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We consider general relativity with a cosmological constant minimally coupled to an electromagnetic
field and assume that a four-dimensional space-time manifold is the warped product of two surfaces with
Lorentzian and Euclidean signature metrics. Einstein’s equations imply that at least one of the surfaces
must be of constant curvature. It means that the symmetry of the metric arises as the consequence of the
equations of motion (“spontaneous symmetry emergence”). We give a classification of global solutions in
two cases: (i) both surfaces are of a constant curvature and (ii) the Riemannian surface is of a constant
curvature. The latter case includes spherically symmetric solutions [a sphere S2 with a SOð3Þ-symmetry
group], planar solutions [two-dimensional Euclidean space R2 with an IOð2Þ-symmetry group], and
hyperbolic solutions [a two-sheeted hyperboloid H2 with a SOð1; 2Þ-symmetry]. Totally, we get 37
topologically different solutions. There is a new one among them, which describes the changing topology
of space in time already at the classical level.
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I. INTRODUCTION

There are many well-known exact solutions in general
relativity (see, e.g., [1]). To give a physical interpretation of
any solution to Einstein’s equation, we must know not only
the metric satisfying equations of general relativity but the
global structure of space-time. By this, we mean a pair
ðM; gÞ, where M is the four-dimensional space-time mani-
fold and g is the metric on M such that the manifold M is
maximally extended along geodesics: any geodesic line on
M either can be continued to an infinitevalue of the canonical
parameter in both directions, or it ends up at a singular point,
where one of the geometric invariants becomes infinite. The
famous example is the Kruskal–Szekeres extension [2,3] of
the Schwarzschild solution. In this case, the space-timeM is
globally the topological product of a sphere (spherical
symmetry) with the two-dimensional Lorentzian surface
depicted by the well-known Carter–Penrose diagram. The
knowledge of this global structure of space-time allows one
to introduce the notion of black and white holes.
The famous Reissner–Nordström solution [4,5], which is

the spherically symmetric solution of Einstein’s equations
with an electromagnetic field, is also known globally. There

are three types of Carter–Penrose diagrams: the Reissner-
Nordström black hole, extremal black hole, and naked
singularity. The type of the Carter–Penrose diagram
depends on the relation between mass and charge
parameters. The spherically symmetric exact solution of
Einstein’s equations with an electromagnetic field and a
cosmological constant is known locally but not analyzed in
full detail globally. In this paper, in particular, we give a
complete classification of global spherically symmetric
solutions of Einstein’s equations with an electromagnetic
field and a cosmological constant, which depends on
relations between three parameters: the mass, charge, and
cosmological constant. We show that there are 16 different
Carter–Penrose diagrams in the spherically symmetric case.
In fact, a more general classification is given. We do not

assume that solutions have any symmetry from the very
beginning. Instead, we require the space-time to be the
warped product of two surfaces: M ¼ U × V , where U and
V are two two-dimensional surfaces with Lorentzian and
Euclidean signature metrics, respectively. As a conse-
quence of the equations of motion, at least one of the
surfaces must be of a constant curvature. In this paper,
we consider the cases when (i) both surfaces U and V are
of a constant curvature and when (ii) only the surface V is
of a constant curvature. In the latter case, there are three
possibilities: V is the sphere S2 [the spherical SOð3Þ
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FIG. 1. The Carter–Penrose diagrams for spherically symmetric solutions of Einstein’s equations with an electromagnetic field.
Diagrams S1–S11 and S12–S16 correspond to metrics of a signature ðþ − −−Þ and ð−þþþÞ, respectively.
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symmetry], the Euclidean plane [the Poincare ISOð2Þ
symmetry], and the two-sheeted hyperboloid H2 [the
Lorentzian SOð1; 2Þ symmetry]. We see that the symmetry
of solutions is not assumed from the beginning but arise as
the consequence of the equations of motions. This effect is
called “spontaneous symmetry emergence”. We classify all
global solutions by drawing their Carter–Penrose diagrams
for a surface U depending on the relations between the
mass, charge, and cosmological constant. Totally, there are
four different Carter–Penrose diagrams in case (i) and 33
globally different solutions in case (ii).
Moreover, we prove that there is the additional fourth

Killing vector field in each case. This is a generalization of
Birkhoff’s theorem stating that any spherically symmetric
solution of vacuum Einstein’s equations must be static. The
existence of an extra Killing vector field is proved for the
SOð3Þ, ISOð2Þ, and SOð1; 2Þ symmetry groups.
The global structure of space-times in general relativity

and 2D gravity was analyzed, e.g., in [6–10]. In particular,
the global planar and Lobachevsky plane solutions in
general relativity were described in [11–13]. Though many
solutions in the paper are known globally, some of them
seem to be new. For example, the Carter–Penrose diagram
S6 in Fig. 1 with a geodesically complete central point
corresponding to the horizon of the third order is new to the
best of our knowledge.
This paper follows the classification of global warped

product solutions of general relativity with a cosmological
constant (without electromagnetic field) given in [14].
The Carter–Penrose diagrams are constructed using the
conformal block method described in [15].
As in [14], we assume that space-time M is the warped

product of two surfaces: M ¼ U × V , where U and V are
surfaces with Lorentzian and Euclidean signature metrics,
respectively. Local coordinates on M are denoted by x̂i,
i ¼ 0, 1, 2, 3, and coordinates on the surfaces by Greek
letters from the beginning and middle of the alphabet,

ðxαÞ ∈ U; α ¼ 0; 1; ðyμÞ ∈ V ; μ ¼ 2; 3:

That is ðx̂iÞ ≔ ðxα; yμÞ. Geometrical notions on four-
dimensional space-time are marked by the hat to distin-
guish them from notions on the surfaces U and V , which
appear more often.
We do not assume any symmetry of solutions from the

very beginning.
The four-dimensional metric of the warped product of

two surfaces has a block diagonal form by definition,

ĝij ¼
�
kðyÞgαβðxÞ 0

0 mðxÞhμνðyÞ
�
; ð1Þ

where gαβðxÞ and hμνðyÞ are some metrics on the surfacesU
and V , respectively, kðyÞ ≠ 0 and mðxÞ ≠ 0 are scalar
(dilaton) fields on V and U. Without a loss of generality,

the signatures of two-dimensional metrics gαβ and hμν are
assumed to be ðþ−Þ and ðþþÞ, respectively. In a rigourous
sense, metric (1) is a doubly warped product. It reduces to
a warped product in the usual sense for k ¼ const or
m ¼ const.
The Ricci tensor components for the metric (1) are

R̂αβ ¼ Rαβ þ
∇α∇βm

m
−
∇αm∇βm

2m2
þ gαβ∇2k

2m

R̂αμ ¼ R̂μα ¼ −
∇αm∇μk

2mk

R̂μν ¼ Rμν þ
∇μ∇νk

k
−
∇μk∇νk

2k2
þ hμν∇2m

2k
; ð2Þ

where, for brevity, we introduce the notation,

∇2m ≔ gαβ∇α∇βm; ∇2k ≔ hμν∇μ∇νk: ð3Þ

Here and in what follows, the symbol∇ denotes a covariant
derivative with the corresponding Christoffel’s symbols.
The four-dimensional scalar curvature is

R̂ ¼ 1

k
RðgÞ þ 2

∇2m
km

−
ð∇mÞ2
2km2

þ 1

m
RðhÞ þ 2

∇2k
km

−
ð∇kÞ2
2k2m

;

ð4Þ

where

ð∇mÞ2 ≔ gαβ∂αm∂βm; ð∇kÞ2 ≔ hμν∂μk∂νk:

ð5Þ

Scalar curvatures of the surfaces U and V are denoted by
RðgÞ and RðhÞ, respectively.

