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The possibility of modifications on general relativity is investigated. We propose an alternative theory of
gravity constructed with the combination of Rastall and rainbow theories. The hydrostatic equilibrium
equations are obtained in order to test the new theory in neutron stars, whose mass-radius diagrams are
obtained using modern equations of state of nuclear matter derived from relativistic mean field models and
compared with the ones computed by the Tolman-Oppenheimer-Volkoff equations. Different sets of
parameters are used and the obtained results confronted with accepted masses and radii values, including
important astrophysical objects as the quiescent LMXB NGC 6397 and the double neutron system J0737.
We conclude that substantial modifications are obtained even for very small alterations on the two free
parameters, making the reproduction of astrophysical observations an easier task.
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I. INTRODUCTION

The study of compact objects is an interdisciplinary
subject that requires the understanding of many topics and
two essential areas are gravitational theory and nuclear
physics. Neutron stars equilibrium conditions are guaran-
teed by the balance between the nuclear degeneracy
pressure and the strong gravitational field, produced by
its very dense matter that works in order to hold stellar
matter together.
The theory of gravity proposed by Einstein one century

ago has helped us to comprehend many aspects of the
universe and it keeps passing in every test [1] up to today.
Notice the recent observation of gravitational waves by
binary black hole [2] and neutrons star [3] mergers and the
first photography of a black hole obtained by the Event
Horizon Telescope [4]. Despite the success of general
relativity (GR), alternative theories of gravity have been
proposed in the last decades [5–8]. Some arguments for
these theories come from the assumption that the equiv-
alence principle (necessary to Einstein GR) could cease to
be valid at large distances. Moreover, it has been hypoth-
esized that the rotation velocity of our galaxy could be
explained without dark matter and the accelerated expan-
sion of the Universe could be obtained without dark energy

if we upgraded our theory of gravity beyond general
relativity [9–14].
In 1972 Peter Rastall proposed a generalization of

Einstein GR [15]. Rastall questioned the validity of the
conservation law of the energy-momentum tensor in curved
space time. In this new theory of gravity the covariant
derivative of Tμν does not vanish and depends on the
curvature R and on a free parameter. We show in Sec. II B
the main ideas underlying the modifications on Einstein
theory proposed by Rastall.
In [16] the authors investigated the effects of Rastall

theory on neutron stars modeled with both polytropic and
nonrelativistic equations of state (EoS). They concluded
that only small deviations of GR are consistent with
neutron star constraints and only values of the free
parameter λ bigger then one were tested due to consid-
erations on the energy conditions. We will go back to this
point when testing our model.
In 2004, another theory called gravity rainbow, which is

an extension of the doubly (or nonlinear or deformed)
special relativity for curved space-times was proposed by
João Magueijo and Lee Smolin [17]. The principles of the
doubly special relativity [18–22] are (i) the laws of physics
are the same in all inertial frames; (ii) in the limit
E
Ep

→ 0, where Ep ¼
ffiffiffiffiffi
ℏc5

p
G is the Planck energy, the speed

ofmassless quanta goes to c, for all inertial frames; (iii)Ep is
an universal constant for all inertial frames. By making
this extension they concluded that the geometry of the
space-time becomes energy dependent, so that families of
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one-parameter metrics parametrized by E
Ep

are possible,

where each family can be referred as a rainbow metric.
In this new theory, the authors obtained a cosmological
solution that leads to an energy dependent age for the
universe, which could solve the horizon problem. They
also obtained a solution analogue to the Schwarzschild
solution, in which the area of the event horizon is energy
dependent, with important consequences on the black-hole
thermodynamics.
In [23,24] the authors obtained Tolman-Oppenheimer-

