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We analyze the spectrum of time observable in the noncommutative cosmological model introduced by
Buric and Madore [Eur. Phys. J. C 75, 502 (2015)], defined by the ðρ; s ¼ 1

2
Þ representation of the de Sitter

group. We find that time has a peculiar property: it is not self-adjoint, but appropriate restrictions to the
space of physical states give self-adjoint extensions. Extensions have a discrete spectrum with a logarithmic
distribution of eigenvalues, tn ∼ l log nþ const, where l characterizes noncommutativity and the usual
assumption is l ¼ lPlanck. When calculated on physical states, the radius of the universe is bounded below

by l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
ð1
4
þ ρ2Þ

q
, which resolves the big bang singularity. An immediate consequence of the model is a

specific breaking of the original symmetry at the Planck scale.

DOI: 10.1103/PhysRevD.100.024053

I. INTRODUCTION

The expression “quantum space” was introduced in the
early days of quantum mechanics by Heisenberg, along
with “quantum derivative” introduced by Dirac who
observed that a commutator is a derivation; “points” of
the quantum space are “q numbers” or operators. Today the
idea that spacetime, as seen by quantum particles, is
described by operators gives strong heuristic and physical
motivation for noncommutative geometry.
There is a surprisingly simple covariantization of the

usual flat space of quantum mechanics to curved non-
commutative spaces. If we identify flat quantum space with
the Heisenberg algebra,

½ipi; xj� ¼ ∂ixj ¼ δji ð1:1Þ

(ℏ ¼ 1, pi, xj Hermitian), curved quantum space can be
defined by a moving frame eμα,

½ipα; xμ� ¼ eαxμ ¼ eμαðxÞ; ð1:2Þ

as in general relativity [1]. Adding to the last relation
property (which one expects in the quantum-gravity
regime) that spacetime at the Planck scale is discrete or
has a minimal quantum of length, i.e., that coordinates may
be noncommuting,

½xμ; xν� ¼ ikJμνðxÞ; ð1:3Þ

we have a general situation, a noncommutative algebra of
coordinates and momenta, A. In principle, A may not have
a Schrödinger-type representation of momenta through the
partial derivatives; in fact, some representations might be
finite dimensional. In this picture, position algebra (1.3)
determines the structure of the points of noncommutative
space, i.e., the algebraic properties of coordinates, while
(1.2) and the related commutators between momenta define
the differential-geometric structure and enable us to intro-
duce connection and curvature. Algebraic and geometric
structures are intertwined by the assumption that one deals
with operators, i.e., by associativity [2].
This is the general framework that we use. Its algebraic

part is, in various descriptions of noncommutative spaces,
more or less invariant, while the differential-geometric part
is specific in every approach: we use the noncommutative
frame formalism of Madore. The frame formalism has
proven in many aspects to be successful, in particular
in describing spaces of Euclidean signature with finite-
dimensional representations such as the fuzzy sphere and a
number of other models in two and three dimensions
[1,3,4]. For further development of this concept it is crucial
to provide realistic cosmological and astrophysical con-
figurations in four dimensions: this is the main motivation
for our work.
Noncommutative geometry is but one of the approaches

to quantum gravity. Other approaches are, perhaps, in light
of the description in terms of Lagrangian and quantization
procedures, more fundamental. String theory introduces
an elementary substructure that after quantization, macro-
scopically, gives spacetime geometry and classical gravity.
In loop quantum gravity, vielbein and connection fields
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are basic variables that are quantized in a background-space
independent way. In these approaches quantum space with
its properties is a derived quantity or notion. But in most
cases, being effective or not, coordinates are operators in
the Hilbert space of states: therefore models, algebras with
physically plausible features, are common to many theo-
ries. We thus hope that properties of fuzzy de Sitter space
and its physical interpretation discussed here will be of
wider interest.
The plan of the paper is as follows. In Sec. II we

introduce fuzzy de Sitter space as a unitary irreducible
representation of the de Sitter group, i.e., identify its
coordinates and differential structure. In Sec. III we give
Hilbert space representation for a specific de Sitter space
defined by ðρ; 1

2
Þ representation of the principal continuous

series of SOð1; 4Þ and solve the eigenvalue equation for
the observable of cosmic time τ. In Sec. IV we examine
the obtained solutions and show how to redefine time to
render it self-adjoint. Finally, in the last section we discuss
physical properties and some cosmological implications of
the given fuzzy geometry.