II. A SOLUTION FOR AN ELECTROMAGNETIC
FIELD

We assume that the electromagnetic field is minimally
coupled to gravity. Then the action takes the form,

S ¼
Z

d4x
ffiffiffiffiffi
jĝj

p �
R̂ − 2Λ −

1

4
F̂2

�
; ð6Þ

where R̂ is the scalar curvature for the metric ĝij,
ĝ ≔ det ĝij, Λ is a cosmological constant, and F̂2 is the
square of the electromagnetic field strength,

F̂2 ≔ F̂ijF̂
ij; F̂ij ≔ ∂iÂj − ∂jÂi:

Here, Âi are the components of the electromagnetic field
potential. For brevity, gravitational and electromagnetic
coupling constants are set to unity.
Variation of the action (6) with respect to the metric

yields four-dimensional Einstein’s equations,
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R̂ij −
1

2
ĝijR̂þ ĝijΛ ¼ −

1

2
T̂EMij; ð7Þ

where

T̂EMij ≔ −F̂ikF̂j
k þ 1

4
ĝijF̂

2 ð8Þ

is the electromagnetic field energy-momentum tensor.
Variation of the action with respect to the electromagnetic
field yields Maxwell’s equations,

∂jð
ffiffiffiffiffi
jĝj

p
F̂jiÞ ¼ 0; ð9Þ

where

ĝ ¼ k2m2gh; g ≔ det gαβ; h ≔ det hμν:

To simplify the problem, we assume that the four-
dimensional electromagnetic potential consists of two
parts,

Âi ¼ ðAαðxÞ; AμðyÞÞ;

where AαðxÞ and AμðyÞ are two-dimensional electromag-
netic potentials on the surfaces U and V , respectively.
Then the electromagnetic field strength becomes a block
diagonal,

F̂ij ¼
�
Fαβ 0

0 Fμν

�
; ð10Þ

where

FαβðxÞ ≔ ∂αAβ − ∂βAα; FμνðyÞ ≔ ∂μAν − ∂νAμ

are strength components for two-dimensional electromag-
netic potentials.
In what follows, the raising of the greek indices from the

beginning and middle of the greek alphabet is performed by
using the inverse metrics gαβ and hμν. Therefore,

F̂αβ ¼ 1

k2
Fαβ; F̂μν ¼ 1

m2
Fμν;

where kðyÞ and mðxÞ are dilaton fields entering the four-
dimensional metric (1). The square of the four-dimensional
electromagnetic field strength is

F̂2 ¼ 1

k2
FαβFαβ þ 1

m2
FμνFμν:

In the case under consideration, Maxwell’s Eqs. (9) for
i ¼ α lead to the equality,

1

jkj
ffiffiffiffiffiffi
jhj

p ∂β

�
jmj

ffiffiffiffiffi
jgj

p
Fβα

�
¼ 0:

A general solution to these equations has the form,

jmj
ffiffiffiffiffi
jgj

p
Fαβ ¼ 2ε̂αβQ; Q ¼ const; ð11Þ

where ε̂αβ is the totally antisymmetric second rank tensor
density. The factor 2 is introduced in the right-hand side of
the general solution for the simplification of subsequent
formulas. This solution is rewritten as

Fαβ ¼ 2Q
jmj ε

αβ; ð12Þ

where εαβ ≔ ε̂αβ=
ffiffiffiffiffijgjp

is now the totally antisymmetric
second rank tensor.
If i ¼ μ, then Maxwell’s Eqs. (9) yield the equality,

1

jmj
ffiffiffiffiffi
jgj

p ∂μðjkj
ffiffiffi
h

p
FμνÞ ¼ 0:

Its general solution is

Fμν ¼ 2P
jkj ε

μν; P ¼ const: ð13Þ

Now the four-dimensional electromagnetic energy-
momentum tensor (8) is easily calculated. It is a block
diagonal,

T̂ij ¼
�
T̂αβ 0

0 T̂μν

�
; ð14Þ

where

T̂αβ ¼
2gαβ
km2

ðQ2 þ P2Þ; T̂μν ¼ −
2hμν
k2m

ðQ2 þ P2Þ:

Note that we do not need the electromagnetic potentials
Aα and Aμ for the calculation of the energy-momentum
tensor. It is sufficient to know strengthes (12) and (13).
Now we have to solve Einstein’s Eqs. (7) with the right-

hand side (14). Since energy-momentum tensor depends
only on the sumQ2 þ P2, we setP ¼ 0 to simplify formulas.
In the final answer, this constant is easily reconstructed by
substitution Q2 ↦ Q2 þ P2.
In what follows, we consider only the case Q ≠ 0,

because the case Q ¼ 0 was considered in [14] in full
detail.

III. EINSTEIN’S EQUATIONS

The right-hand side of Einstein’s Eqs. (7) is defined by
general solution of Maxwell’s equations, which leads to the
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electromagnetic energy-momentum tensor (14). The trace
of Einstein’s equations can be easily solved with respect to
the scalar curvature,

R̂ ¼ 4Λ;

which does not depend on the electromagnetic field,
because the trace of the electromagnetic field energy-
momentum tensor equals zero. After elimination of the
scalar curvature, Einstein’s equations are simplified,

R̂ij − ĝijΛ ¼ −
1

2
T̂EMij: ð15Þ

For indices values ðijÞ ¼ ðα; βÞ, ðμνÞ, and ðα; μÞ, these
equations yield the following system of equations:

Rαβ þ
∇α∇βm

m
−
∇αm∇βm

2m2
þ gαβ

�∇2k
2m

− kΛþ Q2

m2k

�
¼ 0;

ð16Þ

Rμν þ
∇μ∇νk

k
−
∇μk∇νk

2k2
þ hμν

�∇2m
2k

−mΛ −
Q2

k2m

�
¼ 0;

ð17Þ

−
∇αm∇μk

2mk
¼ 0; ð18Þ

where Rαβ and Rμν are Ricci tensors for the two-
dimensional metrics gαβ and hμν, respectively, ∇α and
∇μ are two-dimensional covariant derivatives with
Christoffel’s symbols on the surfaces U and V , ∇2 ≔
gαβ∇α∇β or ∇2 ≔ hμν∇μ∇ν, which is clear from the
context. Sure, the equalities ∇αm ¼ ∂αm and ∇μk ¼ ∂μk
hold, but we keep the symbol of the covariant derivative
for uniformity.
For subsequent analysis of Einstein’s equations, we

extract the traces and traceless parts from Eqs. (16) and
(17). Then, the full system of Einstein’s equations takes the
form,

∇α∇βm −
∇αm∇βm

2m
−
1

2
gαβ

�
∇2m −

ð∇mÞ2
2m

�
¼ 0; ð19Þ

∇μ∇νk −
∇μk∇νk

2k
−
1

2
hμν

�
∇2k −

ð∇kÞ2
2k

�
¼ 0; ð20Þ

RðgÞ þ∇2m
m

−
ð∇mÞ2
2m2

þ∇2k
m

− 2kΛþ 2Q2

m2k
¼ 0; ð21Þ

RðhÞ þ∇2k
k

−
ð∇kÞ2
2k2

þ∇2m
k

− 2mΛ −
2Q2

k2m
¼ 0; ð22Þ

∇αm∇βk ¼ 0; ð23Þ

where ð∇mÞ2 ≔ gαβ∇αm∇βm, ð∇kÞ2 ≔ gμν∇μk∇νk, RðgÞ

and RðhÞ are scalar curvatures of the two-dimensional
surfaces U and V for the metrics g and h, respectively.
In the above formulas, we used equalities Rαβ ¼ 1

2
gαβRðgÞ

and Rμν ¼ 1
2
hμνRðhÞ valid in two dimensions.

