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We prove that every solution to vacuum Einstein’s equations with possibly nonzero cosmological
constant that is foliated by nonexpanding null surfaces transversal to a single nonexpanding null surface
belongs to the family of the near (extremal) horizon geometries. Our results are local, and hold in a
neighborhood of the single nonexpanding null surface.
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I. INTRODUCTION

A. Motivation

Spacetimes foliated by nonexpanding null surfaces were
introduced by Kundt in the context of explicit (“exact”)
solutions to Einstein’s equations describing plane fronted
gravitational waves [1]. In that framework the primary
structure is a congruence of null geodesic curves that is
nondiverging, shear-free and surface forming [2–4].
Nonexpanding null surfaces [called also nonexpanding
horizons (NEHs)] appear as a main tool in the local theory
of black holes [5–8], are applicable also to cosmological
horizons and the Killing horizons in mathematical relativity,
or are used as the boundaries of conformally completed
asymptotically flat spacetimes and isolated regions of
asymptotically de Sitter spacetimes [9,10]. The theory of
the geometry of NEHs was developed and used to interpret
the constraints following from Einstein’s equations satisfied
by a surrounding spacetime M. Isolated horizons (IHs)
admit a stronger null symmetry and their class was studied
individually. Briefly, one could say that every NEH is a
Killing horizon to the zeroth order, while each IH is aKilling
horizon to the first order. The physical difference the
stronger symmetry makes, is that proper NEHs (that is
nonisolated) are used as boundaries of conformally com-
pleted asymptotically flat spacetimes [11]. In that case, the
lack of the stronger symmetrymeans gravitational radiation.
The IHs, on the other hand, are particularly useful in the
description of stationary black hole horizons. Every IH is
either extreme or nonextreme, depending on its surface
gravity. The extreme IH case is particularly interesting for
several reasons. To begin with, the Einstein constraints
on extreme IH’s geometry take a very nontrivial form [5,6].
The resulting equations, also called near horizon geometry
(NHG) equation [12], have been studied intensively
[12–15]. However, despite many results, the existence issue
of generic, nonaxisymmetric extremal IHs of topologically
spherical sections is still unsolved. That problem is relevant

for the existence of extremal Killing horizons and potential
filling gaps in the black hole uniqueness theorems. Indeed,
the extremal case is the least known in the context of the
black hole uniqueness [16].
The geometric theory of NEHs can also be applied to the

null nonexpanding surfaces foliating Kundt’s class space-
times. The result is a surprising relation between the Kundt’s
class spacetimes and solutions to the extremal IH constraints
[12,17,18]. Indeed, the foliation assumption implies a
constraint on NEH geometry. The resulting equation turns
out to be a necessary condition for each leaf of the foliation
to be transversal to an extreme IH that may or may not exist
in the given spacetime. In that way, every Kundt’s spacetime
defines a family of solutions to the extreme IH equation.
Conversely, for every solution to, say, vacuum extreme IH
equation there is a special case of the vacuum Kundt’s class
spacetime [17]. Each of those spacetimes can be obtained
from a neighborhood of an extremal Killing horizon by the
Bardeen-Horowitz-Reall limit [19,20]. Hence, physically,
they can be interpreted as spacetimes near extremal black
hole horizons. That is why they are called the near horizon
geometries [12]. Remarkably, the NHGs are still exact
solutions to Einstein’s equations.
What emerges from those considerations is a generali-

zation of NHG: spacetime foliated by NEHs emanating
from a single IH. Each generalized in that way NHG
spacetime still contains an IH, hence it provides a new
example of geometry near IH. A natural question is,
whether that class of spacetimes contains more solutions
to the vacuum Einstein’s equations than the original NHG
spacetimes. That question was raised in a previous paper
[18] where the vanishing cosmological constant case was
considered,

Λ ¼ 0:

In the current paper we investigate that question in the case
of nonzero cosmological constant
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Λ ≠ 0:

This time, we approach the problem with a different
technique, namely by using the black hole holograph
theorem and its applications [21,22]. The black hole
holograph theorem concerns spacetimes that contain two
intersecting NEHs. Each vacuum spacetime of this class is
determined by the NEHs geometry locally, to the future and
to the past of their intersection.