Volkof (TOV)-like solutions to this theory and one of their
conclusions was that in gravity rainbow neutron stars with
maximum masses larger than 2 M⊙ are easily attainable, as
expected from observational results [25,26].
The proposal of this work is to merge Rastall and

rainbow theory in a new post-GR theory, which we call
from now one Rastall-rainbow (RR) theory. We consider
the Einstein’s field equations modified by Rastall and then
change these field equations so that the space-time metric
becomes dependent on the test particles energy, in accor-
dance with rainbow gravity. Thus, all the quantities that
compose the Rastall field equations become dependent on
the particles energy.
As a first test to Rastall-Rainbow theory we derive a new

set of equations that describe the star equilibrium and
investigate the mass-radius relation of neutron stars. We
obtain the stellar properties of a family of neutron stars
using as input modern relativistic equations of state.
From the microphysics point of view, the nuclear physics

community has made a big effort in the past years to
construct appropriate equations of state (EoS) to describe
stellar matter which generates the nuclear pressure that
holds the neutron stars from gravitational collapse. For this
task, one can work with different formalisms, and the two
most common ways to obtain EoS are the non relativistic
[27], which usually use a modified liquid drop model with
Skyrme interaction to simulate the nucleon interaction, and
the relativistic nuclear models [28–30], which are origi-
nated from mean-field theory (MFT) applied to Lagrangian
densities. For the present work, we choose 3 different EoS
constructed with relativistic models. The microphysics of
our gravity lab will be modeled with one EoS derived from
the Walecka model corrected to include nonlinear terms
[28,29], the IU-FSU model [31] and two EoS derived
from the quark-meson coupling (QMC) model [30], a
relativistic nuclear model that takes into account quark
degrees freedom.
We use the above mentioned EoS to compute the

macroscopic properties of neutron stars by testing a new
alternative theory of gravity (RR) because they have
already been confronted with nuclear matter bulk properties
and stellar constraints [32–40].
The paper is organized as follows: In Sec. II we make a

brief review of the original Rastall and rainbow theories and
present the formalism that allows us to construct a new

theory that results from the combination of the two
alternative gravity theories. Section II C is reserved to
deduce the new equilibrium conditions for neutron stars.
We show our results and discussions in Sec. III and draw
the final conclusions in Sec. IV.

II. FORMALISM

In this section we discuss the unification of Rastall and
rainbow theories. The idea is to generalize the Rastall
gravity to an energy dependent Rastall theory. Of course,
the final form of the field equation is an expression that
captures elements of both theories. It is expected that the
resulting theory will be able to reproduce the key features
of rainbow gravity as the modification of the dispersion
relation near the Planck scale besides explaining astro-
nomical and cosmological phenomena such as the thresh-
old anomalies of ultra high energy cosmic rays. In addition,
the field equations must incorporate the change in the
conservation law of the energy-momentum tensor accord-
ing to the Rastall theory. As a test for the theory, we solve
the field equation originated from the unification of Rastall
and rainbow theories to study mass and radii of neutron
stars.

A. Rainbow gravity

Doubly special relativity theory with an invariant energy
scale may be generalized to general relativity curved space-
time. Initially, we consider a deformation of the usual
dispersion relation

E2ΞðxÞ2 − p2ΣðxÞ2 ¼ m2; ð1Þ

where the argument x ¼ E=Ep is the ratio of the energy
of a probe particle to the Planck energy Ep. In Eq. (1) the
functions Ξ and Σ are called rainbow functions. In the
literature, the choice of these functions is theoretically and
phenomenologically motivated. For example, in [41,42] the
authors obtain solutions corresponding to a nonsingular
universe through the choice of functions Ξ ¼ 1 and
Σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
. On the other hand, an exponential form of

rainbow is applied in the study of gamma ray burst [42,43].
It is important to note that in the infrared limit the standard
energy–momentum dispersion relation is recovered in this
type of theory. In this way, the functions Ξ and Σ satisfy the
conditions:

lim
x→0

ΞðxÞ ¼ 1; lim
x→0

ΣðxÞ ¼ 1: ð2Þ

In the absence of gravity, the space-time acquires a geometry
that depends on the energy of the particles. In the presence of
gravity, the space-time metric can be constructed using the
following energy dependent metric [17]

gðxÞ ¼ ηabeaðxÞ ⊗ ebðxÞ; ð3Þ
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where the energy dependent frame fields eaðxÞ are related to
the energy independent frame fields, denoted by ẽa, as
follows:

e0ðxÞ ¼
1

ΞðxÞ ẽ0; eiðxÞ ¼
1

ΣðxÞ ẽi: ð4Þ

In rainbow gravity, the Einstein equations are replaced by
one parameter family of field equations due to the modifi-
cation of the dispersion relation. Therefore, by using Eq. (3)
and considering the usual general relativity quantities ẽi, we
obtain an energy dependent metric with spherical symmetry
in the form

ds2 ¼ −
BðrÞ
Ξ2

dt2 þ AðrÞ
Σ2

dr2 þ r2

Σ2
ðdθ2 þ sin θ2dϕ2Þ; ð5Þ

where AðrÞ and BðrÞ are radial functions. Thus, the spheri-
cally symmetric metric depends on the energy due to the
rainbow functions. Note that in this configuration the
coordinates r, t, θ and ϕ are independent of the energy of
the probe particles. The next step is to study the effect of the
energy dependence in the context of Rastall gravity. For this
purpose we introduce the main ideas of this theory in the
following pages.

B. Rastall gravity

It is true that the left side of the usual Einstein’s field
equations satisfies Gμν

;μ ¼ 0, which can be easily verified
by using the Bianchi identities. This relation is in accor-
dance with the right side of the field equation if Tμν

;μ ¼ 0.
However, there is another way to write the covariant
derivative of the energy-moment tensor keeping both sides
of the Einstein’s equation coherent with each other. Peter
Rastall proposed a modification of the conservation law of
the energy-momentum tensor in curved space-time in the
form [15]:

Tν
μ;ν ¼ λ̄R;μ; ð6Þ

where λ̄ is an undetermined constant. From Eq. (6), we can
write

ðTν
μ − λ̄δνμRÞ;ν ¼ 0: ð7Þ

In fact, the assumption (6) is consistent with the field
equations

Rν
μ −

1

2
δνμR ¼ 8πGðTν

μ − λ̄δνμRÞ; ð8Þ

a modified Einstein’s field equation. It is useful to rewrite
this equation so that only the energy-moment tensor stays
on the right side, i.e.,

Rν
μ −

λ

2
δνμR ¼ 8πGTν

μ; ð9Þ

where we have defined λ̄ ¼ 1−λ
16πG. When λ ¼ 1, the usual

field equation is reobtained. Thus, the parameter λ is related
to the generalization of the Einstein’s equation. In the flat
space-time, when R ¼ 0, Eq. (6) recovers the usual con-
servation law. The change proposed by Rastall has effects
in the case of general space-time.

C. Rastall-rainbow theory

Above we have discussed the modified gravitational
theories separately. It is interesting to study both theories in
a unified formalism. For this purpose, the starting point is
the modified Einstein’s equation given in Eq. (9) and the
modified conservation law (6). The effect of rainbow
gravity can be incorporated into Eq. (9) by considering
an energy dependent metric and an energy dependent
gravitational constant GðxÞ, resulting in the Rastall-
rainbow field equations in the form

Rν
μðxÞ −

λ

2
δνμRðxÞ ¼ 8πGðxÞTν

μðxÞ; ð10Þ

where the Rastall parameter λ is energy independent. We
may solve Eq. (10) in the energy dependent metric with
spherical symmetry defined in Eq. (5). This space-time can
be used to model the internal structure of a star, and we next
obtain a new set of equations that describe stellar equilib-
rium, i.e., the modification of the Tolman–Oppenheimer–
Volkoff (TOV) equations [44,45] due to the Rastall-
rainbow gravity. When we consider the usual general
relativity (GR), the solution of Einstein’s field equation
allows us to understand the hydrostatic equilibrium of
homogeneous, static, isotropic and spherically symmetric
objects. In particular, we are interested in compact objects
such as neutron stars. It is expected that the influence of the
energy dependence of the metric and of the change in the
conservation law of the energy-moment tensor, will modify
the usual relations of the hydrostatic equilibrium inside
these compact objects. As discussed above, we consider a
line element with spherical symmetry as given in Eq. (5).
We assume that matter in the stellar interior can be
described by the tensor energy-moment of a perfect fluid
in a comoving frame, usually written as