The last Eq. (23), which corresponds to mixed values of
the indices ðijÞ ¼ ðαμÞ in Einstein’s equations, results in
strong restrictions on solutions. Namely, as in the case
without an electromagnetic field, there are only three cases,

A∶ k ¼ const ≠ 0; m ¼ const ≠ 0;

B∶ k ¼ const ≠ 0; ∇αm ≠ 0;

C∶ ∇μk ≠ 0; m ¼ const ≠ 0:

ð24Þ

We shall see in what follows, that this leads to “sponta-
neous symmetry emergence.”
Now, we consider the first two cases in detail.

IV. THE PRODUCT OF CONSTANT
CURVATURE SURFACES

The most symmetric solutions of Einstein’s equations
with an electromagnetic field in the form of the product of
two constant curvature surfaces arise in case A (24), when
both dilaton fields are constant. If k and m are constant,
then Eqs. (19) and (20) are identically satisfied, and
Eqs. (21) and (22) take the form,

RðgÞ ¼ 2kΛ −
2Q2

m2k
¼ −2KðgÞ;

RðhÞ ¼ 2mΛþ 2Q2

k2m
¼ −2KðhÞ; ð25Þ

where

KðgÞ ≔ −k
�
Λ −

Q2

k2m2

�
; KðhÞ ≔ −m

�
Λþ Q2

k2m2

�

are Gaussian curvatures of the surfaces U and V , respec-
tively. It means that both surfaces are of constant curvature
in case A. The metric on each surface is invariant under a
three-dimensional transformation group.
In stereographic coordinates on both surfaces, the metric

of a four-dimensional space-time takes the form,

ds2 ¼ kgαβdxαdxβ þmhμνdyμdyν

¼ k
dt2 − dx2

½1þ KðgÞ
4
ðt2 − x2Þ�2

þm
dy2 þ dz2

½1þ KðhÞ
4
ðy2 þ z2Þ�2

;

ð26Þ

where ðxαÞ ≔ ðt; xÞ and ðyμÞ ≔ ðy; zÞ.
We can put k ¼ �1 and m ¼ �1 by rescaling coordi-

nates. One has also to redefine the constant of integration
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Q2=ðk2m2Þ ↦ Q2. We choose k ¼ 1 and m ¼ −1 for the
metric signature to be ðþ − −−Þ. Then, the Gaussian
curvatures are

KðgÞ ¼ Q2 − Λ; KðhÞ ¼ Q2 þ Λ: ð27Þ
There are four qualitatively different cases for topologically
inequivalent global solutions depending on the relations
between a cosmological constant and charge,

Λ<−Q2∶ KðgÞ > 0; KðhÞ< 0; M¼L2×H2;

Λ¼−Q2∶ KðgÞ > 0; KðhÞ ¼ 0; M¼L2×R2;

−Q2<Λ<Q2∶ KðgÞ > 0; KðhÞ> 0; M¼L2×S2;

Λ¼Q2∶ KðgÞ ¼ 0; KðhÞ> 0; M¼R1;1×S2;

Λ>Q2∶ KðgÞ < 0; KðhÞ> 0; M¼L2×S2;

ð28Þ

where L2 is the one sheet hyperboloid (more precisely,
its universal covering) embedded in the three-dimensional
Minkowskian space R1;2, H2 is the Lobachevsky plane
(the upper sheet of the two-sheeted hyperboloid embedded
in R1;2), and S2 is the two-dimensional sphere. From a
topological point of view, the third and fifth cases in
Eq. (28) coincide. Therefore, there are only four topologi-
cally inequivalent global solutions of Einstein’s equations
in the form of a direct product of two constant curvature
surfaces. Note that for Q ¼ 0, there are only three topo-
logically inequivalent solutions [14].
All solutions have exactly six Killing vector fields and

belong to the type D in Petrov’s classification.
The cases of other signatures of a four-dimensional

metric for k ¼ �1 and m ¼ �1 are analyzed similarly.
Qualitative properties of global solutions are the same.
We see that symmetry properties in this case are not

imposed from the very beginning but arise as the result of
a solution of equations of motion. This effect is called
“spontaneous symmetry emergence.”

V. SOLUTIONS WITH SPATIAL SYMMETRY

The dilaton field k is constant in the second
case B (24). Without the loss of generality, we put
k ¼ 1. Then Einstein’s equations (19)–(23) take the form,

∇α∇βm −
∇αm∇βm

2m
−
1

2
gαβ

�
∇2m −

ð∇mÞ2
2m

�
¼ 0; ð29Þ

RðhÞ þ∇2m − 2mΛ −
2Q2

m
¼ 0; ð30Þ

RðgÞ þ∇2m
m

−
ð∇mÞ2
2m2

− 2Λþ 2Q2

m2
¼ 0: ð31Þ

Consider Eq. (30). The scalar curvature RðhÞ depends on
the coordinates y on the surface V , whereas all other terms

depend on coordinates x on the surface U. For this equation
to be fulfilled, it is necessary that the equation RðhÞ ¼
const holds. It means that the surface V must be of a
constant curvature as a consequence of Einstein equations.
Therefore, the four-dimensional metric of space-time has at
least three independent Killing vector fields. So, there is
spontaneous symmetry emergence.
Let us put RðhÞ ≔ −2KðhÞ ¼ const. Then Eq. (30) is

∇2m − 2mΛ − 2KðhÞ −
2Q2

m
¼ 0: ð32Þ

Excluding the case A considered in the previous section,
we proceed further assuming ∇αm ≠ 0 on the whole U.
Proposition 5.1. Equation (32) is the first integral of

Eqs. (29) and (31).
Proof. Differentiate Eq. (32) and use the equality,

½∇α;∇β�Aγ ¼ −RðgÞ δ
αβγ Aδ;

valid for any covector field Aα, to change the order of the
derivatives in the first term,

∇αð32Þ¼
∇β∇αm∇βm

2m
þ∇αm∇2m

2m
−
∇αmð∇mÞ2

2m2

þ1

2
∇α

�
∇2m−

ð∇mÞ2
2m

�
þ1

2
∇αmRðgÞ−2∇αmΛ

þ∇αm
2Q2

m2
:

Now exclude the derivatives ∇β∇αm and ∇2m using
Eqs. (29) and (30) in the first and fourth terms on the
right-hand side. After rearranging the terms, the sum of the
first and fourth terms takes the form,

∇αm

�ð∇mÞ2
4m2

þ Λ −
Q2

m2

�
:

Taking all the terms together, we obtain

∇αð32Þ ¼
1

2
∇αmð31Þ: ð33Þ

Since ∇αm ≠ 0, it implies the statement of the
proposition. ▪
The proof of the proposition implies that it is sufficient

to solve Eqs. (29) and (32), Eq. (31) being satisfied
automatically.
To solve Eqs. (29) and (32) explicitly,we fix the conformal

gauge for a metric gαβ on a Lorentzian surface U,

gαβdxαdxβ ¼ Φdξdη; ð34Þ

where Φðξ; ηÞ ≠ 0 is the conformal factor depending on
light cone coordinates ξ ≔ τ þ σ, η ≔ τ − σ on U.
The respective four-dimensional metric is
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ds2 ¼ ΦdξdηþmdΩ2; ð35Þ

where dΩ2 is the metric on the Riemannian surface of a
constant curvature V ¼ S2, R2, or H2. The sign of the
conformal factor Φ is not fixed for the present.
For Φ > 0 and m < 0, the signature of the metric (35)

is ðþ − −−Þ. If we change the sign of m, the signature of
the metric becomes ðþ −þþÞ. The same transformation of
the signature can be achieved by changing the overall sign
of the metric, ĝij ↦ −ĝij, and interchanging the first two
coordinates, τ ↔ σ. Einstein’s equations with a cosmo-
logical constant and an electromagnetic field (15) are not
invariant with respect to these transformations with simul-
taneous changing of the sign of the cosmological constant,
because the right-hand side changes its sign. Therefore, for
Φ > 0, we have to consider two cases,

m < 0 ⇔ signĝij ¼ ðþ − −−Þ and

m > 0 ⇔ signĝij ¼ ð−þþþÞ:

This is the difference for Einstein’s equations without an
electromagnetic field considered in [14]. If the change of
the signature ðþ − −−Þ ↦ ð−þþþÞ is followed by the
change of signs in front of R̂, Λ, and F̂2 in the action (6),
then both choices become equivalent. In our presentation, it
is more natural to fix the sign of F̂2 in the action (6) and
consider different signatures, because signs of dilaton fields
are not fixed.

1. Metric signature ð+−−−Þ
For Φ > 0 and m < 0, we introduce convenient para-

metrization,

m ≔ −q2; qðξ; ηÞ > 0: ð36Þ

Afterwards, we obtain the full system of equations,

−∂2
ξξqþ ∂ξΦ∂ξq

Φ
¼ 0; ð37Þ

−∂2
ηηqþ ∂ηΦ∂ηq

Φ
¼ 0; ð38Þ

−2
∂2
ξηq

2

Φ
− KðhÞ þ Λq2 þQ2

q2
¼ 0: ð39Þ

The first two equations which do not depend on the
electromagnetic field imply the following assertion.
Proposition 5.2. If ∂ξq∂ηq > 0, then the function qðτÞ

depends only on the timelike coordinate τ ≔ 1
2
ðξþ ηÞ.

If ∂ξq∂ηq < 0, then the function qðσÞ depends only on
the spacelike coordinate σ ≔ 1

2
ðξ − ηÞ. And the following

equality holds:

jΦj ¼ jq0j; ð40Þ

where prime denotes differentiation on the argument (either
τ or σ).
This proposition provides a general solution to Eqs. (37)

and (38) up to conformal transformations. This statement is
proved in [14,16].
Thus, we can always choose coordinates in such a way

that q and Φ depend simultaneously on a timelike or
spacelike coordinate,

ζ ≔
1

2
ðξ� ηÞ≕

	
τ; ∂ξq∂ηq > 0;

σ; ∂ξq∂ηq < 0:
ð41Þ

It means that the two-dimensional metric (34) and con-
sequently, the four-dimensional metric (35) have the
Killing vector ∂σ or ∂τ, as the consequence of Eqs. (37)
and (38). We call these solutions homogeneous and static,
respectively, though it is related to the fixed coordinate
system. The existence of an additional Killing vector is
the generalization of Birkhoff’s theorem [17], stating that
an arbitrary spherically symmetric solution of vacuum
Einstein’s equations must be static. (This statement was
previously published in [18].) The generalization includes
the addition of an electromagnetic field, and in addition,
the existence of an extra Killing vector is proved not only
for the spherically symmetric solution (KðhÞ ¼ 1), but also
for solutions invariant with respect to ISOð2Þ (KðhÞ ¼ 0)
and SOð1; 2Þ (KðhÞ ¼ −1) transformation groups.
We are left to solve Eq. (39). In static, q ¼ qðσÞ, and

homogeneous, q ¼ qðτÞ, cases, Eq. (39) takes the form,

ðq2Þ00 ¼ 2

�
KðhÞ − Λq2 −

Q2

q2

�
Φ; q ¼ qðσÞ; ð42Þ

ðq2Þ00 ¼ −2
�
KðhÞ − Λq2 −

Q2

q2

�
Φ; q ¼ qðτÞ: ð43Þ

To integrate the derived equations, one has to express Φ
through q using Eq. (40) and removing the modulus signs.
We consider the static case q ¼ qðσÞ, Φ > 0 and q0 > 0

in detail. Then Eq. (42) together with Eq. (40) reduces to

ðq2Þ00 ¼ 2

�
KðhÞ − Λq2 −

Q2

q2

�
q0:

It can be easily integrated

ðq2Þ0 ¼ 2

�
KðhÞq −

Λq3

3
− 2M þQ2

q

�
;

where M ¼ const is an integration constant, which
coincides with the mass in the Schwarzschild solution.
Differentiating the left-hand side and dividing it by
2q > 0, we obtain the equation,
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q0 ¼ KðhÞ −
2M
q

þQ2

q2
−
Λq2

3
:

Since q0 ¼ Φ in the case under consideration, it implies
the expression for the conformal factor through the
variable q,

ΦðqÞ ¼ KðhÞ −
2M
q

þQ2

q2
−
Λq2

3
: ð44Þ

If q ¼ qðσÞ, Φ > 0 and q0 < 0, then the similar inte-
gration yields

q0 ¼ −ΦðqÞ;

where the same conformal factor (44) stands in the right-
hand side. This case can be united with the previous one by
rewriting the equation for q in the form,

jq0j ¼ ΦðqÞ; q ¼ qðσÞ; Φ > 0: ð45Þ

The modulus sign in the left-hand side means that if qðσÞ is
a solution, then the function qð−σÞ is also a solution.
The static case for Φ < 0 is integrated in the same way,

jq0j ¼ −ΦðqÞ; q ¼ qðσÞ; Φ < 0: ð46Þ

If the solution is homogeneous, q ¼ qðτÞ and Φ > 0,
q0 > 0, then the integration of Eq. (43) yields the equality,

q0 ¼ −
�
KðhÞ −

2M
q

þQ2

q2
−
Λq2

3

�
:

That is, the conformal factor must be identified with the
right-hand side,

Φ̂ ¼ −
�
KðhÞ −

2M
q

þQ2

q2
−
Λq2

3

�
: ð47Þ

We denote the expression for the conformal factor through
q by hat because in the homogeneous case, it differs by the
sign. Thus, homogeneous solutions of Einstein’s equations
can be written in the form,

jq0j ¼ Φ̂ðqÞ; q ¼ qðτÞ; Φ̂ > 0. ð48Þ

jq0j ¼ −Φ̂ðqÞ; q ¼ qðτÞ; Φ̂ < 0: ð49Þ

If the conformal factor is negative, then the signature of
the metric is ð−þ −−Þ. In this case, we return to the
previous signature ðþ − −−Þ after substitution τ ↔ σ. This
transformation allows us to unite static and homogeneous
solutions by taking the modulus of the conformal factor in
the expression for the metric (35). Then, a general solution
of vacuum Einstein’s equations with an electromagnetic

field (7) in the corresponding coordinate system takes the
form,

ds2 ¼ jΦjðdτ2 − dσ2Þ − q2dΩ2; ð50Þ

where the conformal factor Φ is given by Eq. (44).
Here, the variable q depends on σ (a static local solution)
or τ (a homogeneous local solution) through the differential
equation,





 dqdζ




 ¼ �ΦðqÞ; ð51Þ

where the sign rule holds

Φ> 0∶ ζ¼ σ; the signþðstatic local solutionÞ;
Φ< 0∶ ζ¼ τ; the sign− ðhomogeneous local solutionÞ:

