

When we perturb X
∘
∈ G by ðJ∘ þ δJ; X

∘ þ δXÞ where

J
∘ ¼ Jðl∘ Þ, there is a neighborhood at X

∘
such that all other

solutions Xc ≠ X
∘
still belong to the subclass G and have the

same uniform orientation sgnðVσÞ ¼ 1 for all σ. Note that

here Xc may associate to a different J
∘ þ δJ. Indeed X

∘
at

every σ gives ðg∘þστ; g∘−στÞ and ξ
∘
τf with g

∘þ
στ ≠ g∘−στ. Here g

∘þ
στ; g

∘−
στ

are very different; namely there is a finite distance between

g∘þστ; g
∘−
στ ∈ SUð2Þ measured by the natural metric on S3,

because NτðσÞ at 5τ ⊂ ∂σ determined by ðg∘þστ; g∘−στÞ are far
from being parallel. Therefore there exists a neighborhood

at ðg∘þστ; g∘−στÞ, such that perturbations ðg∘þστ þ δgþστ; g
∘−
στ þ δg−στÞ

only perturb NτðσÞ but do not change sgnðVσÞ.
Perturbations neither interchange g∘þστ; g

∘−
στ nor make them

equal. As a result, perturbations ðJ∘ þ δJ; X
∘ þ δXÞ can only

touch solutions in G having the same uniform orientation as

ðJ∘ ; X∘ Þ, but cannot touch solutions with different orienta-
tions. Perturbations cannot touch BF-type solutions
(gþστ; gþστ), (g−στ; g−στ) and vector geometry solutions
(gστ; gστ) because their NτðσÞ’s are all parallel and give
sgnðVσÞ ¼ 0. Therefore the existences of the cosine
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problem and BF-type, vector geometry solutions do not
affect our following derivation of perturbative solutions,
since no solution of opposite orientation, BF-type, or vector
geometry appears in perturbations. We focus in the follow-

ing on Xc ∈ G with the same orientation as X
∘
.

Note that the above argument does not work for SU(2)
BF theory: The critical equation provides only the þ sector
of Eq. (19), so the subclass G does not exist in the BF
theory. Solutions there only contain BF-type solutions of
nondegenerate geometries and vector geometries. But BF-
type solutions are not well separated from vector geometry
solutions [50]. Therefore perturbations from a nondegen-
erate geometry can touch vector geometries.
By the correspondence Eq. (22), and since the orienta-

tion is preserved by perturbations, all perturbative solutions
from critical equations ReS ¼ δXS ¼ 0 or Eq. (19) in

ðJ∘ þ δJ; X
∘ þ δXÞ correspond to perturbations of simplicial

geometries with edge lengths l ¼ l
∘ þ δl; i.e., the geom-

etries are perturbations of the flat simplicial geometry l
∘

on K.
Any solution Xc ∈ G with a uniform orientation as X

∘

implies Ff½Xc� ¼ iγεfðlÞ (see Sec. V C for a proof) where
εf’s are deficit angles, which measure discrete Riemannian
curvature. This applies in particular to the above perturba-
tive solutions.

VII. EQUATION OF MOTION
AND SMALL DEFICIT ANGLES

In the above, we have obtained the perturbative solutions
of a subset of critical equations ReS ¼ δXS ¼ 0 and their
geometrical interpretations. The other critical equation
δlS ¼ 0 and Eq. (9) yield the equation of motion (EOM),

	∂J⃗ðlÞ
∂l ; γε⃗ðlÞ



¼ 0 or

X
f

∂afðlÞ
∂l εfðlÞ ¼ 0; ð68Þ

and coincide with the Regge equation. The Regge equation
is a discretization of the Einstein equation in 4d [51].
The leading asymptotic behavior of Eq. (16) is deter-

mined by the integrand evaluated at the critical point:

eSeff jcritical pt ¼ eihγJ⃗ðlÞ;ε⃗ðlÞi−
P

M
i¼1

1
δhêi;γε⃗ðlÞi2 : ð69Þ

The first term in the exponent is the Regge action which
vanishes at the solution of Eq. (68). The second term is the
ε2f higher curvature correction (mentioned in the last
section) which encodes the contributions from non-
Regge-like J’s. Since the ε2f correction term is real and
negative, and δ ≪ 1, it suppresses the contribution of the
critical point ðlc; XcÞ exponentially unless jhêi; γε⃗ij≲ δ1=2

for all i. Since f∂J⃗ðlÞ=∂l; êig forms a complete basis in
RNf , it follows from Eq. (68) that

jγεfðlÞj≲ δ1=2 ≪ 1: ð70Þ

Equations (68) and (70) determine the critical points
ðlc; XcÞ that contribute essentially to ZδðKÞ, and thus
are the key equations constraining the simplicial geometries
emerging in the large spin limit of the model.
Equations (68) and (70) are trivially satisfied by the flat

background ðJ∘ ; X∘ Þ. ðJ∘ ; X∘ Þ is a critical point of ZδðKÞ and
thus qualifies as a background. For perturbations, Eq. (68)
can be reduced to a set of linear equations of the deficit
angles εf [33], because the considered geometries are
nearly flat. That is,

Mε⃗ ¼ 0; ð71Þ

where M is a constant Nf × Nf matrix. Note that this is a
consequence of the nearly flat geometries, but not a
consequence of Eq. (70). By itself, Eq. (70) is compatible
with the nonlinear Regge equation and excludes no non-
singular curved geometry. On a sufficiently refined tri-
angulation, any simplicial geometry approximating a
smooth geometry with typical curvature radius ρ satisfies
jεfj ≃ a2=ρ2 ≪ 1, which is consistent with Eq. (70). Here a
is the typical lattice spacing. The simplicial geometries that
fail to satisfy Eq. (70) cannot have a smooth approximation.
If the regularization in Eq. (12) was not imposed, i.e., if