II. FUZZY DE SITTER SPACE

Our task is to study the observable of time in the
cosmological model introduced in [5,6]. In commutative
geometry, four-dimensional de Sitter space can be defined
as an embedding in five-dimensional flat space [7],

v2 − w2 − x2 − y2 − z2 ¼ −L2;

ds2 ¼ dv2 − dw2 − dx2 − dy2 − dz2; ð2:1Þ

where v ∈ ð−∞;∞Þ is the embedding time. Introducing

t
L
¼ log

vþ w
L

;
x
L
¼ x

vþ w
;

y
L
¼ y

vþ w
;

z
L
¼ z

vþ w
; ð2:2Þ

one obtains the line element in the Friedmann-Robertson-
Walker form, the “steady state universe,”

ds2 ¼ dt2 − e
2t
Lðdx2 þ dy2 þ dz2Þ: ð2:3Þ

Time t ∈ ð−∞;∞Þ is defined only for vþ w > 0: coor-
dinates (2.2) cover only half of the de Sitter space and the
steady state space is incomplete and extendible.
Fuzzy de Sitter space can be defined in an analogous

manner. The general idea, realized in all details for the
fuzzy sphere [3], is to identify spacetime with the algebra of
a Lie group, realizing the embedding through the Casimir
relations: then, in fact, fuzzy spacetime is given by an
irreducible representation of a Lie group. We start with the
group SOð1; 4Þ with generators Mαβ ðα; β ¼ 0; 1; 2; 3; 4Þ,

½Mαβ;Mγδ� ¼ −iðηαγMβδ − ηαδMβγ − ηβγMαδ þ ηβδMαγÞ;
ð2:4Þ

the signature is ηαβ ¼ diagð1;−1;−1;−1;−1Þ. Noncom-
mutative extensions of v, w, x, y, z are embedding
coordinates xα: they are proportional to the “Pauli-
Lubanski vector” Wα,

Wα ¼ 1

8
ϵαβγδηMβγMδη; xα ¼ lWα: ð2:5Þ

Dimensional constant l fixes the length scale of non-
commutativity: depending on the physical interpretation, it
can lie between the grand unification scale and the Planck
length [6,8], and usually one assumes l ∼ lPlanck. One of
the two Casimirs of SOð1; 4Þ,

ηαβWαWβ ¼ −W; ð2:6Þ

defines the embedding equivalent to (2.1). We will for
simplicity assume that the other Casimir operator

Q ¼ −
1

2
MαβMαβ ð2:7Þ

is also fixed, i.e., that the fuzzy de Sitter space is given by
a unitary irreducible representation (UIR) of the de Sitter
group.
All UIR’s of the SOð1; 4Þ are infinite dimensional,

labeled by two quantum numbers: conformal weight ρ
and spin s [9],

W ¼ sðsþ 1Þ
�
1

4
þ ρ2

�
; Q ¼ −sðsþ 1Þ þ 9

4
þ ρ2:

ð2:8Þ

In the following we will use UIR’s of the principal
continuous series, ρ ≥ 0, s ¼ 0; 1=2; 1; 3=2, and the
Hilbert space representations; in fact, in this concrete
calculation we use only the simplest nontrivial of them
ðρ; s ¼ 1

2
Þ.

Various choices of differential calculi on fuzzy de Sitter
space were discussed in [5]. The simplest one, which has
the de Sitter metric as the commutative (macroscopic) limit,
is the calculus generated by four momenta, translations
ipi ¼ Mi4 þM0i, i ¼ 1; 2; 3, and dilatation ip0 ¼ M04.
When calculated, expression (1.2) for vielbein suggests
to choose comoving coordinates proportional to Wi and
cosmic time τ proportional to logðW0 þW4Þ [5],

xi

l
¼ Wi;

τ

l
¼ log

x0 þ x4

l
¼ logðW0 −W4Þ: ð2:9Þ

It is clear that correct identification of coordinates
and momenta is very important for understanding various

MAJA BURIĆ and DUŠKO LATAS PHYS. REV. D 100, 024053 (2019)

024053-2



properties and limits of a given fuzzy space, as well as for
its physical interpretation. One way to see if noncommu-
tativity improves the singularity structure of spacetime is to
determine the spectra of coordinates, in this case τ and xi,
or
PðxiÞ2. As found in [6], spectra of xi are continuous in

ðρ; sÞ representations; embedding time W0=l has a discrete
spectrum. Here we wish to find eigenvalues of the cos-
mic time.1

Properties of the spectrum can often be inferred directly
from the algebra. In this case we have relation

½iM04;W0 −W4� ¼ W0 −W4; ð2:10Þ
which implies that the group action of dilatation M04 is
given by

eiαM04ðW0 −W4Þe−iαM04 ¼ eαðW0 −W4Þ: ð2:11Þ
The last formula means, apparently, that the spectrum of
W0 −W4 is continuous. Namely, it is easy to check
formally that, if there is a nonzero eigenvalue λ > 0 of
W0 −W4 and the corresponding eigenvector ψλ,

ðW0 −W4Þψλ ¼ λψλ; ð2:12Þ
and then for every real α, e−iαM04ψλ is the eigenvector for
the eigenvalue eαλ. This would mean that the spectrum
consists of all real λ > 0. We will show in the following
that eigenvalues of W0 −W4, calculated in the Hilbert
space representation ðρ; 1

2
Þ, are, in fact, discrete. Namely,

differential equation (3.9) corresponding to (2.12) has
solutions of finite norm for all positive λ ∈ R, which,
due to appropriate functional-analysis theorems, means
that W0 −W4 is not self-adjoint. The operator is only
“formally symmetric” because the domains of W0 −W4

and ðW0 −W4Þ† are not equal. There are, however, self-
adjoint extensions that we construct: each reduces the
initial space of states to the “subspace of physical states,”
implying in consequence discreteness of time.