ð52Þ

Thus, the four-dimensional Einstein’s equations imply
that there is a metric with one Killing vector field on the
surface Uwhich was considered in full detail in [15]. Now
we can construct global solutions (maximally extended
along geodesics) of vacuum Einstein’s equations using the
conformal block method. The number of singularities and
zeroes of the conformal factor (44) depends on relations
between constants K, M, Q, and Λ. Therefore, there are
many qualitatively different global solutions, which are
considered in next sections.
The conformal factor (44) has one singularity: the

second order pole at q ¼ 0. Therefore, according to the
rules formulated in [15,16], every global solution corre-
sponds to one of the intervals ð−∞; 0Þ or ð0;∞Þ. The form
of the conformal factor (44) implies that these global
solutions are obtained one from the other by the trans-
formation M ↦ −M. Hence, without a loss of generality,
we describe global solutions corresponding to both
intervals but positive values of M.
Because the conformal factor ΦðqÞ is a smooth function

for q ≠ 0, all arising Lorentzian surfaces U and metrics on
them are smooth.
To conclude the section, we compute geometrical invar-

iants which show that the obtained solution of Einstein’s
equations are nontrivial. First, we compute the scalar
curvature RðgÞ of the surface U. Equations (30) and (31)
imply

RðgÞ ¼−
2KðhÞ

m
þð∇mÞ2

2m2
−
4Q2

m2
¼ 2KðhÞ

q2
þ2ð∇qÞ2

q2
−
4Q2

q4
:

Since

ð∇qÞ2 ¼ 1

Φ
ηαβ∂αq∂βq ¼ −

q02

Φ
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both for static and homogeneous solutions, the final
expression is

RðgÞ ¼ 2Λ
3

þ 4M
q3

−
6Q2

q4
: ð53Þ

It does not depend on the Gaussian curvature KðhÞ of a
Riemannian surface V and is singular for q ¼ 0 if M ≠ 0
and/or Q ≠ 0.

2. Metric signature ð−+++Þ
If m > 0, then the signature of the metric is opposite

ð−þþþÞ, and we introduce the parametrization,

m ≔ q2; q > 0;

instead of Eq. (36). Performing the same calculation as
in the previous section, we obtain the first order equation
for q,





 dqdζ




 ¼ �ΦðqÞ; ð54Þ

where M is an integration constant and

ΦðqÞ ≔
�
KðhÞ −

2M
q

−
Q2

q2
þ Λq2

3

�
: ð55Þ

Here, we must take into account that for getting the
signature ð−þþþÞ, we have to make the interchange
τ ↔ σ. We see that for drawing the Carter–Penrose diagram
one has to simply make the replacement Q2 ↦ −Q2 and
Λ ↦ −Λ as compared to the signature ðþ − −−Þ.
Now, we describe all the spatially symmetric global

solutions of Einstein’s equations with an electromagnetic
field which are defined by zeroes and their types of the
conformal factor ΦðqÞ.

B. Spherically symmetric solutions KðhÞ = 1

In the considered case, global spherically symmetric
solutions, that is pairs ðM; ĝÞ, have the form M ¼ U × S2,
where U is the maximally extended Lorentzian surface,
which is depicted by the Carter–Penrose diagram. The
four-dimensional metric on M has the form (50), where
dΩ2 is the metric on the sphere S2 for the signature
ðþ − −−Þ. If the signature is opposite ð−þþþÞ, then we
have to replace Q2 ↦ −Q2 and Λ → −Λ in the conformal
factor and change the sign of dΩ2 in metric (50). Due to
the existence of one Killing vector on a Lorentzian surface
U, we are able to classify all global solutions. To construct
Carter–Penrose diagrams, we use the conformal block
method described in [15] (see also, [16]). First, we
consider solutions of the signature ðþ − −−Þ, and then
with the signature ð−þþþÞ.

1. Metric signature ð+−−−Þ
If the metric signature is ðþ − −−Þ, then the conformal

factor is

ΦðqÞ ¼ 1 −
2M
q

þQ2

q2
−
Λq2

3
≕

φðqÞ þ 3Q2

3q2
; ð56Þ

where we introduced the auxiliary function,

φðqÞ ≔ −Λq4 þ 3q2 − 6Mq; ð57Þ

which is needed for further analysis. The case Q ¼ 0 was
analyzed in [14]. Therefore, we classify solutions for
Q ≠ 0. Without a loss of generality, we consider the case
Q > 0, because only Q2 enters the conformal factor.
A conformal factor (56) has the second order poleQ2=q2

at zero and the following asymptotic at infinity:

Φ ≈ 1 −
Λq2

3
; q → ∞:

If the cosmological constant is equal to zero, then the
metric is asymptotically flat. For Λ > 0 and Λ < 0, we
have asymptotically de Sitter and anti–de Sitter spacetime,
respectively.
A global solution corresponds to one of the intervals

q ∈ ð0;∞Þ or q ∈ ð−∞; 0Þ and M > 0, because the cur-
vature has a singularity (53) at zero, and space-time is not
extendable through this point. Roots of the conformal
factor (56) correspond to horizons of space-time, and
Carter–Penrose diagrams are defined by the number and
type of zeroes of the conformal factor [15]. Thus, we have
to analyze the number and type of zeroes of the conformal
factor (56) for all possible values of constants Λ, M ≥ 0,
and Q > 0.
Note that the conformal factor (56) is invariant with

respect to the transformation,

M → −M; q → −q:

Therefore, instead of constructing global solutions on
the interval q ∈ ð0;∞Þ for all values of M, we restrict
ourselves not only for non-negative M ≥ 0, but on two
intervals q ∈ ð−∞; 0Þ and ð0;∞Þ. This simplifies the
analysis of the conformal factor.
We start with the simplest and well-known case Λ ¼ 0.

2. Metric signature ð+−−−Þ. The case Λ= 0

If the cosmological constant vanishes, then zeroes of
conformal factor (56) are defined by the quadratic equation,

q2 − 2MqþQ2 ¼ 0; ð58Þ
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which has two roots,

q� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð59Þ

The Reissner–Nordström solution.—For Q < M, there are
two positive simple roots. This solution is called the
Reissner–Nordström solution [4,5] and depicted by the
Carter–Penrose diagram S1 shown in Fig. 1. It was also
found by H. Weyl [19]. The solution has two horizons at q−
and qþ and a naked timelike singularity at q ¼ 0. The
conformal factor tends to unity at infinity, and, conse-
quently, the Reissner–Nordström solution is asymptotically
flat. Arrows on the diagram show directions in which the
solution can be periodically extended in time. Instead of
periodic extension, there is the possibility to identify the
opposite horizons. The singularity at q ¼ 0 is timelike, and
an observer can approach it as close as he likes in conformal
blocks I or III, and then enter universe III or I by going
through conformal block IV. Therefore, the Reissner–
Nordström solution does not describe a black hole.

Extremal black hole.—For Q ¼ M, the conformal factor is

Φ ¼ ðq −MÞ2
q2

:

It has one positive root of second order at q ¼ M. The
corresponding Carter–Penrose diagram is shown in Fig. 1,
S4. It is called an extremal black hole, though there is no
black hole since the singularity is timelike and the horizon
surrounding the singularity is absent. There is also a space-
reflected diagram.

Naked singularity.—For Q > M, horizons are absent, and
we have a naked singularity shown in Fig. 1, S5. There is
also a space-reflected diagram.

