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We analyze the propagation of gravitational waves in a medium containing bounded subsystems
(“molecules”) able to induce significant macroscopic gravity effects We establish a precise constitutive
relation between the average quadrupole and the amplitudes of a vacuum gravitational wave, via the
geodesic deviation equation. Then we determine the modified equation for the wave inside the medium and
the associated dispersion relation. A phenomenological analysis shows that anomalous polarizations of the
wave emerge with an appreciable experimental detectability if the medium is identified with a typical
galaxy. Both the modified dispersion relation (wave velocity less than the speed of light) and anomalous
oscillations modes could be detectable by the incoming LISA or pulsar timing array experiments, having
the appropriate size to see the concerned wavelengths (larger than the molecular size) and the appropriate
sensitivity to detect the expected deviation from vacuum general relativity.
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I. INTRODUCTION

The Einsteinian theory of gravity offers a predictive tool
to investigate the Universe structure on very different
spatial scales, from the Hubble flow to the Solar System
morphology [1–4].
However, the Einstein field equation in matter is

approached by considering the space-time metric and the
physical sources as continuous fields, having a differ-
entiable (at least of class C2) profile. Nonetheless, as it
turns out looking at the real morphology of astrophysical
systems [5–8], this notion of continuum is valid only on
an average sense. In fact, the matter sources are typically
characterized by a discrete nature, for instance, stars or
galaxies are merely pointlike sources, when treated on a
scale much larger than their typical size. As a consequence,
also the space-time geometry and the associated metric
tensor acquire a discrete nature: clumpiness of the sources
induces irregularities in the Einsteinian manifold.
Therefore, an appropriate treatment of the implementa-

tion of the Einstein equation to real astrophysical systems
requires a suitable procedure for averaging both matter and
geometry. It is easy to realize how the definition of an
averaging procedure of the space-time is a nontrivial task,
mainly due to the nonlinearity of the gravitational inter-
action: the average of the Einstein tensor is not the Einstein
tensor in the averaged metric, but a complicate set of
correlation functions comes out [9–11].

Another subtle question, strictly connected with the
above considerations, is the existence of bounded sub-
systems within a matter medium, for instance, the presence
of binary systems and open clusters within the galaxy [12].
Such subsystems behave as real “gravitational molecules”
and when the gravitational field interacts with them, their
structure is altered with a consequent gravitational back-
reaction. Thus, we see how it is, in general, necessary to
deal with “macroscopic gravity” physics, in close analogy
to what happens in the case of the electromagnetism within
matter [13–15]. For relevant analyses of macroscopic
gravity, see [16,17], where covariance requirements and
constitutive relations are addressed. In particular, in [16],
the theory is constructed in close analogy to electromagnet-
ism, taking the Weyl tensor as the gravitational counterpart
of the electromagnetic tensor field. Furthermore, an interest-
ing technique to separate the source energy-momentum
tensor is provided, reconstructing the continuous matter
field plus a quadrupole term, associated to the molecular
structure. In [17], the case of high frequency gravitational
waves is considered on a generic background and a closed set
of constitutive equations is fixed, relating the quadrupole
term to the background curvature.
Several authors have dealt with the problem of gravita-

tional waves in a matter medium: In [18–20] the authors
analyzed the amplitude damping arising from the propa-
gation in a dissipative fluid, characterized by a definite
viscosity, and in [21] constraints on the viscosity of the
Universe given by observations of gravitational waves are
addressed; in [22–26] the authors studied the modification
in the dispersion relation when the matter medium is a
collisionless kinetic gas, whose density perturbation is
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governed by the Vlasov equation; with the same method the
interaction of cosmological gravitational waves with neu-
trinos [27–29] and spinning particles [30] is studied; a
review of results mainly coming from the kinetic approach
can be found in [31], where it is stated that the effects
should be in any case negligible; the possibility of Landau
damping of gravitational waves traveling in a Robertson-
Walker zero curvature space-time filled with a perfect fluid
is considered in [32], whereas in [33] a modified dispersion
relation and extra modes of polarizations are shown to
appear when the medium considered is a spherical cloud
(perfect fluid in Schwarzschild metric); the case of pres-
sureless matter (dust) is studied in [34], where the appear-
ance of extra modes is outlined, and in [35], where the
possibility of amplitude damping is investigated.
Here, we analyze the problem of the macroscopic gravity

theory, referred to as the propagation of gravitational waves
in a molecular medium. We retain the splitting, proposed in
[16], between the free continuum energy-momentum tensor
and the quadrupole term; then we calculate the constitutive
relation, i.e., the form of the molecule quadrupole from the
geodesic deviation equation, by perturbing the molecule
structure with the physical degrees of freedom of the wave,
namely, the plus and cross polarizations. We construct the
quadrupole tensor via the geodesic deviation vector and
then express it in terms of the vacuum gravitational wave
amplitudes. As a result, we get a closed wave equation in
the medium, which provides us with five effective physical
degrees of freedom. We characterize this modified scenario
for the weak gravitational field, by studying the wave
polarizations and the dispersion relation descending from
the macroscopic field equation, then considering some
specific example of molecular structures. Our study out-
lines a dispersion profile of a gravitational wave in a
molecular medium and new modes of oscillation to be
searched in the experimental devices.
This work can be summarized as follows: in Sec. II a

constitutive equation relating the components of the quad-
rupole tensor to the amplitudes of an incoming gravitational
wave is derived via the geodesic deviation equation, taken
in the comoving frame; in Sec. III we calculate the wave
equation descending from the adoption of the constitutive
relation derived in Sec. II and we analyze the phenom-
enological features implied, emphasizing the discrepancies
with the standard case; in Sec. IV we compare our study to
the previous literature, stressing the conceptual and tech-
nical differences of our approach; in Sec. V we establish
two different models of macroscopic medium, giving some
quantitative estimates of the observable effects; in Sec. VI
we comment on the results obtained.

