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We study the generalized uncertainty principle (GUP) modified time evolution for the width of wave
packets for a scalar potential. The free particle case is solved exactly where the wave-packet broadening is
modified by a coupling between the GUP parameter and higher-order moments in the probability
distribution in momentum space. We consider two popular forms of deformations widely used in the
literature—one of which modifies the commutator with a quadratic term in momentum, while the other
modifies it with terms both linear and quadratic in momentum. Unlike the standard case, satisfying
Heisenberg uncertainty, here the GUP modified broadening rates, for both deformations, not only depend
on the initial size (in both position and momentum space) of the wave packet but also on the initial
probability distribution and momentum of the particle. The new rates of wave-packet broadening, for both
situations, are modified by a handful of new terms—such as the skewness and kurtosis coefficients, as well
as the (constant) momentum of the particle. Comparisons with the standard Heisenberg uncertainty
principle–based results show potentially measurable differences in the rates of free wave-packet broadening
for physical systems such as the C60 and C176 molecules, and more so for large organic molecular wave
packets. In doing so, we open a path to scan the GUP parameter space by several orders of magnitude inside
the best existing upper bounds for both forms of GUP.
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I. INTRODUCTION

One of the key features of quantum mechanics (QM) is
the fact that it sets, by means of the Heisenberg uncertainty
principle (HUP), a fundamental limit on the precise and
simultaneous knowledge of two canonically conjugate
dynamical variables for any quantum system. This, along
with other fundamental principles, when put together,
ensures the dispersion of free wave packets through space
in a manner that the width of the packet tends to always
increase over time [1]. These insights are important to
understand classical-quantum correspondence in general.
For example, one can easily compute that the wave packet
corresponding to a free electron will disperse in space very
rapidly, and therefore the likelihood of pointing down a free
electron to be present at a specific point in space is negligible.
For a classical particle the wave packet does not have a
detectable dispersion in space over the age of the universe.
The above features are, of course, very well in agreement

with our experiences which, nonetheless, are also verified
in certain cases. On the other hand, there is a growing
consensus that, inspired by certain quantum gravity theo-
ries, is advocating about the existence of a fundamental

minimal length scale (at the Planck length). Among them,
studies in string theory [2–8], doubly special relativity
[9–12], black hole physics [13–15], loop quantum gravity
(LQG) [16,17], noncommutative quantum geometries
[18–20], and more general approaches concerning QM
and general relativity [21–30] manifest this existence of a
minimal length by replacing the HUP by a generalized
uncertainty principle (GUP) whose exact form, however,
often disagrees among various proposals (for a broad
overview see [7,13,31–35] and references therein). The
GUP-based approaches have a motivation to provide a
shorthand exercise in the search for quantum gravity
effects, hypothesized to be realized in the form of a minimal
length, in low-energy physics, and, if it is indeed found,
then ask for an appropriate fundamental theory, from
first principles, to explain this effective description of
physical reality [36] (which may well be one of the existing
theories—LQG or string theory or an entirely new theory).
One main focus of GUP-based studies is to calculate the

modified spectrum of different observables that can be
useful to test the validity of the theory, and in case no
measurable differences are found it may still give bounds
on the GUP parameters. Some of the studies in this line are
reported in several works [37], and, in fact, a number of
new experiments have been proposed [38] to measure these
GUP contributions.
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We, on the other hand, are opening a new avenue in this
quest for understanding the fundamental insights that are
brought in by the GUP modification (or the minimal
length scale) on the wave function itself and thereby
giving some new information on a distributional level. To
do this we consider the wave packet corresponding to a
free particle which can give an account of the bare effect
of the minimal length scale on the otherwise very well
understood situation. There exist preliminary works on the
GUP effect on free particle wave packets [39], but they
were not developed enough to highlight the theoretical
and experimental impact discussed here. Particularly, in
this article, we present a detailed account of the basic
setting of wave-packet evolution both within the standard
HUP setting (which is well known) and within the GUP
framework (which is a new study). The GUP modification
will be shown to imply a nontrivial distributional ram-
ification on the rate and fundamental properties of the
broadening of the free wave packets. We shall also
compare two situations, i.e., GUP vs HUP explicitly to
clarify various outcomes, both mathematically and physi-
cally. There will be a considerable effort to estimate the
time difference between the GUP and HUP broadening of
the free wave packets and the likelihood of experimentally
detecting this departure. Interestingly, while doing so, we
can also put some bounds on the GUP parameter, and that
will be an improvement of several orders of magnitude to
the current best upper bounds that come from studying the
spectrum of a number of observables. All these will be
done using the two most popular forms of the GUP given
by the Ali-Das-Vagenas (ADV) form and the Kempf-
Mann-Mangano (KMM) form.
This paper is organized in the following manner: in

Sec. II we provide a review of the basic setup to derive the
evolution law for the width of the free wave packet. In
Sec. III we shall take the first step to include the GUP effect
by generalizing Ehrenfest’s equations. Section IV is used
for the derivation of the governing equation for the spread-
ing of free wave packets in the GUP scenario. Here we
consider two popular forms of GUP, given by the ADVand
KMM forms. The Sec. V is dedicated to solving these
equations, exactly, for the free particle case. Section VI
physically explains the new results. Moving on, in Sec. VII
we shall elaborate on the possibility of testing our results
within the present technology, for both forms of GUP.
Finally, in Sec. VIII we conclude.

II. THE MOTION AND SPREADING
OF WAVE PACKETS

In this section we review the standard picture of wave-
packet broadening in quantum mechanics. This is a
standard textbook exercise (see, e.g, [1]); however, it is
important to review it here for the sake of clarity and
completeness of the paper.

A. Ehrenfest’s theorem: A classical analogy

In quantum mechanics, the fundamental principle that
sets a limit in the precision to which one can simultaneously
measure two given physical quantities is the HUP

½qi; pj� ¼ iℏδij; i; j ¼ 1; 2;…; N; ð1Þ

where N is the number of spatial dimensions under
consideration. This is equivalent to the uncertainty relation-
ship between the position and momentum of a particle
satisfying

ΔxΔp ≥
ℏ
2
: ð2Þ

We also have the identity applied to the time derivative of
the average (expectation) value of the observable

iℏ
d
dt

hAi ¼ h½A;H�i þ iℏ

�∂A
∂t

�
; ð3Þ

where the observable A is understood as a self-adjoint
operator and H ¼ Hðq1;…; qN ;p1;…; pNÞ is the system’s
Hamiltonian. Using this identity on coordinates of position
and momentum, we obtain Ehrenfest’s equations

d
dt

hqii ¼
1

iℏ
h½qi; H�i ¼

�∂H
∂pi

�
; i ¼ 1; 2;…; N; ð4Þ

and

d
dt

hpji ¼
1

iℏ
h½pj;H�i ¼ −

�∂H
∂qj

�
; j ¼ 1; 2;…; N; ð5Þ

which are deduced from Ehrenfest’s theorem. Notice that
these equations are formally identical to Hamilton’s equa-
tions in classical mechanics, although this formal analogy
can be rigorously made only when the conditions