3. Metric signature ð+−−−Þ. The case Λ > 0

For positive cosmological constant, zeroes of the con-
formal factor are defined by the fourth order equation,

φðqÞ þ 3Q2 ¼ 0; ð60Þ
where a function φðqÞ is given by the fourth order
polynomial (57). To draw Carter–Penrose diagrams, we
do not need to know exact position of zeroes. We have to
know only their existence and type. Therefore, we analyze
the function φðqÞ qualitatively and then move its graphic
up, which corresponds to increasing the value of Q2.
First, we differentiate the function (60),

φ0ðqÞ ¼ −4Λq3 þ 6q − 6M;

φ00ðqÞ ¼ −12Λq2 þ 6 ¼ −6ð2Λq2 − 1Þ: ð61Þ

The asymptotics of the function φðqÞ (Λ > 0) and its
derivatives for q ¼ 0 and q → ∞ are easily found

φð0Þ ¼ 0; φðq → ∞Þ ≈ −Λq4;
φ0ð0Þ ¼ −6M; φ0ðq → ∞Þ ≈ −4Λq3;
φ00ð0Þ ¼ 6; φ00ðq → ∞Þ ≈ −12Λq2:

ð62Þ

Zeroes of function φðqÞ þ 3Q2 require more work.
As we see later, their number does not exceed 3. To find
the types of zeroes, we have to know the local extrema of
the function φðqÞ, which become zeroes of order two or
three after shifting on 3Q2.
Local extrema of the function φ are defined by a cubic

equation (the solution is given, e.g., in [20]),

q3 −
3

2Λ
qþ 3M

2Λ
¼ 0: ð63Þ

There are three qualitatively distinct cases depending on
the value of constant,

ϒ ≔ −
1

8Λ3
þ 9M2

16Λ2
: ð64Þ

Namely,

ϒ > 0 ⇔ jMj > 1
3

ffiffiffi
2
Λ

q
− one real and two complex conjugate roots;

ϒ ¼ 0 ⇔ jMj ¼ 1
3

ffiffiffi
2
Λ

q
− three real rootsðat least two roots coincideÞ;

ϒ < 0 ⇔ jMj < 1
3

ffiffiffi
2
Λ

q
− three different real roots:

We start with the simplest case, ϒ ¼ 0. This equality
implies a restriction on “mass”,

ϒ ¼ 0 ⇔ M ¼ 1

3

ffiffiffiffi
2

Λ

r
: ð65Þ

Moreover, roots of Eq. (63) take the simple form,

M ¼ 1

3

ffiffiffiffi
2

Λ

r
∶ q1 ¼ −

ffiffiffiffi
2

Λ

r
; q2;3 ¼

1

2

ffiffiffiffi
2

Λ

r
; ð66Þ

As we see, there are one simple negative root and
one positive root of second order for a positive
“mass” (65).
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If the inequality ϒ < 0 holds, then the real roots of the
cubic equation (63) are (see, e.g., [20]),

q3 ¼
ffiffiffiffi
2

Λ

r
cos

α

3
; q2;1 ¼ −

ffiffiffiffi
2

Λ

r
cos

�
α

3
� π

3

�
; ð67Þ

where

cos α ≔ −3M
ffiffiffiffi
Λ
2

r
:

Since we consider only nonnegative M, then α ∈ ½π
2
; 3π
2
�.

It implies the existence of one negative root q1 and two
positive: q2 and q3. We enumerate the zeroes in Eq. (67) in
such a way, that, in the limit,

M →
1

3

ffiffiffiffi
2

Λ

r
;

they take values (66).
If ϒ > 0, then we have only one negative root q1. Its

exact position can be written, but it is not needed.
Figure 2(a) shows qualitative behavior of the function

φðqÞ for Λ > 0 and different values of M ≥ 0. Now, to
construct all global solutions which exist in the theory for a
signature ðþ − −−Þ, we have to analyze the zeroes of the
conformal factor ΦðqÞ; qualitative behavior of which for
Q ¼ 0 is shown in Fig. 2(b). Zeroes of the conformal factor
and their type coincide with that of function φðqÞ þ 3Q2.
Therefore, we have to shift up curves 1–4 in Fig. 2(a) on
3Q2 to analyze its qualitative behavior. The number and
type of zeroes depend on curves 1–4 and on the value of
the shift 3Q2. All possible Carter–Penrose diagrams are
drawn in Fig. 1.

The conformal factor depicted by curve 4 in Fig. 2(b)
does not have a zero at q ¼ 0. It corresponds to de Sitter
space and is degenerate at this presentation of the problem
(M ¼ 0, Q ¼ 0), which is not considered here because of
the assumption Q > 0.
For a qualitative description of the behavior of the

conformal factor, we introduce the notation,

φ1 ≔ φðq1Þ; φ2 ≔ φðq2Þ; φ3 ≔ φðq3Þ; ð68Þ
where φ1 is the maximum, φ2 is local minimum, and φ3 is
local maximum of the auxiliary function φðqÞ. One can
easily verify, that, for Λ > 0 and q < 0, the maximum is
positive, φ1 > 0. On a positive half line q > 0, the local
minimum is always negative, φ2 < 0, and local maximum
φ3 can take negative as well as positive values,

0 < M <
1ffiffiffiffi
Λ

p ; φ3 > 0;

M ¼ 1ffiffiffiffi
Λ

p ; φ3 ¼ 0;

M >
1ffiffiffiffi
Λ

p ; φ3 < 0:

When Eq. (65) holds, local minimum and maximum
coincide: q2 ¼ q3. Now we list all possibilities in the
considered case.

Three horizons.—Under the condition,

−φ3 < 3Q2 < −φ2; ð69Þ
the conformal factor has three simple zeroes on a positive
half line. The corresponding Carter–Penrose diagram of
a surface U is given by S2 in Fig. 1. Here, we have two

(a) (b)

FIG. 2. Auxiliary function φðqÞ for Λ > 0 (a) and conformal factorΦðqÞ forQ ¼ 0 (b). The curves correspond to the following values
of the constant: (1)ϒ > 0, (2)ϒ ¼ 0, (3)ϒ < 0, and (4)ϒ ¼ − 1

8Λ3. Local extrema for curve 3 on the left picture are located at points q1,
q2, and q3. For curve 2, local maximum and minimum coincide, that is q2 ¼ q3, and are denoted by the fat point. For curve 1, there is
only one maximum for negative q. Curve 4 on the left is symmetric with respect to substitution q ↦ −q, has local minimum at q ¼ 0,

and two maxima at points q ¼ �
ffiffiffiffiffi
3
2Λ

q
.
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timelike naked singularities. Arrows show that this diagram
can be either periodically continued in space- and timelike
directions, or opposite horizons can be identified. If we
identify horizons in one direction, then topologically the
surface U is a cylinder. If identification is performed in both
directions, then it is a torus.

One simple horizon and timelike singularity.—The con-
formal factor has one simple zero on the positive half line
under the following conditions:

Λ > 0; ϒ < 0; M ¼ 0; Q ≠ 0;

Λ > 0; ϒ < 0; M > 0; φ3 < 0; 3Q2 < −φ3;

Λ > 0; ϒ < 0; M > 0; ∀ φ3; 3Q2 > −φ2;

Λ > 0; ϒ ¼ 0; M > 0; 3Q2 ≠ −φ2;

Λ > 0; ϒ > 0; M > 0; Q ≠ 0;

Λ > 0; ∀ ϒ; M < 0; ∀ φ3; Q ≠ 0.

:

ð70Þ

This global solution is depicted by the Carter–Penrose
diagram S7. It has timelike singularity.