II. QUADRUPOLE TENSOR AND
CONSTITUTIVE RELATION

This work is included in the theoretical framework of
linearized gravity. As usual in this context, the metric gμν

can be written as a sum of Minkowksi flat metric ημν ¼
diagð−1; 1; 1; 1Þ plus a perturbation hμν, small enough to be
neglected in the contribution of terms of quadratic order.
The approach to macroscopic gravity proposed in [16] is

based on the hypothesis that the material medium can be
described as a set of pointlike masses grouped into
molecules. This means that, defining zμi as the world line
of the ith particle and yμa as the world line of the center of
mass of the ath molecule, the four-vector sμi ¼ zμi − yμa
satisfies

jsμi j ≪ D; ð1Þ
where D indicates the mean distance between the centers
of mass of the molecules.1 It must be stressed that
sμi ¼ zμi ðτiÞ − yμaðτaÞ, τi and τa being the proper times of
the ith particle and of the ath molecule, respectively. This
means that sμi depends both on τi and τa, so a relation
between the two proper times must be fixed. This is done
via the equation

ημνs
μ
i u

ν
a ¼ 0; ð2Þ

uμa being the velocity of the center of mass of the ath
molecule, i.e., uμa ¼ dyμa=dτa. This equation states that s

μ
i is

a spacelike vector and reduces to s0i ¼ 0 in the comoving
frame. As shown in [16] a stress-energy tensor describing a
set of pointlike masses can be written, after the application
of Kaufman’s molecular moments method [14] (denoted
as h·i) and expanding all the involved quantities up to the
second order in sμi , as

hTμνi ¼ TðfÞ
μν þ c2

2
Qμρνσ;

ρσ; ð3Þ

where TðfÞ
μν is the stress-energy tensor that describes a set of

free particles, i.e., the centers of mass of the molecules, and
Qμρνσ is the quadrupole polarization tensor, whose expres-
sion in terms of sμi and _sμi can be found in [16]. The notation
V;μ indicates

∂
∂xμ V while the dot is intended as a derivation

with respect to the proper time. The quadrupole tensor
shares the same set of symmetries of the Riemann, i.e., is
characterized by twenty free components: these twenty
quantities describe the structure of the molecule.
Our aim is to calculate a linear constitutive relation

between the quadrupole polarization tensor of a spherical
molecule and the amplitudes of an incoming gravitational
wave. The presence of the wave alters the molecular
structure and the resulting variation of the components
of the quadrupole tensor can be expressed in terms of the
amplitudes of the wave itself. The problem is treated on a
linear level, i.e., neglecting the changes in the metric
coming from the alteration in the background quadrupole.

1If we assume the medium to be homogeneous and isotropic
the quantity D is proportional to the density of molecules N, as
D ∝ N−1

3.
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We follow an approach analogous to the electromagnetic
case, replacing Newton’s law of motion with the geodesic
deviation equation

D2ξμ

dτ2
¼ Rμ

νρσuνuρξσ; ð4Þ

where uμ ¼ dxμ=dτ is the velocity of the observer, τ is
the proper time measured by the observer, and ξμ is the
infinitesimal vector connecting adjacent geodesics: in the
following calculation it is identified with sμi . We stress
the fact that the geodesic deviation equation holds for
infinitesimal vectors, i.e., vectors that are small when
compared with the typical scale of variation of the
gravitational field. If we define the macroscopic parameter
L, the radius of the molecule, as the average performed on
all the particles belonging to that molecule of the quantities
jsμi j, we have that the geodesic deviation equation is valid if

ƛ ≫ L; ð5Þ
ƛ being the reduced wavelength of the gravitational radia-
tion. We write the geodesic deviation equation in a frame
comoving with the center of mass of the molecule, setting
uμ ¼ cð1; 0; 0; 0Þ. It follows, from (2), that ξ0 ¼ 0: it can be
shown that, under this circumstance, the covariant derivative
D2=dτ2 coincides with the ordinary derivative d2=dτ2 [36].
In addition to this we have that, in the linear approximation,
the coordinate time t is equal to the proper time τ. In
computing the componentsR00σ

μ of theRiemann tensor, one
has to take into account that the latter is invariant in
linearized gravity, rather than covariant as in the full theory:
we can calculateR00σ

μ in a convenient frame, such as the TT
frame, where the form of the metric is simple. The TT frame
is defined as

∂μhμν ¼ 0

h0i ¼ 0

h≡ ημνhμν ¼ 0: ð6Þ
The external field that we use to perturb the molecule is a
purely plus polarized vacuum gravitational wave whose
direction of propagation is coincident with the z axis: this
means that the only relevant dynamic component of the
wave, i.e., the plus polarization, can be expressed in terms of
plane waves eiðωðkÞt−kzÞ, where ωðkÞ ¼ ck and k is the wave
number.
This being said, we calculate the components R00σ

