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Spin foam models (SFMs) are covariant formulations of loop quantum gravity (LQG) in four
dimensions. This work studies the perturbations of SFMs on a flat background. It demonstrates for
the first time that smooth curved spacetime geometries satisfying the Einstein equation can emerge from
discrete SFMs under an appropriate low energy limit, which corresponds to a semiclassical continuum limit
of SFMs. In particular, we show that the low energy excitations of SFMs on a flat background give all
smooth solutions of linearized Einstein equations (spin-2 gravitons). This indicates that at the linearized
level, classical Einstein gravity can arise as a low energy effective theory from SFMs. Thus our result
heightens the confidence that covariant LQG is a consistent theory of quantum gravity. As a key technical
tool, a regularization/deformation of the SFM is employed in the derivation. The deformation parameter &
becomes a coupling constant of a higher curvature correction term to Einstein gravity from SFM.
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I. INTRODUCTION

The spin foam program is a covariant approach towards a
nonperturbative and background-independent quantum
theory of gravity [1-4]. Spin foam models (SFMs), there-
fore, provide a powerful formalism to analyze the dynamics
of loop quantum gravity (LQG) [5-8]. As state-sum lattice
models inspired by topological quantum field theory,
SFMs are a LQG analog of the Feynman path integral
description of quantum gravity [9,10]. In particular they
describe the histories of evolving quantum geometries of
space [1,11]. The study of SFMs has uncovered many
remarkable properties in the last two decades. Amongst
others, SFMs are finite in the presence of the cosmological
constant [12,13] and have an interesting semiclassical
behavior that relates to general relativity (GR) [14-21].
Moreover, SFMs are well behaved at curvature singularities
[22]. This enables us to study singularities in a concrete
quantum gravity model. The above properties make SFMs
stand out among lattice quantum gravity models.

The semiclassical consistency is one of the most crucial
requirements for a candidate quantum gravity theory. Recent
results show that SFMs give rise to discrete spacetime
geometries in a large spin limit (e.g., [14-16]). The dis-
creteness of the geometries is a consequence of the lattice
dependence of SFMs. If SFMs do indeed qualify as models of
quantum gravity, then there should also exist a continuum
limit under which smooth general relativity arises as an
effective low energy theory. The construction of such a limit
has been a long-standing issue in SFMs [23-26].

In this paper, we show for the first time that smooth
solutions of the four-dimensional Einstein equation emerge
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from SEMs under an appropriate semiclassical continuum
limit (SCL). The limit combines the large spin limit and
lattice refinement in a coherent manner; it also can be
interpreted as a low energy limit of SFMs. We focus on
the perturbations of SFMs on a flat background, and we find
that the low energy excitations from the SCL give all smooth
solutions of the linearized Einstein equation. This work
indicates that at the linearized level, classical Einstein gravity
can arise as a low energy effective theory from SFMs.

This work can be also understood along the lines of the
emergent gravity program. An idea in this program is
that gravity, which is geometrical and smooth, might
emerge as the low energy excitations from fundamentally
entangled qubits (or generally qudits), which are algebraic
and discrete [27-32]. In this paper, we show that SFMs
can be rewritten in terms of spacetime tensor networks
(TNs), whose fundamental degrees of freedom (DOFs)
are entangled qudits at different spacetime locations.
Therefore, our results prove to be a working example for
the above idea.

The architecture and results of this paper are summarized
as follows: In Sec. II we review the definition of the SFM as
a state sum, and its integral representation, which is useful
in the semiclassical analysis. In this section we relate SFM
to tensor networks whose fundamental degrees of freedom
are maximally entangled intertwiners.

In Sec. III we propose a new treatment of the spin sum in
the SFM, in which we apply the Poisson resummation to
the spin sum and a regularization/deformation parametrized
by § < 1. Several important roles played by ¢ are discussed
in this section.
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In Sec. IV we point out that the deformation § manifests
the higher curvature correction to Einstein gravity from
SEM. In Sec. V we review some key results in the large-J
asymptotic analysis of the SFM on a simplicial complex,
and we set up the language for the following discussion.
This section also contains some new results which have not
been published in the literature: in particular, the one-to-
one correspondence in the Euclidean SFM between a sector
of large-J critical points to 4d simplicial geometries with
orientations, and a cohomological argument for lift ambi-
guities of critical points on a simplicial complex.

In Sec. VI we set up the scheme for our studies of
perturbations on the flat (discrete) spacetime, and we show
that given the background as a critical point corresponding
to the simplicial geometry with a global orientation, small
perturbations in SFM variables only reach critical points
corresponding to perturbations of the background geometry
with the same global orientation.

In Sec. VII we derive equations of motion at the
perturbative level and identify them as the Regge equation
of discrete geometry and an upper bound of the deficit
angle by 6.

In Sec. VIII we define the SCL of SFMs. The SCL is
defined with a sequence of refined triangulations /Cy, with the
continuum limit N — oo. A sequence of SFMs is defined
on the sequence Ky and we give simplicial geometries as
large-J critical points. All SFM quantities, e.g., the spins
J; = J;(N), the regulator § = §(N ), the critical points, etc.,
depend on N and flow with N — oo in a certain manner,
which defines the SCL. The SCL relates the SFM continuum
limit to the continuum limit of Regge calculus.

In Sec. IX we apply the SCL to the SFM perturbations
on the flat geometry and find the convergence to smooth
solutions of the linearized Einstein equation. Demonstrating
the convergence employs the existing results of the con-
tinuum limit of linearized Regge calculus in [33,34], and the
relation between the SCL and Regge continuum limit.

Finally, in Sec. X we conclude and remark on a few
future perspectives.

II. SPIN FOAM MODELS

SFMs are defined over 4-dimensional (4d) simplicial
triangulations /C, which are obtained by gluing 4-simplices
o along their common tetrahedra z, quite similar to the
gluing of tetrahedra in 3d triangulation or triangles in 2d
triangulation. Thus a triangulation /C consists of simplices
o, tetrahedra 7 (boundaries of ¢’s), triangles f (boundaries
of 7°s), edges (boundaries of f’s) and vertices. Our analysis
focuses on K adapted to a hypercubic lattice in R* in such a
way that each hypercube is triangulated identically by 24
four-simplices [see Fig. 1(b)]. The same triangulation has
been employed in e.g., [33,35] to study perturbations on a
flat background. Here K is a finite lattice with its boundary
in a region of R*.

0 1

(b)

FIG. 1. (a) The 5-valent vertex in a 4-simplex illustrates a rank-
5 tensor |A,). Gluing 4-simplices ¢ in K gives a tensor network

TN(K, J ), where each link associates to a maximally entangled
state of a pair of i,’s. (b) A triangulation of the hypercube. The 4d
hypercubic lattice with the triangulated hypercube makes /.
(c) An illustration of the neighborhood N (the region bounded by

blue dashed lines) in the space of J. The red curve illustrates

MpRegge including j (¢) as the perturbation of J (%) The black

and blue arrows are basis vectors &/(#) and 8J(£)/d¢, transverse
and tangent t0 Mgegge-

A SFM is obtained by associating a state sum,

z(K) =Y TTA U] T4 00). (1)
f c

Ji

to K and can be interpreted as the path integral of a
triangulated manifold (here R*). In the above state sum,
each triangle f is colored by an SU(2) representation J; €
Z./2 and each tetrahedron 7 is colored by an SU(2)
intertwiner (invariant tensor) i,. They are quantum numbers
labeling histories of LQG quantum geometry states, which
are the intermediate states of the path integral. J, i, can be
related to the area of f and the shape of 7z in the
semiclassical interpretation [36-38]. The dynamics of
the model is captured in the 4-simplex amplitudes
A(,(Jf, i;) € C associated to each 6. In particular,
A,(Js.i;) € C describes the local transition between the
quantum geometry states labeled by {J,i } for f, 7 on
the boundary of 6. The weights of the spin sum A;(J,) are
the face amplitudes.
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The amplitudes A,(J,i,) depend linearly on the inter-
twiners i, and thus are rank-5 tensors on intertwiner spaces.
The 4-simplices in /C are glued by identifying a pair of 7’s
in ¢ and ¢’. This implies that ) - A, is equivalent to the
inner products between the tensors |A,) at all 6’s and the
maximally entangled states |7) =}, |i;) ® |i;), where i,
are shared by pairs of ¢’s. This yields a spacetime tensor
network [Fig. 1(a)]

TN(K.J) = @, (7] ®, |4,(J)))- 2)

Note that the entangled intertwiners (the qudits) are the
fundamental DOFs of the TN. Moreover the state sum
Z(K) can now be expressed in terms of these TNs, that is,
Z(K) = Y23 TN(K,J) [1; A;(J;). More details on SFM
and TNs are given in Appendix A.

The following demonstrates that smooth Einstein sol-
utions can emerge from the fundamentally entangled
intertwiners. Thus it realizes the idea of emergent gravity
from entangled qubits. In order to show this, we employ the
integral representation of Z(KC) [15,17,39]:

206) = S [T a0y [ iaxjeZ 7  3)
j f

Here F; is a function that only depends on a set of spin
foam variables

X= (.gz:)'t'n §Tf)’ (4)

which includes (g/;, g,;) € Spin(4) at pairs of (o, 7) with
tCo, and &, € CP! at pairs of (7, f) with f C 7. The
details of Ay and F; depend on the specific SFM. A, is
often chosen as (2J, + 1)%.

Here for the purpose of large-J analysis, we set Af
as (2J)%.

Here, we focus on the Euclidean Engle-Pereira-Rovelli-
Livine/Freidel-Krasnov (EPRL/FK) model (y < 1) [40,41]
where

Fr=" [(1=7)In{&sl(9z) " g0 1E0)

o.fCo

+ (4 7)In (Eerl(g5:) ™ g0 €0 )] (5)

but our results can be generalized to other SFMs, e.g.,
[18,42,43].

We have y = p/q (p,q € Z,). Also, J € gZ when
p+gqisodd J € gqZ),and J € qZ/2 when p + q is even.
We assume even p + ¢ in the following computation. One
may replace ¢ — 2¢ to obtain results for odd p + g.

The integrand in Eq. (3) is manifest periodic by
Fp~F;+4ni/q. So we set Im(F;) € [-2n/q.2x/q].
It also has a discrete symmetry g — +gf, and

independently g, — +g¢,. The transformation simultane-
ously shifts Fy — F; + zi(1 £ y) forall f C 7 and gives a

factor ¢ 2ree’s U7 = 1], € Z/2). This factor equals
1 because )_; is constrained by >_ . J5 € Z:

=11 > Dbus s
n; Z Jf
7 fat I eN2 ntez fee
1 drimt JE
S | DD DR N
T
frE£JeN/2mEe0,1

where N, is the number of = C K. Although the integral
vanishes for J violating this constraint, it is useful to
explicitly impose this constraint on ) ; for the purpose of
asymptotic analysis of the integral.

III. SPIN SUM AND REGULARIZATION

LQG predicts that the geometrical areas are fundamen-
tally discrete at the Planck scale. The area spectrum [36,37]
relates to the spins via a;=y./J;(J;+1)¢%, where y € R
is the Barbero-Immirzi parameter and £3 = 87Gyh. Since
the semiclassical area a; > ¢% implies J; > 1, the semi-
classical analysis of SFMs is built on uniformly large (but
finite) spins J; = 4j, where 1> 1 is the typical value of
the spins.