Tμν ¼ pgμν þ ðpþ ρÞUμUν; ð11Þ

where pðrÞ and ρðrÞ are respectively the pressure and
the energy density of the fluid. The term Uμ, that
satisfies UμUμ ¼ −1, is the 4-velocity of the fluid element
defined as

Uμ ¼
�

ΞðxÞffiffiffiffiffiffiffiffiffi
BðrÞp ; 0; 0; 0

�
: ð12Þ
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Adding and subtracting the term ð1=2ÞgμνR to the left side
of Eq. (10), in its covariant form, it can be written as the
usual Einstein equation with an effective energy-moment
tensor, i.e.,

Rμν −
1

2
gμνR ¼ 8πGτμν; ð13Þ

where we have defined

τμν ¼ Tμν −
ð1 − λÞ
2ð1 − 2λÞ gμνT: ð14Þ

Note that the trace of the energy-moment tensor
T ¼ ð1 − 2λÞR=8πG has been used to replace R on the
right side. Now the usual energy-moment tensor of a
perfect fluid (11) together with expression for the
4-velocity (12) may be used on the right side of the field
equation (13). The result reads:

−
B
r2A

þ B
r2

þ A0B
rA2

¼ 8πGBρ̄; ð15Þ

−
A
r2

þ B0

rB
þ 1

r2
¼ 8πGAp̄; ð16Þ

−
B02r2

4AB2
−
A0B0r2

4A2B
þ B00r2

2AB
−

A0r
2A2

þ B0r
2AB

¼ 8πGr2p̄; ð17Þ
where ρ̄ and p̄ are effective pressure and energy density
defined in the form

ρ̄ ¼ 1

ΣðxÞ2 ½α1ρþ 3α2p�; ð18Þ

p̄ ¼ 1

ΣðxÞ2 ½α2ρþ ð1 − 3α2Þp�; ð19Þ

where

α1 ¼
1 − 3λ

2ð1 − 2λÞ ; α2 ¼
1 − λ

2ð1 − 2λÞ :

The set of coupled differential equations (15)–(17) are
similar to the ones obtained in the GR. In this way, it is
possible to find the form of the function AðrÞ through a
direct integration of Eq. (15), providing the expression

AðrÞ ¼
�
1 −

2GMðrÞ
r

�
−1
; ð20Þ

together with the definition of the mass term

MðrÞ ¼
Z

R

0

4πr02ρ̄ðr0Þdr0: ð21Þ

The interpretation of Eq. (21) is direct: The integral is
performed from the stellar center to r ¼ R. Therefore, R
denotes the radius of the star, where ρ̄ is an effective energy
density in the star interior. In the case where λ ¼ 1 and

Σ ¼ 1 we have ρ̄ ¼ ρ, then this definition coincides with
the usual definition of the GR. Note that the gravitational
mass MðrÞ≡MG defined in (21) is obtained using
the effective density defined in Eq. (18). In this way, the
rainbow function Σ and Rastall parameter λ modify the
stellar mass in this formalism. At this stage, we make use of
the modified conservation law for the energy-momentum
tensor Tν

μ;ν ¼ λ̄R;μ to obtain

B0

2B
¼ −

p̄0

p̄þ ρ̄
: ð22Þ

Manipulating Eq. (16), employing the result (20), we derive
the equation

B0

2B
¼ GM

r2

�
1þ 4πr3p̄

M

��
1 −

2GM
r

�
−1
: ð23Þ

Finally, we can eliminate function B by identifying Eq. (22)
with Eq. (23) and then isolating the term p̄0. The result is

p̄0 ¼ −
GMρ̄

r2

�
1þ p̄

ρ̄

��
1þ 4πr3p̄

M

��
1 −

2GM
r

�
−1
; ð24Þ

This equation gives us information about the stellar hydro-
static equilibrium within the context of Rastall-rainbow
gravity. The effective pressure and density are physical
quantities that depend on the new parameters λ and Σ. By
comparing the hydrostatic equilibrium from the GR with
Eq. (24), we observe that the parameter λ cannot assume the
value λ ¼ 1=2. This is related to the fact that the star mass
becomes divergent in this point. In the next section we use
Eq. (24) to study the gravitational equilibrium of neutron
stars.