� ∂
∂pi

Hðq1;…; qN ;p1;…; pNÞ
�

¼ ∂
∂pi

Hðhq1i;…; hqNi; hp1i;…; hpNiÞ

and

� ∂
∂qj Hðq1;…; qN ;p1;…; pNÞ

�

¼ ∂
∂qj Hðhq1i;…; hqNi; hp1i;…; hpNiÞ

are fulfilled. The above equations need not hold for an
arbitrary potential; however, both of them hold up perfectly

CARLOS VILLALPANDO and SUJOY K. MODAK PHYS. REV. D 100, 024054 (2019)

024054-2



to the quadratic potential that then includes the cases such
as the free particle and the harmonic oscillator.
Now, let us consider a one-dimensional wave packet

Ψðq; tÞ with Hamiltonian

H ¼ p2

2m
þ VðqÞ: ð6Þ

In order to study the time evolution of the expectation
values hqi and hpi let us first define their mean-square
deviations,

ξ ¼ ðΔqÞ2 ¼ hq2i − hqi2; η ¼ ðΔpÞ2 ¼ hp2i − hpi2:
ð7Þ

Note that in the classical approximationΨðq; tÞ represents a
particle with position, momentum, and energy given by

qcl ¼ hqi; pcl ¼ hpi; and Ecl ¼
hpi2
2m

þ VðhqiÞ:
ð8Þ

Now, let us define the quantity that tracks the difference

ε ¼ hHi − Ecl ¼
1

2m
ηþ hVi − Vcl; ð9Þ

where Vcl ¼ VðhqiÞ.
For the classical approximation to hold, we require the

extension Δq of the wave packet to remain small as
compared to the characteristic distances of the problem
under consideration, so that we can make the following
Taylor expansions around hqi:

VðqÞ¼Vclþðq−hqiÞV 0
clþ

1

2
ðq−hqiÞ2V 00

clþ��� ;

V 0ðqÞ¼V 0
clþðq−hqiÞV 00

clþ
1

2
ðq−hqiÞ2V 000

clþ��� ; ð10Þ

where V 0
cl ¼ dV

dq jq¼hqi. Using this expansion will guarantee
the results are entirely general, i.e., valid for any V. Taking
the expectation values of (10), we obtain

hVi ¼ Vcl þ
1

2
ξV 00

cl þ � � � ;

hV 0i ¼ V 0
cl þ

1

2
ξV 000

cl þ � � � : ð11Þ

By (4), (5), and (6), we have

d
dt

hqi ¼ hpi
m

;
d
dt

hpi ¼ −hV 0i: ð12Þ

Notice that, if we use hV 0i ¼ V 0
cl [(11) up to first order],

then Eqs. (12) reduce to “classical” equations of motion

for the mean values hqi and hpi. This result holds if VðqÞ
varies slowly over a distance ∼

ffiffiffi
ξ

p
, so that the effect

of V 000 and higher derivatives in (11) is negligible.
This condition holds trivially for the cases VðqÞ ¼ cq2

(harmonic oscillator) and VðqÞ ¼ 0 (free particle), and for
every VðqÞ of at most order 2 in q. Assuming these
conditions hold [i.e., series (11) are rapidly converging],
we have [see (9)]

ε ≃
1

2m
ðηþmV 00

clξÞ ¼ const: ð13Þ

B. Deriving the master equation

We have described the motion of wave packets, by
means of hqi and hpi; now, in order to study the spreading
of wave packets over time, we want to obtain functions ξðtÞ
and ηðtÞ (i.e., spread in configuration and momentum
space) explicitly. Notice that ξ ¼ hui, where u ¼ q2 − hqi2
and hqi ¼ fðtÞ, so applying identity (3) to this operator
yields

d
dt

ξ ¼ 1

m
ðhpqþ qpi − 2hpihqiÞ: ð14Þ

Analogously, for the operator dξ=dt, using again (3)
and (12) we obtain

d2ξ
dt2

¼ 2η

m2
−

1

m
ðhV 0qþ qV 0i − 2hqihV 0iÞ: ð15Þ

By using (10) in (15), we get the approximate equation

d2ξ
dt2

≃
2

m2
ðη −mV 00

clξÞ; ð16Þ

and finally, taking (13) into account, we can rewrite it as

d2ξ
dt2

≈
4

m
ðε − V 00

clξÞ; ð17Þ

which we refer to here as the master equation. Upon
solving it, and knowing the deviations ξ0, η0, and _ξ0 ≡
dξ0=dt at t ¼ t0, we obtain ξðtÞ, the spread of the wave
function over time in configuration space; ηðtÞ can then be
found with (13), using the fact that ε is constant.
Two interesting cases arise: the free particle and har-

monic oscillator potential, in which the motion of the
center of the packet is rigorously identical to that of a
classical particle [1]. In the case of the free particle, V ¼ 0,
and thus from (13) we have η ¼ 2mε ¼ η0; that is,
η ¼ ðΔpÞ2 remains constant. However, we have rigorously
d2ξ=dt2 ¼ 2η0=m2 and thus

ξðtÞ ¼ ξ0 þ _ξ0tþ
η0
m2

t2: ð18Þ
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This result tells us that the free wave packet spreads
indefinitely, as is well known, so this sets a limit for the
time interval during which the classical-particle analogy
holds. If we have _ξ0 ¼ 0 (e.g., the packet has the minimum
width at t0, so that ξ0η0 ¼ 1

2
ℏ2), then (18) is simplified to

ξ ¼ ξ0 þ η0t2=m2 or, equivalently,

ΔqðtÞ ¼
ffiffiffi
ξ

p
ðtÞ ¼

�
ðΔq0Þ2 þ

�
Δp0t
m

�
2
�
1=2

; ð19Þ

where Δq0 and Δp0 are the initial uncertainties in position
and momentum space corresponding to the minimum wave
packet. This is a truly remarkable equation and fundamen-
tal to our physical understanding of quantum theory, which
explains why we cannot see an electron as a localized
object and why classical objects are seem to be localized
forever. Take, for instance, the case of free electron—the
second term in (19) increases with time as t2 and matches

the initial width in time t ¼ 2πðΔq0Þ2
cλe

(by using the minimum
wave-packet uncertainty relation Δq0Δp0 ¼ ℏ=2 and the
definition for the Compton wavelength for the electron).
Using λe ¼ 2.4 × 10−12 m and initial widthΔq0 ≃ 10−10 m
we get the time it takes for the second term in (19) to equate
the first term is t ∼ 10−16 s. This is why it is hard to
detect the electron as a localized object confined to a small
space—the wave packet gets quickly delocalized. On the
other hand, for most of the classical objects this time is
more than the age of the universe.