For the following argument, it is important to note that

small perturbations J + oJ of a given background spin

J ~ 2> 1 will still be inside this large-J regime. Moreover,
the sum ) ; can be replaced through an integral by the
Poisson resummation formula. By Eq. (6),

2N/—N, 00
200 = > o [T
kymrez/~ 470
folltr

s i +qEp
X /[dX]HAf(Jf)er Tp(Fy[X]+4ziLini " mi T)’

!

(7)

where N, denotes the number of internal f’s in K.
4rxi %’ + 27y mE qiTp in the exponent and Zkf,m, mani-

fest the periodicity of the integrand discussed above.
Zkf.m,eZ/N sums ks, my; € Z modulo an equivalence

because the exponent has gauge transformations

Mlj': + + +
{kf}fc,—’{kfr;(qip) 5 }fcr, mz —>mg —2M7,

(8)

where M, € Z and g £ p are even numbers. Note that in
Eq. (7) we only focus on the terms from internal f and
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neglect the boundary terms, since they are not involved in
most of the following analysis.

Equation (7) treats J’s as continuous variables. From
previous results e.g., [15,17,39] it follows that there is a
subspace of large J € R/ that determines classical triangle

areas. These spin configurations are called ‘“Regge-like”
and satisfy the triangle area-length relation

Ch=Ch—Ch
©)

The right-hand side determines the area a,(¢)/¢% of the
triangle f in terms of &;;, £, £, being the lengths (in p
unit) of three edges of a triangle. Since there are fewer
edges than triangles in the bulk of /C, Regge-like spins form
a proper subset and Eq. (9) defines an embedding map
RN¢ < RNs. N, is the number of internal edges in K.
Here, we want to consider perturbations on a flat
(triangulated) hypercubic lattice with constant spacing

(yA)'/? (in £p unit), which fixes all edge lengths ¢ in K,

e.g. (y/l)‘l/zzf”: 1.v/2,/3,2 for the cube edges, face
diagonals, body diagonals, and hyperbody diagonals,
respectively. These edge lengths in turn determine the

1
1) =\ A+ O+ ) -

Regge-like spins J = J (% ) by Eq. (9). The flat triangulated
hypercubic lattice geometry is a large-J critical point of the

SFM and determines the critical data X. In this paper, we
focus on the perturbations

(J.X) = (J +6J.X + 6X). (10)

When J ~ 1> 1, J + 87 are also large. The perturbations
restrict us in the large-J regime of Z(K). By considering
perturbations of the flat geometry, we would like to extract
solutions of equations of motion from SFM and find their
continuum limit to give the smooth linearized Einstein
gravity. °

For the study of perturbations around 7, it is sufficient to

consider a neighborhood N/ C R"r of J . \ is constructed

as follows: Firstly, smooth perturbations ¢ = ¢ + 6¢ and
the embedding Eq. (9) define a submanifold Mpgegee C R/

of dimension N,. We choose &' (i = 1, ..., Ny — N) basis
vectors transverse t0 Mpgegge. All
T=1J(t)+> 1@ (11)
i=1

defines NV, with J(#) € MRegge and 7; € R. (¢, 1) form a
local coordinate system in AV [see Fig. 1(c)]. J’s with £ # 0
are called “non-Regge-like.” &' can be chosen as constant

VECtors transverse to Mpge,qe Since we focus on a neighbor-

hood at £ € Mpgeg,. (the space of Jis aflat space R"7). For
instance, we can choose &’ to be vectors normal to MRegge

at Z, and extend every &' to a constant vector field trivially
by parallel transport in RVs. &/ are transverse to MRegee in @

neighborhood of ‘. .
The integral over J can now be split into transverse and

Regge-like parts as well. That is, [dJ = [[dZd].J(¢),
where the Jacobian J(¢) = |8J(£)/8¢.2|. J(¢) only
depends on # because &' are constant vectors. We regularize
the transverse integral [, by inserting a Gaussian factor
parametrized by 0 < 6 < 1:

/ 4y = / [d£dd] T (£) — / [dZ)T(¢) / [drei224 . (12)

The t-integral has a lower bound since J € [0, o). But
extending the t-integral to —oco only adds a negligible

contribution when J is large.
Inserting Eq. (12) into Z(KC) defines

2Nf —-N

— > [Teage

q- kf,m,iEZ/N 0
x / [dth]e%Zi’?HAf(Jf)

< eZ[Jf Fy X]+4m +ri Zi m,iqlil” ’ (13)

Z5(K) =

where we can interchange [[dX] and [[ds] since [[dX] is

over a compact space and e 2t decays at infinity.

The regulator 6 plays a key role in our work. The following

explains several roles played by this regularization:

(1) Inserting the Gaussian modifies the sum over spins
Z;j:o along a certain direction in the space of spins.
Indeed if we perform the Poisson resummation
backward after inserting the Gaussian in Eq. (7),
using the relation Y, ;e =3 _ 5(x—n)
recovering J € Z/2 and )., J* € Z from con-
tinuous J in Eq. (7),

2Nf—NT

= / AT (2) / [dxdde™
X HAf Z, JFyX]

XHZ Crfa=ml1 2 o5, or

f nez T+t nfez

Zs(K) =

(14)

Itis clear that Z5(KC) modifies Z(K) by damping down
spins with large 7 (far away from M, transversely).
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Integrating delta functions in Eq. (14) then sending
& — Oreduces Z5(K) to Z(K) [comparing to Eq. (6)].
The Gaussian with small d is a “smooth cutoft” of large
spins (in the direction transverse t0 Mpgegge)-

(i) Zs(K) is a one-parameter deformation from Z(K),
and 0 is a parameter deciding how many non-Regge-
like J’s are contributing Zs(XC). From 6§ =0 to
8 — o0, Z5(K) has a less and less non-Regge-like
contribution. § — oo removes the entire non-Regge-
like contribution from Z(KC). However in the follow-
ing discussion, we focus on small ¢ and send § — 0
in the end. Namely we only ignore spins very far

away from Mpego. and J (at discrete level), which is
qualified because we study perturbative effects

around .O] , as will be clarified in a moment.

(iii) Although Zs(K) # Z(K) at the discrete level, they
may have the same continuum limit if we turn off the
regulator 6 — 0 together with refining the lattice KC,
as we will do in the following. Eventually the theory
of spin foams should be defined in the continuum
limit to remove the triangulation dependence. All
physical quantities computed in the continuum limit
will not depend on 6.

(iv) As we see in a moment, another important
role played by 6 < 1 is to make deficit angles &,
of emergent Regge geometries to be small but
nonzero, as a resolution of the “flatness problem”
in SFM [21,44-46]. The detailed discussion is given
momentarily below Eq. (70).

(v) It is discussed shortly below that 6 reveals the high
curvature corrections to Einstein gravity derived
from SFM. It is demonstrated in Eq. (16) and
explained shortly below. It is closely related to
[47]. 6 € [0, 00) is essentially a parameter interpo-
lating from SFMs to quantum Regge calculus.

(vi) Note that inserting the Gaussian with § may not make
the SFM finite, since the domain of [$°[dZ] still
contains the orbits of the vertex translation group (zero
modes in a Hessian matrix in Sec. VIII B). This orbitis
noncompact and not restricted by 4.

IV. HIGHER CURVATURE CORRECTION

We compute the term in Zg(K) at k;=m, =0
(all other terms can be obtained by shifting F; —

Fy+ 4ﬂi% +xid . mE qiTp):

t2

/[dde]J(f)/[dt]e i
X HAf (‘]f(f) + Zt,élf) €Z.f [Jf(f)—"_Zi:l tié;]Ff[X]
f =1

(15)

The #;-integral in Z(K) is a Gaussian integral and yields

/ [dedx]tTOFXID (£, X), Dy = et ® PN g,
(16)
where 7' = ()M T ()1, AU, (€) +3 3 242" FIX])).

Here, F = {F 7} is treated as a complex N ;-dimensional
vector, and (-,-) denotes the Euclidean inner product.
Furthermore, we have ignored the boundary terms in
the exponent because they are unimportant in the main
discussion.

We can combine the exponent of Ds and define an
effective action S, so we write Eq. (16) as

/ [dZdX]eS“X] 7'[¢, X],  where

I 1 J
Seff:’l[< (£). ,TZ @',

where we have written J, = 4/, (4> 1 is the typical value

of J over K).

In the SFM large-J asymptotics, F'y = iye; at a subclass
of geometrical large-J critical points of the integral (see
e.g., [17] and Secs. VB and V C), where ¢, is the deficit
angle in Regge geometry. Therefore in S, (64)7! is a
coupling constant for a ej% correction, while the first term in
S.ir reduces to the Regge action at the critical point. The
details of this argument are given in the following sections.
The g? term corresponds to higher curvature corrections in

Aoy )

Regge calculus [48], although here the e]% term is likely
nonlocal due to the appearance of &'.

The above argument is obviously perturbative, because
treating the second term in Eq. (17) nonperturbatively
modifies the critical equation and critical points in the
large-J asymptotics. This term contains corrections from
SFM degrees of freedom X other than ej%. However in this
paper, we still treat this term perturbatively; i.e., we
consider the regime

A6 > 1. (18)

which makes the coupling constant (15)~! small. All non-
s} corrections are restored in the perturbative expansion in

the coupling constant. The nonperturbative study of S
beyond the above regime will be reported in the future.
Note that given any arbitrarily small & # 0, the above
regime always ex1sts because J f is summed toward infinity.

Recall that $>°¥, (2, F[X])? in S. comes from the
t-integrals Which are contributions from non-Regge-like
J’s. Treating this correction term perturbatively in S
means that we treat the contribution from non-Regge-like
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J’s perturbatively. It reflects our proposal mentioned above

that we focus on perturbations at J.

Z5(K) has the following gauge symmetry:

(1) Continuous: The following transformations leave all
F¢(X) invariant: (i) a diagonal Spin(4) action at o,
gs, — hfgt for all T C o by (hf, h;); (i) at an
internal 7, |&,;) — h,|&,;) and gz, — gz h;! forall o
having 7 at boundaries; and (3) |&,;) — e™/|&,;) at
any internal [, ).

(ii) Discrete: g}, — +g}, and independently g, —
+g,, shift F;— Fy+ri(1+y) for all fCuz
Simultaneously m; — m* — 1 leaves the integrand
invariant.

V. CRITICAL EQUATIONS AND
GEOMETRICAL CORRESPONDENCE

Since the exponent in Eq. (16) scales linearly in 4, we
can apply the stationary phase method to Eq. (16). As long
as the exponent in Dy is subleading, we can directly take
over the result in [15,17,39]. In the regime of Eq. (18), the
dominant contributions of Eq. (16) come from the critical
points (., X.), i.e., the solutions of the critical equations
ReS = xS = 6,5 =0, of S = (j, F).

We firstly discuss the subset of critical equations ReS =
0xS =0 and postpone discussion of the other critical
equation 6,8 = 0 to Sec. VII. ReS = dyS = 0 has been
studied extensively in the spin-foam asymptotic analysis on
simplicial complexes with fixed J, e.g., [15-17,49].
Section VA reviews some key results useful in our
derivation, while some details are provided in Secs. VB
and V C.