III. RESULTS AND DISCUSSION

We next analyze the effects of the modifications of
Rastall-rainbow approach on neutron star properties in
order to test the new theory. We first analyze separately the
effects of each component of the new theory, i.e., for each
EoS used in this work, we vary just the Σ parameter while
keeping λ fixed and then we vary λ while keeping Σ fixed.
After this test, both parameters are allowed to vary around
the ranges proposed in [16] and [24]. Notice that λ cannot
assume the value λ ¼ 1=2, because at this point the star
mass becomes divergent and Σ has to be larger than 1
because lower values were shown to decrease the maximum
stellar mass. We have also analyzed values of λ smaller
than 1, although they were not considered in [16]. We have
checked that for λ values lower than certain values (always
close to one), p̃ may become negative, which means that
the system is unstable. If negative pressures appear only at
very low densities, typical of the ones present in the inner
crust, this part of the EoS can simply be eliminated.
However, if the negative pressure appears at densities of
the order of the ones present in the core of the EoS, the
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generated EoS has to be discarded. One example is given
and discussed next.
In all presented figures the continuum line corresponds

to the general relativity TOV solution and the maximum
mass and radius of GR solution for each EoS can also be
seen in the third column of all Tables. In the present paper
we have used the full Baym-Pethick-Sutherland EoS to
describe the outer crust [46] and no hyperons are included
in the EoS used next. Note that we recover GR solution in
Rastall-rainbow theory using Σ ¼ 1.0 and λ ¼ 1.0.
We start by testing the RR theory with one RMF model,

the IU-FSU parametrization proposed in [31]. Besides the
tests performed in [40], IU-FSU is also successful in
explaining the recent constraint that comes from the
GW170817 observation [47]. The results obtained with
various parameter values are displayed in Table I and Fig. 1.
Although the results mentioned in the references above and
reproduced in the present paper lie within acceptable
ranges, the TOV solution of the IU-FSU EoS yields a

maximum mass slightly smaller than the expected 2.0 solar
masses. The radius of the canonical star (1.4 M⊙), however,
lies inside the range imposed by the GW170817 con-
straints, which suggest that R1.4 should lie between 10.5
and 13.4 km. Notice from Table I that, while the Rastall
theory hardly affects the maximum stellar mass, it increases
the corresponding radius [16]. The rainbow theory, on the
other hand, works in such a way that the maximum mass
can either increase or decrease, depending on the values
chosen. However, if the maximum mass increases, so does
the radius. If it decreases, the radius also decreases [24].
It is the combination of both approaches that allows
the maximum mass to increase at the same time that the
canonical star radius decreases. This feature puts the
macroscopic properties obtained with the IU-FSU model
comfortably within the accepted constraints for a variety of
parameters.
Before we investigate other EoS, we would like to

comment on the result obtained with the parameter RRλ4

TABLE I. Macroscopic properties for different values of the λ and Σ parameters corresponding to the mass-radius diagram in Fig. 1.

Rainbow Model TOV Rainbow1.2 [24] Rainbow1.01 RR RRΣ1 RRΣ2 RRΣ3 RRΣ4

Parameters Σ 1.0 1.2 1.01 1.01 1.05 1.1 0.95 0.90
λ 1.0 1.0 1.0 0.999 0.999 0.999 0.999 0.999

IU-FSU Mmax 1.94 M⊙ 2.33 M⊙ 1.96 M⊙ 1.96 M⊙ 2.03 M⊙ 2.13 M⊙ 1.84 M⊙ 1.74 M⊙
RMmax

11.22 km 13.46 km 11.33 km 11.15 km 11.59 km 12.15 km 10.49 km 9.94 km
R1.4 12.55 km 15.08 km 12.68 km 12.28 km 12.76 km 13.34 km 11.55 km 10.92 km