Triple horizon.—Under the conditions,

Λ > 0; Υ ¼ 0; M > 0; 3Q2 ¼ −φ2: ð71Þ

local maximum and minimum of an auxiliary function φðqÞ
coincide: q2 ¼ q3, and the conformal factor has a zero of
third order at the point q2 (triple horizon). This case is
depicted by diagram S6. It coincides with diagram S7, but
there is one important difference: the saddle point q2 in the
center of the diagram is geodesically complete.
This diagram is interesting from physical standpoint.

Consider a spacelike section of this diagram. If the section
does not go through the saddle point, which is located in
the center of the diagram, then it is an interval of finite
length with singular ends where two-dimensional curvature
becomes infinite. If the space section goes through the
saddle point then it is the union of two half-infinite
intervals, because the central point in the center of the
diagram is the space infinity. If we introduce now the global
evolution parameter T, for instance, the vertical line on the
diagram, then the topology of space sections change during
evolution: for some value of T, there are two half-infinite
intervals instead of one finite interval. This example shows
that changing the topology of space in time can occur
already at the classical level. This type of diagram appeared
first in two-dimensional gravity with torsion [8].

Two horizons with double local minima.—Under the
conditions,

Λ > 0; ϒ < 0; M > 0; 3Q2 ¼ −φ2; ð72Þ

the conformal factor has one zero of second order at the
point q2 and one simple zero at some point lying to the right
from q2. This solution is depicted by Carter–Penrose
diagram S8 with two timelike singularities, which can
be periodically extended in a timelike direction.

Two horizons with double local maximum.—Under the
conditions,

Λ > 0; ϒ < 0; M > 0; φ3 < 0;

3Q2 ¼ −φ3; ð73Þ

the conformal factor has one double zero at q3 and one
simple zero at some point lying to the left from q2.
This solution corresponds to a Carter–Penrose diagram
S3 with two timelike singularities, which can be periodi-
cally extended in a spacelike direction.

4. Metric signature ð+−−−Þ. The case Λ < 0

For a negative cosmological constant, the conformal
factor has the same form and asymptotics remain the same
(62). Equation (63) and constant (64), defining the roots, do
not change. We see that values of a constant ϒ are positive
for all Λ and M. Consequently, Eq. (63) has only one non-
negative real root. Moreover, now branches of auxiliary
function φðqÞ are directed upwards as shown in Fig. 3, and
three new Carter–Penrose diagrams appear in the spheri-
cally symmetric case.
The conformal factor depicted by curve 2 in Fig. 3(b) has

a zero at point q ¼ 0. It corresponds to anti–de Sitter space
and is the degenerate case in the problem under consid-
eration (M ¼ 0, Q ¼ 0).
Now we list all possibilities for negative cosmological

constant.

Timelike singularity.—Under the conditions,

Λ < 0; M > 0; 3Q2 > −φ4;

Λ < 0; M ≤ 0; φ3 < 0; 3Q ≠ 0;
ð74Þ

the conformal factor does not have zeroes, and, conse-
quently, horizons are absent. In this case, the Carter–
Penrose diagram has the lens form S9 in Fig. 1. There is
also a space-reflected diagram.

Naked singularity.—Under the conditions,

Λ < 0; M > 0; 3Q2 ¼ −φ4; ð75Þ

the conformal factor has one positive root of second order
at the minimum of the auxiliary function at q4. In this case,
the Carter–Penrose diagram is S10 in Fig. 1. In contrast to
the naked singularity S4, the right complete infinity q ¼ ∞
is timelike. It is due to the asymptotic behavior of the
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conformal factor at infinity, because space-time is asymp-
totically anti–de Sitter for Λ < 0. There is also a space-
reflected diagram.

Timelike singularity and two horizons.—Under the
conditions,

Λ < 0; M > 0; 3Q2 < −φ4; ð76Þ

the conformal factor has two zeroes. In this case, the
Carter–Penrose diagram is given by S11 in Fig. 1. This
solution can either be periodically extended in a timelike
direction or opposite horizons can be identified. In contrast
to diagram S1, space infinities are timelike, which is due to
asymptotic at infinity.
Thus, we classified all spherically symmetric global

solutions of Einstein’s equations with an electromagnetic
field for the metric signature ðþ − −−Þ. We see, that all
solutions of a signature ðþ − −−Þ contain a timelike
singularity. Totally, we get 11 topologically inequivalent
solutions S1–S11. It is possible to give a more subtle
classification taking into account the existence of degen-
erate and oscillating geodesics. The latter appears if the
conformal factor has a local extremum inside one of the
conformal blocks. This classification was given for global
solutions of two-dimensional gravity with torsion [8].

5. Metric signature ð−+++ Þ
Of course, metric signatures ðþ − −−Þ and ð−þþþÞ in

general relativity are equivalent with appropriate changes
of signs in the action. In our case, the change of signature
ðþ − −−Þ ↦ ð−þþþÞ must be followed by the change
of the overall sign of action (6). If we do not change
the signs in the action and proceed with the signature
ð−þþþÞ, then five new Carter–Penrose diagrams appear
S12–S16. The diagram S12 is the same as for the
Schwarzschild solution, and diagrams S13–S16 are
obtained from S11, S9, S10, and S7 by rotation of 90°
degrees, respectively. These solutions are unphysical

because the canonical Hamiltonian for physical degrees
of freedom of the electromagnetic field becomes a
negative definite. Therefore, we skip the detailed analysis.

C. Planar solutions KðhÞ = 0

If the Gaussian curvature of a surface V equals to zero,
then it is either the Euclidean plane R2, or a cylinder, or a
torus (after factorization). Thus, there is a spontaneous
ISOð2Þ symmetry arising if the surface V is a Euclidean
plane R2. That is, the space-time metric becomes invariant
with respect to the ISOð2Þ transformation group on the
equations of motion. In Schwarzschild coordinates ðζ; q;
y; zÞ, it is written in the form [for m ¼ −q2 < 0, corre-
sponding to a signature ðþ − −−Þ],

ds2 ¼ ΦðqÞdζ2 − dq2

ΦðqÞ − q2dΩ2
P ; ð77Þ

where

ΦðqÞ ¼ −
2M
q

þQ2

q2
−
Λq2

3
; dΩ2

P ≔ dy2 þ dz2: ð78Þ

To draw Carter–Penrose diagrams for a Lorentzian
surface U, we have to analyze zeroes and asymptotics of
a conformal factor ΦðqÞ. For Q ≠ 0, we have the second
order pole Q2=q2 at zero and asymptotic at infinity,

Φ ≈ −
Λq2

3
; q → ∞:

On intervals ð0;∞Þ and ð−∞; 0Þ, the conformal factor is
smooth, and, consequently, every global solution corre-
sponding to one of these intervals is smooth. As for
spherically symmetric solutions, we consider a positive
M on both intervals due to the symmetry transforma-
tion ðM; qÞ ↦ ð−M;−qÞ.
We start with the simplest case.

FIG. 3. Auxiliary function φðqÞ (a) and conformal factor ΦðqÞ for Λ < 0 and Q ¼ 0 (b). The curves correspond to the following
values of the constant: (1) ϒ > − 1

8Λ3 and (2) ϒ ¼ − 1
8Λ3 (M ¼ 0). On the left picture, the only minimum of curve 1 is located at a point

q4. Curve 2 on the left is invariant with respect to the map q ↦ −q and has a minimum at q ¼ 0.
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1. Metric signature ð+−−−Þ. The case Λ= 0
The conformal factor is

ΦðqÞ ¼ Q2 − 2Mq
q2

: ð79Þ

It has obviously one simple zero

q ¼ Q2

2M
:

Moreover, there are only two cases.