B. Definitions and notation

Throughout the paper we will use the following index
notation: the lower case Greek indices α; β;…; μ; ν;…
correspond to the bundles TðMÞ and T�ðMÞ tangent and
cotangent, respectively, to four-dimensional spacetime M.
The lower case Latin indices a; b; c;… correspond to
bundles tangent and cotangent to three-dimensional surfa-
ces in M, while the upper case Latin indices A;B;C;…
correspond to tangent or cotangent bundles of 2-surfaces.
Nonexpanding horizon (NEH) is a three-dimensional

null surface, say, H contained in spacetime M, such that a
null vector field la tangent to and orthogonal to H is
nonexpanding. In the theory of NEHs we assume that the
spacetime metric tensor gμν has the signature −þþþ,
satisfies the Einstein equations

Rð4Þ
μν −

1

2
Rð4Þgμν þ Λgμν ¼ 8πGTμν; ð1Þ

and the stress energy tensor satisfies at H the energy
inequalities:

Tμ
alaTμblb ≤ 0 ð2Þ

and

lμ is future directed ⇒ Tμνlν is future directed: ð3Þ

Then, the vanishing of the expansion of la implies
vanishing of the shear, hence the intrinsic degenerate
metric tensor gab induced in H is Lie dragged by the flow
of l,

Llgbc ¼ 0: ð4Þ

It follows from (4) that the spacetime covariant derivative
∇μ preserves the tangent bundle TðHÞ and therefore
induces therein an intrinsic derivative ∇a. In that way,
every NEH H is endowed with an intrinsic geometry
ðgab;∇aÞ. A rotation 1-form potential ωðlÞ and surface
gravity κðlÞ depend on a choice of the null vector l, and are
defined as follows:

∇al≕ωðlÞ
a l; κðlÞ ≔ laωðlÞ

a : ð5Þ

They satisfy the zeroth law of NEH mechanics,

∇aκ
ðlÞ ¼ Llω

ðlÞ
a : ð6Þ

While (4) is true for every null vector field l tangent to
H, in general

½Ll;∇a� ≠ 0: ð7Þ

We call H an isolated horizon (IH), if it admits a stronger
symmetry, namely if there is on H a (nowhere vanishing)
null vector field l such that

½Ll;∇a� ¼ 0: ð8Þ

For every IH

κðlÞ ¼ const: ð9Þ

IH is called extreme whenever

κðlÞ ¼ 0: ð10Þ

In the paper we also consider two transversal NEHs, say
H and H̃, that is such that

S ≔ H ∩ H̃ ð11Þ

is a two-dimensional spacelike surface. In that case, we
chose a pair of null vector fields l and l̃ tangent to H and,
respectively, H̃, such that

lμl̃μjS ¼ −1: ð12Þ

Then, the pull back to S of ωðlÞ and ω̃ðl̃Þ, respectively are
related to each other by

ωðlÞ
A ¼ −ω̃ðl̃Þ

A : ð13Þ

II. EINSTEIN SPACETIMES FOLIATED BY NEHs
TRANSVERSAL TO A SINGLE NEH:

THE GENERAL CASE

It will be useful for the reader if we briefly announce
the plan and content of the remainder of the article. Below
we introduce a class of spacetimes that generalizes the
idea of NHG. Each of the spacetimes is formed by NEHs
emanating from a single NEH. The spacetime metric
tensor satisfies Einstein’s equations with an energy-
momentum tensor subject to inequalities assumed in the
NEH theory. Clearly, the class contains spacetimes that
are not NHGs. In Sec. III we impose the vacuum Einstein
equations with a possibly nonzero cosmological constant.
Then, we prove that the only solutions are the NHG
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spacetimes. We demonstrate details of the proof that were
missing in the previous paper in which the Λ ¼ 0 case was
concerned [18]. Also, we introduce now a new method of
identification of the considered spacetimes by an application
of the black hole holograph (BHH) theorem [21,22].
Let us start with a general case of spacetime ðM; gμνÞ

foliated by NEHs transversal to a single NEH. We admit
an arbitrary energy-momentum tensor Tμν in (1) and
use only the energy inequalities (2) and (3) to write a
general formula for the metric tensor in suitably adapted
coordinates.
Let