μ from
the metric

hμν ¼

0
BBBBB@

− 2ϕ
c2 0 0 0

0 − 2ϕ
c2 þ a 0 0

0 0 − 2ϕ
c2 − a 0

0 0 0 − 2ϕ
c2

1
CCCCCA; ð7Þ

where ϕ is the static Newtonian potential generated by the
molecule itself and a is the plus polarization. The geodesic
deviation Eq. (4) takes the form

1

c2
d2ξi

dt2
¼ 1

2
ηijðhjk;00 þ h00;jkÞξk

¼ 1

2
ηij
�
hjk;00 −

2

c2
ϕ;jk

�
ξk: ð8Þ

The Newtonian potential inside a spherical distribution of
mass, taking the mass-energy density ρðxÞ to be a constant
ρ0, is

ϕðrÞ ¼ 2

3
πGρ0r2; ð9Þ

where r is the distance from the center of the sphere: then
inside the molecule the tensor of the second derivatives of
the potential ηijϕ;jk can be written2

ηijϕ;jk ¼ ω2
0δ

i
j; ð10Þ

where ω2
0 ¼ 4

3
πGρ0.

The second time derivatives of the spatial components of
the wave can be calculated as

hij;00 ¼ −
ω2ðkÞ
c2

0
B@

a 0 0

0 −a 0

0 0 0

1
CA: ð11Þ

We find the following system of differential equations,0
B@

̈ξ1

̈ξ2

̈ξ3

1
CA ¼ −ω2

0

0
B@

1þ ϵ 0 0

0 1 − ϵ 0

0 0 1

1
CA
0
B@

ξ1

ξ2

ξ3

1
CA; ð12Þ

where we have defined the parameter ϵ ¼ ω2ðkÞ
2ω2

0

a. If we
assume that ω ≪ ω0, the parameter ϵ results in being small
with respect to the unity. Moreover, this assumption implies
that a changes with a typical time much greater than the
time of travel of the wave inside the molecule: in other
words, when we integrate the system (12) we can consider ϵ
as a constant. We obtain

ξ1ðtÞ ¼ α1 cos
�
ω0

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
tþ β1

�
;

ξ2ðtÞ ¼ α2 cos
�
ω0

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
tþ β2

�
;

ξ3ðtÞ ¼ α3 cos ðω0tþ β3Þ; ð13Þ

2Despite the fact that the potential ϕ ∝ r2 that we use in this
calculation is not the potential associated with a large number of
particles, we outline the fact that the molecule is imagined as a
bounded and stable system: the particles can be assumed to be
confined in a region sufficiently close to the center, so that their
motion can be described as small oscillations around a parabolic
minimum.
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where α1, α2, α3, β1, β2, and β3 are constants of integration.
This allows us to calculate the components of the quadru-
pole tensor from its expression, as in [16],

Qi0j0 ¼ N

�Z
ρsisjd3x

�
¼ 1

2
MNhα2i iδij; ð14Þ

whereM is the total mass of the molecule andN the density
of molecules.
In the absence of the gravitational wave one would have

found

ξ1ðtÞ ¼ A1 cos ðω0tþ c1Þ;
ξ2ðtÞ ¼ A2 cos ðω0tþ c2Þ;
ξ3ðtÞ ¼ A3 cos ðω0tþ c3Þ; ð15Þ

implying the following expression for the quadrupole
tensor,

ðQi0j0Þ0 ¼
1

2
MNL2δij; ð16Þ

having defined

L2 ¼ hA2
1i ¼ hA2

2i ¼ hA2
3i ð17Þ

as the square of the typical radius of the molecule, since the
spatial oscillation are, on average, comparable with the size
of the molecule. Specifically, the definition (17) is allowed
by the assumption of homogeneity and isotropy of the
molecule. If we average the amplitudes of the trajectories
of the particles we get the same value along all the three
directions: in this sense the molecule is (averagely) spheri-
cal. If we consider a harmonic oscillator with equation of
motion

xðtÞ ¼ A cos ðω0tþ cÞ ð18Þ

and we imagine changing the frequency from ω0 to ω0
when x ¼ x0, after which

xðtÞ ¼ α cos ðω0tþ c0Þ; ð19Þ

we have, on equating kinetic energies3 when x ¼ x0, as first
done in [16], that

α2 ¼ A2 þ ω2
0 − ω02

ω02 ðA2 − x20Þ: ð20Þ

If we take the mean value of this equation we get

hα2i i ¼ L2 þ ω2
0 − ω2

i

ω2
i

ðL2 − hx20iÞ; ð21Þ

having identified α with one of the amplitudes αi in (13), ω0
with ωi, the modified angular frequencies in (13), and A
with one of the amplitudes Ai in (15). In order to calculate
the term hx20i we have to remember that x0 is a random
point of the unperturbed trajectory, so we can take one of
the equations of motion in (15) and perform an average
over time,

hx20i ¼
1

2
hA2

i i ¼
1

2
L2; ð22Þ

where the last equality is implied by (17) and the factor 1
2

comes from the mean value of the square of the cosine.
In this way Eq. (21) can be recast in

hα2i i ¼
ω2
0 þ ω2

i

2ω2
i

L2: ð23Þ

Hence, at first order in ϵ, we get

hα21i ¼
ω2
0ð1þ ϵÞ þ ω2

0

2ω2
0ð1þ ϵÞ L2 ≃

�
1 −

ϵ

2

�
L2;

hα22i ¼
ω2
0ð1 − ϵÞ þ ω2

0

2ω2
0ð1 − ϵÞ L2 ≃

�
1þ ϵ

2

�
L2;

hα23i ¼ L2: ð24Þ
Casting what we have just found into Eq. (14) yields to

Qi0j0 ¼
MNL2

2

0
B@

1 − ϵ
2

0 0

0 1þ ϵ
2

0

0 0 1

1
CA: ð25Þ

In order to enounce a constitutive relation we have to
express this tensor in terms of the degrees of freedom
perturbing the metric. By comparing Eq. (25) with the
expressions of hij and ϕ;ij, (7) and (10), we get