III. HILBERT SPACE REPRESENTATION

We work in the Hilbert space representation of the
principal continuous series ðρ; sÞ [10]. It is constructed
in the familiar Bargmann-Wigner representation space of
the Poincaré group with mass m > 0 and spin s [11].
Generators of the Lorentz rotations are given by

Mμν ¼ Lμν þ Sμν; μ; ν ¼ 0; 1; 2; 3; ð3:1Þ

where Sμν are spin generators, Lik ¼ iðpi
∂

∂pk − pk
∂
∂piÞ,

L0k ¼ ip0
∂

∂pk, i; k ¼ 1; 2; 3, and p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðpiÞ2

p
.

Generators of the Poincaré translations, multiplication
operators pμ, are used to define the remaining M4μ by

M4μ ¼
ρ

m
pμ −

1

2m
ðpρMρμ þMρμpρÞ: ð3:2Þ

This representation was used in [6]: we will introduce it
here very briefly in order to fix the notation and stress a
couple of technical details and simplifications.
Bargmann-Wigner space H for s ¼ 1

2
is the space of

bispinors in momentum representation, ψðp⃗Þ, which are
square-integrable solutions to the Dirac equation. Using
Dirac representation of γ matrices,

γ0 ¼
�
I 0

0 −I
�
; γi ¼

�
0 σi

−σi 0

�
;

ψðp⃗Þ can be written as

ψðp⃗Þ ¼
� Φðp⃗Þ
− p⃗·σ⃗

p0þmΦðp⃗Þ
�
; ð3:3Þ

where Φðp⃗Þ is an unconstrained spinor. The scalar product
is given by

ðψ ;ψ 0Þ ¼
Z

d3p
p0

ψ†γ0ψ 0 ¼
Z

d3p
p0

2m
p0 þm

Φ†Φ0: ð3:4Þ

Written in blocks of 2 × 2 matrices, Mαβ and Wα have the
form

M ¼
�
A B

B A

�
:

Matrix elements of such operators are2

ðψ ;Mψ 0Þ ¼
Z

d3pψ† γ
0

p0

Mψ 0

¼
Z

d3p
p0

Φ†
�
A −

pkσ
k

p0 þm
A

piσ
i

p0 þm

þ
�
B;

pkσ
k

p0 þm

��
Φ0:

Eigenvalue problem Mψ ¼ λψ can be written as a set of
two spinor equations:

1An important observation is that components Wα are the
Casimir operators of subgroups of SOð1; 4Þ:W0 of the SOð4Þ and
Wi of the SOð1; 3Þ. Therefore, eigenvalues of Wα could in
principle be determined group theoretically: by reduction of a
given UIR of the SOð1; 4Þ to the sum of UIR’s of the
corresponding subgroup. A similar strategy is possible for τ,
which is one of two Casimir operators of the Eð3Þ subgroup,
generated by M0i þMi4 and Mjk: we have not succeeded in
finding the appropriate reduction formula in the literature.

2At this point we fix the relative positions of γ0, 1=p0, and M:
this ordering is not essential and can be changed, but it implies
appropriate changes in relations that follow.
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�
A −

pkσ
k

p0 þm
A

piσ
i

p0 þm
þ
�
B;

pkσ
k

p0 þm

��
Φ ¼ λ

2m
p0 þm

Φ;

ð3:5Þ

��
A;

pkσ
k

p0 þm

�
þ B −

pkσ
k

p0 þm
B

piσ
i

p0 þm

�
Φ ¼ 0: ð3:6Þ

One can easily check that the second equation is fulfilled
for all solutions of the first, so essentially one has to
solve (3.5).
In our problem M ¼ W0 −W4, the blocks A and B are

A ¼ −
1

2m

�
ρ −

i
2

�
piσ

i −
i
2m

p0ðp0 þmÞ ∂
∂pi

σi; ð3:7Þ

B ¼ −
1

2m
ϵijkðp0 þmÞpi

∂
∂pj σk −

3i
4m

ðp0 þmÞ: ð3:8Þ

The eigenvalue equation for W0 −W4 becomes�
−

ρ

2m
piσ

i−
i
2
ðp0þmÞ ∂

∂pi
σiþ

i
2m

pi
∂
∂pi

pjσ
j

�
Φ¼ λΦ:

ð3:9Þ

As W0 −W4 commutes with 3-rotations Mij, we can
choose the eigenfunctions in the form

Φλjmðp⃗Þ ¼
fðpÞ
p

ϕjmðθ;φÞ þ
hðpÞ
p

χjmðθ;φÞ; ð3:10Þ

where p is the radial momentum, p2 ¼ −pipi ¼ p2
0 −m2,

and ϕjm and χjm are the eigenfunctions of the angular
momentum. Using (3.10) we obtain radial equations for
f and h:

ðp0 þ 1Þ df
dp0

þ iρf −
jþ 1

2

p0 − 1
f ¼ 2iλ

h
p
; ð3:11Þ

ðp0 þ 1Þ dh
dp0

þ iρhþ jþ 1
2

p0 − 1
h ¼ 2iλ

f
p
: ð3:12Þ

Solutions to these equations are derived in Appendix A.
They are expressed in terms of the Bessel functions using

variable z ¼
ffiffiffiffiffiffiffiffiffi
p0−m
p0þm

q
; this variable varies in a finite interval,

z ∈ ð0; 1Þ. Of two linearly independent solutions for fixed λ
and j one is regular,

fλj ¼ C

�
2

1 − z2

�
−iρ ffiffiffi

z
p

Jjð2λzÞ;

hλj ¼ iC

�
2

1 − z2

�
−iρ ffiffiffi

z
p

Jjþ1ð2λzÞ; ð3:13Þ

and therefore we conclude that the spectrum of W0 −W4

is the positive real axis, λ ∈ ð0;∞Þ. However, the given set

of solutions is not orthonormal. The scalar product of two
eigenfunctions is

ðψλjm;ψλ0j0m0 Þ ¼ 2δjj0δmm0C�C0

×
Z

1

0

zdzðJjð2λzÞJjð2λ0zÞ

þ Jjþ1ð2λzÞJjþ1ð2λ0zÞÞ: ð3:14Þ
As Bessel functions JjðζÞ are finite in any finite interval,
integral (3.14) is bounded for λ ¼ λ0; i.e., all solutions are
normalizable, which is in contradiction with the statement
that they belong to a continuous spectrum. Also they are not
orthogonal for λ ≠ λ0. Therefore, not all of formal solutions
(3.13) can be the eigenfunctions of a self-adjoint operator,
and self-adjointness is a property we would certainly like τ
to have.

IV. SELF-ADJOINT EXTENSIONS

The obtained result requires additional analysis. We
started with a unitary representation of the SOð1; 4Þ, that
is, with a set of self-adjoint (Hermitian) generators Mαβ.
We defined Wα by (2.5), as a sum of products of operators
that mutually commute. Therefore formally, W0 −W4 ¼
τ=l is Hermitian and should have an orthonormal eigen-
basis (discrete or continuous). But in concrete representa-
tion we obtained a continuous set of eigenfunctions of finite
norm that are not mutually orthogonal. Hence τ is not self-
adjoint: it can only be formally symmetric, with domain
DðτÞ unequal to the domain of its adjoint, Dðτ†Þ. To define
self-adjoint extensions, if they exist, we need to resolve the
issue of the domains.
The problem is obviously in the radial equation.

Separation of angular variables gives a division of H into
subspaces of fixed angular momentum j, in which τ
reduces to operators Tj:

ðψ jm;ðW0−W4Þψ 0
j0m0 Þ

≡δjj0δmm0

Z
1

0

dzΦ†TjΦ0

¼ 2δjj0δmm0

Z
1

0

dzðf� h� Þ

×

0
B@ 0 ρ 2z

1−z2− iðjþ 1
2
Þ1z− i d

dz

ρ 2z
1−z2þ iðjþ 1

2
Þ1z− i d

dz 0

1
CA�f0

h0

�

¼ δjj0δmm0

Z
1

0

dzðF� H� Þ
�

0 −i d
dz

−i d
dz 0

��
F0

H0

�
: ð4:1Þ

Functions F and H are defined by

F ¼
�

2

1 − z2

�
iρ
z−j−

1
2f; H ¼

�
2

1 − z2

�
iρ
zjþ1

2h; ð4:2Þ
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and they are introduced in Appendix A to solve the radial
equation; they simplify the matrix elements of Tj as well as
the scalar product,

ðψ jm;ψ 0
j0m0 Þ ¼ 2δjj0δmm0

Z
1

0

dzðF� H�Þ

×

�
z2jþ1 0

0 z−2j−1

��
F0

H0

�
:

Let us examine properties of Tj. In order to find T†
j we

partially integrate (4.1),

ðψ jm; ðW0 −W4Þψ 0
j0m0 Þ

¼ −iδjj0δmm0

Z
1

0

dz

�
F� dH

0

dz
þH� dF

0

dz

�

¼ iδjj0δmm0

Z
1

0

dz

�
dF�

dz
H0 þ dH�

dz
F0
�

− iδjj0δmm0 ðF�H0 þH�F0Þ
���1
0
: ð4:3Þ

We see that the “action” of Tj on functions, given by the
first term in (4.3), is self-adjoint: but since the boundary
term does not vanish, Tj and T†

j are not equal. This is, in
fact, a definition of being “formally symmetric” [12]. The
other signatures of non-Hermiticity are nonzero deficiency
indices, i.e., the existence of normalizable solutions to
equations, TjΦ ¼ �iΦ. We show in Appendix B that the
deficiency indices of Tj are ðnþ; n−Þ ¼ ð1; 1Þ.
There is a systematic way of extending formally sym-

metric operators to the self-adjoint [12,13]. The main idea
is to find an appropriate subspace of H on which the
boundary term vanishes: this subspace becomes the domain
of both redefined or “extended” τ and τ†. A necessary
condition for the existence of self-adjoint extensions is that
deficiency indices nþ and n− be equal. Analyzing (4.3) in
Appendix B we find that Tj is self-adjoint if it is restricted
to the subspace of functions (4.2), which satisfy