R ∋ u ↦ Hu ⊂ M ð14Þ

be the family of nonexpanding null surfaces, and H̃ be the
transversal nonexpanding null surface. Locally, in a suit-
able neighborhood of a point of H̃, we choose the function
u to be one of spacetime coordinates. A vector field lμ

defined by

lμ ¼ −∇μu ð15Þ

is tangent to each of the leaves Hu, null, and satisfies

lμ∇μl ¼ 0: ð16Þ

Define the second coordinate, a function v, such that

lμ∇μv ¼ 1; and vjH̃ ¼ 0: ð17Þ

Locally, for every point of H̃, we may restrict our
considerations to a neighborhood in M, such that every
Hu and H̃ has the topology

Hu; H̃≡ S ×R; ð18Þ

where S is a two-dimensional surface, and the intersection
topologically is equivalent to S,

Hu ∩ H̃≡ S: ð19Þ

The remaining two spacetime coordinates xA, A ¼ 1; 2
are introduced first on the intersection

Hu0 ∩ H; ð20Þ

for arbitrarily chosen value u0 of the parameter u, next
extended along H̃ such that they are constant along the null
generators, and finally along each Hu by

lμ∇μxA ¼ 0: ð21Þ

In the resulting coordinates

ðxμÞ ¼ ðxA; v; uÞ ð22Þ

the metric tensor g takes the following form:

gμνdxμdxν ¼ gABdxAdxB − 2du½dvþWAdxA þHdu�:
ð23Þ

The coordinates are defined up to transformations

u0 ¼ U0ðuÞ; v0 ¼
�
dU0

du

�
−1
v; x0A ¼ X0AðxBÞ:

ð24Þ
The components gAB;WA and H of the metric tensor are
constrained by our assumption on the NEHs H̃ andHu. We
analyze the constraints now.
To begin with, the assumption that H̃ is null, the second

condition in (17) and the assumption that xA are constant
along the null generators of H̃ imply that the vector field ∂u

is orthogonal to H̃, hence

WAðx; 0; uÞ ¼ 0 ¼ Hðx; 0; uÞ; ð25Þ
where we denoted x ≔ ðxAÞ.
Second, the energy inequalities (2) and (3) imply

constrains on the dependence on u along H̃, and on the
dependence on v along everyHu of some functions, even if
we do not specify the energy-momentum tensor Tμν in (1).
Indeed, to begin with

gABðx; v; uÞ;v ¼ 0; and gABðx; 0; uÞ;u ¼ 0: ð26Þ
The first equality follows from the nonexpanding of each
Hu and every metric tensor (23) with the first Eq. (26) is
called the Kundt’s class metric [1–3]. The second equality
follows from the nonexpanding of H̃. Consequently,

gABðx; v; uÞ ¼ gABðxÞ: ð27Þ
Next, for every Hu, the rotation 1-form potential is

ωðlÞ ¼ ωðlÞ
A dxA ¼ 1

2
WA;vdxA: ð28Þ

The 0th law (6) and (16) imply

WAðx; v; uÞ;vv ¼ 0: ð29Þ

This is one of the well-known vacuumKundt equations (see
[2]). Hence,

WAðx; v; uÞ ¼ 2vωðlÞ
A ðx; uÞ: ð30Þ

One can also notice that at the transversal nonexpanding
null surface H̃, as a tangent null vector field we can use the
vector
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l̃ ≔ ∂u: ð31Þ