Timelike singularity and one horizon.—Under the
conditions,

Λ ¼ 0; M > 0; ð80Þ
the conformal factor has one simple positive zero. The
corresponding Carter–Penrose diagram is P1 in Fig. 4.
This diagram has the same form as the Schwarzschild black
hole S12 but turned over on 90°.

Naked singularity.—Under the conditions,

Λ ¼ 0; M ≤ 0; ð81Þ

positive roots of the conformal factor are absent, and we
have a naked singularity S5 in Fig. 1. ▪
To find zeroes for the nonzero cosmological constant

Λ ≠ 0, we introduce an auxiliary function ϕðqÞ represent-
ing the conformal factor for signature ðþ − −−Þ in the
form,

ΦðqÞ≕ ϕðqÞ þ 3Q2

3q2
; ð82Þ

where

ϕðqÞ ≔ −6Mq − Λq4: ð83Þ
For the opposite signature, signĝ ¼ ð−þþþÞ, it is needed
to make the replacement Q2 ↦ −Q2. We see that on
intervals ð0;∞Þ and ð−∞; 0Þ, the number and type of
zeroes of the conformal factor coincide with zeroes of the
numerator ϕðqÞ þ 3Q2. It means that auxiliary function
must be shifted either downwards [signature ðþ − −−Þ] or
upwards [signature ð−þþþÞ].
The auxiliary function (83) has two real roots,

q ¼ 0; q ¼
ffiffiffiffiffiffiffiffiffiffiffi
−
6M
Λ

3

r
;

and two complex conjugate roots which do not interest us.
The qualitative behavior of the auxiliary function and
corresponding conformal factor are shown in Fig. 5. The
position of extrema of the auxiliary function is defined by
the equality,

ϕ0ðqÞ ¼ −6M − 4Λq3 ¼ 0 ⇒ q ¼
ffiffiffiffiffiffiffiffiffiffiffi
−
3M
2Λ

3

r
:

FIG. 4. The Carter–Penrose diagram for a planar solution for
Λ ¼ 0 and M > 0.

(a) (b)

FIG. 5. Auxiliary function ϕðqÞ (a) and conformal factor ΦðqÞ (b) M > 0. Maximum and minimum of the auxiliary function are
located at points q5 and q6 for Λ > 0 and Λ < 0, respectively.
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We denote them by q5 and q6 for Λ > 0 and Λ < 0,
respectively [see. Fig. 5(a)]. The maximal and minimal
values of the auxiliary function are denoted by

ϕ5;6 ≔ ϕðq5;6Þ ¼
9

2
M

ffiffiffiffiffiffiffi
3M
2Λ

3

r
:

It is clear, that ϕ5 > 0 for Λ > 0 and ϕ6 < 0 for Λ < 0.
Detailed analysis show that Carter–Penrose diagrams for

all planar solutions for Λ ≠ 0 were already met in the
spherically symmetric case. Therefore, to save space, we
give the classification of all planar solutions in Table I.
Note, that diagrams S7, S9, S10, and S11 differ from
diagrams S16, S14, S15, and S13 by a turn of 90° degrees,
respectively.

VI. HYPERBOLIC GLOBAL SOLUTIONS

If the Gaussian curvature of a surface V is negative,
KðhÞ ¼ −1, then the surface is a two-sheeted hyperboloid
H2, more precisely, the upper sheet of a two-sheeted
hyperboloid (the Lobachevsky plane). It is the universal
covering surface for closed Riemannian surfaces of genus
two and higher. If V ¼ H2, then the isometry group is the
Lorentz group SOð1; 2Þ. In this case, the metric in
Schwarzschild coordinates ðζ; q; θ;φÞ for the signature
ðþ − −−Þ has the form,

ds2 ¼ ΦðqÞdζ2 − dq2

ΦðqÞ − q2dΩ2
H; ð84Þ

where

ΦðqÞ ¼ −1−
2M
q

þQ2

q2
−
Λq2

3
; dΩ2

H ≔ dθ2 þ sh2θdφ2:

The conformal factor for this metric differs from that in the
spherically symmetric case (56) by the transformation,

Φ↦ −Φ; M ↦ −M; Q2 ↦ −Q2; Λ↦ −Λ:

ð85Þ

In addition, the transformationQ2 ↦ −Q2 corresponds to a
signature change of the metric, ðþ − −−Þ ↦ ð−þþþÞ.
Since we have already described global spherically sym-
metric solutions for all values of M, Q2, and Λ, all
hyperbolic solutions are obtained from spherically sym-
metric ones by a simple rotation of the Carter–Penrose
diagrams by 90°, which corresponds to the transformation
Φ ↦ −Φ. In this way, we get 16 additional Carter–Penrose
diagrams.

VII. CONCLUSION

We assumed that four-dimensional space-time is the
warped product of two surfaces, M ¼ U × V , and find a
general solution of Einstein’s equations with a cosmologi-
cal constant and an electromagnetic field. These solutions
are well-known locally and partly globally. We give a
classification of all global solutions in the case when the
surface V is of a constant curvature. Totally, there are 37
topologically different global solutions. These solutions in
case B have four Killing vector fields, three of them
corresponding to symmetry of the metric on a constant
curvature surface V . They are generators of the isometry
groups SOð3Þ, ISOð2Þ, and SOð1; 2Þ in cases when the
surface V is a sphere S2, Euclidean plane R2, and two-
sheeted hyperboloid H2, respectively. The fourth Killing
vector generalizes Birkhoff’s theorem. In all cases, there is
“spontaneous symmetry emergence” because the existence
of Killing vector fields was not assumed at the beginning,
and their appearance is the consequence of Einstein’s
equations. Most probably, part of the constructed solutions
are not satisfactory from a physical point of view. For
example, for given signs in the Lagrangian and signature of
the metric ð−þþþÞ, the Carter–Penrose diagram for a
charged black hole coincides with the Schwarzschild
solution. However, the quadratic form of momenta in the
canonical Hamiltonian for physical degrees of freedom is
not a positive definite (ghosts appearance), and this solution
has to be discarded as unphysical. Nevertheless, the given
classification of global solutions of Einstein’s equations in
the form of a warped product of two surfaces is important,
because we must know what is to be discarded.
In general relativity, there is another possibility: to

consider space-times which are the warped product of a
real line with a three-dimensional manifold. These impor-
tant types of solutions are usually considered in cosmology
and require a separate consideration.
An interesting generalization would be the inclusion of a

scalar field. If a scalar field depends only on the coordinates
on one of the surfaces U or V, then its energy-momentum
tensor is a block diagonal, and we still have three cases as
in the present paper. But the subsequent analysis becomes
much more complicated. It reduces to two-dimensional
gravity with a scalar field which is not integrable in general;
see, e.g., [21].

TABLE I. Classification of global planar solutions for Λ ≠ 0.

þ − −− Λ > 0 ∀M Q ≠ 0 S7
þ − −− Λ < 0 M > 0 0 < 3Q2 < −ϕ6 S11
þ − −− Λ < 0 M > 0 3Q2 ¼ −ϕ6 S10
þ − −− Λ < 0 M > 0 3Q2 > −ϕ6 S9
þ − −− Λ < 0 M ≤ 0 Q ≠ 0 S9
−þþþ Λ > 0 M ≥ 0 Q ≠ 0 S14
−þþþ Λ > 0 M < 0 0 < 3Q2 < ϕ5 S13
−þþþ Λ > 0 M < 0 3Q2 ¼ ϕ5 S15
−þþþ Λ > 0 M < 0 3Q2 > ϕ5 S14
−þþþ Λ < 0 ∀M Q ≠ 0 S16
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