A. Classification of solutions to ReS=6yS=0
Recall Eq. (4); 6xS = 0 includes 6= S = 5§sz = 0. But
8¢S = 0 is implied by ReS = 0 so does not give a new
constraint [17]. These critical equations are equivalent to
the following equations:

Gahier = Goshiop, Y jgeep(0)iy =0 (19)

where §Z. € SO(3) is the three-dimensional representation
of gz, and fi,; = (&4[6]E,) is a unit 3-vector (G are
Pauli matrices). &, = &1 satistying &,/(c) = —¢,/(0)
(tn =f) and e,(0) =—¢e4(c') (6nd =1). We
denote a solution to the above equations by

X, = (95. &), modulo gauge. (20)

Note that j, enters as a parameter in these critical
equations. A bad choice of j, may not lead to any solution.

But in our case Eq. (16), j; = j;(¢) implies solutions
always exist.

At j; = j;(£), there is a subclass G of solutions X,
which can be interpreted as nondegenerate simplicial
geometries on K. A useful quantity classifying solutions
is sgn(V,) where V,, is the oriented 4-volume:

sgn(V,) = sgn[det (N (0). N2 (o), N3(0), Na(0))].  (21)

where N (o) is the 4d normal of tetrahedron 7 C ¢ outward
pointing from . N.(c) is computed by N9(c)1+
iNi(0)o; = g5.(g4,)™" (o; are Pauli matrices). The subclass
G is defined as solutions with sgn(V,) # 0.

Equation (19) obviously has a Z, symmetry: i,y — —fi ¢
(é.y — J&,y) globally on the entire K. K triangulates a
region in R* and has a boundary; this symmetry is broken
by the boundary condition which fixes & ; at the boundary.

The following one-to-one correspondence is valid within
the subclass G (see Sec. V B for a proof, and see [49] for a
proof in Lorentzian signature):

Solutions X, € G

¢

4d nondegenerate simplicial geometry on K

and 4-simplex orientations. (22)

X.’s reconstruct nondegenerate simplicial geometries on K
made by geometrical 4-simplices at all o, while every pair
of 4-simplices are glued by sharing a geometrical tetrahe-
dron. Simplicial geometries are parametrized by edge
lengths. Some solutions give precisely the simplicial
geometry ¢ in j(¢), although some other solutions may
give different geometries. But all geometries have the same
set of areas a; = yAj(€)¢%. £ in the solution data give
tetrahedron face normals 7., of the simplicial geometry.

A simple way to see the appearance of 4-simplex
orientations in the above equivalence is that the geometrical
data (edge lengths) are invariant under local orthogonal
O(4) transformations in o. Discrete O(4) transformations
(parity transformations) acting on the geometry can lead to
different X,.’s since X, is only Spin(4) invariant.

The local parity P in O(4) leads to the “cosine problem”
in SFM [39]. Any X, € G gives (g/,, g;.) in every ¢ with
9t # g5, A parity transformation at a o flips g/, g5, and
leaves &, invariant:

P,: (94 95c) = (Gors 9or) (23)

and maps X, to another solution X. € G corresponding to
the same simplicial geometry. X., X, give opposite
4-orientations to 4-simplex o, since P flips the 4-orientation.
Local parities give all orientations in Eq. (22) on K. sgn(V )
characterizes the 4d orientation. P, gives the parity refection
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of N,(c) and thus flips sgn(V,). sgn(V,) in general is not
equal to sgn(V7,) for 6 # o

The above shows that a solution with (g/,. g,,) and &,
associates another solution (g, g5,) with the same &, for
the same nondegenerate simplicial geometry. But it is easy
to see that (g, g4,) and (g, g,) with the same &, are also
solutions of Eq. (19). (¢%,9¢4) and (g,: g,.) have
sgn(V,) =0 so they do not belong to the subclass G.
They are called BF-type solutions, since they also appear in
the asymptotics of SU(2) BF theory.

Another subclass of solution is called vector geometries,
which happen when Eq. (19) has only a single solution
with (9,7, 9,.) in a ¢ with some & The vector
geometry corresponds to a degenerate 4-simplex and has
sgn(V,) = 0. Generally speaking, critical equations with
Jj(€) (¢ is a nondegenerate simplicial geometry) may still
have vector geometry solutions.

The subclass G of geometrical solutions satisfying
Eq. (22), BF-type solutions, and vector geometry solutions
completely classifies all solutions to Eq. (19) on K [17,39],
assuming &, (internal and at the boundary) do not give
degenerate tetrahedra. Solutions to Eq. (19) with degener-
ate tetrahedra have not been studied in the literature. Given
a generic solution, IC may need to be divided into regions,
such that the solution data restricted into every region are of
a single type [16,17].

B. Geometrical correspondence of critical solutions

The following presents a proof of Eq. (22) of the
geometrical correspondence of critical solutions. In this
subsection and Sec. V C, we assume that K is a generic
simplicial complex with or without a boundary. The
discussions are valid for the triangulation in Fig. 1(b)
and also for arbitrary triangulations.

1. Reconstructing individual 4-simplices: Given a sol-
ution (g, &,7). (modulo gauge) to Eq. (19) with J(¢), we
firstly construct five 4-vectors N, (o) at every ¢ by

N2(0)1 + iN:(0)o; = g5 (95:)™" (24)
where o; are Pauli matrices.

Definition V.1. A subclass
(g;” é‘rf)c satisfying

G collects solutions

sgn[det (N (). N2(0). N3(0). N4(0))] # 0. (25)

for all t =1, 2, 3, 4 out of 5.

Note that due to gauge equivalence ¢, ~kihtgh
(ki = +1, (hf, h;) € Spin(4)] of Zs(K), five N (6)’s
at ¢ are defined up to individual £+ and a global SO(4)
rotation.

We focus on solutions in the subclass G. We construct at
every 620 bivectors

X.r(0) = (X7 X7p) = vd p(§kes. Gehiep),  (26)

where §Z € SO(3) are three-dimensional representations
of gt. )?ff are self-dual and anti-self-dual parts: X*' =
X0+ el X0k,

Any three out of four 71, at every 7 are assumed to span a
3d space. In other words, we assume that the tetrahedra
reconstructed from the second equation in Eq. (19) are all
nondegenerate and

w(Xo, Koy, Xop ) (0) 0,V 1, (27)

Critical equations (19) imply the following properties of
Xp(0): () Xep(0) A Xo(o) = 0; (i) N,(0) - Xoy(0) =0
forall f C 7; (iii) X, /(0) = X, 1(6) = X /(o) for all pairs of
7,7 Cowitht N7 = f;and (iv) ) /e, &:(0) X4 (o) = 0.
g, = £1 satistying e,(c) = —e,/(6) (N7 = f) and
£,7(0) = —e,¢(0') (6 N6’ =1). e,4(0) is defined up to a
global sign on the entire /.

By Egs. (25) and (27) and properties (i)—(iv) of X,/(o),
the solution (gZ.&,/). (modulo gauge) reconstructs a
unique 4-simplex geometry whose triangle areas are
vJ ff% on every 6 C K [39]. Here each 4-simplex geometry
is labeled by 10 edge lengths. Every geometrical 4-simplex
gives 4d outward pointing normals U, (s) to 5 boundary
tetrahedra, such that U, (o) satisfy a 4d closure condition
and relate to the oriented 4-simplex volume

> U.lo) =0, vi = det (U, U,, Us, Uy)(0).  (28)

7Co 4

The nondegeneracy V; # 0 by Definition V.1. V relies on
a consistent choice of ordering 4-simplex vertices (there is
a one-to-one correspondence between vertices and tetra-
hedra in a 4-simplex); e.g., if o=/[1,2,3,4,5] with
7 =1,2,3,4], a neighboring 4-simplex sharing 7z has to
be o/ = —[1,2,3,4,5], inducing an opposite ordering to z.

Geometrical 4d unit normals U,(c) = U,(0)/|U.(0)|
are determined by the geometry up to global O(4) rotations
at o. Relating to N,(o) by U,(c) = +N, () reduces the
ambiguity to global SO(4) rotations. There is also a gauge
transformation on g, to set U,(6) = N, (o).

On the other hand, every geometrical 4-simplex give 20
bivectors B, (o) by

L U0 A Uae)
Be(0) =10 i o A Do)

_ %|v,,| « U.(6) A Un(o). (29)
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\/%X”XIJ- B./(0)

relates to “spin foam bivectors” X /(o) by’

The norm of a bivector X is |X| =

e7(0)X (o) = p(0)B:s(o)

= 2el0)V, x UL(o) A Uplo). (30)
where
(0) = u(o)sen(V,) = +1. (1)

u(c) =1 or —1 relates to that e.(c)t,, are outward or
inward pointing 3d face normals in all 7 C 6.

2. Gluing 4-simplices: Given neighboring o,0
sharing 7, Eq. (26) implies X;(0) = (g],,.9,,) - X;(0')
with g*, = gZ.g5 ~'. Then Eq. (30) and £,¢(0) = —&,¢(c”)

imply
Bf(0) = —u(o)u(0')(9, Gy) - Bes(0).  (32)

S0 Buy(6) = (§iebes(0), Grcbep(0)) where bey(o) is the
geometrical face normals of 7 from the 4-simplex geometry
on o. Then E,f(o) satisfies the closure ), b.s(c) = 0.
Equation (32) implies

bes(0) = —u(o)u(c')bys (o). (33)

where the sign difference is independent of f. So tetrahe-
dron geometries (labeled by edge lengths) from l;,f(a) and

l;,f(o’) coincide. Therefore 4-simplex geometries on o, ¢/
are glued with their induced tetrahedron geometries on 7
matching in shape. By gluing many 4-simplices to build i,
the above shows that the solution (g, &,7), reconstructs a
unique simplicial geometry labeled by edge lengths.

Lemma V.1. ¢(0) = ¢(¢’) = eforallo,6’ C K;ie., eis
a global sign on the entire K.

Proof: Equation (24) implies that N, (o) = (g} .9, ,) -
N.(¢’) for 7 shared by o,¢’, and that

UT(G> = Saa’(g:;," ;(y) ’ Ur(g/)7 Seo =1, (34)
where s,, comes from the sign gauge ambiguity relating
U, and N,. Moreover by X;(c) = (g/,.9;,) - X; (o),

e./(0)X,(0) = %g(awg « Uy(o) A U, (o)

_ —%g(a’)var “Ut(o) A UL (a),  (35)

'Here £,/(¢)X ;(6), B(c) and u(c) correspond to By, By, (o)
and u, respectively, in Barrett e al. [39].

where U, (o) = (g},,.9;,) - U.(¢"). Since U} (o) « U, (o),
U’, (o) is a linear combination of U, (6), U,, (o). Explicitly

e©)|U:(o)IVs (6) + a1U.(0). (36)

Ul/ = 66 7 Nirr /N Yt
4(0) = Seo TV, U

V,, Vs are given by

V! =det(U,.U,, U, U,) (o)
-1 _ _ ! ! ! !
V! = —dey(U,, UL, U, UL ) (o) (37)

since the det of the U’s is invariant under SO(4) rotations.
The minus sign comes from the ordering ¢ = [1,2, 3,4, 5]
and ¢ = —[1,2,3,4,5']. Equation (36) is also valid for
U’T,Z, U/Tg’ U’T;. Because ) .U, =0,

V= —det(UL U, U, U, ) (o) (38)
1 2 3
(o) ( U(o)V. )2,
= VS 39
dewwwd - (39)

which implies &(6)=¢(o’) and |U,(6)|V,==£|U.(¢')|V . m

The appearance of global sign ambiguity € comes from
the fact that critical equation (19) is invariant under a global
refection 71,y — —f,; or &y — J& ¢ on the entire K (named
“global J-parity” in [49]). But this invariance is broken
when K has a boundary where some 7,,’s are fixed by the
boundary condition. In this case, we can set e.g., ¢ = 1 by
redefining &,7(c) globally. If IC has no boundary, £ = £1
corresponds to two different solutions related by this global
refection of 7.