Since by the construction

l̃μlμ ¼ −∂uu ¼ −1 at H̃ ∩ Hu ð32Þ

for every value of the parameter u, the family of 1-form

potentials ωðlÞ
A ðx; uÞ (labeled by u and each defined on the

corresponding Hu) is related to a single rotation 1-form
potential ω̃ðl̃Þðx; uÞ on H̃,

ω̃ðl̃Þðx; uÞ ¼ κ̃ðl̃Þðx; uÞdu − ωðlÞ
A ðx; uÞdxA; ð33Þ

where the surface gravity κ̃ðl̃Þ can be calculated from the
function H, namely

κ̃ðl̃Þðx; uÞ ¼ −∂vHðx; 0; uÞ: ð34Þ

In the vacuum case investigated in the next subsection,
the surface gravity κ̃ðl̃Þ will be zero eventually. Proving the
vanishing of κ̃ðl̃Þ will be the main technical task. The
geometric meaning of that property is that the function u
provides an affine parametrization of the null geodesics
in H̃.
Of course the 0th law (6) still applies to κ̃ðl̃Þ and ω̃ðl̃Þ, and

it reduces to

∂Aκ̃
ðl̃Þðx; uÞ ¼ −∂uω

ðlÞ
A ðx; uÞ: ð35Þ

Hence, ruling out the surface gravity κ̃ðl̃Þðx; uÞ we obtain
the constraint on H and ωðlÞ

A ,

∂A∂vHðx; 0; uÞ ¼ ∂uω
ðlÞ
A ðx; uÞ: ð36Þ

In summary, the functions gABðx; v; uÞ;WAðx; v; uÞ
and Hðx; v; uÞ in (23) satisfy (27), (30), and (25) where
the functions gABðxÞ and ∂vHðx; v; uÞ are arbitrary, and the
functions ωðlÞ

A ðx; uÞ are constrained by (36). Now, the
surfaces

Hu0∶ u ¼ u0 ð37Þ

are NEHs for every u0, and so is the surface

H̃∶ v ¼ 0: ð38Þ

The momentum energy tensor, determined by (1) and the
resulting metric tensor (23), satisfies the energy inequalities
(2) and (3).
The pull back Rð4Þ

AB of spacetime Ricci tensor to any
2-surface such that

u ¼ const; v ¼ const ð39Þ

can be expressed by the metric tensor gAB and the 1-form

ωðlÞ
A as follows:

1

2
Rð4Þ

AB ¼ ∇ðAω
ðlÞ
BÞ − ωðlÞ

A ωðlÞ
B þ 1

2
RAB; ð40Þ

where∇A and RAB are the covariant derivative and the Ricci
tensor, respectively, of the metric tensor gABðxÞ. This
equation written in an equivalent way in terms of the
spacetime metric components is very well known and can
be found in [2,3]. For us, it is a relation between the

spacetime Ricci tensor and the data ðgAB;ωðlÞ
B Þ. This is not

a constraint, though, unless additional assumptions are
made about Tμν.
On the similar basis, the Rð4Þ

vuðx; v; uÞ component of the

spacetime Ricci tensor is determined by gABðxÞ, ωðlÞ
A ðx; uÞ

and the function Hðx; v; uÞ [2], namely

Rð4Þ
uvðx; v; uÞ ¼ gABðxÞ½−∇Aω

ðlÞ
B ðx; uÞ

þ 2ωðlÞ
A ðx; uÞωðlÞ

B ðx; uÞ� þH;vvðx; v; uÞ
ð41Þ

and at this point is an identity, rather than a constraint.

III. EINSTEIN SPACETIMES FOLIATED BY NEHs
TRANSVERSAL TO A SINGLE NEH:

THE VACUUM CASE

Suppose now that the metric tensor (23) defined in
the previous subsection satisfies the vacuum Einstein
equations,

Rð4Þ
μν ¼ Λgμν: ð42Þ

In order to find the set of (local) solutions, one could
impose the equations (42) on the spacetime metric tensor
introduced in the previous subsection.