III. THE GENERALIZED EHRENFEST
EQUATIONS

The general form of the GUP commutator we are
considering here is given by [40,41]

½qi;pj�¼ iℏ

	
δij−α

�
pδijþ

pipj

p

�
þβ2ðp2δijþ3pipjÞ



:

ð20Þ

This relationship is valid for the nonrelativistic quantum
mechanical context where the coordinates are usually
identified as the Cartesian coordinates (which is true even
with a standard commutator without GUP modifications
[1]). This leads to the generalized Ehrenfest equations

d
dt
hqii¼

XN
j¼1

	
δij

�∂H
∂pj

�
−α

�
δij

�
p
∂H
∂pj

�
þ
�
pipj

p
∂H
∂pj

��

þβ2
�
δij

�
p2

∂H
∂pj

�
þ3

�
pipj

∂H
∂pj

��

; ð21Þ

d
dt
hpii¼

XN
j¼1

	
−δij

�∂H
∂qj

�
þα

�
δij

�
p
∂H
∂qj

�
þ
�
pipj

p
∂H
∂qj

��

−β2
�
δij

�
p2

∂H
∂qj

�
þ3

�
pipj

∂H
∂qj

��

: ð22Þ

Putting these equations into the forms

d
dt

hqii ¼
XN
j¼1

	
δij

��∂H
∂pj

�
− α

�
p
∂H
∂pj

�
þ β2

�
p2

∂H
∂pj

��

− α

�
pipj

p
∂H
∂pj

�
þ 3β2

�
pipj

∂H
∂pj

�

ð23Þ

and

d
dt
hpii¼

XN
j¼1

	
−δij

��∂H
∂qj

�
−α

�
p
∂H
∂qj

�
þβ2

�
p2

∂H
∂qj

��

þα

�
pipj

p
∂H
∂qj

�
−3β2

�
pipj

∂H
∂qj

�

; ð24Þ

we recognize, in the δij term, the pattern ð1 − α
ffiffiffiffiffiffiffiffiffi
pipi

p þ
β2pipiÞ that arises in various results of the GUP modified
angular momentum algebra [40].
Since we shall be interested in the one-dimensional

problem of a free wave-packet expansion, we express the
above-mentioned equations for one dimension, starting
from the commutator,

½q; p�GUP ¼ iℏð1 − 2αpþ 4β2p2Þ; ð25Þ

which leads to the other commutation relations

½q;H�GUP ¼ iℏγ̃
p
m
; ½p;H�GUP ¼ −iℏγ̃V 0;

where γ̃ ≡ 1–2αpþ 4β2p2. If we consider a free particle,
then, of course, ½p;H� ¼ 0. Using the above results and (3)
we find

d
dt

hqi ¼ 1

m
hγ̃pi

and

d
dt

hpni ¼ 1

iℏ
h½pn;H�i ¼ 1

iℏ

�Xn−1
j¼0

pj½p;H�pn−ðjþ1Þ
�

¼ 0

for the free particle in one dimension. Now we move to the
next section to derive the modified master equation
with GUP.
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IV. ONE-DIMENSIONAL WAVE PACKETS AND
GENERALIZED MASTER EQUATION

Using the results of Sec. III and Eq. (3), for a free particle
we find

̈ξGUP ¼
2

m2
fhγ̃p2i − 2αhγ̃p3i þ 4β2hγ̃p4i − hγ̃pi2g: ð26Þ

As a quick consistency check, let α ¼ β ¼ 0, i.e., γ̃ ¼ 1;
the result is ξ̈ ¼ 2

m2 η0, which is just the standard result for a
free particle using the HUP. For future convenience we
want to rewrite (26) in terms of some new variables, in the
form

̈ξGUP ¼
2

m2
ðη0 − 4αC̃1 þ 4α2C̃2 þ 8β2C̃3Þ; ð27Þ

which is correct up to second order in GUP parameters.
This consideration is in line with the very definition of the
GUP commutator (20), which is an approximate expression
up to quadratic powers. The new variables in (27) are
defined as

C̃1 ¼ ηð2pcl þ Γ1η
1=2Þ; ð28Þ

C̃2 ¼ η2ðΓ2 − 1Þ þ 4ηpclðpcl þ η1=2Γ1Þ; ð29Þ

C̃3 ¼ ηð3p2
cl þ 3η1=2pclΓ1 þ ηΓ2Þ; ð30Þ

where η ¼ η0 is the square of the (constant) standard
deviation in momentum, which also appeared with HUP.
Notice that the new variables C̃1, C̃2, and C̃3 involve the

higher-order moments, which introduce a novel statistical
interpretation to our discussion, regarding the shape of the
probability distribution for free wave packets. To under-
stand this meaningfully, we have introduced Pearson’s
skewness coefficient (Γ1), which represents the third order
moment, as

Γ1 ¼
hðp − hpiÞ3i

σ3
¼ 1

η3=2
hðp − hpiÞ3i: ð31Þ

Further, we have also introduced the fourth order moment
given by the kurtosis coefficient Γ2 as

Γ2 ¼
hðp − hpiÞ4i

σ4
¼ 1

η2
hðp − hpiÞ4i: ð32Þ

The term σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2i − hpi2

p
¼ η1=2 is the standard

deviation of the momentum distribution. It is important
to recall that both Γ1 and Γ2 measure the departure of
the probability distribution from the normal distribution.
While Γ1 measures the asymmetry about its mean hpi, Γ2

measures its tailedness. While the skewness can take either

positive or negative values, kurtosis is positive definite.
For a normal (true Gaussian) distribution Γ1 ¼ 0 and
Γ2 ¼ 3. This is a remarkable result since every new
correction coming from the GUP has a distributional
interpretation and, therefore, can be explained physically.
Just for completeness, let us note the expanded form of Γ’s,
given by

Γ1 ¼
1

η3=2
ðhp3i þ 2hpi3 − 3hpihp2iÞ

and

Γ2 ¼
1

η2
ðhp4i − 4hpihp3i þ 6hp2ihpi2 − 3hpi4Þ:

V. GUP MODIFIED BROADENING OF WAVE
PACKETS: THE FREE PARTICLE

It is straightforward, once again, to write down a solution
of (27), under the assumption that the initial wave packet is
minimal [_ξðt0Þ ¼ 0]. The resulting equation is

ΔqfreeðtÞ ¼
�
ðΔq0Þ2 þ

1

m2
fðΔp0Þ2 − 4αC̃1

þ 4α2C̃2 þ 8β2C̃3gt2
�
1=2

; ð33Þ

which depends on C̃1, C̃2, and C̃3 (which carry the
information on the standard deviation, skewness, and kur-
tosis of the probability distribution in momentum space), as
well as GUP parameters α and β. From here on, we shall
branch our discussion in two directions, with two special
cases of the GUP (i) with α ¼ β, which is the ADV form of
GUP, and (ii) α ¼ 0, which is the KMM form.