Qi0j0 ¼ ϵg

�
2

c2
ϕ;ijþ

1

2
hij;00

�
; ð26Þ

where the gravitational dielectric constant is

ϵg ¼
MNL2c2

4ω2
0

: ð27Þ

With the same method we can calculate the other compo-
nents of the quadrupole tensor: this results in

3In calculating, through formula (22), the modified amplitudes
of the particles’ trajectory, one has to perform an average over a
time interval ΔT comparable with the period of motion of the
point particles. Since ω ≪ ω0, we can assume that the gravita-
tional wave is seen by the point particles as a constant at any time
during the averaging. In addition to this, the turning on of the
wave is considered as an instantaneous process, in the sense that it
happens on a time scale much smaller than the period on which
the average is taken.
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Q0ijk ¼ 0;

Qijkl ≃ 0: ð28Þ
The components Qijkl can be written as

Qijkl ¼ ϵ0gHijkl ð29Þ

where Hijkl is a tensor linear in the second derivatives of
hμν and

ϵ0g ¼
MNL4

12
: ð30Þ

If we compare this new dielectric constant with ϵg, we find
that

ϵ0g
ϵg

¼ ω2
0L

2

3c2
¼ Oðβ2Þ; ð31Þ

where β is the ratio between the velocities of the particles
composing the molecule and the speed of light. This means
that the effect of the components Qijkl in the field equation
is negligible, hence we ignore it in the following. A
completely analogous calculation can be performed by
perturbing the molecule with a purely cross polarized
gravitational wave. It can be shown that the material
relation has the same form as in (26) and (28). This is
certainly not a surprise, given the spheric symmetry of the
molecule and considering that the effect of the cross
polarization is the same as the plus polarization rotated
by an angle of 45°.

III. FIELD EQUATION AND PHENOMENOLOGY

We now write the field equation of macroscopic gravity

hGμνi ¼ χ

�
TðfÞ
μν þ c2

2
Qμρνσ;

ρσ

�
; χ ¼ 8πG

c4
ð32Þ

that governs the dynamics of the average gravitational field
within the macroscopic medium, making use of the set of
constitutive relations (26) and (28). We recall that the
macroscopic field dynamics lives on a spatial scale much
greater than themolecular separationD. Noticing that the set
of centers of mass of the molecules behaves as a dust, i.e.,
pressure can be neglected, the free stress-energy tensor is
written

TðfÞ
00 ¼ c2ρ; TðfÞ

0i ¼ 0; TðfÞ
ij ¼ 0; ð33Þ

where ρ is the smoothed-out mass density of the centers of
mass of the molecules. The left handed side of the field
equation (32) is the averaged Einstein tensor, expressed up to
the first order in hh̄μνi ¼ hhμνi − 1

2
ημνhhi, hhi being the trace

of the averaged metric hhμνi: the tensorial nature of the field

equation allows us a gauge freedom connected with the
diffeomorphism invariance of the theory. We exploit this
freedom by imposing the usual Hilbert gauge fixing

∂μhh̄μνi ¼ 0: ð34Þ

With this choice the Einstein tensor reduces to

hGμνi ¼ −
1

2
□hh̄μνi: ð35Þ

Westress the fact that, after the imposition of the gauge fixing
(34), one can express four components of the wave in terms
of the six remaining: the number of degrees of freedom of the
wave decreases from 10 to 6. At this level, if we impose that
the directionof propagationof thewave is coincidentwith the
z axis, we can represent hh̄μνi4 as

h̄μν ¼

0
BBBBBBBBB@

− 4ϕ
c2 þ ðckωÞ2h̄33 − ck

ω h̄13 − ck
ω h̄23 − ck

ω h̄33

..

.
h̄11 h̄12 h̄13

..

. � � � h̄22 h̄23

..

. � � � � � � h̄33

1
CCCCCCCCCA
:

ð36Þ

We express the constitutive relations (26) and (28) in terms
of h̄μν and we compute the components of the field
equation (32). The (00) component results in

△ϕ−
c4k2

4ω2
□h̄33¼ 4πGρþ4πGϵg

c2
△2ϕþþπGϵg

c2k2

ω2
∂4
0h̄33

−
πGϵg
2

△∂2
0h̄; ð37Þ

△ being the Laplace operator, □ ¼ −∂2
0 þ△ the

d’Alembertian, and h̄ the trace of the radiative part of the
metric h̄μν,

5 namely,

h̄ ¼ h̄11 þ h̄22 þ
�
1 −

c2k2

ω2

�
h̄33: ð38Þ

Given the fact that in (37) the variables h̄33 and h̄ are
functions of time, while ϕ is static, we argue that the
following equations must hold, separately:

4From this time forth we drop the symbol h·i for the sake of
convenience.