A. The vacuum case with an additional symmetry
assumption

It is easy to solve the resulting equations completely and
explicitly for the subset of spacetimes that satisfy the
following additional symmetry:

∂uWðx; v; uÞ ¼ 0: ð43Þ

We will focus in this subsection on that case.
From the point of view of the NEH H̃, in this case

∂uω̃
ðl̃Þ
A ðx; uÞ ¼ 0; ð44Þ

JERZY LEWANDOWSKI and ADAM SZERESZEWSKI PHYS. REV. D 100, 024049 (2019)

024049-4



hence

∂Aκ̃
ðl̃Þðx; uÞ ¼ 0; ð45Þ

that is, the surface gravity of the vector field l̃ is a function
of u only. That implies that there is a coordinate trans-
formation

u ¼ Uðu0Þ; v ¼ Vðv0; u0Þ
dU=du0

ð46Þ

such that

κ̃ðl̃
0Þ ¼ 0; ð47Þ

hence

∂v0H0ðx; 0; u0Þ ¼ 0: ð48Þ

Therefore, without lack of generality, we suppose from
now on that

∂vHðx; 0; uÞ ¼ 0: ð49Þ

From the point of view of the family of NEHs Hu, the
equality (36) implies that the rotation 1-form potentials
(labeled by u) are actually all the same, that is there exists a
1-form ωAðxÞ such that

ωðlÞ
A ðx; uÞ ¼ ωAðxÞ: ð50Þ

Next, for every gABðxÞ and ωAðxÞ, the identity (41)
becomes an equation on H. Its integration implies

Hðx; vÞ ¼ 1

2
ð∇Aω

AðxÞ − 2ωAðxÞωAðxÞ − ΛÞv2: ð51Þ

The identity (40) now becomes a constraint on gABðxÞ,
ωAðxÞ, and Λ, namely

∇ðAωBÞ − ωAωB þ 1

2
RAB −

1

2
ΛgAB ¼ 0: ð52Þ

In that way all the components of the metric tensor
gμνðx; v; uÞ have been determined by a metric tensor
gABðxÞ and a 1-form ωAðxÞ defined on the two-dimensional
manifold S, provided they satisfy the new constraint (52).
Indeed, we have established a formula:

g ¼ gABðxÞdxAdxB − 2du

�
dvþ 2vωAðxÞdxA

þ 1

2
v2ð∇Aω

AðxÞ − 2ωAðxÞωAðxÞ − ΛÞdu
�
≕ gðNHGÞ:

ð53Þ

Finally, it can be checked by inspection that the remaining
components of the spacetime Riemann tensor do satisfy the
vacuum equations (42). The spacetimes (53) are known as
the NHG solutions.

B. The vacuum case without the additional assumption

In this subsection we relax the assumption (43) and turn
to a general case of the metric tensor gμν (23)–(42). We will
show now by using the results on extremal IHs [5] [see
Eqs. (B.53) and (B. 54) therein] that gμν necessarily admits
the symmetry (43), unless the Weyl tensor vanishes on H̃.
In the latter case, the spacetime has a triple (at least)
principal null direction. In a conformally nonflat case, that
makes the foliation u ↦ Hu unique. Application of the
black hole holograph theorem [21,22] completes our
solution to the problem.
The proof proceeds as follows. For an arbitrary value of

the parameter u, consider the corresponding intersection

H̃ ∩ Hu; ð54Þ

thereon, the induced metric tensor gABðxÞ (27) and the

rotation 1-form potential ωðlÞ
A ðx; uÞ (28). It follows from

(40) and (42) that the data [gABðxÞ, ωðlÞ
A ðx; uÞ] satisfies a

constraint

∇ðAω
ðlÞ
BÞ ðx; uÞ − ωðlÞ

A ðx; uÞωðlÞ
B ðx; uÞ þ 1

2
RABðxÞ

−
1

2
ΛgABðxÞ ¼ 0: ð55Þ

Hence, the given gABðxÞ, we have a family of solutions

ωðlÞ
A ðx; uÞ (labeled by u) to the Eq. (55). Moreover, the

integration of (36) with respect to u from u0 to u1 shows
that there exists a function bðx; u0; u1Þ such that