A. Ali-Das-Vagenas GUP

We can arrive at the form of GUP prescribed by Ali, Das,
and Vagenas in [35,40,41] just by setting α ¼ β in the
commutator (25), giving us

½q; p�GUP ¼ iℏð1 − 2αpþ 4α2p2Þ: ð34Þ

The solution (33) dictating the spread over time for the free
wave packet for this case is given by

ΔqfreeðtÞ ¼
ffiffiffi
ξ

p
ðtÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δq02 þ

1

m2
ðΔp0

2 − 4αC1 þ 4α2C2Þt2
r

;

ð35Þ

where the coefficients C1 ¼ C̃1 and C2 ¼ 3hp4i − hp2i2−
2pclhp3i. Now, before going on to the analysis of the
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GUP-modified spread of free wave packets, we need to
find an expression for η as a function of the initial size
of the wave packet ξ0 ¼ ðΔq0Þ2. To do this, note that (20)
leads to the minimum uncertainty relation, which for the
ADV form is

Δq0Δp0 ¼
ℏ
2

�
1þ

�
αffiffiffiffiffiffiffiffiffi
hp2i

p þ 4α2
�
Δp2

0

þ 4α2p2
cl − 2α

ffiffiffiffiffiffiffiffiffi
hp2i

q �
: ð36Þ

Using this and the fact that hp2i ¼ η0 þ p2
cl, we find that

2

ℏ
ðΔq0

ffiffiffiffiffi
η0

p Þ − ½1þ 4α2ðη0 þ p2
clÞ� þ α

"
η0 þ 2p2

clffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η0 þ p2

cl

q
#
¼ 0:

ð37Þ

Upon solving this equation for η0 we find the expression
η0 ¼ η0ðΔq0; α; β; pclÞ that we were looking for. Notice
that, since both Δq0 and pcl are constant parameters that
depend on the particle (or molecule) under consideration,
and β is the GUP parameter, solving (37) will yield a
numerical value for η0 that will be different for the different
systems that one is considering. We shall take advantage of
this in the following section.

B. Kempf-Mann-Mangano GUP

The KMM form of GUP (proposed in [24] and further
discussed in [30]) does not include any linear term in the
momentum and is given by

½q; p�GUP ¼ iℏð1þ β̃2p2Þ; ð38Þ

which is identical to (25) with the identification β̃ ¼ 2β. To
get the solution for the free wave-packet expansion in this
case we can just set α ¼ 0 in (33), and this gives

ΔqfreeðtÞ ¼
�
ðΔq0Þ2 þ

1

m2
fðΔp0Þ2 þ 2β̃2C̃3gt2

�
1=2

ð39Þ

and it does not include C̃1 and C̃2. However, statistically
speaking it has the same interpretation in terms of Γ1;Γ2; η
since all of them are included in the definition of C̃3. The
corresponding minimum uncertainty relation and the rela-
tionship to find η are now given by

Δq0Δp0 ¼
ℏ
2
ð1þ 4β2ðΔp2

0 þ p2
clÞÞ ð40Þ

and

2

ℏ
ðΔq0

ffiffiffiffiffi
η0

p Þ − ½1þ 4β2ðη0 þ p2
clÞ� ¼ 0; ð41Þ

respectively.

VI. RESULTS AND PHYSICAL
INTERPRETATION

Now, let us elaborate on the results obtained in the
previous sections.
The standard discussion based on the HUP provides a

universal time-evolution law (19) for the wave packet’s
width, irrespective of the initial probability distribution
at time t0. The only requirement for (19) is that the wave
packet’s width was minimal at t0. This will apply for a
normal distribution (which is quite ideal) and also for all
other situations where the initial probability distribution is
not normal. For all cases, the evolution law is the same and
is given by (19). On the other hand, as evident from our
analysis, that is not true if we have to believe a GUP-based
calculation, irrespective of the particular form one may
choose (such as the ADV or KMM form). The modified
time evolution laws (35) and (39) are, indeed, dependent on
the type of initial probability distribution. That is to say, for
two wave packets of the same initial width but different
forms (different values of skewness or kurtosis) the
dispersion rate will be different for both (35) and (39).
With that said, the distributions do not need to be skewed or
have excess kurtosis in order to exhibit GUP-induced
effects (the evolution of normal Gaussian wave packets
is modified as well). Furthermore, these rates are dependent
on both the initial momentum and the uncertainty in
momentum, as opposed to the standard case (18) where
it does not depend on the initial momentum.
One may now ask the question: Why do we have to

consider different initial probability distributions, at all, for
a free particle? To answer this question we may think about
a stream of particles that were under some sort of applied
force fields for some time and then those force fields were
switched off at time t0, and from that instant on (or a little
while after, depending on the relaxation time) these
particles start behaving as free wave packets. Then the
initial configuration of the wave packet at time t0, when all
the force fields are switched off, depends on the details of
the interaction between the particles and said force fields,
which can, of course, be arbitrary and, therefore, the initial
configuration of the stream of free particles at t0 need not be
a normal distribution. In fact, it is likely to have any other
distribution including the possibility to have a nonzero
skewness and excess kurtosis.
Therefore, from our discussion it follows that, while

an HUP-based calculation is blind to the moments higher
than second order of the initial probability distribution in
momentum space, GUP-based approaches do differen-
tiate between two different initial templates; it shows an
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enhanced memory of the initial probability distribution
(such as skewness and kurtosis) at any later instant of time.
Note that, however, since all of the physical parameters,
such as the skewness and kurtosis in momentum space,
and the average momentum are constants in time for a free
particle, their initial values will be unchanged during the
course of time. Further, η ¼ hp2i − hpi2 is also constant
in time for a free particle so that the initial uncertainty in
momentum space remains unchanged over the course of
time—there is no spreading in momentum space.
To start analyzing these GUP-induced effects, let us first

consider a skewed probability distribution (with vanishing
excess kurtosis) of the initial wave packet. A template of
such a wave packet can be expressed in terms of the
following function (we are only considering the positive
amplitude):

fðΓ1; tÞ ≔
exp

�
− q2

2ξðtÞ
��

erf
�

qΓ1

2
ffiffiffiffiffiffi
ξðtÞ

p
�
þ 1

�
ðπξðtÞÞ1=4 : ð42Þ

It is easy to check that the probability distribution asso-
ciated with this wave packet [that is, the square of (42)] is
normalized over the configuration space and, therefore,
satisfies the probability conservation condition at all times.
This function corresponds to a skewed distribution with
normal kurtosis Γ2 ¼ 3; its width satisfies, depending on
the form of GUP, Eqs. (39) or (35), and for a given instant
of time t the shape of the wave packet will change for a
given value of the skewness Γ1. In Fig. 1 we plot this
behavior for both C60 and C176 “buckyball" molecules. The
details of parameter values are given in the figure. We chose
C60 andC176, also known as the buckyballs (scientific name
Buckminsterfullerene), molecules for this analysis because
they are one of the, commercially available, bigger-sized
molecules that behave as a single wave packet; thus they
can be used for experimental studies on our proposal. This
point will be further clarified in the next section where we
discuss a possible test of our results. Just for a reminder,
plots with positive skewness have a higher probability that
the particle will be found on the right-hand side than the
left-hand side of the mean value and vice versa. Here we
have assumed characteristic values for several parameters
including the mass and the initial size (taken to be the
van der Waals diameter [42]) of the molecule. Note that the
GUP coupling constants α and β are taken to be order 1.
These plots are therefore more for a qualitative under-
standing. Accurate quantitative analysis for testing our
result will be carried out in the next section.
Notice that, even though Γ1 and Γ2 are defined as the