δ ¼ 0 as in standard SFMs, then Eq. (70) would imply strict
flatness εf ¼ 0. This strict flatness has been proven to be
one of the main obstacles for recovering classical gravity
from SFMs [21,44–46]. But if δ ≪ 1 is nonzero as above,
then small excitations of εf are allowed, and therefore
arbitrary smooth curved geometries may emerge from
refining triangulations while δ → 0.
It is interesting to note that the opposite limit δ → ∞

reduces Eq. (69) to the quantum Regge calculus. Therefore
δ ∈ ½0;∞Þ is essentially a parameter interpolating from
SFMs to quantum Regge calculus.
The above discusses only the integral with kf ¼ mτ ¼ 0

in ZδðKÞ. Nonzero kf ¼ mτ shifts Ff ¼ iγεf in the above

computation by Ff → Ff þ 4πi kfq þ πi
P

�m�
τ

q�p
q . In par-

ticular Eq. (70) becomes

����γεf þ 4π
kf
q
þ π

X
�
m�

τ
q� p
q

����≲ δ1=2: ð72Þ

The deficit angles εf are all small for small perturbations

ðJ∘ þ δJ; X
∘ þ δXÞ of the flat geometry. Therefore, for finite

γ, Eq. (72) can only be satisfied for kf ¼ mτ ¼ 0. So
integrals in ZδðKÞ with nonzero kf ¼ mτ are all suppressed

in the perturbative regime unless k⃗ ¼ 0.
We would like to remark that the above perturbative

study of SFM on a large triangulation by ðJ∘ þ δJ; X
∘ þ δXÞ

follows from the standard technique in perturbative
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quantum field theory, i.e., fixing a solution of the equation
of motion as the background vacuum and perturbing all
field variables.2 Our method is different from the boundary
state formalism used in e.g., [19,20,52–54] in the context of
a single 4-simplex.

VIII. SEMICLASSICAL CONTINUUM LIMIT

A. The idea

The above discussion is based on a fixed triangulation K
adapted to a hypercubic lattice. From this, we may
construct a refined triangulation K0 by subdividing each
hypercube into 16 identical hypercubes, triangulated by
simplices in the same manner as above. By refining the
hypercubic lattice, we define a sequence of triangulations
KN where the label N is the total number of vertices in K.
The continuum limit is N → ∞ in which the vertices in the
triangulation become dense in a region of R4.
We can now associate a SFM ZδðKNÞ to each KN , with

N → ∞ as the continuum limit of SFM. The above large
spin analysis can be applied to all ZδðKNÞ. This gives a
sequence of EOMs (68) [or its linearization Eq. (71)] and
(70). All quantities in the equations, e.g., the spins
Jf ¼ JfðNÞ, the regulator δ ¼ δðNÞ, the simplicial geom-
etries, etc., depend on N and flow with N → ∞, which
defines the SCL. In particular, we will show below that the
solutions to the EOM (68) flow to solutions of the smooth
Einstein equation as N → ∞. This can be derived from the
fact that the solutions of the linearized Regge equation
converge to solutions of the linearized Einstein equation as
the lattice spacing a → 0 (see [33,34,55]). The EOMs (68)
are already the Regge equation and it only remains to relate
the Regge limit a → 0 and the SFM continuum limit
N → ∞. In fact relating the limits is nontrivial and specifies
the SCL.
The regulator δðNÞ should go to zero with N → ∞ in

order to guarantee that the continuum result does not
depend on δ. Yet, (18) must still be satisfied at every step
N for the above asymptotic analysis of ZδðKNÞ to remain
valid. Thus, λðNÞ has to grow faster than δðNÞ−2 (see
Sec. VIII B).
Recall that the area from SFM is given by af ¼ γλjfl2

P.

The lattice spacing a relates to background ðJ∘ðNÞ; X∘ ðNÞÞ
by (recall Sec. II)

aðNÞ ¼ ðγλðNÞÞ1=2lP; ð73Þ

where λðNÞ is the typical value of J∘fðNÞ over K. Note that
the background data ðJ∘ðNÞ; X∘ ðNÞÞ depends onKN and thus
depends on N.

Wewould like to relate the Regge continuum limit, so we
must require aðNÞ → 0 asN → ∞. It is possible even when
we have λðNÞ → ∞ as N → ∞, because we take at the
same time the semiclassical limit lP → 0.3 Practically we
define a scaling parameter μðNÞ depending on N and
replace lP by

lP → μðNÞlP; such that μðNÞ→ 0 asN→∞: ð74Þ

By scaling lP, the lattice spacing aðNÞ in Eq. (73) becomes

aðNÞ ¼ ðγλðNÞÞ1=2μðNÞlP: ð75Þ

The scaling μðNÞ may be viewed as a change of length unit
(from small to large), such that the numerical value of lP
becomes μðNÞlP in the new unit. We zoom out to a coarser
length unit at the same time as refining the lattice N → ∞,
so we effectively scale lP → 0. Thus μðNÞ → 0 is under-
stood as an infrared (IR) limit.
To clarify the motivation, it may be helpful to look

at the Regge action term in Eq. (69) by writing
afðNÞ ¼ γJfðμðNÞlPÞ2:

hγJ⃗ðlÞ; ε⃗ðlÞiðNÞ ¼ 1

μ2ðNÞl2
P

X
f

afðNÞεfðNÞ: ð76Þ

Furthermore, μðNÞ → 0 as N → ∞ implements both the
semiclassical limit in the path integral and the continuum
limit of the Regge action. Indeed, if the lattice spacing aðNÞ
satisfies

lim
N→∞

aðNÞ ¼ 0; ð77Þ

then Eq. (76) gives [56]

hγJ⃗ðlÞ; ε⃗ðlÞiðNÞ¼ 1

μ2ðNÞl2
P

Z
d4x

ffiffiffi
g

p
R½g�ð1þεðNÞÞ ð78Þ

where εðNÞ → 0 as N → ∞.
Because μðNÞ is a monotonically decreasing function of

N, we may invert this function and writeNðμÞ and make the
change of variable to all quantities:

KN ¼ Kμ; JðNÞ ¼ JðμÞ; XðNÞ ¼ XðμÞ;
λðNÞ ¼ λðμÞ; δðNÞ ¼ δðμÞ; aðNÞ ¼ aðμÞ: ð79Þ

2The background ðJ∘ ; X∘ Þ satisfies the equations of motion (68)
and (70).