When ¢(6) = ¢ = 1, Eq. (31) gives

pu(o) = sgn(V,). (40)

The above proves the forward direction in the corre-
spondence Eq. (22):

Theorem V.2. Given any solution (g7, &,f), € G (mod-
ulo gauge) to critical equations (19), it reconstructs
uniquely a nondegenerate simplicial geometry labeled by
edge lengths on K, and it determines all 4-simplex
orientations sgn(V,) = +1, which are not constant in
general. The solution also gives a global sign e =1 or
—1 when 0K = @.

The reconstruction defines a map

C: G — the space of (Z,sgn(V,),¢), (41)

where £ labels a simplicial geometry on &, and sgn(V,)
labels the 4-simplex orientation. The following discusses
the injectivity and surjectivity of C.

3. Injectivity and surjectivity of C: Given data
(Z,sgn(V,),e) where ¢ is a nondegenerate simplicial
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geometry on K with edge lengths # and triangle areas
yJ;(£), sgn(V,) are orientations at all ¢’s, and ¢ is a global
sign (¢ = —1 when K has a boundary), we suppose that
(¢,sgn(V,),e) can be reconstructed by two different
solutions (g7 Exy)e. (92 €yy). € G

Thus, (Z,sgn(V,), ¢) determines 4d unit normals U, (o)
outward pointing from every o, up to global SO(4) rotations
at o by Eq. (28). We set U,(6) = N,(6) = G, N where
G,. €S0(4) and N = (1,0,0,0). Individual G,,’s are
fixed by this relation up to SO(3) rotations leaving N
invariant. Up to this SO(3), GGT is the four-dimensional
representation of both g, and ¢'Z up to gauge freedom.
U.(6) = N,(o) fixes the discrete gauge freedom of g, up
0 g5, = K,00ars Kpe = £1 leaving N, (o) invariant.

The geometrical bivectors B,(c) given by U,(c) in
Eq. (29) and acted by (A}grl give a bivector orthogonal to N:

G71B.1(0) = (b (0).b,(6)).  |bi(0)|=7Is(¢). (42)

A set of four 3d vectors Z;Tf(a) and b, 7(0") are related by an
SO(3) rotation leaving N invariant, because all of them are
face normals of a geometrical tetrahedron shared by o, ¢'.

So we can implement this SO(3) rotation to G,, or G, to
make

-

or(0) = £bys (o). (43)

S

This reduces ambiguities of G,, and G, from SO(3) x
SO(3) to SOB): Gp bof(0) ~ Gophy, h7'b,y(6) where
h. € SO(3) independent of o. R

Lemma V.3. b.s(c) = —sgn(V,)sgn(V, )b, (') is
implied by (Z,sgn(V,),é). R

Proof: G,!B,;(c) =+N Aby(c) so G, lU;
I;Tfi(o) +aN for 7,_1,34Co sharing f; with =
Equation (28) implies that U,,sgn(V,)U,,sgn(V,)U,,
sgn(V,)U; form a right-hand frame at o. Rotating by
G,. € SO(4) implies that

N’ sgn(vo')grfl (6)7
sen(V,)b,;,(0).  sgn(V,)by (0)  (44)

form a right-hand frame. By Egs. (37) and (38), from ¢’ we
obtain the right-hand frame

N, —sgn(Vy)b.y, (o)),

- Sgn(vo")bffz (6/)’ _Sgn(v(f’)b‘rf3 (0/)'

By Eq. (43) and comparing to (44), we obtain

Sgn(va)grf(a) = _Sgn(va’)grf(a/)' (45)

|
Lemma V.3 is consistent with Eq. (30) which implies

esgn(V,)eor(0)bes(0) = 1J 1(€)itey (46)

since G, is the four-dimensional representation of g% or
¢'%. It determines 7, up to i, € SO(3).

As a result, (¢,sgn(V,),e) determines (G,,, i) up to
gauge freedom (Gm,ﬁ,f) ~ (hyGoohy, b7 lﬁrf) with i, €
SO(4) and h, € SO(3). Therefore modulo the gauge free-
dom, g2, and ¢'Z are two different lifts from G, € SO(4) to
Spin(4); thus gg, = Kye0 5rs Ko = £1. BUt g5 = K g is
discrete gauge transformation of the SFM. Moreover 7, ¢
determines that £, = €&, . while &, ; — e'%/¢  isagaina
gauge transformation for internal &, and the phase ambi-
guity of &, at the boundary is fixed in any boundary
condition. Therefore (g5;,&.¢). = (¢5z: &,7), modulo con-
tinuous and discrete gauge transformations. Nondegeneracy
of the simplicial geometry ¢ implies that (g%, &,/). € G.

The above proves that the map C is injective. It also
proves C is surjective because we start from arbitrary data
(¢.sgn(V,), €) and recover a solution (g, &,f), € G.

Theorem V.4. The map C relating solutions (gz;. &), €
G to nondegenerate simplicial geometries and orientations
(Z,sgn(V,), ) is a bijection.

C. Deficit angles

Given a critical solution X.= (gz.&,;). €G corre-
sponding to (¢,sgn(V,),e) with sgn(V,) =1 at all ¢
and e = 1, F evaluated at X, gives [15,17,21]

FiX]=i(®} +@7) +iy(Q; —@F), y=p/q.  (47)

where p/q € Z, and p + ¢ is an even number dDjfE is given
by

OF =D b

o,fCo

i, =In(Es|(g5) " g5 )|y, €IR  (48)

Recall that the integrand in Z;(/C) depends on F, through
Fy+4dnike/q+miy . m, qiT”, and Z;(K) sums kg,
m, € Z. The integrand in Zs(K) is invariant under the
following shifts:

- - _d- +_ -
CI>f —|—CI>f —><I)f —|—<1)f +4zx, or <I)f —q)f —>(I)f —CDf +4r,

and
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P P - + -
<I>f —i—d)f —>d>f —i—(I)f + 27z, and CDf —d)f —>(I)f —CI)f +2r,
and ky—kr—(q+p)/2. (50)

The above gauge invariance allows us to fix the following
range of angles:
O + @; € [-27,27], O; —@; € [~z 2]. (51)
At X, ¢=, relates to the 4d dihedral angle 6;(o)
between the two tetrahedra = and 7 within ¢ [39]:

¢:;n’ - ¢;o'r’ =n- gf(a) € [0’ 7[] (52)

We define n s to be the number of ¢ sharing an internal f. n,
is always even for the triangulation X adapted to a hyper-
cubic lattice (see Appendix C). Then shifting by multiples
of 2z and 4z gives

Q; - @ = npm— Zef(a) —4nu —2mwv
o.fCo

=27 - Zﬁf(a) =ef (53)

o.fCo

for certain u, v € Z. The deficit angle ¢, hinged by f is a
discrete description of Riemann curvature in simplicial
geometry Fig. 2.

To determine @ + @7, we consider all g;; whose o’s
and 7’s share a single internal triangle f. At the solution,

i hE
G| Eus) = €t |E,s) where g% = (g2)7", so

ot
gﬁr]gﬁlfl g;i()'g(j)':’f|§‘[f> =" ‘§7f>’ (54)
which gives

‘bt
lCDf 0

+ o+ + ot ¢
976,967, + - 976 96r = g(f‘rf) ( 0 e_iq).%

)g@f,f)-l (55)

where g(&) = (£, J¢&) € SU(2). We define

FIG. 2. The deficit angle ¢ in a 2d discrete surface hinged by a
point. € # 0 demonstrates that summing the angles at the hinge
fails to give 2z. One obtains a discrete curved surface when the
two edges bounding & are glued. In higher dimensions, ¢ is
always hinged by a codimension-2 simplex; e.g., in 4d, &; is
hinged by a triangle f.

G(0) = gtgt, 92.r, -5 = exp (iDFXF (0))  (56)

where (I)j% ~ <I)}E + 27 and

X:jlf: (6) :girg(éf,f)af‘ag(gr.f)_l (g(:’tf)—l :gzzrtf(ﬁrf ‘0_')(9?1)_1 .

Comparing to Eq. (26), )A(/i(a) = )_fjf(a) '8/|}2f(0)|.
On the other hand, in terms of the corresponding
geometry,

Ej(o) =V, x Ui(o) AUy(o) AU,(e)  (57)

defines an edge vector [|E;(c)| = ] pointing to the
vertex j from the vertex i [15,17]. Here 6 = [k, j, [, m, n] is
the ordering of vertices. Equation (36) implies that for all
edges of 7j,k=1,...,4

(Yo~ Gow) - Ejr(0”) = soosgn(V,)sgn(Vy)Ej(o).  (58)

We have assumed sgn(V,) =1 at all ¢, and we partially
gauge fix the discrete gauge freedom of g, such that
U.(6) = N.(6) so s,y = 1 (the remaining discrete gauge
freedom is g, = K,e9ars Koe = £1). So (g ,.g7,) is a
discrete spin connection. By the parallel transport of
Eji(0),

A

Gy(o)Ej(0) = Ej(0), VY (j,k)Cf. (59)

Therefore G;(c) € SO(4) [the four-dimensional represen-
tation of G,(o)] is a 4d rotation leaving the geometrical
triangle f invariant:

Gy(o) = oxp (= + X(0)8)) (60)
where by V, x U, (c) A U,(0) = Ejx(6) A Ey(0),

€ f(”)Xf(G)Zng(G)Xf(G)— B(o) _ Ej(o) NEy(o)

Xs(@)]  [By(o)l |Ej(0) AEy(o)]

Moreover, (G;(0)*, G (o)) € Spin(4) in Eq. (56) is a
lift of G;(c) € SO(4) in Eq. (60). The angles @ and 9,
are related by

O -0, =9, O +O; =27, yr€{0,1}  (61)
or <I>j£ = j:%&f + x 7, where y labels the lift ambiguities
from SO(4) to Spin(4). Note that similar to the above, the
periodicity @}F ~ 'ZI)}E + 27 allows us to set §; € [—x, 7]
and y, € {0, 1}. This identifies 9, = &;.

In general most lift ambiguities can be canceled by the
remaining discrete gauge freedom ¢ — .92, k,, = £1:

Lemma V.5. The lift ambiguities y  at all internal f are
removed by discrete gauge transformations gz, — .9z,
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K,. = *1 up to H*(K*, Z,), the second cellular cohomol-
ogy group of the dual complex L.
Proof: A spin structure on the manifold triangulated by

IC defines a canonical lift of Gf(o—) to (Q/(0),Q(0)) €
Spin(4) such that the lift QF(v) can be continuously
deformed to 1. Then Gj (o) = e"™rQ7(v) where y; €
{0,1} = Z, gives the other lift of (A}jf[(o) when y, = 1.