skewness and kurtosis coefficients in momentum space [see
(31) and (32)], this does, of course, introduce skewness and
kurtosis in position space as well, so that the shape of the
wave packet in position space will also be affected, as
shown in the figures. The difference is that the skewness

and kurtosis coefficients in position space will change over
time; we can readily see this from the fact that, generally
speaking, hqni ¼ hqniðtÞ for the free particle. With that
said, notice that the GUP-modified spread evolution
laws for free wave packets (39) and (35) do not depend
explicitly on these coefficients in position space, but rather
in momentum space, so we do not need to compute the
former for our present analysis.
Now, let us plot the time evolutions of this wave packet

governed by (42), in Fig. 2, for bothC60 andC176 parameters
for both KMM and ADV time evolutions (39) and (35).
Again, the shape and the rate at which it spreads depends on
the value of Γ1 appearing in (39) and (35) [through C̃3

in (39) and through both C1 and C2 in (35)]. Clearly, the
initial distribution has an important role to play in the time
evolution of the wave packet, and this is a new insight
coming from the GUP-based analysis, again irrespective of
the KMM or ADV forms that one may consider—both
modifications have the same statistical interpretation.
In Fig. 3, we compare the wave-packet evolution

with and without the GUP modifications. The sample
distribution is again given by (42) with either C60 or
C176 parameters, and we consider the normal (Gaussian)
part of it by setting Γ1 ¼ 0. We find some important
insights by looking at these plots: first, for the KMM
GUP (38) the minimum uncertainty wave packet, defined at
the initial time, has a larger width for the GUP-based
calculation than the HUP-based standard result, whereas
for the ADV GUP (34) it is opposite—the minimal wave
packet has a smaller width than the HUP-based minimal
width. It is therefore consistent to say that for the ADV
form of GUP, for a physical quantum system, such as the
one given by these buckyballs, the existence of a minimal
length scale in the form of (34) minimizes the uncertainty in
the probability distribution in position space for the same
momentum distribution. Interestingly, this ADV result of
further squeezing the free, minimal wave packet may be
related, of course with certain differences, with an expect-
ation that gravity might have a natural tendency to localize
the wave function, as first pointed out by Penrose and Díosi
[43]. This localization process could be evident in the ADV
form. However, the KMM form predicts the opposite
behavior where the minimal wave packet increases its
width as compared to the standard HUP case, due to their
specific form of GUP. The interpretation of this behavior is
not well known.
Furthermore, as we shall see in the next section, the

broadening rate for the KMM form will be quicker than the
HUP broadening rate, whereas the ADV form will predict a
slower broadening rate for the minimal width wave packet,
for a vast range of parameter values.
So far our discussion did not include a distribution with

an excess kurtosis. In order to study this let us assume the
probability density function of the logistic distribution,
given by
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Gðq; ξðtÞÞ ≔
exp

�
− q

ξðtÞ
�

ξðtÞ
�
exp

�
− q

ξðtÞ
�
þ 1

�
2
: ð43Þ

This function has skewness Γ1 ¼ 0 and excess kurtosis
with Γ2 ¼ 4.2. The wave packet associated with this
probability distribution is (again considering the positive
amplitude)

gðq; ξðtÞÞ ≔
exp

�
− q

2ξðtÞ
�

ffiffiffiffiffiffiffiffi
ξðtÞp �

exp
�
− q

ξðtÞ
�
þ 1

� : ð44Þ

The rate at which the spreading takes place with the GUP
modifications, for both the KMM (39) and the ADV (35)
forms for (44) include the kurtosis Γ2 as opposed to the
standard prediction from the HUP, where the rate of
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FIG. 1. Comparison of GUP wave packets with various skewness and normal kurtosis. The spatial coordinate is along the X axis and
the wave function is along the Y axis. The left column of parts (a), (c), (e), and (g) corresponds to the normal vs negative skewness,
whereas the right column of parts (b), (d), (f), and (h) corresponds to the normal vs positive skewness. The KMM form is used in (a)–(d)
and the ADV form is used in (e)–(h). The first and third rows (a), (b), (e), and (f) correspond to C60, while the second and fourth rows (c),
(d), (g), and (h) correspond to C176.
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expansion of ξðtÞ (18) is independent of the value of
kurtosis. In Fig. 4 we plot the GUP time evolution of (44)
starting from the minimal width wave packet for KMM
and ADV forms of GUP. Figures 4(a) and 4(b) belong
to the KMM form and correspond to (a) C60 and (b) C176

molecules, whereas Figs. 4(c) and 4(d) belong to the ADV
form and correspond to (c) C60 and (d) C176 molecules.
Note that, when considering any initial distribution (be it

normal, skewed, or with excess kurtosis), if one takes the
GUP parameters α; β̃ ∼ 1, the time evolution is practically
identical to the HUP-based calculation, and it is hard to
differentiate between the two in the plots irrespective of
the KMM or ADV forms. However, given that the allowed
parameter space for β̃; α is quite wide [37], for larger values
of these parameters these plots do show a significant
difference between the width of the wave packet with or

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Comparison of (all) GUP time evolution between the normal vs skewed wave packets for both KMM and ADV forms. The
spatial coordinate is along the X axis and the wave function is along the Y axis. The left column of parts (a), (c), (e), and (g) corresponds
to the negative skewness, whereas the right column of (b), (d), (f), and (h) corresponds to the positive skewness. The KMM form is used
in (a)–(d) and the ADV form is used in (e)–(h). The first and third rows (a), (b), (e), and (f) correspond to C60, while the second and
fourth rows (c), (d), (g), and (h) correspond to C176.

MINIMAL LENGTH EFFECT ON THE BROADENING … PHYS. REV. D 100, 024054 (2019)

024054-9



(a) (b)

(c) (d)

FIG. 3. GUP vs HUP time evolution (broadening) of free wave packets. The spatial coordinate is along the X axis and the wave
function is along the Y axis. The left column of parts (a) and (c) is for C60 and the right column of parts (b) and (d) is for the C176

molecule. The first row is for KMM and the second row is for the ADV form. For more discussion see text.

(a) (b)

(c) (d)

FIG. 4. GUP modified free wave packets with fixed excess kurtosis. The spatial coordinate is along the X axis and the wave function is
along the Y axis. The left column of parts (a) and (c) is for C60 and the right column of parts (b) and (d) is for the C176 molecule. The first
row is for KMM and the second row is for the ADV form.
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without GUP corrections. This can be visualized in Fig. 5
where we have considered values α; β̃ ∼Oð1016Þ for both
KMM and ADV GUP parameters. Figures 5(a) and 5(b)
belong to the KMM form while 5(c) and 5(d) belong to the
ADV form. This characteristic of time evolution and its
difference with or without GUP modifications is just
similar as that we considered before in Fig. 3—just that
here we plot one snapshot while in Fig. 3 we have three of
them. In the next section we shall speak more about the
numbers and the likelihood of measuring them in realistic
experiments.