3It may be physically relevant to fix a finite (although large)
length unit at IR so that the numerical value of lP is tiny but
nonzero. So in this sense, it is relevant to choose a large but finite
N. The limit N → ∞ or μðNÞ → 0 is an idealization while the
convergence in the limit shows that at IR, the geometries from
SFM critical points approximate smooth solutions of the Einstein
equation with an error of OðlPÞ.
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All previouslyN-dependent quantities become μ-dependent.
The continuum limit N → ∞ becomes μ → 0, and Eq. (77)
becomes

lim
μ→0

aðμÞ ¼ 0: ð80Þ

As a key requirement to relate SFM and Regge con-
tinuum limits, Eq. (80) requires daðμÞ=dμ > 0, which
together with (75) requires

−
2

μ
<

1

λ

dλ
dμ

< 0: ð81Þ

The inequality (81) is not the only requirement in order
to relate to the Regge continuum limit. Recall that solutions
of the Regge equation arise in the leading order stationary
phase approximation of ZðKμÞ as λðμÞ ≫ 1. The solutions
have the (quantum) corrections of Oð1=λÞ. The correction
is bounded by CðμÞ=λðμÞ with CðμÞ > 0, where CðμÞ
grows as μ → 0 (see Sec. VIII B). As a result, λðμÞ is
required to grow at a faster rate, in order to keep CðμÞ=λðμÞ
small to suppress the 1=λ correction to Regge solutions as
μ → 0. It implies

1

λ

dλ
dμ

<
1

C
dC
dμ

: ð82Þ

In addition to the constraints (81) and (82), it follows
from (70) and εf ≃ a2=ρ2 that there should exist a bound
L < ∞ such that

δðμÞ1=2
aðμÞ2 < L: ð83Þ

Otherwise, the curvature of the emergent geometry [i.e.,
ρ−2 ¼ lim εfðμÞ=aðμÞ2] would diverge.
Definition VIII.1. A semiclassical continuum limit is

the flow of the three parameters λðμÞ, aðμÞ and δðμÞ as
μ → 0 (together with the lattice refinement) that satisfy
(81), (82), and (83). aðμÞ and δðμÞ tend to zero in the limit
μ → 0, while λðμÞ → ∞ grows faster than δðμÞ−2.
The SCL is well defined although (81), (82), and (83)

indeed give nontrivial restrictions.
Theorem VIII.1. The SCL is well defined because the

flows satisfying the requirements always exist.
The proof of the above statement is given in Sec. VIII C.

A SCL relates the SFM continuum limit to the Regge
continuum limit and allows us to apply the convergence in
Regge calculus to geometries coming from SFM critical
points.

B. Expansion of the linearized theory

The large spin analysis uses the stationary phase
approximation, which is a 1=λ asymptotic expansion of

integrals in ZδðKÞ. We focus on the expansion of the
integral with kf ¼ mτ ¼ 0, at the level of the linearized
theory.
We write δX ¼ δXðlÞ þ δX , where δXðlÞ solves the

critical equations δXS ¼ ReðSÞ ¼ 0. By this change of
variables,

S ¼ S½l∘ þ δl; X
∘ þ δXðlÞ� þ 1

2
δXTHXXδX þ � � � : ð84Þ

From the discussion in the last section, we know that

S½l∘ þ δl; X
∘ þ δXðlÞ� is the Regge action. At the quadratic

order,

S½l∘ þ δl; X
∘ þ δXðlÞ� ¼ 1

2
δlTHllδlþ � � � ð85Þ

has been studied in [35], in which the Hessian matrix Hll
was shown to be degenerate. The kernel of the Hessian
contains (i) the space of solutions of the linearized Regge
equation, (ii) four zero modes corresponding to the diffeo-
morphisms in the continuum, and (iii) one zero mode of
hyperdiagonal edge-length fluctuation.
We obtain the following bound of error for the large spin

analysis in the last section4:

����
Z

½dldX�eλSDδðl; XÞ −
�
2π

λ

�N
2 ½detðHXX Þ detðK⊥

llÞ�−
1
2

×
Z

½dδlk�Dδðδlk; XðδlkÞÞ
���� ≤

�
2π

λ

�N
2 C
λ
: ð86Þ

Here K⊥
ll is the nondegenerate part of Hll, and

N ¼ rankðK⊥
llÞ þ rankðHXX Þ. The integral

R ½dδlk� is
over solutions of linearized Regge equations and zero
modes. C > 0 bounds the 1=λ correction [57]. The semi-
classical approximation by Regge solutions is valid when
the 1=λ corrections are negligible, i.e., when Cδ=λ is small.
The bound relates to the derivatives of Dδ by [57]

C
λ
¼ c

λ
ðsup j∂Dδj þ sup j∂2DδjÞ; ð87Þ

where c is a constant. Since ∂2Dδ ∼ δ−2,

4Equation (86) assumes the nondegeneracy of the Hessian
matrix HXX after removing gauge redundancies. This nondege-
neracy is supported by some numerical evidences. A general
proof of nondegeneracy for the Hessian in SFM is lacking in the
literature. In case it happens that HXX is degenerate, there are
additional zero modes coming from SFM variables X . Then the
effective theory is the Regge gravity coupling to these additional
zero modes, when we go beyond the linearization. But in this
paper, we focus on the sector of linearized Regge gravity and the
continuum limit.
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λ ≫ δ−2 ≫ 1 ð88Þ

has to be satisfied to validate the expansion.
Equation (86) is the expansion at the level of linearized

theory, whose asymptotics is an integral over critical
solutions (solutions of EOM and zero modes). It indicates
that the critical solutions contribute dominantly to the SFM.
In this paper we mainly discuss the convergence of critical
solutions under the semiclassical continuum limit. In a
companion paper [58], we report the result of the graviton
propagator and the continuum limit, in which we apply
gauge fixings to remove zero modes.