Given a triangulated manifold /C, there is a correspond-
ing dual polyhedral decomposition KC*. It is given that an
edge 7 is shared by a number of internal f in K. £ is dual to
a 3d polyhedron #* bounded by internal faces f*’s dual to
f’s in K*. G7(o) and Qf (o) are along the dual face
boundary Of* and based at the dual vertex o*. The
polyhedron ¢* gives cocycle conditions to both ij
and Q:

l:[QjE =1 and 1:[jSE =1, (62)
f f

where all Q7’s (G;’s) are parallel transported by Q.
(GiE ) to share the same base point. The above relations
may be seen by viewing Q‘%’s (Gy ’s) as flat connection
holonomies on a 2-sphere with p holes [each in (G%)

circles around a hole], followed by enlarging holes to
approach the skeleton of the polyhedron #* with p faces.
Parallel transports are made by a conjugate with Q{fﬂ, or
Gfg, whose sign ambiguity does not affect e™r.
Equations (62) result in the Z,-cocycle condition

!

If we understand y, = (f*,y,) where y, is a 2-cochain,
then ) yp = (0", y2) = (€7, 812); ie., Oy, = 0 where &
is the coboundary differential.

If K* has a nontrivial second cohomology group
H?*(K*,Z,), there exist n€ H*(K*,Z,), such that
x> = n + 0y;. Evaluating at any dual face f* gives

2=+ O ) =+ e 2 €2,

(64)

where y, = (t*,y;) and ), is over all z* C Jf".
Equation (64) implies that there exists y, € Z, such that

e — ei”<f'*v’7>Hei”xf. (65)

T

The factor [, ¢+ can be canceled by the discrete gauge
transformation ¢.. — e”-g: at one o bounded by 7.
Therefore we obtain

G% (6) = e"”<f*"7>Q}—L (o), (66)

where n € H*(K*, Z,). u

When K* is a polyhedral decomposition of R* as in our
main discussion, all lift ambiguity can be removed by
gauge transformations since H*(R*,Z,) = 0. When K*
has a boundary and is a polyhedral decomposition of a
(topologically trivial) compact 4d region R C R*,
we apply Lefschetz-Poincaré duality H?*(R,Z,)~
H,(R,0R,Z,) =0 where H,(R,0R,Z,) is the second
relative homology. Since Lemma V.5 is valid only for
internal f’s, gauge transformations may not be able to
remove lift ambiguities at boundary f’s. i (<I>}L +O7)=in
may present in the boundary F[X]. Boundary F;’s do not
affect our derivation of Egs. (68) and (70).

As a result, we conclude that when H? (K*,Z,) =0, for
all internal f,

FelX,.] = iye;. (67)

VI. BACKGROUND AND PERTURBATIONS

We define the background X as the solution in the
subclass G, corresponding [as in Eq. (22)] to the flat

simplicial geometry whose edge lengths are ¢ on IC,
and with a uniform 4-orientation at all 4-simplices

sgn(V,) = 1. Recall that /s a flat triangulated hypercubic
lattice with constant spacing (y4)!/2¢p. The geometry and

orientation uniquely fix the critical point )fg by Eq. (22).
When we perturb X € G by (J + 6J,X + 6X) where

J=17 (LO” ), there is a neighborhood at X such that all other

solutions X, # )D( still belong to the subclass G and have the
same uniform orientation sgn(V,) = 1 for all 6. Note that

here X. may associate to a different T+ 8J. Indeed X at
every o gives (gr. §y.) and &y with G, # . Here g i
are very different; namely there is a finite distance between
Juzr e € SU(2) measured by the natural metric on S,
because N, (o) at 57 C o determined by (... §,) are far
from being parallel. Therefore there exists a neighborhood
at (Jor» Joe)» such that perturbations (g, + 8¢5, Jor + 695:)
only perturb N.(6) but do not change sgn(V,).
Perturbations neither interchange g,., J,, nor make them

equal. As a result, perturbations (3 +6J, )O( + 6X) can only
touch solutions in G having the same uniform orientation as

(J , )O() but cannot touch solutions with different orienta-
tions. Perturbations cannot touch BF-type solutions
(95, 9%), (9o, 95.) and  vector geometry solutions
(952> 9sz) because their N (c)’s are all parallel and give
sgn(V,) =0. Therefore the existences of the cosine
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problem and BF-type, vector geometry solutions do not
affect our following derivation of perturbative solutions,
since no solution of opposite orientation, BF-type, or vector
geometry appears in perturbations. We focus in the follow-

ing on X, € G with the same orientation as X.

Note that the above argument does not work for SU(2)
BF theory: The critical equation provides only the + sector
of Eq. (19), so the subclass G does not exist in the BF
theory. Solutions there only contain BF-type solutions of
nondegenerate geometries and vector geometries. But BF-
type solutions are not well separated from vector geometry
solutions [50]. Therefore perturbations from a nondegen-
erate geometry can touch vector geometries.

By the correspondence Eq. (22), and since the orienta-
tion is preserved by perturbations, all perturbative solutions
from critical equations ReS = 6xS =0 or Eq. (19) in

(j +6J, X + 6X) correspond to perturbations of simplicial
geometries with edge lengths £ = ¢ + o8¢ i.e., the geom-

etries are perturbations of the flat simplicial geometry ¢
on K. .

Any solution X, € G with a uniform orientation as X
implies F([X.] = iye;(¢) (see Sec. V C for a proof) where
€;’s are deficit angles, which measure discrete Riemannian
curvature. This applies in particular to the above perturba-
tive solutions.

VII. EQUATION OF MOTION
AND SMALL DEFICIT ANGLES

In the above, we have obtained the perturbative solutions
of a subset of critical equations ReS = 655 = 0 and their
geometrical interpretations. The other critical equation
0,8 = 0 and Eq. (9) yield the equation of motion (EOM),

<8Ja—(:),y3(f)> —0 or f 83-5;) £,(£) =0,

and coincide with the Regge equation. The Regge equation

is a discretization of the Einstein equation in 4d [51].
The leading asymptotic behavior of Eq. (16) is deter-

mined by the integrand evaluated at the critical point:

(68)

=10

IO N KRR (69)

N —
e Efflcritical pt — e

The first term in the exponent is the Regge action which
vanishes at the solution of Eq. (68). The second term is the
gj% higher curvature correction (mentioned in the last
section) which encodes the contributions from non-
Regge-like J’s. Since the ej% correction term is real and
negative, and § < 1, it suppresses the contribution of the
critical point (Z,, X,.) exponentially unless |(&', y&)| < 6'/?
for all i. Since {07(£)/¢. ¢} forms a complete basis in
RNy, it follows from Eq. (68) that

lyep(¢)] <67 < 1. (70)
Equations (68) and (70) determine the critical points
(¢..X.) that contribute essentially to Zz(K), and thus
are the key equations constraining the simplicial geometries
emerging in the large spin limit of the model.

Equations (68) and (70) are trivially satisfied by the flat

background (}, )O() (}, }%) is a critical point of Zz(K) and
thus qualifies as a background. For perturbations, Eq. (68)
can be reduced to a set of linear equations of the deficit
angles e [33], because the considered geometries are
nearly flat. That is,

Mé =0, (71)
where M is a constant Ny x N matrix. Note that this is a
consequence of the nearly flat geometries, but not a
consequence of Eq. (70). By itself, Eq. (70) is compatible
with the nonlinear Regge equation and excludes no non-
singular curved geometry. On a sufficiently refined tri-
angulation, any simplicial geometry approximating a
smooth geometry with typical curvature radius p satisfies
le¢| ~ a*/p* < 1, which is consistent with Eq. (70). Here a
is the typical lattice spacing. The simplicial geometries that
fail to satisfy Eq. (70) cannot have a smooth approximation.

If the regularization in Eq. (12) was not imposed, i.e., if
0 = 0 as in standard SFMs, then Eq. (70) would imply strict
flatness e, = 0. This strict flatness has been proven to be
one of the main obstacles for recovering classical gravity
from SFMs [21,44-46]. But if 6 < 1 is nonzero as above,
then small excitations of &, are allowed, and therefore
arbitrary smooth curved geometries may emerge from
refining triangulations while 6 — 0.

It is interesting to note that the opposite limit 6 — oo
reduces Eq. (69) to the quantum Regge calculus. Therefore
5 €[0,00) is essentially a parameter interpolating from
SFMs to quantum Regge calculus.

The above discusses only the integral with k; = m, =0
in Z5(KC). Nonzero k; = m, shifts F; = iye; in the above

computation by F; — F; + 47;1'% +miy mF %. In par-
ticular Eq. (70) becomes

<62, (72)

k +
ver + 4r=L 4 ﬂZm}u
' q & q

The deficit angles &, are all small for small perturbations

(} +6J, X 46X ) of the flat geometry. Therefore, for finite
v, Bq. (72) can only be satisfied for ky =m, =0. So
integrals in Z;(KC) with nonzero k; = m, are all suppressed

in the perturbative regime unless & = 0.
We would like to remark that the above perturbative

study of SFM on a large triangulation by (} +6J, X +6X )
follows from the standard technique in perturbative
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quantum field theory, i.e., fixing a solution of the equation
of motion as the background vacuum and perturbing all
field variables.” Our method is different from the boundary
state formalism used in e.g., [19,20,52—-54] in the context of
a single 4-simplex.

VIII. SEMICLASSICAL CONTINUUM LIMIT
A. The idea

The above discussion is based on a fixed triangulation }C
adapted to a hypercubic lattice. From this, we may
construct a refined triangulation K’ by subdividing each
hypercube into 16 identical hypercubes, triangulated by
simplices in the same manner as above. By refining the
hypercubic lattice, we define a sequence of triangulations
Ky where the label N is the total number of vertices in K.
The continuum limit is N — oo in which the vertices in the
triangulation become dense in a region of R*.

We can now associate a SFM Z;(Ky) to each KCy, with
N — oo as the continuum limit of SFM. The above large
spin analysis can be applied to all Zs(fCy). This gives a
sequence of EOMs (68) [or its linearization Eq. (71)] and
(70). All quantities in the equations, e.g., the spins
J; = J¢(N), the regulator § = §(N), the simplicial geom-
etries, etc., depend on N and flow with N — oo, which
defines the SCL. In particular, we will show below that the
solutions to the EOM (68) flow to solutions of the smooth
Einstein equation as N — oo. This can be derived from the
fact that the solutions of the linearized Regge equation
converge to solutions of the linearized Einstein equation as
the lattice spacing a — 0 (see [33,34,55]). The EOMs (68)
are already the Regge equation and it only remains to relate
the Regge limit @ — 0 and the SFM continuum limit
N — oo. In fact relating the limits is nontrivial and specifies
the SCL.

The regulator §(N) should go to zero with N — oo in
order to guarantee that the continuum result does not
depend on 6. Yet, (18) must still be satisfied at every step
N for the above asymptotic analysis of Zs(KCy) to remain
valid. Thus, A(N) has to grow faster than §(N)~? (see
Sec. VIII B).

Recall that the area from SFM is given by a; = y4j ff%).

The lattice spacing a relates to background (} (N ),X (N))
by (recall Sec. II)

a(N) = (rA(N))'/*¢p, (73)

where A(N) is the typical value of 7 #(N) over K. Note that

the background data (J (N), X (N)) depends on K and thus
depends on N.

*The background (.O] . X ) satisfies the equations of motion (68)
and (70).