VII. POSSIBLE TESTS

In this section we study the possibility of experimental
verification of the minimal length effect on the dispersion
of the free wave packets. The scheme that we propose
here is quite simple—one needs to measure the timescale in
which the wave packet (describing a particle or a system of
particles behaving as a single wave packet) doubles its
initial width. In fact, one can choose any final size that is
permissible, but our calculation here will be done consid-
ering that the wave packet is doubling its size. HUP-based
calculation gives a precise estimate for that which we
already discussed for the case of electrons in Sec. II.

Let us redo the analysis, now in presence of the GUP
modifications. Clearly the doubling time will be different
depending on the choice of modifying the commutator such
as KMM or ADV definitions. For the KMM case, when
using (39) this doubling time is found to be

tKMM
double ¼

ffiffiffi
3

p
mΔq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δp2
0 þ 2β̃2C̃3

q ; ð45Þ

whereas for the ADV case using (35) we can easily
calculate this time to be

tADVdouble ¼
ffiffiffi
3

p
mΔq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δp2
0 − 4αC1 þ 4α2C2

p ; ð46Þ

where the minimum uncertainty wave packet now satisfies
either (40) or (36), depending on the form of GUP under
consideration. Plugging in our expressions for C1, C2, and
C̃3, we get

tKMM
double ¼

ffiffiffi
3

p
mΔq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δp2
0 þ 2β̃2η½3pclðpcl þ η1=2Γ1Þ þ ηΓ2�

q ; ð47Þ

tADVdouble ¼
ffiffiffi
3

p
mΔq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δp2
0 þ 4η½α2ðð3Γ2 − 1Þηþ 10pclðΓ1η

1=2 þ pclÞÞ − αð2pcl þ Γ1η
1=2Þ�

q : ð48Þ

If we, for the sake of simplicity, consider a Gaussian wave packet, then we can set the skewness and kurtosis coefficients to
Γ1 ¼ 0 and Γ2 ¼ 3, respectively. With this the above expressions get simplified, giving

(a) (b)

(c) (d)

FIG. 5. Comparison between wave packets predicted by GUP and HUP for a probability distribution with excess kurtosis. The spatial
coordinate is along the X axis and the wave function is along the Y axis. The left column of parts (a) and (c) is for C60 and the right
column of parts (b) and (d) is for the C176 molecule. The first row is for KMM and the second row is for the ADV form.
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tKMM
doubleðΓ1 ¼ 0;Γ2 ¼ 3Þ ¼

ffiffiffi
3

p
mΔq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δp2
0 þ 6β̃2ηðp2

cl þ ηÞ
q ð49Þ

and

tADVdoubleðΓ1 ¼ 0;Γ2 ¼ 3Þ

¼
ffiffiffi
3

p
mΔq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δp2
0 þ 8ηðα2ð4ηþ 5p2

clÞ − αpclÞ
q : ð50Þ

With expressions (49) and (50) at hand, we can use the
relations (41) and (37) to replace η ¼ Δp2

0 in terms of Δq0
and other parameters. Therefore, we now have everything
we need for doing a numerical calculation with realistic
molecular wave packets.
First, let us go back to the case of the free electron

(where the initial wave packet had a width of 10−10 m) so
we can use (49) and (50) to estimate the magnitude of the
GUP modification for both the KMM and ADV forms,
respectively.
For the KMM form, a simple numerical check for the

free electron case shows that for the values 1 ≤ β̃ ≤ 1016

the difference between the HUP and KMM-GUP predic-
tions is negligible. If we go to values such as β̃ ¼ 1017,
we get a difference between both predictions Oð10−30Þs—
not anywhere near a potentially detectable value. Going
to larger values such as β̃ ¼ 1022 we get a difference
Oð10−20Þ s, and even larger values such as β̃ ¼ 1030 give a
time difference of 4.06218 × 10−16 s, which is somewhat
close to a potentially detectable value.
The numbers are better for the ADV form for the free

electron case, but the results are still effectively the same
with or without GUP in the parameter range 1 ≤ α ≤ 1021.
The numerical calculations show that the difference
between HUP and ADV-GUP is at most Oð10−30Þ s for
α ≤ 1010, and for higher values such as α ¼ 1017 we start
getting differences Oð10−23Þ s, but practically undetect-
able still.
It is therefore clear that for both KMM and ADV forms a

free electron wave-packet expansion is almost identical to
the original HUP results—the difference being unlikely
to be detected even with the utmost precision of atomic
clocks available today. Furthermore, if we have to believe
an upper bound for α or β̃, we can infer that the GUP
modification does not give a major difference in the
doubling time for the case of free electrons, at least in
the initial stage where it is more likely to be detectable by a
laboratory-based experiment.
In order for these effects to be detectable in a laboratory,

we must magnify the GUP modifications somehow. To do
this, we must consider probes whose wave packets have
initial size and associated mass bigger than that of an
electron wave packet. One obvious way to achieve this is to

consider atoms instead of electrons or, even better, use
bigger molecules that can behave as a single wave
packet. This brings us to the so-called buckyball systems
and large organic molecules (LOM). Buckyballs or
Buckminsterfullerene molecules are basically a bunch of
carbon atoms behaving as a single quantum wave packet
[44]. We shall consider again C60 and C176 molecules—
which we already considered in various plots in the
previous section. On the other hand, LOMs are probably
the most exciting candidates since they are the largest
molecules (in terms of the combination of size and mass
scale) found so far that behave as a single wave packet [45].
Below we do an analysis for these three objects, using

both forms, where we shall keep the relevant GUP
parameter α or β̃ as a free parameter from the beginning,
and see how the wide range of values for these parameters
affect the time difference between the HUP and GUP
results for the minimal width wave packet to double its
initial width.

A. Ali-Das-Vagenas GUP

In the case of a C60 buckyball molecule, with a mass of
1.19668 × 10−24 kg (720 u) and an initial width Δq0 equal
to its van der Waals diameter (7 Å) [42], the HUP
prediction for the doubling time is tdoubleðC60;HUPÞ ¼
1.92719 × 10−8 s. If we start considering ADV type GUP
modifications, first with α ¼ 1 as the value of the GUP
parameter, then we get practically the same value tdouble, the
difference between them being

tADVdoubleðC60; α ¼ 1Þ − tdoubleðC60;HUPÞ
¼ −6.61744 × 10−24 s:

However, if we take large values such as α ¼ 1010, then we
find that

tADVdoubleðC60; α ¼ 1010Þ − tdoubleðC60;HUPÞ
¼ 1.15631 × 10−14 s;

and if we go even further, such as α ¼ 1016, we find
tdoubleðC60; α ¼ 1016Þ ¼ 2.96189 × 10−8 s and

tADVdoubleðC60; α ¼ 1016Þ − tdoubleðC60;HUPÞ
¼ 1.0347 × 10−8 s:

That is, the difference between both predictions is of the
order of the original HUP prediction (∼10−8 s) while taking
α ∼ 1016 as the GUP parameter.
This analysis shows that depending on the wide range of

values for α, the difference between the HUP and GUP
predictions for tdouble for C60 buckyballs stays in an interval
where the lower end is undetectable even with the most
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precise clocks currently available, but the upper end stays
well within the available range of precision.
Furthermore, since we want to amplify the GUP-

induced effects (and thus make them easier to detect
at laboratory-based experiments), let us now consider a
C176 buckyball. Using this molecule’s parameters [m ¼
3.50706 × 10−24 kg (2112 u) and Δq0 ¼ 1.2 nm [42] ], we
find that the HUP prediction for the doubling time is
tdoubleðC176;HUPÞ ¼ 1.6598 × 10−7 s and, again, taking
small values of α (as order unity) yields an effectively
undetectable difference between the HUP and GUP pre-
dictions. However, if we again set α ¼ 1010, we get

tADVdoubleðC176; α ¼ 1010Þ − tdoubleðC176;HUPÞ
¼ 9.9588 × 10−14 s;

which is better by a factor of more than 8 as compared with
C60, and going to higher values such as α ¼ 1016 yields
tdoubleðC176; α ¼ 1016Þ ¼ 2.55094 × 10−7 s and

tADVdoubleðC176; α ¼ 1016Þ − tdoubleðC176;HUPÞ
¼ 8.9114 × 10−8 s:

This is again an improvement by a factor of almost 9 over
the time difference (1.0347 × 10−8 s) that we got for the
C60 molecule. Therefore, we see that bigger (larger van der
Waals diameter) and more massive molecules tend to show
stronger deviations from the HUP behavior when consid-
ering GUP-modified tdouble calculations.
Now let us consider the case of recently discovered LOM

wave packets [45], such as a TPPF152 or tetraphenylpor-
phyrin molecule (which consists of 430 atoms and is
formally known as C168H94F152O8N4S4), with a mass of
5,310 u (∼8.81746 × 10−24 kg) and an initial size of 60 Å.
Taking α ¼ 1, once again, does not bring the time differ-
ence in a detectable range. However, if we go to larger
values of α such as 1010, we find

tADVdoubleðTPPF152; α ¼ 1010Þ − tdoubleðTPPF152;HUPÞ
¼ 6.25961 × 10−12 s;

which improves the result of the C176 molecule by a factor
of 63, and this number is 500 times better than for the C60

molecule. Further, moving to α ∼ 1016 the difference
becomes

tADVdoubleðTPPF152; α ¼ 1016Þ − tdoubleðTPPF152;HUPÞ
¼ 5.60129 × 10−6 s;

which is again better by a factor of 63 from C176 and 560
from C60.
In Fig. 6, we have plotted the difference between the

doubling times for various values of α (difference between

the ADV type GUP-based and HUP-based calculations).
This is a log-log plot where values of ΔtADVdouble are shown for
the parameter space 1 ≤ α ≤ 1019. Note that for the larger
values of α ≥ 1016 we get a doubling time difference
Oð10−8 sÞ for the C60 molecule, which can easily be
detected by today’s atomic clocks. This result is even
better (10−7 s) for C176 and in μs range for TPPF152. On
the other side, we can scan the complete parameter space of
α (up to order unity), if we can measure a time difference of
the order of 10−21 s to 10−23 s, just by considering these
molecules. However, if we have to believe that highly
precise atomic clocks can differentiate the time measure-
ment by at most 10−15 s, the use of C60 molecules can scan
the parameter space α ≥ 109, and it is again better for C176,
for which we can scan α ≥ 108. The best of the three,
however, stands for TPPF152, which can scan, on the lower
side, down to α ∼ 106. Therefore, if the experiments with
TPPF152 do not show the deviation in doubling timewithin
femtoseconds, we automatically get an improvement by 4
orders of magnitude on the best existing bound found
coming from the Lamb shift [46], which is α ≤ 1010. In
addition, if we are lucky and nature behaves in such a
manner, we might be able to verify (34) with these
molecular wave packets. If not, we can put a new bound
and move on to redo the experiments with even bigger and
more massive wave packets, which could scan the whole
parameter space. This is a totally new avenue that has not
been proposed before. In fact, any departure from HUP,
irrespective of the manner it differs, will be a pathbreaking
discovery since it will challenge the standard quantum
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FIG. 6. The log-log plots between the GUP parameter α and the
doubling time difference ΔtADVdouble ¼ tADVdoubleðGUPÞ − tdoubleðHUPÞ
between the GUP and HUP time evolutions for (a) the C60

molecule (the lower plot), (b) the C176 molecule (the middle plot),
and (c) the large organic molecule TPPF152 (the upper plot). The
X axis represents the GUP parameter and the Y axis represents the
difference between GUP and HUP doubling times. The shaded
region indicates the region of parameter space that can be probed
by the above-mentioned molecular wave packets with an atomic
clock of maximum precision 10−15 s.
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mechanical prediction anyway. We expect that, perhaps,
colleagues from the experimental side will find this result
interesting.

B. Kempf-Mann-Mangano GUP

Performing a similar analysis for the KMM form (38) we
find that, for the case of the spreading wave packet of a C60

molecule, for values of the GUP parameter 1 ≤ β̃ ≤ 109 the
difference between the HUP-predicted and GUP-predicted
doubling times is practically negligible and far from being
in a detectable range. Even going to values β̃ ∼ 1010 still
gives a very small value for this difference,

tKMM
doubleðC60; β̃ ¼ 1010Þ − tdoubleðC60;HUPÞ
¼ −7.74241 × 10−22 s;

which is unlikely to be detected even with today’s best
atomic clocks.
Now, going up to values ∼Oð1016Þ of β̃ yields a much

more optimistic result,

tKMM
doubleðC60; β̃ ¼ 1016Þ − tdoubleðC60;HUPÞ
¼ −7.38707 × 10−10 s;

which might be well within the range of precision of the
current technology.
If we start to considerC176 molecules, again 1 ≤ β̃ ≤ 109

yields practically negligible results, and β̃ ∼Oð1010Þ gives

tKMM
doubleðC176; β̃ ¼ 1010Þ − tdoubleðC176;HUPÞ
¼ −6.64391 × 10−21 s;

an improvement of almost 1 order of magnitude over the
C60 result. On the other hand, β̃ ∼Oð1016Þ gives

tKMM
doubleðC176; β̃ ¼ 1016Þ − tdoubleðC176;HUPÞ
¼ −6.36215 × 10−9 s;

which is, again, a much better result.
Notice that, up to this point, all values of tdoubleðGUPÞ −

tdoubleðHUPÞ have been negative for the KMM form—
meaning that the KMM-predicted spreading is faster
than predicted by the HUP, as opposed to the ADV-based
predictions (at least for a majority range of values of the
GUP parameter).
Finally, taking our analysis again to the TPPF152 large

organic molecule gives much better values of the doubling
time difference, where taking β̃ ∼Oð1010Þ gives

tKMM
doubleðTPPF152; β̃ ¼ 1010Þ − tdoubleðTPPF152;HUPÞ
¼ −4.1674 × 10−19 s:

Going even further to β̃ ∼Oð1016Þ yields

tKMM
doubleðTPPF152; β̃ ¼ 1016Þ − tdoubleðTPPF152;HUPÞ
¼ −3.99893 × 10−7 s;

which, as is the case for large organic molecules in both
types of GUP, is well within the range of possible detection
in experiments and once again gives results ∼63 times
better than the C176 case and ∼500 times better than for C60

molecules—albeit the time differences predicted by a
KMM form of GUP are considerably smaller than those
predicted by an ADV-type modification of the HUP. This is
because the deformation of the commutator only includes a
term of quadratic order in momentum and not a term of
linear order in momentum in the KMM case.
In Fig. 7 we present a plot for the doubling time

differences predicted by the KMM GUP, analogous to that
of Fig. 6 for the ADV form. The values of ΔtKMM

double are
shown for the parameter space 1010 ≤ β̃ ≤ 1019 since these
are the values for which the time differences have signifi-
cant values (that may be possible to measure in a labo-
ratory). The shaded region represents the portion of
parameter space that could be possible to probe, given
the assumption that today’s best atomic clocks can resolve
time differences ∼Oð10−15Þ s. Note, however, that it is
possible for the currently achievable precision to be even
better than this conservative estimate. Assuming this time
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X axis represents the GUP parameter and the Y axis represents the
difference between GUP and HUP doubling times. The shaded
region indicates the region of parameter space that can be probed
by the above molecular wave packets with an atomic clock of
maximum precision 10−15 s.
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resolution, C60 and C176 molecules can probe, on the lower
end, down to β̃∼Oð1013Þ, while using TPPF152 molecules
would let us probe down to β̃ ∼Oð1012Þ. These values of β̃
will constrain the coupling (the quadratic term) of KMM
form β̃2 ≤ 1024. This is again 15 orders of magnitude better
than the bound claimed β̃2 ≤ 1039 (coming from the study
of the cold atom recoil experiment as reported in [47]).

VIII. CONCLUSIONS AND DISCUSSIONS

We have introduced a novel approach and, to some
extent, established the fact that studying the dispersion of
free wave packets might lead to indirect evidence for
the long anticipated minimal length scale in nature. Our
result here is based on the possibility that HUP should be
replaced by a GUP in the presence of the minimal length.
Nonetheless, it is very important to stress that our approach
is quite general and independent of the specific manner in
which the commutator bracket has to be modified. This
specific study, based on two popular choices given by the
ADV form (34) and the KMM form (38), has several
interesting outcomes, which we list below.

(i) For both forms of GUP the deformations have brought
a rich distributional consequence on the expansion rate
of free wave packets. The rate of dispersion depends
not only on the initial uncertainty and standard
deviation (in position and momentum) but also on
the higher-order moments in momentum space (such
as skewness and kurtosis). In addition, it also depends
on the initial momentum of the wave packet.

(ii) The minimal width of a free wave packet is
modified—for the ADV form it is normally
squeezed in position space while for the KMM
form it is further widened.

(iii) We have shown that by measuring the “doubling
time,” that is, the time in which a free, minimal width
wave packet doubles its size, we may get important
clues on the minimal length scale. The difference
between the doubling times of HUP- and GUP-
based predictions may well be in the detectable
range if we use highly precise atomic clocks and
measure the broadening rates of molecular wave
packets.

(iv) This difference in broadening time is more for
massive molecular wave packets in comparison
with the wave packets representing small objects
such as electrons. Large organic molecules (such as
TPPF152) and buckyball (such as C60, C176) wave
packets may be useful for verifying or falsifying the
GUP proposals.

(v) For the ADV form, in the absence of detecting any
difference for doubling time with an atomic clock of
precision level 10−15 s, with C60, we can better the
best existing upper bound for αð<1010Þ by 1 order of
magnitude, for C176 by 2 orders of magnitude, and

for TPPF152 by 4 orders of magnitudes ðα < 106Þ.
This bound can be further sharpened by using
atomic clocks more precise than femtoseconds.

(vi) For the KMM form, the use of TPPF152 and a clock
of femtosecond precision can provide an upper limit
of β̃2 ≤ 1024. This is an improvement by 15 orders of
magnitude of the coupling β̃2 obtained from the cold
atom recoil experiments [47].

(vii) There are two ways to improve the numbers pre-
sented here and to reach even closer to testing the
GUP theory. One of them is to consider larger and
heavier molecular wave packets, and the other is to
come up with new atomic clocks that can measure
the time difference even beyond a femtosecond.

We want to stress that coming up with an experiment
to test our results might not be impossible in the near
future, especially because of the remarkable progress that
has been achieved to test the superposition principle
with increasingly massive molecular wave packets [45].
Perhaps an experiment in our context will be easier to
conduct since the wave packet does not pass through the
double slit; rather, it only needs to be set free until it
doubles its size.
Finally, we want to add some general remarks on the

relativistic extension of the GUP setting. It should be noted
that our work in this paper is based on the nonrelativistic
quantum mechanics as the molecular wave packets are
highly nonrelativistic objects. If someone wants to study
an ultra-high-energy particle with relativistic velocity,
this approach may not be as useful. One would need to
reformulate the question in terms of fundamental quantum
fields, their particle excitation, etc. One has to also rethink
the physical variables that must be built from the quantum
field and its derivatives that might be considered as
observables. The width of the wave packet would not have
a meaningful usage there. Therefore, one naturally asks the
question to oneself that, should, if at all, GUP be used in
such a context with relativistic particles? A satisfactory
answer to this question can be found in an important work
by Magueijo and Smolin [11], where a concise picture of
the GUP modification in a relativistic setting was outlined.
It was shown that the two forms of GUP (which we used
here) can be derived by satisfying following five criteria:
(i) the validity of relativity in inertial frames, (ii) an
invariant energy/length scale at Planck value, (iii) a varying
speed of light at higher energies, (iv) a modified disper-
sion relation at higher energy (inspired by the ultra-high-
energy-cosmic-ray anomaly), and (iv) the theory should
have a maximum momentum. The idea was to keep the
principle of the relativity of inertial frames by modifying
the laws by which energy/momenta measured by various
inertial observers are related to each other. The only
possibility to achieve all of these conditions was argued
to be achieved by a nonlinear action of the ordinary Lorentz
group (in momentum space) on the states of the theory.
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The appearance of the Lorentz group is quite interesting
and renders the theory as Lorentz invariant. In fact, a naive
judgment that the minimal length scale breaks the Lorentz
invariance is false, and recent works on “modular spaces”
further hint at this possibility [48]. However, the issue of a
fully relativistic approach is beyond the scope of this paper
since our aim is to use low-energy atomic-molecular
experiments in the search of a fundamental length scale.
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