C. Semiclassical continuum limit

We construct a refined triangulation K0 which is adapted
to a refined hypercubic lattice in the same way that K is
adapted to the original hypercubic lattice. The refined
hypercubic lattice is given by subdividing each hypercube
into 16 identical hypercubes. By refining the hypercubic
lattice we define a sequence of triangulations Kμ where Kμ0

is finer than Kμ if μ0 < μ. In the continuum limit μ → 0 the
vertices in the triangulation become dense in R4.
A sequence of SFMs is defined by associating an

amplitude ZðKμÞ to each Kμ. Since the above large spin
analysis is valid for all ZðKμÞ, it gives a sequence of
Eqs. (68) and (70) on the sequence of Kμ:

X
f

∂afðμÞ
∂l εfðμÞ ¼ 0; jγεfðμÞj≲ δ1=2ðμÞ: ð89Þ

All quantities in the equations, e.g., the spins Jf, the
regulator δ, the simplicial geometries, etc., depend on μ and
flow toward μ → 0.
We set the triangulation label μ to be a mass scale such

that μ−1 is a new length unit. Then afðμÞ ¼ αfðμÞμ−2. The
lattice spacing aðμÞ is given by the background flat
geometry on Kμ:

l
∘ ðμÞ ¼ ðγλðμÞÞ12lP ¼ aðμÞμ−1: ð90Þ

We define the SCL as the flow of the three parameters
λðμÞ, aðμÞ, δðμÞ, where aðμÞ; δðμÞ → 0 and λðμÞ → ∞
(λðμÞ ≫ δðμÞ−2) for μ → 0. In addition, these flows should
satisfy

−
2

μ
<

1

λ

dλ
dμ

< 0; ð91Þ

1

λ

dλ
dμ

<
1

C
dC
dμ

; ð92Þ

δðμÞ1=2
aðμÞ2 bounded from above: ð93Þ

Here, CðμÞ is the bound in Eq. (86), which now depends on
μ for the expansion of ZðKμÞ.
The constraints in Eqs. (91)–(93) are necessary due to

the following reasons: Firstly, the motivation for the SCL is
to relate the SFM continuum limit μ → 0 to the continuum
limit a → 0 in Regge calculus, so that we can apply the
convergence result in Regge calculus to the solutions of
Eqs. (68) and (70). Obviously, this requires that the lattice
space aðμÞ2 ∝ λðμÞμ2 → 0 as μ → 0. Thus,

0 <
d
dμ

ðλðμÞμ2Þ ¼ μ2
dλ
dμ

þ 2μλ ð94Þ

which yields Eq. (91).
Secondly, the 1=λ correction has to be small for all μ, in

order that classical Regge solutions are the leading orders
of ZðKμÞ. It is important to have Regge solutions at all
μ to apply the convergence result in Regge calculus. This
demands Eq. (86) to be valid for all ZðKμÞ with CðμÞ=λðμÞ
being always small.
CðμÞ ∼ δðμÞ−2 grows when the triangulation is refined.

Thus, λðμÞ is required to grow at a faster rate in order to
suppress CðμÞ=λðμÞ as μ → 0. This requires

0 <
d
dμ

�
CðμÞ
λðμÞ

�
¼ −

C
λ2

dλ
dμ

þ 1

λ

dC
dμ

ð95Þ

which gives

1

λ

dλ
dμ

<
1

C
dC
dμ

: ð96Þ

This condition guarantees that Eq. (86) is valid at all μ, with
the 1=λ correction being always small; i.e., the following
bound holds in the continuum limit μ → 0:

CðμÞ
λðμÞ <

Cð1Þ
λð1Þ ; ð97Þ

where μ ¼ 1 is the starting point of the flow.
Thirdly, the simplicial geometry should approximates a

smooth geometry. If this is the case then the typical
curvature radius ρ of the smooth geometry relates to the
deficit angle of the simplicial geometry by ρ−2 ≃ εfa−2.
The regulator δ and conditions (70) and (93) guarantee that
the curvature ρ−2 of the emergent geometry is bounded
(geometry is nonsingular) as μ → 0.
Equations (91)–(93) have nontrivial implications for the

SCL: In order that a satisfactory flow λðμÞ exists, Eqs. (91)
and (92) have to be consistent, i.e.,

1

C
dC
dμ

> −
2

μ
; ð98Þ
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which yields a restriction to the assignment of μ to Kμ.
Since μ is assigned to a sequence of triangulations Kμ ≡
Kμn ≡Kn (μn−1 > μn), the variable μ≡ μn is actually
discrete. In the above, we have assumed that CðμnÞ and
λðμnÞ can be continued to differentiable functions CðμÞ and
λðμÞ. Integrating Eq. (98) leads to

Z
μn−1

μn

1

C
dC
dμ

dμ > −
Z

μn−1

μn

2

μ
dμ ð99Þ

which implies the following constraint on μn:

μn−1
μn

>

�
CðμnÞ
Cðμn−1Þ

�1
2

: ð100Þ

Note that μn satisfying this constraint always exists.
Once we have a satisfactory assignment of μ to Kμ, the

running behavior of λðμÞ is constrained by

−
2

μ
<

1

λ

dλ
dμ

<
1

C
dC
dμ

: ð101Þ

In addition, Eqs. (93) and (88) require δðμÞ to satisfy

λðμÞ−1=2 ≪ δðμÞ ≤ L2λðμÞ2μ4 ð102Þ

where Lγ−2l−2
P is the bound of δðμÞ1=2=aðμÞ2. The exist-

ence of a satisfactory δðμÞ requires that

λðμÞ5=2 ≫ μ−4; ð103Þ

which is another constraint for the flow λðμÞ.
A flow λðμÞ satisfying both constraints in Eqs. (101) and

(103) always exists. The following provides a satisfactory
example of λðμÞ. Consider the ansatz

λðμÞ ¼ λð1Þμ−2þu; ð104Þ

where λð1Þ is the initial value of λðμÞ at μ ¼ 1.
Equation (101) implies

u > 0;
1

C
dC
dμ

> −
2 − u
μ

; ∀ 1 ≤ s ≤ mþ 1: ð105Þ

The second inequality certainly can be satisfied by a
suitable assignment of μ to Kμ, by a similar derivation
showing Eq. (98) can be satisfied (replacing 2

μ by 2−u
μ ). It

does not restrict the value of u. But combining (103), we
obtain an upper bound of u:

0 < u <
2

5
: ð106Þ

If u is within the above range then we obtain a
satisfactory flow λðμÞ ¼ λð1Þμ−2þu, which implies aðμÞ ¼
μu=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γλð1Þl2

P

p
and λð1Þ−1=2μ1−u=2 ≪ δðμÞ ≤ L2μ2u. This

example illustrates that flows λðμÞ, aðμÞ, δðμÞ, which
satisfy Eqs. (91)–(93), always exist. So the SCL of SFM
is well defined.