We would like to relate the Regge continuum limit, so we
must require a(N) — 0as N — oo. It is possible even when
we have A(N) - oo as N — oo, because we take at the
same time the semiclassical limit £p — 0.} Practically we
define a scaling parameter u(N) depending on N and
replace £p by

£p—u(N)¢p, suchthaty(N)—>0 asN—-oo0. (74)

By scaling ¢ p, the lattice spacing a(N) in Eq. (73) becomes
a(N) = (yA(N))"*u(N)Zp. (75)

The scaling x(N) may be viewed as a change of length unit
(from small to large), such that the numerical value of £p
becomes u(N)¢p in the new unit. We zoom out to a coarser
length unit at the same time as refining the lattice N — oo,
so we effectively scale £p — 0. Thus u(N) — 0 is under-
stood as an infrared (IR) limit.

To clarify the motivation, it may be helpful to look
at the Regge action term in Eq. (69) by writing

as(N) = rJ(u(N)Zp)*:

BT FENN) = iz S as(We(N). (76
L

Furthermore, u(N) — 0 as N — oo implements both the
semiclassical limit in the path integral and the continuum
limit of the Regge action. Indeed, if the lattice spacing a(N)
satisfies

lim a(N) = 0, (77)

N-oco
then Eq. (76) gives [56]

- 1

<7J(f),5(f)>(N)=W/d4x\/§R[g](l+8(N)) (78)

where ¢(N) — 0 as N — oo.

Because #(N) is a monotonically decreasing function of
N, we may invert this function and write N (u) and make the
change of variable to all quantities:

ICN — }C/n
A(N) = ),

J(N) = J(n),
6(N) = 6(n),

X(N) = X(n),
a(N) = a(u). (79)

’It may be physically relevant to fix a finite (although large)
length unit at IR so that the numerical value of ¢p is tiny but
nonzero. So in this sense, it is relevant to choose a large but finite
N. The limit N - oo or p(N) — 0 is an idealization while the
convergence in the limit shows that at IR, the geometries from
SEM critical points approximate smooth solutions of the Einstein
equation with an error of O(¢p).
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All previously N-dependent quantities become y-dependent.
The continuum limit N — oo becomes u — 0, and Eq. (77)
becomes

lim a(u) = 0. (80)

As a key requirement to relate SFM and Regge con-
tinuum limits, Eq. (80) requires da(u)/du > 0, which
together with (75) requires

2 1da

p <3 i <0. (81)

The inequality (81) is not the only requirement in order
to relate to the Regge continuum limit. Recall that solutions
of the Regge equation arise in the leading order stationary
phase approximation of Z(KC,) as A(u) > 1. The solutions
have the (quantum) corrections of O(1/4). The correction
is bounded by C(u)/A(u) with C(u) >0, where C(u)
grows as y — 0 (see Sec. VIIIB). As a result, A(u) is
required to grow at a faster rate, in order to keep C(u)/A(u)
small to suppress the 1/4 correction to Regge solutions as
u — 0. It implies

1di 1dC
S 82
idu S Cdu (82)

In addition to the constraints (81) and (82), it follows
from (70) and & ~ a’/p? that there should exist a bound
L < oo such that

S(u)'?
a(u)

<L. (83)

Otherwise, the curvature of the emergent geometry [i.e.,
p~ =limey(u)/a(u)?] would diverge.

Definition VIIL.1. A semiclassical continuum limit is
the flow of the three parameters A(u), a(u) and 6(u) as
u — 0 (together with the lattice refinement) that satisfy
(81), (82), and (83). a(u) and 6(u) tend to zero in the limit
u — 0, while A(u) = oo grows faster than 5(u)~2.

The SCL is well defined although (81), (82), and (83)
indeed give nontrivial restrictions.

Theorem VIIL.1. The SCL is well defined because the
flows satisfying the requirements always exist.

The proof of the above statement is given in Sec. VIII C.
A SCL relates the SFM continuum limit to the Regge
continuum limit and allows us to apply the convergence in
Regge calculus to geometries coming from SFM critical
points.

B. Expansion of the linearized theory

The large spin analysis uses the stationary phase
approximation, which is a 1/4 asymptotic expansion of

integrals in Zs(K). We focus on the expansion of the
integral with k; = m, = 0, at the level of the linearized
theory.

We write 6X = 6X(¢) + 86X, where 6X(¢) solves the
critical equations &yS = Re(S) =0. By this change of
variables,

o o 1

From the discussion in the last section, we know that

S [2 +66.X + 6X (¢)] is the Regge action. At the quadratic
order,

o o 1
S| +6¢.X +6X(€)] = 53¢ HypbC + -+ (85)

has been studied in [35], in which the Hessian matrix H,,
was shown to be degenerate. The kernel of the Hessian
contains (i) the space of solutions of the linearized Regge
equation, (ii) four zero modes corresponding to the diffeo-
morphisms in the continuum, and (iii) one zero mode of
hyperdiagonal edge-length fluctuation.

We obtain the following bound of error for the large spin
analysis in the last section’:

‘ / [dZdX]e*Dys(£, X) — <2,Tﬂ>%[det(Hm)det(1<;f)]—%

< (3—”)§ (86)

Here K f;f is the nondegenerate part of H,,, and
N =rank(K#,) + rank(H yy). The integral [[ds7]] is
over solutions of linearized Regge equations and zero
modes. C > 0 bounds the 1/4 correction [57]. The semi-
classical approximation by Regge solutions is valid when
the 1/ corrections are negligible, i.e., when C°/4 is small.
The bound relates to the derivatives of Ds by [57]

x / [ds21)Dy(s¢1, x(521))

(sup [0D;] + sup [92Ds). (87)

>0
xS0

where c is a constant. Since §°Ds ~ 572,

4Equation (86) assumes the nondegeneracy of the Hessian
matrix H yy after removing gauge redundancies. This nondege-
neracy is supported by some numerical evidences. A general
proof of nondegeneracy for the Hessian in SFM is lacking in the
literature. In case it happens that Hy, is degenerate, there are
additional zero modes coming from SFM variables X'. Then the
effective theory is the Regge gravity coupling to these additional
zero modes, when we go beyond the linearization. But in this
paper, we focus on the sector of linearized Regge gravity and the
continuum limit.
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A>672>1 (88)

has to be satisfied to validate the expansion.

Equation (86) is the expansion at the level of linearized
theory, whose asymptotics is an integral over critical
solutions (solutions of EOM and zero modes). It indicates
that the critical solutions contribute dominantly to the SEM.
In this paper we mainly discuss the convergence of critical
solutions under the semiclassical continuum limit. In a
companion paper [58], we report the result of the graviton
propagator and the continuum limit, in which we apply
gauge fixings to remove zero modes.

C. Semiclassical continuum limit

We construct a refined triangulation X’ which is adapted
to a refined hypercubic lattice in the same way that K is
adapted to the original hypercubic lattice. The refined
hypercubic lattice is given by subdividing each hypercube
into 16 identical hypercubes. By refining the hypercubic
lattice we define a sequence of triangulations K, where /C,/
is finer than /C,, if 4’ < . In the continuum limit 4 — 0 the
vertices in the triangulation become dense in R*.

A sequence of SFMs is defined by associating an
amplitude Z(/C,) to each K,. Since the above large spin
analysis is valid for all Z(K,), it gives a sequence of
Egs. (68) and (70) on the sequence of /C,:

8352,“) ef(,u) =0,

lrer(u)| <672 (w).  (89)

All quantities in the equations, e.g., the spins Jg, the
regulator 8, the simplicial geometries, etc., depend on y and
flow toward y — 0.

We set the triangulation label u to be a mass scale such
that y~" is a new length unit. Then a,(u) = a;(u)u~2. The
lattice spacing a(u) is given by the background flat
geometry on C,:

£(u) = (A(u))olp = alup~". (90)

We define the SCL as the flow of the three parameters

Aw), a(u), 6(u), where a(u),6(u) - 0 and A(u) > oo
(A(u) > 6(u)~2) for u — 0. In addition, these flows should
satisfy

2 1da
B i) 1
PRETTR (91)
1dl 1d
la 1ldc (92)
Ady  Cdu
S 1/2
) + bounded from above. (93)
a(u)

Here, C(u) is the bound in Eq. (86), which now depends on
p for the expansion of Z(KC,).

The constraints in Egs. (91)—(93) are necessary due to
the following reasons: Firstly, the motivation for the SCL is
to relate the SFM continuum limit # — 0 to the continuum
limit @ — 0 in Regge calculus, so that we can apply the
convergence result in Regge calculus to the solutions of
Egs. (68) and (70). Obviously, this requires that the lattice
space a(u)? o A(u)u> — 0 as u — 0. Thus,

d

dAa
2y _ 2
0< i Ap)p) = p i + 2ul (94)

which yields Eq. (91).

Secondly, the 1/4 correction has to be small for all x4, in
order that classical Regge solutions are the leading orders
of Z(IC,). It is important to have Regge solutions at all
u to apply the convergence result in Regge calculus. This
demands Eq. (86) to be valid for all Z(K,) with C(u)/A(u)
being always small.

C(u) ~ 8(u)~2 grows when the triangulation is refined.
Thus, A(u) is required to grow at a faster rate in order to
suppress C(u)/A(u) as u — 0. This requires

d (C) cdr 1dc
Rl ot o0 I T 95
= du </1(ﬂ)> P 7 du ©5)
which gives
1dl 1dC
S 96
ddy ~Cdu (%)

This condition guarantees that Eq. (86) is valid at all u, with
the 1/A correction being always small; i.e., the following
bound holds in the continuum limit 4 — 0:

- <0 (97)

where 4 = 1 is the starting point of the flow.

Thirdly, the simplicial geometry should approximates a
smooth geometry. If this is the case then the typical
curvature radius p of the smooth geometry relates to the
deficit angle of the simplicial geometry by p~2 ~¢e,a™2
The regulator 6 and conditions (70) and (93) guarantee that
the curvature p~2 of the emergent geometry is bounded
(geometry is nonsingular) as y — 0.

Equations (91)—(93) have nontrivial implications for the
SCL: In order that a satisfactory flow A(u) exists, Egs. (91)
and (92) have to be consistent, i.e.,

1dc 2
i (98)
Cdu p
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which yields a restriction to the assignment of x to IC,.
Since u is assigned to a sequence of triangulations IC, =
K, =K, (-1 > p,), the variable p=p, is actually
discrete. In the above, we have assumed that C(u,) and
A(u,,) can be continued to differentiable functions C(y) and
A(u). Integrating Eq. (98) leads to

Hn—1 1 dC Hn—1 2
——du > —/ —du 99
/ﬂn Cdy W H )

which implies the following constraint on g,,:
_ C 2
Hn—1 > |: (/’tn) :|2'
Hn C(/"n—l)

Note that p, satisfying this constraint always exists.
Once we have a satisfactory assignment of u to K,, the
running behavior of A(u) is constrained by

(100)

2 1dd _1dC

S 101
g dp S Cdu (101)

In addition, Egs. (93) and (88) require 5(u) to satisfy

M)~ < 8(u) < L2A(u)*pt (102)
where Ly~2¢3% is the bound of (u)'/?/a(u)?. The exist-
ence of a satisfactory §(u) requires that

2 >, (103)
which is another constraint for the flow A(u).