ωðlÞ
A ðx; u1Þ ¼ ωðlÞ

A ðx; u0Þ þ∇Abðx; u0; u1Þ: ð56Þ

The issue of the existence of two solutions ωðlÞ
A ðx; u1Þ and

ωðlÞ
A ðx; u0Þ to the Eq. (55) related to each other by the

gradient of a function was investigated in [5]. According to

Proposition 1 in [13] 1-form ωðlÞ
A ðx; uÞ satisfies the

following equation:

m̄Að∇A þ 3ωðlÞ
A ðx; uÞÞΨ2 ¼ 0; ð57Þ

wheremA is a null frame defined locally on S andΨ2ðxÞ is a
complex valued invariant of the tensor gAB and the 1-form
ωA, namely

Ψ2 ¼ −Rþ Λ
6
− iηAB∇AωB ð58Þ
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(ηAB is the area 2-form defined by gAB). It is easily seen now
that (56) and (57) imply

Ψ2ðxÞ∇Abðx; u0; u1Þ ¼ 0: ð59Þ

In the consequence, if

Ψ2 ≠ 0; ð60Þ

at a point of H̃ ∩ Hu of the coordinates ðx; 0; uÞ, then for all
the values of the variables x0 ¼ ðx01; x02Þ sufficiently close
to x,

ωðlÞ
A ðx0; u1Þ ¼ ωðlÞ

A ðx0; u0Þ; for all u0; u1 ð61Þ

and we are back in the case solved in the previous section.
The same conclusion is valid for all the spacetimeM, if (60)
holds for an open and dense subset of H̃ ∩ Hu.
From the spacetime point of view, for every point

p ∈ M, the number Ψ2ðxðpÞÞ is one of the Newman-
Penrose coefficients of the Weyl tensor Cαβγδ of the
spacetime metric tensor gμν, namely

Ψ2 ¼
1

2
Cαβγδlαl0βðlγl0δ −mγm̄δÞ; ð62Þ

where ðmα; m̄α;lα;l0αÞ is a null frame (adapted to the
foliation Hu).
That component of the Weyl tensor defined by a frame

adapted to a NEH is constant along it. In our case it is
constant along the horizons Hu and also H̃. That fact is
manifested by the independence of Ψ2 of the variables v
and u. Suppose that

Ψ2ðxÞ ¼ 0 ð63Þ

for an open set of the values of coordinates xA, that is an
open subset of the intersection H̃ ∩ Hu, for any value of u.
Then, the Weyl tensor component Ψ2 vanishes on an open
subspace M0 ⊂ M generated by the planes labeled by x
such that (63), and arbitrary pairs of values of ðv; uÞ. When
Ψ2 vanishes at a point of a NEH, then the given null
direction orthogonal to the horizon becomes (at least) a
triple principal null direction of the Weyl tensor. In our
case, that applies to the NEHs Hu and H̃. In the conse-
quence, the foliation u ↦ Hu of M0 is orthogonal to the at
least triple null direction of the Weyl tensor. At each point
of the subset of H̃ ∩ Hu, there two distinct principal null
directions, one orthogonal to H̃ and one orthogonal to Hu
to each at least triple, which makes the Weyl tensor vanish
at those points. Now, if the Weyl tensor is still not 0 on an
open and dense subset ofM0, then the foliation u ↦ Hu is a
unique NEH foliation admitted in M0 by this metric tensor,
up to reparametrizations