Fð0Þ ¼ Hð0Þ ¼ 0; Hð1Þ ¼ icFð1Þ: ð4:4Þ

Let us check that eigenfunctions (3.13) can satisfy (4.4).
The first relation is clearly true, and the second gives

Jjþ1ð2λÞ
Jjð2λÞ

¼ c ¼ const; ð4:5Þ

that is, an equation for λ. This equation, as seen from Fig. 1,
has infinitely many solutions for every real c; the set of
solutions is discrete. The other way to see this is for large
values of λ as, asymptotically,

Jjþ1ð2λÞ
Jjð2λÞ

∼ − tan

�
2λ −

ð2jþ 1Þπ
4

�
; λ → ∞: ð4:6Þ

The eigenvalues can be labeled by a natural number n, and
for large λ they become equidistant with period π=2. By a
choice of c we can fix the value of one of the λ’s; the other
eigenvalues are determined by (4.5). This means that for

every c we obtain a different self-adjoint extension TðcÞ
j ;

i.e., we have a one-parameter family: we can take, for
example, c ¼ 1 as a preferred choice.
Let us check orthogonality. Using the recurrence rela-

tions between the Bessel functions we find

ðψλjm;ψλ0j0m0 Þ ¼ 2C�Cδjj0δmm0

Z
1

0

zdzðJjð2λzÞJjð2λ0zÞ þ Jjþ1ð2λzÞJjþ1ð2λ0zÞÞ

¼ δjj0δmm0
jCj2

λ2 − λ02
ðλ0Jjð2λÞJ0jð2λ0Þ þ λ0Jjþ1ð2λÞJ0jþ1ð2λ0Þ

− λJjð2λ0ÞJ0jð2λÞ − λJjþ1ð2λ0ÞJ0jþ1ð2λÞÞ

¼ −
δjj0δmm0

λ − λ0
jCj2

Jjþ1ð2λÞJjþ1ð2λ0Þ
�

Jjð2λÞ
Jjþ1ð2λÞ

−
Jjð2λ0Þ
Jjþ1ð2λ0Þ

�
; ð4:7Þ

where in the second line J0aðζÞ denotes the derivative of JaðζÞ. The last expression is zero for λ ≠ λ0 for a discrete set of
eigenfunctions that satisfy (4.5), and we confirm that the given basis is orthogonal.

10 20 30 40

−1

1

2

FIG. 1. Solutions to Eq. (4.5) for j ¼ 7
2
, c ¼ 1.
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V. SINGULARITIES AND SYMMETRIES

Let us verify that fuzzy de Sitter space corresponds to an
expanding cosmology and discuss the absence of the big
bang singularity. The (squared) radius of the universe is
given by

ðxiÞ2 ¼ −l2WiWi; ð5:1Þ

and its evolution can be traced by the expectation value
hðxiÞ2i in the eigenstates of time. Eigenvalue λ ofW0 −W4

used in the previous calculation is related to the time
eigenvalue t exponentially,

t ¼ hτi ¼ ðψλjm; τψλjmÞ ¼ l log λ: ð5:2Þ

Using Casimir relation (2.8),

−WiWi ¼ W þW2
0 −W2

4; ð5:3Þ

and taking normalized eigenstates ψλjm,

ðψλjm;ψλjmÞ ¼ 2C�C
Z

1

0

dzzðJ2jð2λzÞ þ J2jþ1ð2λzÞÞ ¼ 1;

ð5:4Þ

we find

h−WiWii ¼ W þ hðW0 þW4ÞðW0 −W4Þi
¼ W þ λ2 þ 2λhW4i:

Expectation value hW4i can be estimated. We have

W4 ¼ −
1

2

 
p0r⃗ · σ⃗ iL⃗ · σ⃗ þ 3i

2

iL⃗ · σ⃗ þ 3i
2

p0r⃗ · σ⃗

!
;

and therefore

ðψλjm;W4ψλjmÞ

¼
Z

d3p
p0

Φ†
λjm

�
imp⃗ · σ⃗

2ðp0 þmÞ2 −
m2r⃗ · σ⃗
p0 þm

−
imðp⃗ ·∇Þðp⃗ · σ⃗Þ

ðp0 þmÞ2
�
Φλjm

¼ −
i
2

Z
1

0

dzð1 − z2Þ
�
F�
λj

dHλj

dz
þH�

λj

dFλj

dz

�

¼ λC�C
Z

1

0

dzzð1 − z2ÞðJ2jð2λzÞ þ J2jþ1ð2λzÞÞ: ð5:5Þ

Comparing the last integral with (5.4),

0 ≤
Z

1

0

dzzð1 − z2ÞðJ2jð2λzÞ þ J2jþ1ð2λzÞÞ

≤
Z

1

0

dzzðJ2jð2λzÞ þ J2jþ1ð2λzÞÞ; ð5:6Þ

we obtain that 0 ≤ ðψλjm;W4ψλjmÞ ≤ λ
2
; hence

W þ λ2 ≤ ðψλjm;−WiWiψλjmÞ ≤ W þ 2λ2: ð5:7Þ

The expectation value of the radius of the universe is
bounded below by l

ffiffiffiffiffi
W

p
: it does not vanish in physical

states that lie in the domain of self-adjoint extensions τðcÞ;
i.e., it can be expanded in the corresponding eigenbases.
The radius, on the other hand, grows with time exponen-
tially: for late times we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h−WiWii

p
∼ λ ¼ et=l.