IX. EMERGENT LINEARIZED GRAVITY

The above SCL fills the gap between the continuum
limits in SFM and Regge calculus. Thus, the sequence of
critical points satisfying Eq. (68) under the SCL is the same
as the sequence of Regge solutions under a → 0.
The classification of linearized Regge solutions and their

convergence has been studied in [33,34] (reviewed in
Appendix B). It is shown that the solutions of the linearized
Regge equation converge to a smooth solution of the 4d
(Riemannian) Einstein equation in the limit a → 0. All the
nontrivial geometries obtained from the limit have curva-
tures as linear combinations of

RabcdðxÞ ¼ Re½Wabcd exp ð−k · xÞ�; ð107Þ

which are Euclidian analogs of plane waves. Here k · x is
the 4d Euclidean inner product and k ∈ C4 satisfies
k · k ¼ 0. Wabcd is a traceless constant tensor that spans
a two-dimensional solution space, whose dimensions
correspond to the helicity �2 gravitons.
Recall that the main contributions to ZðKμÞ in the SCL

come from critical points that satisfy the linearized Regge
equation; all other contributions are suppressed. Moreover,
the SCL maps the SFM IR limit μ → 0 to the Regge
calculus limit a → 0. Therefore, the above convergence
result of Regge solutions can be applied to SFM as μ → 0,
which shows that on a 4d flat background, the low energy
excitations of SFM give all smooth solutions of the
linearized Einstein equation (gravitons).

X. CONCLUSION AND OUTLOOK

In the above discussion, we have shown that from the
SCL, the low energy excitations of SFM on a flat back-
ground give all smooth (linearized) Einstein solutions. It
indicates that at the linearized level, classical Einstein
gravity can arise as a low energy effective theory from
SFMs. Our result indicates that the SFM, being a discrete
model of fundamentally entangled qudits, is a working
example for the idea in an emergent gravity program.
Here we showed for the first time that smooth curved

spacetimes can emerge from SFMs in a suited continuum
limit. It suggests that SFMs have a proper semiclassical
limit not only at the discrete level but also in the continuum.
Our result, therefore, strengthens the confidence that
covariant LQG is a consistent theory of quantum gravity.
As a key technical tool, a regularization/deformation

of the SFM is employed in the derivation. This deforma-
tion interpolates between SFMs and quantum Regge
calculus, and the deformation parameter δ becomes a
coupling constant of a higher curvature correction term
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to Einstein gravity from SFM. It is interesting to see the
physical implication of this higher curvature correction
turned on by a finite δ.
Our analysis certainly can be generalized to the nonlinear

regime, and even to the case of a strong gravitational field.
Indeed the large spin analysis does not rely on the
linearization, and the EOM (68) is nonlinear. The emer-
gence of black hole or cosmological solutions from SFMs
can be derived by applying the Regge calculus convergence
results in e.g., [59], similarly as above. These solutions will
enable us to study singularities as the high energy excita-
tions from SFMs.
Finally we remark that the flows of SFM parameters

λðμÞ, aðμÞ, δðμÞ in the SCL likely relate to a renormaliza-
tion group flow.5 Further investigation of the relation may
shed light on the renormalization of perturbative gravity.
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APPENDIX A: SPIN FOAM MODELS
AND TENSOR NETWORKS

In four dimensions, the main building block of a
triangulation K is a 4-simplex σ [see Fig. 3(a)], whose
boundary ∂σ contains 5 tetrahedra τ and 10 triangles f.K is
obtained by gluing a (large) number of σ’s through pairs of
their boundary tetrahedra. In the following K itself should
be understood as purely combinatorial or topological while
the discrete geometry is encoded in the associated state sum
ZðKÞ of the SFM. Generically, ZðKÞ takes the form

ZðKÞ ¼
X
J⃗

X
⃗i

Y
f

AfðJfÞ
Y
σ

AσðJf; iτÞ; ðA1Þ

where the summand is a product over all triangles f and all
4-simplices σ in the triangulation K. The SFM data ðJ⃗; ⃗iÞ
assign each triangle f an SU(2)-representation labeled by
Jf ∈ Zþ=2 and assign each tetrahedron τ ⊂ K an SU(2)-
intertwiner (rank-4 invariant tensor) iτ, i.e.,

iτ ∈ InvSUð2Þ½VJ1 ⊗ … ⊗ VJ4 �≡Hinv
J1…J4

: ðA2Þ

Each σ associates to a 4-simplex amplitude AσðJf; iτÞ,
which depends on 10 Jf’s and 5 iτ’s assigned to f; τ ⊂ ∂σ.

The weight AfðJfÞ of
P

J⃗ is usually called the “face
amplitude”.
Both the face amplitude AfðJfÞ and the 4-simplex

amplitude AσðJf; iτÞ are model dependent. In the following
we mainly focus on the Euclidean Engle-Pereira-Rovelli-
Levine (EPRL) model [40,41]. In this model, the 4-simplex
amplitude Aσ is given by the contraction of five Spin(4)
invariant tensors Iτ that depend on iτ (τ ¼ 1;…5). That is,

AσðJf; iτÞ ¼ trðI1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5Þ; ðA3Þ

where Iτ is given by

I
m�

1
…m�

4
τ

¼
Z

dhþdh−
Y4
f¼1

h
D

ðJþf Þ
mþ

f n
þ
f
ðhþÞDðJ−f Þ

m−
f n

−
f
ðh−ÞCnþf n

−
f

nf

i
in1…n4
τ :

The above integral integrates over two copies of SU(2) with

Haar measures dh�. D
ðJ�f Þ
m�

f n
�
f
ðh�Þ are Wigner D-matrices for

the representation J�f and C
nþf n

−
f

nf are Clebsch-Gordan
coefficients interpolating between ðJþf ; J−f Þ and Jf
(f ¼ 1;…; 4) which are subject to the constraint

J�f ¼ 1

2
j1� γjJf: ðA4Þ

FIG. 3. (a) A 4-simplex σ as the building block of 4d triangu-
lationK. (b) The 5-valent vertex illustrates a rank-5 tensor jAσðJ⃗Þi.
(c) Gluing 4-simplices σ in K gives a tensor network TNðK; J⃗Þ.