A flow A(u) satisfying both constraints in Eqs. (101) and
(103) always exists. The following provides a satisfactory
example of A(u). Consider the ansatz

Ap) = A2, (104)
where A(1) is the initial value of A(u) at u=1.
Equation (101) implies

1dC 2—u

__> s
Cdu H

u>0, Vi<s<m+1. (105)

The second inequality certainly can be satisfied by a
suitable assignment of u to ICM, by a similar derivation
showing Eq. (98) can be satisfied (replacing % by 2;—”). It
does not restrict the value of u. But combining (103), we
obtain an upper bound of u:

2
O<u<-.

= (106)

If u is within the above range then we obtain a

satisfactory flow A(u) = A(1)u=>™*, which implies a(u) =

u2\/ra(1)¢p and A(1)712u' =% < 8(u) < L?u?. This

example illustrates that flows A(u), a(u), 8(u), which
satisfy Egs. (91)—(93), always exist. So the SCL of SFM
is well defined.

IX. EMERGENT LINEARIZED GRAVITY

The above SCL fills the gap between the continuum
limits in SFM and Regge calculus. Thus, the sequence of
critical points satisfying Eq. (68) under the SCL is the same
as the sequence of Regge solutions under a — 0.

The classification of linearized Regge solutions and their
convergence has been studied in [33,34] (reviewed in
Appendix B). It is shown that the solutions of the linearized
Regge equation converge to a smooth solution of the 4d
(Riemannian) Einstein equation in the limit a — 0. All the
nontrivial geometries obtained from the limit have curva-
tures as linear combinations of

Rabcd(x) = Re[Wabcd exp (_k : X)], (107)
which are Euclidian analogs of plane waves. Here & - x is
the 4d Euclidean inner product and k € C* satisfies
k-k=0. W, 1s a traceless constant tensor that spans
a two-dimensional solution space, whose dimensions
correspond to the helicity +2 gravitons.

Recall that the main contributions to Z(/C,) in the SCL
come from critical points that satisfy the linearized Regge
equation; all other contributions are suppressed. Moreover,
the SCL maps the SFM IR limit 4 — 0 to the Regge
calculus limit a — 0. Therefore, the above convergence
result of Regge solutions can be applied to SFM as u — 0,
which shows that on a 4d flat background, the low energy
excitations of SFM give all smooth solutions of the
linearized Einstein equation (gravitons).

X. CONCLUSION AND OUTLOOK

In the above discussion, we have shown that from the
SCL, the low energy excitations of SFM on a flat back-
ground give all smooth (linearized) Einstein solutions. It
indicates that at the linearized level, classical Einstein
gravity can arise as a low energy effective theory from
SFMs. Our result indicates that the SFM, being a discrete
model of fundamentally entangled qudits, is a working
example for the idea in an emergent gravity program.

Here we showed for the first time that smooth curved
spacetimes can emerge from SFMs in a suited continuum
limit. It suggests that SFMs have a proper semiclassical
limit not only at the discrete level but also in the continuum.
Our result, therefore, strengthens the confidence that
covariant LQG is a consistent theory of quantum gravity.

As a key technical tool, a regularization/deformation
of the SFM is employed in the derivation. This deforma-
tion interpolates between SFMs and quantum Regge
calculus, and the deformation parameter 6 becomes a
coupling constant of a higher curvature correction term
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to Einstein gravity from SFM. It is interesting to see the
physical implication of this higher curvature correction
turned on by a finite J.

Our analysis certainly can be generalized to the nonlinear
regime, and even to the case of a strong gravitational field.
Indeed the large spin analysis does not rely on the
linearization, and the EOM (68) is nonlinear. The emer-
gence of black hole or cosmological solutions from SFMs
can be derived by applying the Regge calculus convergence
results in e.g., [59], similarly as above. These solutions will
enable us to study singularities as the high energy excita-
tions from SFMs.

Finally we remark that the flows of SFM parameters
Au), a(p), 8(u) in the SCL likely relate to a renormaliza-
tion group flow.” Further investigation of the relation may
shed light on the renormalization of perturbative gravity.
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APPENDIX A: SPIN FOAM MODELS
AND TENSOR NETWORKS

In four dimensions, the main building block of a
triangulation KC is a 4-simplex o [see Fig. 3(a)], whose
boundary do contains 5 tetrahedra  and 10 triangles f. K is
obtained by gluing a (large) number of ¢’s through pairs of
their boundary tetrahedra. In the following K itself should
be understood as purely combinatorial or topological while
the discrete geometry is encoded in the associated state sum
Z(K) of the SFM. Generically, Z(K) takes the form

z(K) => "> "TIAarp] AUy i), (AD)
i i r o

where the summand is a product over all triangles f and all
4-simplices o in the triangulation K. The SFM data (J,17)
assign each triangle f an SU(2)-representation labeled by
Jy € Z, /2 and assign each tetrahedron 7 C K an SU(2)-
intertwiner (rank-4 invariant tensor) i,, i.e.,

i €lnvgypV, ® ... @V, J=H ;. (A2)

Each ¢ associates to a 4-simplex amplitude A,(J,i;),
which depends on 10 J,’s and 5 i,’s assigned to f, 7 C Jo.

It may relate to the recent development of the renormalization
group flow in SFM [60].

(c)

FIG. 3. (a) A 4-simplex o as the building block of 4d triangu-
lation /C. (b) The 5-valent vertex illustrates a rank-5 tensor |A, (J)).
(c) Gluing 4-simplices ¢ in K gives a tensor network TN(/C, J ).

The weight A;(J;) of > 5 is usually called the “face
amplitude”.

Both the face amplitude A/(J;) and the 4-simplex
amplitude A,(J;, i;) are model dependent. In the following
we mainly focus on the Euclidean Engle-Pereira-Rovelli-
Levine (EPRL) model [40,41]. In this model, the 4-simplex
amplitude A, is given by the contraction of five Spin(4)
invariant tensors /, that depend on i, (r = 1,...5). That is,

A(Jpi) =t ® L ®I; @I, ®Is),  (A3)

where [, is given by

m.n,.

4

V) J7) nin;
— +d5h— f + f - FUF | T
_/dh dh f|:|l [D H(h )D it () Coy }zf .

The above integral integrates over two copies of SU(2) with
“7)

Haar measures dh*. D ! . (h*) are Wigner D-matrices for
7

nin;
the representation J% and an‘. / are Clebsch-Gordan
coefficients interpolating between (J]TJJ?) and J;
(f =1, ...,4) which are subject to the constraint

1
T =3y, (A4)
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Here, y € R is the Barbero-Immirzi parameter. If y = p/g
(P.q € Z), then J; € Z/2 implies J; € gZ for p + q odd
or J; € qgZ/2 for p + q even.

Note that A, (J ;) with fixed J’s is a linear map from five
invariant tensors , to C. In other words, A,(J;) is a rank-5
tensor state [see Fig. 3(b)]

1Ac(Jr)) € HTY g, @ HEY ss @ MY s,

® HiJI;VJGJsz ® HiJnl:),JstJl : (AS)
Thus, the 4-simplex amplitude can be written as an inner
product
ATy i) = (i1 ® ... ® is|A,(Jy)). (A6)
The above relation allows us to write the summand of
> 7in Eq. (A1) as a tensor network. We observe that a pair
of 6,0’ is glued in K by identifying a pair of tetrahedra
7 =17 = o N o' Correspondingly, a pair of invariant ten-
sors in A, A is identified by setting i, = i and summing
over i, in Z(KC). The identification and summation may be
formulated by inserting a maximal entangled state at each z:

|7) = Z|ir> ® |i;) € iJn,VJZJ3J4 ® Hijnlvjzj3j4‘ (A7)
This yields a tensor network,
TN(K.J) = ®.(1| ®, |A,(J;)). (A8)

where the tensors A, at the vertex is contracted with |7) at the
edges [see Fig. 3(c)]. In other words, the EPRL pair of |i,) in
|7) is associated to the two ends of the edge in Fig. 3(c), and
contracted with the pair |A,), |Ay) (6 N 6’ =) at the two
ends.® Inserting (A8) into (Al) finally gives

Z(K) =Y IN(K. D] JAsUy).
J f

(A9)

Note that both TN(K,J) and Z(K) are wave functions of
boundary SFM data if 9K # @, or numbers if 0K = @.
Due to the presence of the maximal entangled states |z),
the tensor network formulation (A9) allows us to interpret
SFMs as models of entangled qubits (or more precisely
qudits). Recent advances in condensed matter suggest
that entangled qubits and their quantum information might
be fundamental, while gravity might be an emergent

*To compare with the usual definition of SFM, the network in
Fig. 3(c) is the 1-skeleton of the 2-complex dual to /C. Note that
the network in Fig. 3(c) is oriented in the usual definition of SFM,
where i, associated to the target of each edge is the dual (i.|. Here
we have encoded the duality map |i,) — (i,| at the target of each

oriented edge into |A, (7)), in order to formulate TN(/C, J) as a
projected entangled pair state (PEPS) [30,61].

phenomenon (see e.g., [62]). Our results demonstrate that
SFMs are concrete examples, in which gravity emerges
from fundamentally entangled qubits, and therefore relate
quantum gravity to quantum information.

An important step in establishing the results of this paper
is to analyze the behavior of (A9) for large spins. This is
best studied in the integral representation of TN(KC,J)
[17,39]:

TN(K.J) = / dgdg, jedr 1Tl (A10)

where gz, € SU(2) x SU(2) and &,; € C? are normalized
spinors, (-|-) is the Hermitian inner product and F is
expressed as

Felgg &l =D 11 =) In (Eepl() T g |E0s)

6.fCo

+ (L) In(Eefl(90) g0 lEep)]. (A1)

The above integral representation is valid for y < 1. For
y > 1 one obtains a similar expression (see [17]).

APPENDIX B: CONVERGENCE
TO SMOOTH GEOMETRY

The equations of motion from SFMs contain the Regge
equation

>0 ) =0, B1)

7

In the SCL the lattice spacing a(u) goes to zero with u — 0.
Therefore the behavior of SFM critical points in the SCL is
closely related to the convergences of solutions to the
Regge equation in the continuum limit @ — 0. The latter
has been studied in [33,34] for the linearized theory on a
flat background.

In the following, we review the results in [33,34] and
apply them to our case. The following discussion often
suppresses the label u but uses the lattice space a to label
the continuum limit.

Regge’s equation can be written as a set of linear
equations of & for small perturbations on a flat back-
ground, i.e.,

Z Sf Cot(lgf) = 0,

rect

(B2)

where J, is the internal angle of the triangle f opposite to

the edge # and evaluated on the flat background ‘.
In addition to Eq. (B2) the deficit angles & should satisfy
the (linearized) Bianchi identity
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> erlUpemgU®], =0 (B3)

rect

where m is the outward-normal of £ in the plane of f and
U,, 1s an antisymmetric tensor associated to f that is
given by

Uy = VW) — UpW,. (B4)
The unit vectors v, w are mutually orthogonal and orthogo-
nal to f.

Note that the Bianchi identity is satisfied automatically,
if one uses edge-length variables to describe the system.
However, here it is more convenient to use deficit angles as
the system variables. In this case, the Bianchi identity is an
additional constraint. This formulation of the linearized
Regge equation using deficit angles is equivalent to the one
using edge lengths, because a set of linearized deficit angles
satisfying the Bianchi identities can construct a linearized
(piecewise-flat) metric, unique up to linearized diffeomor-
phisms (the four zero modes mentioned in Sec. VIIIB).
[63]. Conversely, from the linearized metric, one can
construct the linearized deficit angles.