Another important point is discreteness of time that, as
explained, also comes through the self-adjointness of τ.
Though Hermiticity is a usual condition in quantum
mechanics, we rarely deal with operators that do not have
unique self-adjoint extensions. This is related to the fact
that quantum mechanics is defined on the flat unbounded
space: one can expect boundary effects in curved spaces,
spaces that are bounded or singular (geodesically incom-
plete, or with curvature singularities). In this context,
formally symmetric Hamiltonians with a one-parameter
family of self-adjoint extensions appear in various physical
situations (and mathematical setups) in general relativity
and cosmology [14–17]. The interpretation of nonunique-
ness of the extension varies: from understanding that it is
a further quantization ambiguity [16] to that it renders a
definition of spacetimes that are singular for “quantum
probes” (as in some cases, classically singular spacetimes
can appear completely regular for quantized particles) [15].
Wald relates the necessity to choose one of the extensions
with the fact that the initial-value problem is classically ill-
defined at naked singularity, and regards the possibility of
constructing a self-adjoint extension as a resolution to the
singularity problem [14].
The last point of view is in some sense close to our

example, though we are extending time and not the
Hamiltonian. Discreteness of time becomes relevant in
the “deep quantum region” λ → 0, i.e., t → −∞, near the
classical boundary through which the steady-state model
can be extended to the complete de Sitter space. For values
away from the Planck scale time is almost continuous: the
difference between its consecutive eigenvalues is macro-
scopically negligible,

tnþ1 − tn ≈ l log
�
1þ 1

n

�
: ð5:8Þ

Discreteness obtained by requiring self-adjointness is
known in other cases of quantum spaces. One example is
the q-deformed Heisenberg algebra,
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½p; x� ¼ −iþ ðq − 1Þxp; ð5:9Þ

and its unitary representations [18,19]. The analysis shows
that coordinate x is not self-adjoint, but the self-adjoint
extensions exist; both x andp have discrete spectra. Another
interesting case is the minimal-length Heisenberg algebra,

½p; x� ¼ −i − iβp2; ð5:10Þ

which is in [20] represented in the Schrödinger representa-
tion. Again it is found that x has a one-parameter family of
self-adjoint extensions, which puts its spectrum on a lattice.
The q-deformed Heisenberg algebra (Manin plane) has,

as symmetry, the quantum group SUqð2Þ, so it is natural
to ask whether in our model symmetry gets deformed as
well. As shown in [5], our choice of frame, in fact, breaks
the SOð1; 4Þ invariance, and a priori symmetries of fuzzy
de Sitter space are rotations and time translations, SOð3Þ×
Uð1Þ. Here Uð1Þ denotes the dilatation subgroup, Uð1Þ ¼
feiαM04 jα ∈ Rg, the dilatation generator plays the role of
the Hamiltonian, H ¼ M04: it evolves the eigenstates of
time, (2.11).
If we keep the standard notion that symmetry is defined

by a group of transformations, the choice of a self-adjoint
extension τðcÞ is spontaneous symmetry breaking. This can
be seen easily: the elements of Uð1Þ do not preserve the
space of physical states defined by (4.4) for arbitrary values
of parameter α. However, there is a subgroup of dilatations,
UðcÞð1Þ, determined by the allowed values of α that
preserve condition (4.4): it is represented nonlinearly.
For large eigenvalues, Eq. (4.4) becomes periodic and λ
equally spaced: subgroup UðcÞð1Þ becomes in this limit
(in this region of physical parameters) the additive group
of integers. In the continuum approximation l → 0 that is
valid on the macroscopic scale, the full symmetry is
recovered. Another view is that, in the quantum regime,
classical symmetries get deformed [21]: whether the
corresponding transformations in our case have the struc-
ture of a quantum group is to be studied. In any case, what
we find is that classical symmetries get broken or deformed
on the Planck scale, due to the quantum structure of
spacetime. To obtain other effects in cosmology that our
model predicts we should introduce matter, for example, a
scalar field. This is in principle a well-defined problem in
noncommutative geometry, and we plan to address it in our
future work.
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APPENDIX A: RADIAL EQUATION

In this appendix we solve the radial equations (3.9).
In the signature that we use

p⃗ ¼ ðpiÞ; L⃗ ¼ ðLiÞ; σ⃗ ¼ ðσiÞ;

r⃗ ¼ ðxiÞ ¼ i
∂
∂pi

; p⃗ · σ⃗ ¼ −piσ
i;