u ¼ Uðu0Þ: ð64Þ

That follows from the uniqueness of a triple/fourfold null
direction of a nonvanishing Weyl tensor. That observation
will be useful below, when we characterize gμν by applying
the black hole holograph (BHH) theorem [21,22].
Given a metric tensor gμν such that (23)–(42), consider

an arbitrary value u0 of the parameter u, the corresponding
intersection

H̃ ∩ Hu0 ; ð65Þ

the induced thereon metric tensor gABðxÞ (27) and the

rotation 1-form potential ωðlÞ
A ðx; u0Þ (28). According to the

BHH theorem, the data [gABðxÞ, ωðlÞ
A ðx; u0Þ] determines gμν

in (a part of) some spacetime neighborhood of H̃ ∪ Hu0 to
the future and to the past of H̃ ∩ Hu0 modulo spacetime
diffeomorphisms preserving H̃ andHu0 . On the other hand,

as pointed out above, the data [gABðxÞ;ωðlÞ
A ðx; u0Þ� satisfies

the constraint

∇ðAω
ðlÞ
BÞ ðx; u0Þ − ωðlÞ

A ðx; u0ÞωðlÞ
B ðx; u0Þ

þ 1

2
RABðxÞ −

1

2
ΛgABðxÞ ¼ 0: ð66Þ

The comparison with (52) and the BHH theorem shows that
there exists a NHG metric tensor gðNHGÞ

μν (53) that also

matches the same holographic data [gABðxÞ, ωðlÞ
A ðx; u0Þ]

and coincides with gμν in some spacetime neighborhood of
H̃ ∪ Hu0 intersected with the future and the past of
H̃ ∩ Hu0 . What strengthens the application of the BHH
theorem in that case is the arbitrariness of u0. Given a point

p̃ ∈ H̃ ð67Þ

we can first apply the BHH theorem choosing the holo-
graphic data at

u0 > uðp̃Þ ð68Þ

and next another data at

u1 < uðp̃Þ: ð69Þ

Then the data at u0 provides coordinates ðx0; v0; u0Þ such
that gμν takes the form (53) for

u0 ≤ u0; v0 ≥ 0 ð70Þ

while the data at u1 provides coordinates ðx00; v00; u00Þ such
that gμν takes the form (53) for
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u00 ≥ u1; v00 ≤ 0: ð71Þ

In that way we can cover both sides of the part of the
horizon H̃ between the sections defined by u0 and u1,
respectively. What the BHH theorem does not provide is
the differentiability of the glueing of the coordinates
ðx0; v0; u0Þ with the coordinates ðx00; v00; u00Þ along H̃, which
corresponds to v0 ¼ 0 ¼ v00. The coordinates ðx0; v0; u0Þ
define on one side of H̃ a NEH foliation

u0 ↦ H0
u0 ; ð72Þ

where H0
u0 are defined to be the constancy surfaces. The

coordinates ðx00; v00; u00Þ provide on another side of H̃ a
NEH foliation

u00 ↦ H00
u00 ; ð73Þ

whereH00
u00 are the constancy surfaces of u

00. The problem is
that a priori, those NEH foliations might not coincide with
the original NEH foliation u ↦ Hu. However, if the
spacetime admits a unique NEH foliation, then the folia-
tions u0 ↦ H0

u0 and u00 ↦ H00
u00 coincide with the foliation

u ↦ Hu. In the consequence, the coordinates ðx0; v0; u0Þ
and ðx00; v00; u00Þ, respectively, are related to the coordinates
ðx; v; uÞ by a transformation (24). It follows that

u00 ¼ U00ðu0Þ: ð74Þ

Using the property

κ̃ðl̃
00Þ ¼ 0 ¼ κ̃ðl̃

0Þ ð75Þ

the relation becomes

u00 ¼ a00u0 þ b00; a00; b00 ¼ const: ð76Þ

Using those transformations, without the lack of generality,
we can assume that

u00jH̃ ¼ u0; x00AjH̃ ¼ x0A: ð77Þ

Those conditions define unique coordinates in M via
(17)–(21), hence

ðx0; v0; u0Þ ¼ ðx00; v00; u00Þ ð78Þ

everywhere in M.
Finally, the only conformally flat solutions to vacuum

Einstein’s equations (42) are the anti-de Sitter, de Sitter and
Minkowski spacetime, respectively, depending on the sign
of Λ. Each of those spacetimes does admit locally defined
coordinates that make the metric tensor take the form (53).