General Modified
Relativity Gravity

Rastall Model TOV Rastall1.001 [16] Rastall0.999 RR RRλ1 RRλ2 RRλ3 RRλ4

Parameters λ 1.0 1.001 0.999 0.999 1.001 1.003 1.006 0.96
Σ 1.0 1.0 1.0 1.01 1.01 1.01 1.01 1.01

IU-FSU Mmax 1.94 M⊙ 1.94 M⊙ 1.94 M⊙ 1.96 M⊙ 1.96 M⊙ 1.96 M⊙ 1.97 M⊙ 1.87 M⊙
RMmax

11.22 km 11.48 km 11.05 km 11.15 km 11.60 km 12.18 km 13.21 km 10.17 km
R1.4 12.55 km 13.18 km 12.16 km 12.28 km 13.32 km 14.87 km 18.19 km 10.70 km
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FIG. 1. Mass-radius relation for a family of hadronic stars described with the IU-FSU EoS. We analyze the effects caused by varying
the Rainbow parameter Σ (left) while keeping the other parameter fixed and the effects of varying the Rastall parameter λ (right) while
keeping Σ fixed.
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and, for this purpose, the modified EoS is shown in Fig. 2
alongside the original IU-FSU EoS. The RR TOV-like
equation Eq. (24) depends on modified expressions for the
pressure and energy density, as given in Eq. (19) and shown
by the dashed curve. We can observe that the EoS is shifted
towards higher densities, with a behavior equivalent to what
is usually obtained with quark matter EoS without a crust
[48]. As a consequence, the resulting mass-radius diagram,
depicted in Fig. 1 right presents the typical shape of a quark
star curve. All EoS with this behavior will be eliminated
from our analyses and this restriction is related to the fact
that λ has a lower limit in RR theory. This lower limit was
identified in [16] as being lower than 1.0, but we have
verified that the exact value is actually model dependent.
We now investigate how model dependent the overall

results are and for this purpose, other EoS are used. The
QMC [30,49–51] and QMCωρ [37,38] EoS are obtained
with an effective model in which the hadrons are made of
three quarks confined in a system of nonoverlapping MIT
bags. In the QMC models the quarks inside the nucleons

interact with each other trough the exchange of σ, ρ and ω
mesons. The difference between the two models comes
from the fact that only in the QMCωρ the mesons ω and ρ
interact with each other, while in the standard QMC model
all mesons interact just with the quarks. This interaction has
the effect of decreasing the slope of the symmetry energy of
the model and as a consequence shrink the canonical
1.4 M⊙ radius. More details of the QMC and QMCωρ
models and their effects on neutron star properties can be
seen in [38].
The TOV solutions for the QMC and QMCωρ models

give maximum masses within the acceptable range of 2.0 ≤
Mmax ≤ 2.3 [25,26,52–54]. Also, both EoS produce canoni-
cal 1.4 M⊙ radii within the recent range obtained in [55] of
11.82 km ≤ R1.4 M⊙

≤ 13.72 km but slightly out of the
range proposed by [3] of 10.5 km ≤ R1.4 M⊙

≤ 13.4 km.
In Fig. 3 and Table II we show the effects of RR theory in

neutron star properties obtained with the QMC EoS. We
have followed the same procedure as for the IU-FSU
model, i.e., we have tested the Σ parameter from 0.7 to
1.4 and λ from 0.9 to 1.1, but just the results close to the
accepted observational constraints are shown. For
λ ¼ 1.006, for instance, we have already a radius of
20.84 km and any value bigger than this provides unrea-
sonable results when applied to neutron stars. For λ > 1
the very small corrections on GR show no effect on the
maximum stellar mass, but produce a big effect on the
canonical 1.4 M⊙ neutron star radius. This result is in
agreement with [16] that concluded that, when confronted
with neutron star constraints, just small corrections of GR
coming from Rastall theory are allowed. Again, we have
seen that for certain combinations, the maximum mass
increases and the stellar radius decrease.
As a final check, the QMCωρ model is also used to test

the RR theory and the results are shown in Table III and
Fig. 4. The conclusions are again the same as the ones
discussed above for the IU-FSU and QMC models.