5It may relate to the recent development of the renormalization
group flow in SFM [60].
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Here, γ ∈ R is the Barbero-Immirzi parameter. If γ ¼ p=q
ðp; q ∈ ZÞ, then J�f ∈ Z=2 implies Jf ∈ qZ for pþ q odd
or Jf ∈ qZ=2 for pþ q even.
Note that AσðJfÞwith fixed Jf’s is a linear map from five

invariant tensors iτ to C. In other words, AσðJfÞ is a rank-5
tensor state [see Fig. 3(b)]

jAσðJfÞi ∈ Hinv
J1J2J3J4

⊗ Hinv
J4J5J6J7

⊗ Hinv
J7J3J8J9

⊗ Hinv
J9J6J2J10

⊗ Hinv
J10J8J5J1

: ðA5Þ

Thus, the 4-simplex amplitude can be written as an inner
product

AσðJf; iτÞ ¼ hi1 ⊗ … ⊗ i5jAσðJfÞi: ðA6Þ

The above relation allows us to write the summand ofP
J⃗ in Eq. (A1) as a tensor network. We observe that a pair

of σ; σ0 is glued in K by identifying a pair of tetrahedra
τ ¼ τ0 ¼ σ ∩ σ0. Correspondingly, a pair of invariant ten-
sors in Aσ , Aσ0 is identified by setting iτ ¼ iτ0 and summing
over iτ in ZðKÞ. The identification and summation may be
formulated by inserting a maximal entangled state at each τ:

jτi ≔
X
iτ

jiτi ⊗ jiτi ∈ Hinv
J1J2J3J4

⊗ Hinv
J1J2J3J4

: ðA7Þ

This yields a tensor network,

TNðK; J⃗Þ ≔ ⊗τhτj ⊗σ jAσðJfÞi; ðA8Þ

where the tensorsAσ at the vertex is contracted with jτi at the
edges [see Fig. 3(c)]. In other words, the EPRL pair of jiτi in
jτi is associated to the two ends of the edge in Fig. 3(c), and
contracted with the pair jAσi; jAσ0 i (σ ∩ σ0 ¼ τ) at the two
ends.6 Inserting (A8) into (A1) finally gives

ZðKÞ ¼
X
J⃗

TNðK; J⃗Þ
Y
f

AfðJfÞ: ðA9Þ

Note that both TNðK; J⃗Þ and ZðKÞ are wave functions of
boundary SFM data if ∂K ≠ ∅, or numbers if ∂K ¼ ∅.
Due to the presence of the maximal entangled states jτi,

the tensor network formulation (A9) allows us to interpret
SFMs as models of entangled qubits (or more precisely
qudits). Recent advances in condensed matter suggest
that entangled qubits and their quantum information might
be fundamental, while gravity might be an emergent

phenomenon (see e.g., [62]). Our results demonstrate that
SFMs are concrete examples, in which gravity emerges
from fundamentally entangled qubits, and therefore relate
quantum gravity to quantum information.
An important step in establishing the results of this paper

is to analyze the behavior of (A9) for large spins. This is
best studied in the integral representation of TNðK; J⃗Þ
[17,39]:

TNðK; J⃗Þ ¼
Z

dg�στdξτfe
P

f
JfFf ½g�στ;ξτf � ðA10Þ

where g�στ ∈ SUð2Þ × SUð2Þ and ξτf ∈ C2 are normalized
spinors, h·j·i is the Hermitian inner product and Ff is
expressed as

Ff½g�στ; ξτf� ¼
X
σ;f⊂σ

½ð1 − γÞ ln hξτfjðg−στÞ−1g−στ0 jξτ0fi

þ ð1þ γÞ lnhξτfjðgþστÞ−1gþστ0 jξτ0fi�: ðA11Þ

The above integral representation is valid for γ < 1. For
γ > 1 one obtains a similar expression (see [17]).

APPENDIX B: CONVERGENCE
TO SMOOTH GEOMETRY

The equations of motion from SFMs contain the Regge
equation

X
f

∂αfðμÞ
∂l εfðμÞ ¼ 0: ðB1Þ

In the SCL the lattice spacing aðμÞ goes to zero with μ → 0.
Therefore the behavior of SFM critical points in the SCL is
closely related to the convergences of solutions to the
Regge equation in the continuum limit a → 0. The latter
has been studied in [33,34] for the linearized theory on a
flat background.
In the following, we review the results in [33,34] and

apply them to our case. The following discussion often
suppresses the label μ but uses the lattice space a to label
the continuum limit.
Regge’s equation can be written as a set of linear

equations of εf for small perturbations on a flat back-
ground, i.e.,

X
f;l⊂f

εf cotðϑlÞ ¼ 0; ðB2Þ

where ϑl is the internal angle of the triangle f opposite to

the edge l and evaluated on the flat background l
∘
.