IV. SUMMARY

In Sec. II we introduced and characterized in detail a
family of spacetimes that is a generalization of the NHGs.
They are still a subclass of the Kundt’s class, generically of
the Petrov type II. Each of our generalized NHG spacetimes
consists of NEHs emanating from a single, transversal
NEH H̃. The NEH H̃ becomes an extremal IH if and only if
Rð4Þ

AB in (40) is independent of u, that is if it is constant
along the null generators of H̃. As long as the only
conditions assumed about the energy-momentum tensor
Tμν are that it satisfies the NEH inequalities (2) and (3) with
respect to the NEH H̃ as well as the NEHs that set the
foliation u ↦ Hu of spacetime, and otherwise Tμν is
arbitrary, a generic member of the family is a proper
generalization of an NHG spacetime. The generalized NHG
spacetimes may be interesting on their own.
The main result of our work concerns vacuum Einstein’s

equations with (possibly vanishing) cosmological constant.
We have proved the following theorem:
Theorem.—Suppose M is a four-dimensional spacetime

equipped with a metric tensor g that satisfies Einstein’s
equations,

Rμν ¼ Λgμν; ð79Þ

and admits a foliation by nonexpanding null surfaces
transversal to a single nonexpanding null surface H̃; then,
locally, in a neighborhood of every point of H̃, the metric g
can be written in the form (53).
The resulting spacetime is known in the literature as

NHG [12]. It admits (at least) a two-dimensional vector
space of Killing vectors, linear combinations of

K ≔ ∂u; L ≔ u∂u − v∂v: ð80Þ

The two NEHs

u ¼ u0; and v ¼ 0; ð81Þ

respectively, form the bifurcated Killing horizon of the
Killing vector L − u0K. The NEH v ¼ 0 itself is the
extremal Killing horizon of K. This is an example of more
general geometries studied recently that admit double
Killing horizons [23,24].
For higher dimensional spacetimes, the BHH theorem

we have used above has not been proven in the literature.
For our purposes, it would be sufficient, if it were true, that
induced geometries of two intersecting NEHs set a com-
plete data of the characteristic Cauchy problem for the
vacuum Einstein’s equations with cosmological constant.
Then, the part of our proof that uses the BHH theorem would
naturally pass to the higher dimensions and spacetime metric
tensor would coincide with the higher dimensional NGH on
one-sided neighborhoods of the transversal NEH.
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In our proof we used the Newman-Penrose components
of the Weyl tensor and the notion of the multiple principal
null directions. Therefore a remark on the Petrov type of
the resulting spacetimes is in order. If a solution ðgAB;ωAÞ
to the NHG equation (52) admits a symmetry

LXgAB ¼ 0; LXωB ¼ 0; ð82Þ
and (60) holds, then the resulting spacetime is of the
Petrov type D. If a spacelike section of H̃ is compact and
connected, then the spacetime is that of extremal Kerr–
(anti)-de Sitter throat including the nonrotating case of
the extremal Schwarzschild–de Sitter (Kottler) throat
spacetime. If a solution ðgAB;ωAÞ does not admit a

symmetry, on the other hand, and (60) still holds, then
the corresponding spacetime is of the Petrov type II.
The Petrov types III and N are excluded in the confor-
mally nonflat case, because of the properties of nonex-
tremal vacuum Killing horizons [25]. Remarkably, an
existence of nonsymmetric solutions to the Eq. (52) on a
topological 2-sphere is still an unsolved problem.
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