σiσj ¼ −ηij − ϵijkσ
k;

ðr⃗ · σ⃗Þðp⃗ · σ⃗Þ ¼ i

�
3þ p

∂
∂pþ L⃗ · σ⃗

�
:

The eigenvalue equation (3.9) is

�
1

2m
ρðp⃗ · σ⃗Þ−1

2
ðp0þmÞðr⃗ · σ⃗Þ− 1

2m
ðp⃗ · r⃗Þðp⃗ · σ⃗Þ

�
Φ¼ λΦ:

ðA1Þ

We use the Ansatz that separates angular and radial
variables,

Φλjmðp⃗Þ ¼
fðpÞ
p

ϕjmðθ;φÞ þ
hðpÞ
p

χjmðθ;φÞ; ðA2Þ

with p2 ¼ −pipi ¼ p2
0 −m2. The ϕjm and χjm are the

spinor eigenfunctions of MijMij and M12; they are ortho-
normal and satisfy

ϕjm ¼ p⃗ · σ⃗
p

χjm; ðL⃗ · σ⃗Þϕjm ¼
�
j −

1

2

�
ϕjm;

χjm ¼ p⃗ · σ⃗
p

ϕjm; ðL⃗ · σ⃗Þχjm ¼ −
�
jþ 3

2

�
χjm: ðA3Þ

Introducing (A2) we obtain radial equations

ðp0 þ 1Þ df
dp0

þ iρf −
jþ 1

2

p0 − 1
f ¼ 2iλ

h
p
; ðA4Þ

ðp0 þ 1Þ dh
dp0

þ iρhþ jþ 1
2

p0 − 1
h ¼ 2iλ

f
p
: ðA5Þ

In order to simplify them we rescale momentum to be
dimensionless, p → mp, p0 → mp0, p ∈ ð0;∞Þ, p0 ∈
ð1;∞Þ. Equations decouple when we introduce new func-
tions F, H by

f ¼ ðp0 þ 1Þ−iρ−2jþ1
4 ðp0 − 1Þ2jþ1

4 F;

h ¼ ðp0 þ 1Þ−iρþ2jþ1
4 ðp0 − 1Þ−2jþ1

4 H: ðA6Þ

We then obtain
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ðp2
0 − 1Þ d

2F
dp2

0

þ 2ðp0 þ jÞ dF
dp0

þ 4λ2

ðp0 þ 1Þ2 F ¼ 0; ðA7Þ

ðp2
0 − 1Þ d

2H
dp2

0

þ 2ðp0 − j − 1Þ dH
dp0

þ 4λ2

ðp0 þ 1Þ2H ¼ 0;

ðA8Þ

and additional relations

dF
dp0

¼ 2iλðp0 þ 1Þj−1ðp0 − 1Þ−j−1H;

dH
dp0

¼ 2iλðp0 þ 1Þ−j−2ðp0 − 1ÞjF: ðA9Þ

Equations (A7) and (A8) reduce to the Bessel equation

ζ2
d2Y
dζ2

þ ζ
dY
dζ

þ ðζ2 − a2ÞY ¼ 0 ðA10Þ

by compactification of the independent variable.
Introducing z as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 − 1

p0 þ 1

s
; ðA11Þ

both equations reduce to (A10) for ζ ¼ 2λz ∈ ð0; 2λÞ. In
Eq. (A7), a ¼ j; in (A8), a ¼ −j − 1.
Linearly independent solutions to the Bessel equation

are the Bessel functions JaðζÞ, J−aðζÞ or JaðζÞ, YaðζÞ [a is
half-integer, so J−j−1ðζÞ ¼ ð−1Þj−1

2Yjþ1ðζÞ]. Therefore,
F ∼ Jj; J−j and H ∼ Jjþ1; J−j−1. Taking into account addi-
tional relations (A9) that are satisfied through recurrence
relation

1

ζ

d
dζ

ζaJaðζÞÞ ¼ ζa−1Ja−1ðζÞ; ðA12Þ

we obtain two linearly independent solutions:

Fλj ¼ Cz−jJjð2λzÞ; Hλj ¼ iCzjþ1Jjþ1ð2λzÞ; ðA13Þ

F̃λj ¼ C̃z−jJ−jð2λzÞ; H̃λj ¼ −iC̃zjþ1J−j−1ð2λzÞ:
ðA14Þ

As the Bessel functions around ζ ¼ 0 behave as

JaðζÞ ∼
1

Γðaþ 1Þ
�
ζ

2

�
a
; ðA15Þ

the second solution diverges, ψ̃ λjm ∼ ζ−j−
3
2, so we have one

regular solution,

fλj ¼ C

�
2

1 − z2

�
−iρ ffiffiffi

z
p

Jjð2λzÞ;

hλj ¼ iC

�
2

1 − z2

�
−iρ ffiffiffi

z
p

Jjþ1ð2λzÞ: ðA16Þ

It exists for every real λ. But Jað−ζÞ ¼ ð−1ÞaJaðζÞ, so the
spectrum can be restricted to the positive real axis, λ > 0.
The scalar product of two eigenfunctions is given by