In addition to Eq. (B2) the deficit angles εf should satisfy
the (linearized) Bianchi identity

6To compare with the usual definition of SFM, the network in
Fig. 3(c) is the 1-skeleton of the 2-complex dual to K. Note that
the network in Fig. 3(c) is oriented in the usual definition of SFM,
where iτ associated to the target of each edge is the dual hiτj. Here
we have encoded the duality map jiτi ↦ hiτj at the target of each
oriented edge into jAσðJ⃗Þi, in order to formulate TNðK; J⃗Þ as a
projected entangled pair state (PEPS) [30,61].
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X
f;l⊂f

εf½U½bcma�Ude�f ¼ 0 ðB3Þ

where m is the outward-normal of l in the plane of f and
Uab is an antisymmetric tensor associated to f that is
given by

Uab ¼ vawb − vbwa: ðB4Þ

The unit vectors v, w are mutually orthogonal and orthogo-
nal to f.
Note that the Bianchi identity is satisfied automatically,

if one uses edge-length variables to describe the system.
However, here it is more convenient to use deficit angles as
the system variables. In this case, the Bianchi identity is an
additional constraint. This formulation of the linearized
Regge equation using deficit angles is equivalent to the one
using edge lengths, because a set of linearized deficit angles
satisfying the Bianchi identities can construct a linearized
(piecewise-flat) metric, unique up to linearized diffeomor-
phisms (the four zero modes mentioned in Sec. VIII B).
[63]. Conversely, from the linearized metric, one can
construct the linearized deficit angles.
Given the periodic nature of the triangulation K, we

consider the periodic configuration of εf with the shift
ωiðaÞ along the body principles of a hypercube. The shift
relates εf and εf0 for parallel f in two neighboring hyper-
cubes by

εf ¼ ωiðaÞε0f: ðB5Þ

Here i ¼ 1, 2, 4, 8 label the four body principles of the
hypercube. Equation (B5) can be more conveniently
written by introducing the shorthand notation

ΩðaÞ ¼ ðω1ðaÞ;ω2ðaÞ;ω4ðaÞ;ω8ðaÞÞ ðB6Þ

and computing the Fourier transform of Eq. (B5) on the
hypercubic lattice ðaZÞ4. This yields

εfðnÞ ¼
Z π

a

−π
a

d4k
ð2πÞ4 e

i
P

i
kiniaεfðkÞ; ni ∈ Z: ðB7Þ

Thus each “plane wave” corresponds to ΩðaÞ ¼
ðeik1a; eik2a; eik4a; eik8aÞ and tends to (1,1,1,1) in the limit
a → 0. In the following we will assume the same limit
behavior, i.e., ΩðaÞ → ð1; 1; 1; 1Þ, and that the derivative
Ω0ð0Þ exists at zero for general ΩðaÞ. Note that ΩðaÞ is
complex because the ki’s are complex in the Euclidean
signature, as we see in a moment.
Due to periodicity, Eqs. (B2) and (B3) reduce to a set of

linear equations for εf’s within a single hypercube. Let this
hypercube be denoted by cell(0), so then

X
f⊂cellð0Þ

M½ΩðaÞ�f0fεfðaÞ ¼ 0: ðB8Þ

In the following we consider complex solutions of the
above equation and their convergence. The physical sol-
utions are the real parts of those solutions and converge
when the complex solutions converge.
By selecting a solution εfðaÞ of Eq. (B8) for each a we

can generate a sequence of linearized Regge configura-
tions. The convergence of this sequence is closely related to
the convergence of the associated discrete Riemann curva-
ture tensors. The discrete curvature is defined as a tensor-
valued distribution that maps a smooth function f of
compact support to the tensor Rabcd½f� given by

f →
X
f

εf½UabUcd�f
Z
f
fζ ≡ Rabcd½f�: ðB9Þ

Here ζ is the area measure of f and Uab is the bivector of
the triangle f. One can now show that the sequence of
solutions to Eq. (B8) converges for a → 0 if Rabcd con-
verges as a distribution provided that εf=a2 remains
bounded [33,34]. Note that in the SCL defined above
the latter condition is automatically satisfied due to the
regulator δ and Eq. (93).
It is more convenient to consider a stronger convergence

for the sequence of solutions εfðaÞ. Namely we require that
εfðaÞ=a2 converge for all f as a → 0, which clearly implies
the above convergence criterion.
In [34] it was shown that for any family of vectors ΩðaÞ,

for which Ωð0Þ ¼ ð1; 1; 1; 1Þ and Ω0ð0Þ exist, and any

solution εð0Þf of Eq. (B8) at a finite a0, there exists a
sequence of solutions εfðaÞ of Eq. (B8) such that

εfða0Þ ¼ εð0Þf . Moreover, the limit εfðaÞ=a2 as a → 0 exists
for all f and the discrete curvature tensorRabcd converges to

RabcdðxÞ → Wabcd exp ð−Ω0ð0Þ · xÞ; ðB10Þ

whereWabcd is a traceless complex constant tensor and the ·
symbol represents a 4d Euclidean inner product.
There are three possible cases for different k≡

Ω0ð0Þ ∈ C4.
(i) Case 1: If k ≠ 0 satisfies k · k ¼ 0 then Wabcd spans

a two-dimensional solution space, where the dimen-
sion corresponds to the helicity �2 of gravitons.
Note that k has to be complex; otherwise k · k ¼ 0
would imply k ¼ 0.

Let U and V denote the real and imaginary parts
of the tensor W and m and l the real and imaginary
parts of k, respectively. The real part of Eq. (B10) is

Uabcd expð−l · xÞ cosðm · xÞ
þ Vabcd expð−l · xÞ sinðm · xÞ: ðB11Þ
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The appearance of expð−l · xÞ is due to the difference
between Minkowskian and Euclidean signatures.

(ii) Case 2: For k ≠ 0 and k · k ≠ 0, the solution space is
one dimensional and Rabcd converges to zero.

(iii) Case 3: For k ¼ 0 the vector ΩðaÞ ¼ ð1; 1; 1; 1Þ is a
constant and Rabcd converges to a nonzero constant.
The solution space corresponds to the full ten-
dimensional space of traceless tensors Wabcd.

The geometries in case 1 are smooth solutions of the
linearized Einstein equation, as a Euclidean analog of plane
waves. They correspond to the nontrivial low energy
excitations from SFM under SCL. Case 2 with Rabcd ¼ 0
does not change the flat background geometry and, thus,
corresponds to purely gauge fluctuations of the triangulation
in the flat geometry.
The solutions in case 3 deserve some further explanation.