5The static contribution to the trace coming from the New-
tonian potential is negligible in this context, due to the fact that
h̄ appears in the field equations only through its time derivatives.
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△ϕ ¼ 4πGρþ 4πGϵg
c2

△
2ϕ; ð39Þ

□h̄33 ¼ −
4πGϵg
c2

∂4
0h̄33 þ

2πGϵg
c2

ω2

c2k2
△∂2

0h̄: ð40Þ

Equation (39) results in a modified Poisson equation for the
macroscopic Newtonian potential: in [17] an analogous
equation has been derived and analyzed in detail, discussing
the peculiarity of the solutions both in strong and weak field.
Now we calculate the ð0iÞ components of (32),

□h̄3i ¼ −
4πGϵg
c2

∂4
0h̄3i −

2πGϵg
c2

ω

ck
∂3
0∂ih̄; ð41Þ

together with the ðijÞ components, resulting in

□h̄ij ¼ −
4πGϵg
c2

∂4
0h̄ij þ

2πGϵg
c2

ηij∂4
0h̄: ð42Þ

Making use of (38) we can compute a wave equation for the
trace h̄,

□h̄ ¼ □h̄11 þ□h̄22 þ
�
1 −

c2k2

ω2

�
□h̄33: ð43Þ

□h̄11 and □h̄22 can be calculated from (42), whereas □h̄33
can be taken either from (40) and (41) or even from (42) itself.
If one expresses □h̄33 from (40) we obtain the following
equation:

□h̄ ¼ −
2πGϵg
c2

�
1 −

ω2

c2k2

�
△∂2

0h̄: ð44Þ

Making use of (41) leads instead to

□h̄ ¼ −
2πGϵg
c2

ω

ck

�
1 −

c2k2

ω2

�
∂3
0∂3h̄: ð45Þ

Lastly, from Eq. (42) one gets

□h̄ ¼ −
2πGϵg
c2

�
c2k2

ω2
− 1

�
∂4
0h̄: ð46Þ

Even if it seems a serious ambiguity that could outline a
shortcoming of the procedure, when we investigate the real
physics behind the threewave equations, i.e.,we compute the
dispersion relationω ¼ ωðkÞ, we find that, in all three cases,
the angular frequency satisfies

ωðkÞ ¼ �ck; �
ffiffiffi
2

p
cm; ð47Þ

where the parameter m2 ¼ c2
4πGϵg

has been introduced. This

means that h̄ can bewritten as a superposition of a solution of
the d’Alembert equation, which can be canceled out with a

further gauge transformation that preserves the Hilbert
gauge, plus an oscillation that does not propagate (the group
velocity vg ¼ dω=dk is 0) and has no observational mean-
ing: we can erase the trace h̄ bringing the count of degrees of
freedom to 5. At this stage all the components of the wave
solve an identical wave equation,

□h̄μν ¼ −
1

m2
∂4
0h̄μν: ð48Þ

Let us calculate the dispersion relation descending from
Eqs. (48),

ω2
�ðkÞ ¼ c2

 
−
m2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

4
þm2k2

r !
: ð49Þ

It is immediate to verify that

ω2þðkÞ ≥ 0 ∀ k; ω2
−ðkÞ < 0 ∀ k: ð50Þ

The fact that ω2
−ðkÞ is always negative implies that ω−ðkÞ

are two purely imaginary solutions that characterize damped
and growing modes. However we show that this branch of
solutions does not contain any physical meaning. If we
consider the solutions characterized by the plus sign and we
perform the limit ϵg → 0, or m2 → ∞, i.e., we remove the
material medium, we find

lim
m2→∞

ω2þðkÞ ¼ c2k2: ð51Þ

This solution shows a good behavior: when we remove the
material medium ω2þðkÞ goes back to be the dispersion
relation of a vacuum solution. Performing the same limit on
the solution characterized by the minus sign yields to

lim
m2→∞

ω2
−ðkÞ ¼ lim

m2→∞
− c2m2

�
1þ k2

m2

�
; ð52Þ

which is an infinite quantity. The fact that this solution does
not go back to being a vacuum solution when we remove the
material medium, performing the limit ϵg → 0, allows us to
look at this branch of solutions as not physical. Then, the
only solution that gives us physical information on the
propagation of gravitational waves through a material
medium is the one characterized by ω2þðkÞ. As previously
stated, ω2þðkÞ is always positive: this implies that the
propagation is characterized by dispersion only. Let us
calculate the group velocity,

vgðkÞ ¼
m2kc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2k2 þ m4

4

q
− m2

2

�
ðm2k2 þ m4

4
Þ

r : ð53Þ
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We observe that the group velocity is always smaller than
the speed of light. Increasing the parameter m causes the
function vgðkÞ to reach small values in correspondence
with increasing values of k; in the limit m → ∞ the group
velocity tends to be the constant c. For a given m, if we
consider vgðkÞ in the region k ≪ m, we can approximate
the function (53) with

vgðkÞ ≃ c

�
1 −

3k2

2m2

�
¼ c

�
1 −

6πGϵg
c2

k2
�
: ð54Þ

We show that the condition (5) implies k ≪ m for all the
realistic scenarios we study. In this approximation the
following equation holds:

ω2ðkÞ ¼ c2k2
�
1 −

k2

m2
þO

�
k4

m4

��
: ð55Þ

The appearance of three extra degrees of freedom with
respect to the vacuum case causes the fact that the wave
possesses new longitudinal modes of oscillation. In order
to analyze which kind of deformation is induced by each
component on a sphere of test particles, we calculate the
geodesic deviation equation, taken in the comoving frame