Given the periodic nature of the triangulation IC, we
consider the periodic configuration of &, with the shift
w;(a) along the body principles of a hypercube. The shift
relates €7 and e for parallel f in two neighboring hyper-
cubes by

£ = a),-(a)s}. (B3)
Here i =1, 2, 4, 8 label the four body principles of the
hypercube. Equation (B5) can be more conveniently
written by introducing the shorthand notation

Qfa) = (01(a), wy(a), w4(a), wg(a))  (BO)

and computing the Fourier transform of Eq. (B5) on the
hypercubic lattice (aZ)*. This yields

a d4k i inia
e/(n) :/”We Sikmag k),  nmez. (B)
Thus each “plane wave” corresponds to Q(a) =

(etha eiha pikua piksa) and tends to (1,1,1,1) in the limit
a — 0. In the following we will assume the same limit
behavior, i.e., Q(a) — (1,1,1,1), and that the derivative
Q/(0) exists at zero for general Q(a). Note that Q(a) is
complex because the k;’s are complex in the Euclidean
signature, as we see in a moment.

Due to periodicity, Egs. (B2) and (B3) reduce to a set of
linear equations for &;’s within a single hypercube. Let this
hypercube be denoted by cell(0), so then

Z M([Q(a)],es(a) = 0. (B8)

fceell(0)

In the following we consider complex solutions of the
above equation and their convergence. The physical sol-
utions are the real parts of those solutions and converge
when the complex solutions converge.

By selecting a solution &;(a) of Eq. (B8) for each a we
can generate a sequence of linearized Regge configura-
tions. The convergence of this sequence is closely related to
the convergence of the associated discrete Riemann curva-
ture tensors. The discrete curvature is defined as a tensor-
valued distribution that maps a smooth function f of
compact support to the tensor R,;,.[f] given by

P ;ef[uab Ued, /f i = Ruedlll. (BY)

Here ¢ is the area measure of f and U, is the bivector of
the triangle f. One can now show that the sequence of
solutions to Eq. (B8) converges for a — 0 if R, con-
verges as a distribution provided that &;/a* remains
bounded [33,34]. Note that in the SCL defined above
the latter condition is automatically satisfied due to the
regulator § and Eq. (93).

It is more convenient to consider a stronger convergence
for the sequence of solutions &/ (a). Namely we require that
es(a)/a* converge forall f as a — 0, which clearly implies
the above convergence criterion.

In [34] it was shown that for any family of vectors Q(a),
for which Q(0) = (1,1,1,1) and Q/(0) exist, and any

(0)

solution € of Eq. (B8) at a finite a;, there exists a

sequence of solutions &/(a) of Eq. (B8) such that

er(ag) = 6‘}0). Moreover, the limit £;(a)/a* as a — 0 exists

for all f and the discrete curvature tensor R ;,.; converges to
Rabcd(x> = Wapea €Xp (_Q/(O) ' x)’ (BIO)
where W ., 1s a traceless complex constant tensor and the -
symbol represents a 4d Euclidean inner product.
There are three possible cases for different k=
Q'(0) e C~.
(i) Case 1: If k # O satisfies k - k = 0 then W ., spans
a two-dimensional solution space, where the dimen-
sion corresponds to the helicity +2 of gravitons.
Note that k has to be complex; otherwise k- k =0
would imply k£ = 0.
Let U and V denote the real and imaginary parts
of the tensor W and m and [ the real and imaginary
parts of k, respectively. The real part of Eq. (B10) is

U peaexp(—1- x)cos(m - x)

+ Vapeaexp(—1-x)sin(m-x). (B11)
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The appearance of exp(—! - x) is due to the difference
between Minkowskian and Euclidean signatures.
(i1) Case2: For k # 0 and k - k # 0, the solution space is
one dimensional and R, .; converges to zero.

(iii) Case 3: For k = 0 the vector Q(a) = (1,1,1,1) isa
constant and R,;,., converges to a nonzero constant.
The solution space corresponds to the full ten-
dimensional space of traceless tensors W ;.4

The geometries in case 1 are smooth solutions of the
linearized Finstein equation, as a Euclidean analog of plane
waves. They correspond to the nontrivial low energy
excitations from SFM under SCL. Case 2 with R,,.;, =0
does not change the flat background geometry and, thus,
corresponds to purely gauge fluctuations of the triangulation
in the flat geometry.

The solutions in case 3 deserve some further explanation.
Although those solutions appear in addition to the “plane
wave” geometries Eq. (B11), they only associate to k = 0.
So the set of solutions in case 3 is of measure zero in the
space of all solutions. The space of all solutions in
the continuum limit is infinite dimensional, although the
solution space with a fixed k is finite dimensional. A
generic linear combination

Rupea(n) = [ 0k (- OREW e (K)exp(~k-x)]  (B12)

is insensitive to the value of W,,.,(0) (the solution in
case 3). The above R,;.4(x) is a Euclidean analog of a
realistic gravitational wave that is not a purely plane wave
but has a distribution W ,.,4(k).

Among the zero modes mentioned in Sec. VIII B, four
diffeomorphisms have been taken care in the above analysis
because of deficit angle variables, which leads to £2
helicities. The hyperdiagonal zero mode has the same
behavior as in case 2; i.e., it converges to zero curvature
Rapea = 0 [33].

APPENDIX C: SOME TOPOLOGICAL
PROPERTIES OF THE TRIANGULATION

The analysis in this paper is based on a fixed type of
triangulation /C. In this section we collect a couple of useful
properties of /C.

IC is adapted to a four-dimensional hypercube lattice in
which each lattice cell is a triangulated hypercube (Fig. 4).
Each vertex of the hypercube is labeled by a number from 0
to 15. Note that the vertex number written in binary form
(ny, ny, n3, ny) with n; = 0, 1 yields the components of the
vector from the origin to the vertex. Thus the vertex
numbers define 15 lattice vectors at the origin, which
are edges and various diagonals of the hypercube and
subdivide the hypercube into 24 four-simplices. The
triangulation C is made from the hypercube lattice by
simply translating the triangulation from one hypercube to
another. In order to simplify the problem, one can consider

14 15
12 1

P

0 1

FIG. 4. A visualization of a triangulated hypercube cell. The
vertices of the hypercube are labeled by number from O to 15. The
binary number of the vertex label is the same as the components
of the vector from the origin point to the vertex.

K as an N* lattice. Among those hypercubic cells, a
hypercube whose lattice components contain 0 or N — 1
lies on the boundary of the lattice. A hypercube whose
lattice components do not contain O or N — 1 is in the bulk.

A single triangulated hypercube has 65 edges, 110
triangles and 24 four-simplices. However, the numbers
of the edges and the triangles per bulk cell in the lattice are
smaller than those numbers for a single hypercube since
triangles and edges are shared by different hypercube cells.
If there are n edges or triangles parallels to each other in a
single triangulated hypercube then each of those edges or
triangles will be shared by n hypercube cells in the bulk of
the lattice. Thus the effective weight of those edges or faces
in a cell is 1/n.

For example, in a single hypercube the triangle (4,5,15)
is the only triangle that is parallel to (0,1,11). One finds that
the shift vector between (0,1,11) and (4,5,15) is (0,1,0,0).
In the bulk of the lattice, the triangle (4,5,15) of the cell
with the lattice coordinates (z,x —1,y,z) coincides with
the triangle (0,1,11) of the cell (¢, x,y,z). Similarly, the
triangle (0,1,11) in the cell (z,x + 1,y,z) coincides with
(4,5,15) in the cell (¢, x, y, z). Thus the bulk cell (¢, x,y, z)
only possesses half of the triangle (0,1,11) and half of
(4,5,15). Similar arguments work for all the other faces and
edges in the bulk of the lattice K. So in the lattice, each bulk
hypercube only possesses 15 edges and 50 triangles.

Furthermore, we can define a coincident number y of a
triangle f where w = m + 1 if one triangle f coincides
with m triangles coming from other cells. The maximum
value of w(f) is equal to 1 plus the number of triangles that
are parallel to f in a single isolated hypercube.” For any
triangle f in a bulk cell, y(f) must be equal to its maximum
value. But in a boundary cell, not all the triangles have
maximum w(f). Those triangles lie in the boundary
triangles.

"The maximum value of w(f) also equals 1 over the weight of
the triangle f.
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TABLE 1. Each column of the table shows four triangles that are parallel to each other. The triangles that appear in the first two rows
are type 1 and the triangles in the last two rows are type 2.

Type 1 (1,5,13) (1,3,7) (1,3,11) (1,9,13) (1,9,11) (2,6,7) 2,3,7)  (2,3,11) (2,10,11)  (4,5,7) (4,6,7)
Type 1 (2,6,14) (8,10,14) (4,6,14) (2,10,14) (4,12,14) (8,12,13)  (89,13) (4,5,13) (4,12,13) (8,9,11)  (8,10,11)
Type 2 (0,4,12) (0,2,6) (5,7,15) (3,11,15) (5,13,15) (10,14,15) (10,11,15) (0,1,9) (0,8,9) 0,1,3) 0,2,3)
Type 2 (3,7,15) (9,11,15) (0,2,10) (0,8,12) (0,8,10) 0,4,5) 0,1,5)  (6,7,15) (6,14,15) (12,13,15) (12,14,15)

In an N* lattice, the boundary hypercubes contribute
356 + 574(N —2) + 310(N —2)? + 56(N — 2)? boundary
triangles and 80+ 148(N—2)+84(N—2)%>+14(N-2)?
boundary edges. So in the bulk, there are SON* — (356 +
574(N = 2) 4+ 310(N = 2)? +56(N —2)3) triangles and
I5N* — (80 + 148(N —2) + 84(N — 2)> + 14(N - 2)3)
edges. When N tends to be large, the ratio between the
number of bulk edges and the number of bulk triangles will
converge to 3:10.

Furthermore one can show that every bulk triangle is
shared by an even number of 4-simplices because any
triangle within a single triangulated hypercube must be
shared by 1, 2, 4 or 6 four-simplices. Define 7i(f) to be the
total number of 4-simplices within a hypercube that are
sharing the triangle f. We call f of type 1 if 7i(f) = 1 or of
type 2 if 7i(f) # 1 respectively. There are 24 type-1
triangles in a single hypercube. Table I lists all of those
triangles and the triangles parallel to them.

Obviously some of the triangles are shared by different
hypercubes. For those triangles one should add up 7i(f) in

different hypercubes in order to count how many
4-simplices are sharing the face f. Table I shows that each
of the type-1 triangles must be parallel to another type-1
triangle and two type-2 triangles. From this we may
conclude the following:
(i) Any triangle shown in the Table I is shared by four
hypercubes. In two of those hypercubes, the triangle
is type 1 and in the other two hypercubes, it is type 2.

(i1) The triangles listed in the same column are shared by
the same number of 4-simplices. Explicitly,
the triangle (x,y,z) is shared by }  7i(f) of
4-simplices, where f stands for all the triangles that
are in the column and contain triangle (x,y,z).
Moreover, »_,7i(f) must be even since it can be
expressed as 1 + 1 plus two even numbers.

(iii) For the other type-2 triangle in Table I, the number
of 4-simplices shared by it should be the sum of 2, 4
or 6, which is also even.

Thus in the bulk of /C, every triangle is shared by an even
number of 4-simplices.
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