Although those solutions appear in addition to the “plane
wave” geometries Eq. (B11), they only associate to k ¼ 0.
So the set of solutions in case 3 is of measure zero in the
space of all solutions. The space of all solutions in
the continuum limit is infinite dimensional, although the
solution space with a fixed k is finite dimensional. A
generic linear combination

RabcdðxÞ¼
Z
C4

dkδ4ðk ·kÞRe½WabcdðkÞexpð−k ·xÞ� ðB12Þ

is insensitive to the value of Wabcdð0Þ (the solution in
case 3). The above RabcdðxÞ is a Euclidean analog of a
realistic gravitational wave that is not a purely plane wave
but has a distribution WabcdðkÞ.
Among the zero modes mentioned in Sec. VIII B, four

diffeomorphisms have been taken care in the above analysis
because of deficit angle variables, which leads to �2
helicities. The hyperdiagonal zero mode has the same
behavior as in case 2; i.e., it converges to zero curvature
Rabcd ¼ 0 [33].

APPENDIX C: SOME TOPOLOGICAL
PROPERTIES OF THE TRIANGULATION

The analysis in this paper is based on a fixed type of
triangulationK. In this section we collect a couple of useful
properties of K.
K is adapted to a four-dimensional hypercube lattice in

which each lattice cell is a triangulated hypercube (Fig. 4).
Each vertex of the hypercube is labeled by a number from 0
to 15. Note that the vertex number written in binary form
ðn1; n2; n3; n4Þ with ni ¼ 0, 1 yields the components of the
vector from the origin to the vertex. Thus the vertex
numbers define 15 lattice vectors at the origin, which
are edges and various diagonals of the hypercube and
subdivide the hypercube into 24 four-simplices. The
triangulation K is made from the hypercube lattice by
simply translating the triangulation from one hypercube to
another. In order to simplify the problem, one can consider

K as an N4 lattice. Among those hypercubic cells, a
hypercube whose lattice components contain 0 or N − 1
lies on the boundary of the lattice. A hypercube whose
lattice components do not contain 0 or N − 1 is in the bulk.
A single triangulated hypercube has 65 edges, 110

triangles and 24 four-simplices. However, the numbers
of the edges and the triangles per bulk cell in the lattice are
smaller than those numbers for a single hypercube since
triangles and edges are shared by different hypercube cells.
If there are n edges or triangles parallels to each other in a
single triangulated hypercube then each of those edges or
triangles will be shared by n hypercube cells in the bulk of
the lattice. Thus the effective weight of those edges or faces
in a cell is 1=n.
For example, in a single hypercube the triangle (4,5,15)

is the only triangle that is parallel to (0,1,11). One finds that
the shift vector between (0,1,11) and (4,5,15) is (0,1,0,0).
In the bulk of the lattice, the triangle (4,5,15) of the cell
with the lattice coordinates ðt; x − 1; y; zÞ coincides with
the triangle (0,1,11) of the cell ðt; x; y; zÞ. Similarly, the
triangle (0,1,11) in the cell ðt; xþ 1; y; zÞ coincides with
(4,5,15) in the cell ðt; x; y; zÞ. Thus the bulk cell ðt; x; y; zÞ
only possesses half of the triangle (0,1,11) and half of
(4,5,15). Similar arguments work for all the other faces and
edges in the bulk of the latticeK. So in the lattice, each bulk
hypercube only possesses 15 edges and 50 triangles.
Furthermore, we can define a coincident number ψ of a

triangle f where ψ ¼ mþ 1 if one triangle f coincides
with m triangles coming from other cells. The maximum
value of ψðfÞ is equal to 1 plus the number of triangles that
are parallel to f in a single isolated hypercube.7 For any
triangle f in a bulk cell, ψðfÞmust be equal to its maximum
value. But in a boundary cell, not all the triangles have
maximum ψðfÞ. Those triangles lie in the boundary
triangles.

FIG. 4. A visualization of a triangulated hypercube cell. The
vertices of the hypercube are labeled by number from 0 to 15. The
binary number of the vertex label is the same as the components
of the vector from the origin point to the vertex.

7The maximum value of ψðfÞ also equals 1 over the weight of
the triangle f.
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In an N4 lattice, the boundary hypercubes contribute
356þ 574ðN − 2Þ þ 310ðN − 2Þ2 þ 56ðN − 2Þ3 boundary
triangles and 80þ148ðN−2Þþ84ðN−2Þ2þ14ðN−2Þ3
boundary edges. So in the bulk, there are 50N4 − ð356þ
574ðN − 2Þ þ 310ðN − 2Þ2 þ 56ðN − 2Þ3Þ triangles and
15N4 − ð80 þ 148ðN − 2Þ þ 84ðN − 2Þ2 þ 14ðN − 2Þ3Þ
edges. When N tends to be large, the ratio between the
number of bulk edges and the number of bulk triangles will
converge to 3∶10.
Furthermore one can show that every bulk triangle is

shared by an even number of 4-simplices because any
triangle within a single triangulated hypercube must be
shared by 1, 2, 4 or 6 four-simplices. Define ñðfÞ to be the
total number of 4-simplices within a hypercube that are
sharing the triangle f. We call f of type 1 if ñðfÞ ¼ 1 or of
type 2 if ñðfÞ ≠ 1 respectively. There are 24 type-1
triangles in a single hypercube. Table I lists all of those
triangles and the triangles parallel to them.
Obviously some of the triangles are shared by different

hypercubes. For those triangles one should add up ñðfÞ in

different hypercubes in order to count how many
4-simplices are sharing the face f. Table I shows that each
of the type-1 triangles must be parallel to another type-1
triangle and two type-2 triangles. From this we may
conclude the following:

(i) Any triangle shown in the Table I is shared by four
hypercubes. In two of those hypercubes, the triangle
is type 1 and in the other two hypercubes, it is type 2.

(ii) The triangles listed in the same column are shared by
the same number of 4-simplices. Explicitly,
the triangle ðx; y; zÞ is shared by

P
f ñðfÞ of

4-simplices, where f stands for all the triangles that
are in the column and contain triangle ðx; y; zÞ.
Moreover,

P
f ñðfÞ must be even since it can be

expressed as 1þ 1 plus two even numbers.
(iii) For the other type-2 triangle in Table I, the number

of 4-simplices shared by it should be the sum of 2, 4
or 6, which is also even.

Thus in the bulk ofK, every triangle is shared by an even
number of 4-simplices.
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