1

c2
d2ξμ

dt2
¼ Rμ

νρσuνuρξσ ¼ Rμ
00iξ

i; ð56Þ

where ξμ ¼ ð0; ξx; ξy; ξzÞ is a vector denoting the separation
between two nearby geodesics and the Riemann tensor is
constructed up to the first order in h̄μν, as given in (36),
together with the condition h̄ ¼ 0, that we exploit through
the following gauge fixing:

h̄11 ¼ h̄þ þ h̄�;

h̄22 ¼ −h̄þ þ h̄�;

h̄33 ¼
2ω2

c2k2 − ω2
h̄�: ð57Þ

We fix the vector ξμ as

ξμ ¼ ð0; ξxð0Þ þ δξx; ξyð0Þ þ δξy; ξzð0Þ þ δξzÞ; ð58Þ

ξxð0Þ, ξ
y
ð0Þ, ξ

z
ð0Þ being the initial positions and δξ

x, δξy, δξz the

displacements of order OðhÞ induced by the gravitational
wave. We compute (56) up to order h separately for each
component of h̄μν.

(I) h̄þ ≠ 0

d2δξx

dt2
¼ −

ω2

2
h̄þξxð0Þ;

d2δξy

dt2
¼ ω2

2
h̄þξ

y
ð0Þ;

d2δξz

dt2
¼ 0: ð59Þ

(II) h̄� ≠ 0

d2δξx

dt2
¼ −

ω2

2
h̄�ξxð0Þ;

d2δξy

dt2
¼ −

ω2

2
h̄�ξyð0Þ;

d2δξz

dt2
¼ −ðc2k2 − ω2Þh̄�ξzð0Þ: ð60Þ

(III) h̄12 ≠ 0

d2δξx

dt2
¼ −

ω2

2
h̄12ξ

y
ð0Þ;

d2δξy

dt2
¼ −

ω2

2
h̄12ξxð0Þ;

d2δξz

dt2
¼ 0: ð61Þ

(IV) h̄13 ≠ 0

d2δξx

dt2
¼ c2k2 − ω2

2
h̄13ξ

z
ð0Þ;

d2δξy

dt2
¼ 0;

d2δξz

dt2
¼ c2k2 − ω2

2
h̄13ξxð0Þ: ð62Þ

(V) h̄23 ≠ 0

d2δξx

dt2
¼ 0;

d2δξy

dt2
¼ c2k2 − ω2

2
h̄23ξ

z
ð0Þ;

d2δξz

dt2
¼ c2k2 − ω2

2
h̄23ξ

y
ð0Þ: ð63Þ

System I represents a standard plus polarization in the
xy plane. The deformation depicted by system II is a
superposition of two independent modes: in the xy plane
we notice the presence of a breathing mode [37–39] while
along the z direction is detectable a pure longitudinal stress
in phase with the breathing, since ω2 < c2k2 for any k,
with the amplitude of the longitudinal deformation being
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smaller than the amplitude of the breathing.6 Systems III–V
describe cross polarizations in the xy, xz, and yz plane,
respectively. We can give an estimate of the ratio between
the amplitudes of the anomalous polarizations and the
standard one. We define the following quantities:

AS ¼ ω2

2
;

ANew ¼ c2k2 − ω2

2
; ð64Þ

where the superscript S stays for standard. Making use of
the approximate formula (55) we calculate the following
estimate

ANew

AS ¼ k2

m2
þO

�
k4

m4

�
: ð65Þ

In Sec. V we establish a pair of definite models of
macroscopic medium in order to give a quantitative
estimate of the ratio k2=m2 that acts as a precise marker
of macroscopic gravity effects.

IV. COMPARISON WITH PREVIOUS MODELS

It is now necessary to point out some relevant differences
between this work and Szekeres’ model [16], given the
fact that also in that work is described a derivation of a
constitutive relation between the quadrupole tensor and
vacuum fields. We perturb the molecule with a vacuum
gravitational wave expressed in TT gauge; i.e., we act on
the molecule uniquely with the two physical degrees of
freedom possessed by the wave. Szekeres perturbs the
molecule with both the electric (Eμν) and magnetic (Bμν)
part of Weyl tensor; then he discards the contribution
arising from the magnetic part and lastly he performs the
calculation in a frame in which the electric part of the Weyl
is diagonal. This requirement, together with the trace-free
condition Eμ

μ ¼ 0, brings the number of degrees of free-
dom to 2, but it can be shown that a vacuum gravitational
wave that can be expressed as a diagonal tensor must be a
purely plus polarized gravitational wave; i.e., Eμν cannot
represent a generic vacuum perturbation. We argue that the
nature of the vacuum fields chosen to perturb the molecule
in Szekeres’ work is not satisfactorily general. Another
significant distinction is that Szekeres writes a constitutive
relation for the induced quadrupole moment only; i.e., he
ignores the contribution of the static quadrupole.7 In our
opinion this looks like a shortcoming of this work: in the
unperturbed scenario the molecule is, in an averaged sense,

spherical, but it possesses an intrinsic quadrupole propor-
tional to the identity (16) that must be reproduced through
the second spatial derivatives of the Newtonian potential
(10). This term comes to be source of a static contribution
to the quadrupole. This difference between the two works
produces a remarkable distinction when one calculates the
Newtonian limit of the theory: in Szekeres case there is no
modification on the Poisson equation for the Newtonian
potential whereas we find a modified equation, i.e., (39).
The fact that the Newtonian potential inside the medium
is modified in its shape by a global contribution, encoded
in the value of ϵg, coming from the whole medium, is
physically reasonable. That being said, Szekeres’ constit-
utive relation, when written in terms of a TT gauge
gravitational wave, reads as