ðψλjm;ψλ0j0m0 Þ ¼ 2δjj0δmm0

Z
1

0

dzðf�f0 þh�h0Þ

¼ 2δjj0δmm0

Z
1

0

dzðz2jþ1F�F0 þ z−2j−1H�H0Þ

¼ 2δjj0δmm0C�C0
Z

1

0

zdzðJjð2λzÞJj
× ð2λ0zÞþJjþ1ð2λzÞJjþ1ð2λ0zÞÞ: ðA17Þ

It is nonzero for λ ≠ λ0 and finite for each λ, which as we
discuss in the text, is a problem. Singular solutions do not
have the right normalization to be eigenfunctions of the
continuous spectrum: similar to (A17), we have

ðψ̃ λjm; ψ̃ λ0j0m0 Þ ¼ 2δjj0δmm0C̃�C̃0
Z

1

0

dzðJ−jð2λzÞJ−j0 ð2λ0zÞ

þ J−j−1ð2λzÞJ−j0−1ð2λ0zÞÞ:
This integral is divergent in the lower limit, but the diver-
gence depends on j and not on the difference λ − λ0; i.e. it
does not have the required form δðλ − λ0Þ.

APPENDIX B: DEFICIENCY INDICES
AND SELF-ADJOINTNESS

We start with the deficiency indices of Tj. To determine
them we need to solve equation

TjΦ ¼ �iΦ: ðB1Þ
This is, in fact, not difficult: solutions to these equations
are the same as solutions to (A1) for λ ¼ �i: the Bessel
functions of the imaginary argument, i.e., the modified
Bessel functions IaðζÞ and KaðζÞ,
IaðζÞ ¼ i−aJaðiζÞ; KaðζÞ ¼

π

2
iaþ1ðJaðiζÞ þ iYaðiζÞÞ:

ðB2Þ
As before, a ¼ �j, �ðjþ 1Þ. The modified Bessel func-
tions have similar behavior around zero as the Bessel
functions: KaðζÞ is divergent and the corresponding sol-
ution has an infinite norm. This implies that equation
TjΦ ¼ iΦ has just one regular solution,

Fþ ¼ Cz−jIjð2zÞ; Hþ ¼ −Czjþ1Ijþ1ð2zÞ: ðB3Þ
Similarly there is one regular solution ðF−; H−Þ to equation
TjΦ ¼ −iΦ. This means that deficiency indices of Tj are
ðnþ; n−Þ ¼ ð1; 1Þ; hence Tj is not a self-adjoint operator
but can be extended to one.
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Next, let us briefly recall the procedure of constructing
self-adjoint extensions of formally symmetric operators.
We use the notation of [12], where proof of the main
technical result that we use can also be found. We can write
Eq. (4.3) abstractly as

ðΦ; TjΦ0Þ ¼ ðTjΦ;Φ0Þ þ BðΦ;Φ0Þ ¼ ðT†
jΦ;Φ0Þ; ðB4Þ

where the boundary term BðΦ;Φ0Þ is a bilinear form, which
in our case reads

BðΦ;Φ0Þ ¼ ðF�H0 þH�F0Þj10: ðB5Þ

Apparently, the domain of Tj is given by all normalizable
functionsΦ andΦ0 that satisfy BðΦ;Φ0Þ ¼ 0, or in our case
Fð0Þ ¼ Hð0Þ ¼ 0 and Fð1Þ¼Hð1Þ¼0. Then DðT†

jÞ ¼ H
and obviously the two domains are not equal, DðTjÞ ⊂ H.
To achieve self-adjointness, one should relax the condition
that determines DðTjÞ and restrict DðT†

jÞ. This is done
effectively by finding nþ linearly independent functionsΦk
(more precisely, nþ linearly independent vectors corre-
sponding to their boundary values)—in our case one, Φ1—
that satisfy

BðΦk;ΦlÞ ¼ 0. ∀ k; l: ðB6Þ

The domain of a self-adjoint extension of Tj is then defined
as a set of functions Φ,

DðTjÞ ¼ DðT†
jÞ ¼ fΦjBðΦ;ΦkÞ ¼ 0; ∀ kg: ðB7Þ

In principle, boundary term (4.3) is a combination of
values at both boundary points but often the constraints
can be imposed separately. It is possible to do it in our
case as well: we can choose Fð0Þ ¼ Hð0Þ ¼ 0, in accor-
dance with the behavior of the eigenfunctions of τ that
constitute a basis. If, at the other boundary, we denote the
values of Φ1 as

F1ð1Þ ¼ σeiβ; H1ð1Þ ¼ iσ0eiβ0 ; ðB8Þ

we find iβ ¼ iβ0 þ nπ. Constants β, σ, and σ0 are real

numbers, so the domain of the self-adjoint extension TðcÞ
j

is a set of functions that satisfies

Fð0Þ ¼ Hð0Þ ¼ 0; Hð1Þ ¼ �i
σ

σ0
Fð1Þ ¼ icFð1Þ;

c ∈ R: ðB9Þ
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