Qi0j0 ¼ ϵg

�
1

4
hij;00 þ

1

4
△hij

�
: ð66Þ

This equation is identical to (26) if one makes the
assumption that the Laplace operator acts on the wave in
the same way the second time derivative does. This is
certainly true in vacuum, but we stress the fact that the
derivation of the constitutive relation is made inside the
molecule. When we have to reproduce the components
proportional to ϵ in Eqs. (25), we are forced to express it in
terms of the second time derivative, because inside the
molecule ωðkÞ is no longer equal to ck. As a consequence
weobtain five dynamical degrees of freedom, both transverse
and longitudinal, characterized by the same dispersion
relation, whereas in Szekeres’ model it can be shown that
there are four transverse degrees of freedom, characterized
by two different dispersion relations that coincide only in
the short wavelength limit, and that the longitudinal degrees
of freedom do not propagate. This causes a completely
different phenomenology on test masses.

V. MODELS OF MACROSCOPIC MEDIUM

Now we give some quantitative estimates of ϵg, without
any intention of being too accurate, but merely realistic, in
the characterization of the involved parameters. First we
simplify the expression (27) for the gravitational dielectric
constant ϵg: remembering that ω2

0 ¼ 4
3
πGρ0 and also that

the molecule is described as a sphere with constant mass
density ρ0 we get to the following simplified expression:

ϵg ¼
NL5c2

4G
: ð67Þ

This means that, in order to characterize a macroscopic
medium composed by molecules that are spheres with
constant mass density, it is necessary to assign only the
values of the radius of the molecule and the density of
molecules: the dielectric response of the medium is inde-
pendent from the mass of the molecules. We describe two

6In fact c2k2 − ω2 < ω2 is satisfied in the region k <
ffiffiffi
2

p
m, but

we show that the condition (5) implies k ≪ m.
7We stress that TðfÞ

μν does not contain any information about the
static quadrupole of the molecules: it simply describes the
energy-momentum tensor of the centers of mass of the molecular
dust.
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different models of the material medium: the first assuming
binary systems to be themolecules of themedium, the second
being composed by open clusters. Let us begin with the
first case: the molecules are binary systems. It was widely
believed [40–43] that the majority of the stars in our Galaxy
were part of binary or multiple systems: more recent
observations changed this paradigm. A better estimate
[44] is that approximately one third of the stars in our galaxy
are located in binary, or with higher multiplicity, systems; the
remaining two thirds can be safely considered single stars.
We calculate the dielectric constant in three different regions
of the Galaxy, from the edge to the center of it: (i) is a region
characterized by a stellar density of 1 pc−3, in (ii) this value
increases to 100 pc−3, and in (iii) it reaches 105 pc−3. We set
N as one third of these values in each region. The size of a
binary system is a quite variable parameter: it can go from
less than 1 to some thousands of AU. However, the typical
distances are those of the Solar system, rather than the typical
distances between stars (a few light years) [43]: we set the
radius of the molecule to 100 AU ¼ 1.5 × 1013 m. We get
the following three values for the gravitational dielectric
constant:

(i) ϵg ¼ 2.87 × 1042 kgm m2 ¼ 3.74 × 10−17 m−2,
(ii) ϵg ¼ 2.87 × 1044 kgm m2 ¼ 3.74 × 10−19 m−2,
(iii) ϵg ¼ 2.87 × 1047 kgm m2 ¼ 3.74 × 10−22 m−2.

The size of the molecule has been set to L ¼ 1.5 × 1013 m.
Hence, only gravitational waves with wave number
k ≪ 1=L ¼ 6.68 × 10−14 m−1 satisfy the condition (5).
We consider gravitational radiation with wave number
k ¼ 6.68 × 10−16 m−1 ¼ 10−2 1

L. It is easy to check that
1
L < m; hence the condition k ≪ m is satisfied and we are
allowed to use formula (54) to calculate the group velocity of
the wave inside the medium. If we take the maximum value
obtained for ϵg (iii) we find

vgðkÞ ¼ cð1 − 1.79 × 10−9Þ: ð68Þ

Taking for ϵg the value (ii) yields to

vgðkÞ ¼ cð1 − 1.79 × 10−12Þ: ð69Þ

If we consider for ϵg the minimum value (i), we find

vgðkÞ ¼ cð1 − 1.79 × 10−14Þ: ð70Þ

With the chosen values of the parameters we observe that the
ratio k2=m2 is at most 10−9: as we have shown, this quantity
indicates the ratio between the amplitudes of the anomalous
polarizations and the standard one. Actually binary system
can only be roughly approximated via the model of a
spherical molecule, since they posses an intrinsic quadru-
pole.However, the randomorientation of the orbital planes of
these binaries with respect to the direction of propagation of
the incoming gravitational wave leads us to infer that the

average effect can be qualitatively estimated even in the
present simplified framework.An improvement of themodel
is currently under development.
Now we consider the case of a material medium whose

molecules are open clusters [45,46]. Our Galaxy is estimated
to contain about 100,000 open clusters, mainly located in the
central disc. We calculate the density of molecules as
the number of molecules (105) divided by the volume of
the Galaxy, assuming it to be a disc with diameter of 30 kpc
and thickness of the disc of about 0.6 kpc (roughly the size
of the Milky Way [47]). For the density of molecules we
calculate the valueN ¼ 8.03 × 10−57 m−3. The radius of the
molecule is fixed toL ¼ 3 pc ¼ 9.26 × 1016 m.Under these
assumptions we get the following value for the gravitational
dielectric constant:

ϵg ¼ 1.84 × 1055 kgm m2 ¼ 5.84 × 10−30 m−2: ð71Þ

We consider gravitational radiation with wave number
k ¼ 10−2 1

L ¼ 1.08 × 10−19 m−1: once again the condition
k ≪ m is satisfied and we use Eq. (54) to calculate the
dispersion. We obtain

vgðkÞ ¼ cð1 − 3.01 × 10−9Þ: ð72Þ

As in the case of the first model, the ratio k2=m2 is roughly of
order 10−9.
We focused our analysis on two specific regions of

wavelengths. In the first case (binaries) the signal is
characterized by ƛ ≃ 1015 m, which is comparable with
the scale of lengths to which the space interferometer LISA
will be sensitive [48,49]. In the second case (clusters) the
wavelength of the signal is in the region ƛ ≃ 1018 m and it
is, in principle, inside the sensitivity curve of experiments
like IPTA [50,51].
Our analysis demonstrates that, both from a conceptual

and phenomenological point of view, the deformation that a
gravitational wave induces on the bounded systems in the
galaxies effectively modifies the nature of the wave itself,
generating longitudinal polarization modes and, overall,
a subluminal velocity of propagation, in contrast to the
vacuum case. Despite the fact the deviation from the speed of
light is at most of order 10−9, its integrated effect over very
large distances can produce a significant delay with respect
to the electromagnetic signal. This scenario is expected
to significantly impact the analysis of the “follow-up” of
astrophysical sources and this feature must be taken into
account in the setup of a gravitational astronomy.

VI. CONCLUSIONS

The main merit of the analysis above is to give
significant phenomenological implications when the case
of a gravitational wave crossing a medium characterized by
a molecular structure is considered. We revise the original
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and valuable approach presented in [16] only in avoiding
the use of Weyl tensor components as basic gravitational
field variables. We simply adopt the space-time ripple as
the natural variable set to describe the gravitational field
both in vacuum and within the matter. In fact, the vacuum
gravitational wave modifies, via the geodesic deviation
equation, the molecule morphology, inducing in this
manner an effective (average) quadrupole contribution,
which is calculated just via the resulting displacements
inside the molecule. More specifically, we calculate an
expression of the induced quadrupole components in terms
of the second time derivatives of the vacuum gravitational
wave amplitudes (whose spatial variation is neglected when
calculating the geodesic deviation). Furthermore, we also
account for the deformation of the Newtonian potential
living within the self-gravitating medium. In fact, we
reproduce through the second spatial derivatives of the
Newtonian potential the nonzero quadrupole tensor also for
the unperturbed molecule and this causes the emergence of
a macroscopic gravity effect also on the static level. Poisson
equation acquires, as a result of the medium, a biharmonic
term, whose relative amplitude with respect to the standard
Laplacian term is fixed by the same macroscopic gravity
parameter that modifies the gravitational wave propagation.
This result is in close analogy to the one obtained in [17],
where an ad hoc (strong field) hypothesis on the link
existing between the quadrupole tensor and the Riemann
tensor is postulated. The emergence of a net nonzero
quadrupole in the field equation modifies the wave propa-
gation, introducing new effective modes of oscillation and
implying a subluminal speed of these ripples. The new
polarization modes and the group velocity we obtain are
a precise marker of the present approach and offer a
phenomenological tool to search their signature in data
analyses of incoming experiments, like LISA or IPTA
[48–51]. However, it is relevant to stress that, in the limit of

large scales (small wave numbers) of the wave, the group
velocity expression overlaps the corresponding limit in the
analysis developed in [16]. Such a degeneracy of the two
approaches when implementation of the model is performed
for real and relevant astrophysical systems, can be regarded
as a reciprocal validation of the two approaches on a physical
level: when the modifications concern large scales with
respect to the characteristic length scale of the macroscopic
gravity effect, different representations of the constitutive
relation provide the same weak features on the gravitational
wave propagation. In [16] the use ofWeyl tensor was mainly
due to the construction of a parallelism with the electro-
magnetic case, in the spirit of constructing a “gravitational
induction” tensor, which however cannot be consistently
defined along such a parallelism. Also our approach does not
provide an induction tensor for the gravitational interaction,
but it relies on the metric perturbation as the only quantity to
be treated like an independent one in the procedure. Such a
natural choice has important implications on the exact
form of the constitutive relation and of the dispersion
relation. We get different polarization modes with respect
to the ones outlined in [16] and the gravitational ripples have,
within the gravitational medium, five independent degrees
of freedom. It remains, as an open issue, the construction of
a suitable gravitational induction field, based on the paral-
lelism with the electromagnetism with matter, but restricting
the study to the weak field only. In fact, the valuable splitting
of the total energy-momentum tensor of the medium into
a free contribution (the molecule center of mass) and a
quadrupole tensor is valid only for small deviation of the
particle trajectories from the unperturbed scenario.
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