 0
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IU-FSU
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-4
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ε(fm-4)

λ = 1.0 ; Σ = 1.0

λ = 0.96 ; Σ = 1.01

FIG. 2. IU-FSU EoS (solid line) and corresponding RR EoS
(dashed line) obtained with the parameters named RRλ4 in
Table I.
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FIG. 3. Mass-radius relation for a family of hadronic stars described with the QMC EoS. We analyze the effects caused by varying the
rainbow parameter Σ (left) while keeping the other parameter fixed and the effects of varying the Rastall parameter λ (right) while
keeping Σ fixed.
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According to [56,57], the neutron star in the quiescent
low-mass X-ray binary (LMXB) NGC 6397 [58–60]
provides a reliable constraint, which is depicted as a green
shaded area in all Figures already presented at the 68% con-
fidence level over the neutron star mass and radius. We can
clearly see that, although the TOV curve can only repro-
duce the boundary of stars with larger radii (IU-FSU and
QMCωρ models) or not at all (QMC model), the region of
low masses with low radii stars can be accommodated by
many of the RR parameter choices we have made and
obviously with others we do not show.
Another interesting stellar object is the double neutron

system J0737A/B [61,62], considered a very special labo-
ratory for gravitational physics [63] due to a combination
of desirable features that allow post-Keplerian (PK) and
Shapiro delay parameters easy to measure, besides the fact
that one of the stars in the system is also an active radio
pulsar, detectable some of the time. The individual stellar

masses of this system are 1.3381 M⊙ and 1.2489 M⊙ also
shown in all figures and they correspond to radii varying
from 10.94 km to 13.46 km (IU-FSU), from 13.14 km to
14.75 km (QMC) and from 12.44 km to 13.88 km
(QMCωρ), once the curves with very large and unrealistic
radii are excluded. A combination of methods, measure-
ments and GR equations lead to a mass-mass diagram
[57,63], with a large excluded area. Moreover, all PK curves
are expected to intersect in a single point at a pair of mass
values if the theory is valid and the mentioned diagram
corroborates GR. A similar test could tell us whether the
proposed RR theory is also valid and in this case, the radii
corresponding to the individual masses in the J0737 system
could be used to limit the λ and Σ parameter values.

IV. FINAL REMARKS

In this paper, we have combined the Rastall and rainbow
theories of modified gravity and shown that the effect of

TABLE II. Macroscopic properties for different values of the λ and Σ parameters corresponding to the mass-radius diagram in Fig. 3.

Rainbow Model TOV Rainbow1.2 [24] Rainbow1.01 RR RRΣ1 RRΣ2

Parameters Σ 1.0 1.2 1.01 1.01 1.05 1.1
λ 1.0 1.0 1.0 0.999 0.999 0.999

QMC Mmax 2.14 M⊙ 2.56 M⊙ 2.15 M⊙ 2.15 M⊙ 2.24 M⊙ 2.35 M⊙
RMmax

11.53 km 13.85 km 11.65 km 11.49 km 11.95 km 12.51 km
R1.4 13.61 km 16.44 km 13.76 km 13.28 km 13.80 km 14.46 km

General Modified
Relativity Gravity

Rastall Model TOV Rastall1.001 [16] Rastall0.999 RR RRλ1 RRλ2

Parameters λ 1.0 1.001 0.999 0.999 1.001 1.003
Σ 1.0 1.0 1.0 1.01 1.01 1.01

QMC Mmax 2.14 M⊙ 2.14 M⊙ 2.13 M⊙ 2.15 M⊙ 2.16 M⊙ 2.16 M⊙
RMmax

11.53 km 11.77 km 11.37 km 11.49 km 11.88 km 12.39 km
R1.4 13.61 km 14.39 km 13.16 km 13.28 km 14.54 km 16.48 km

TABLE III. Macroscopic properties for different values of the λ and Σ parameters corresponding to the mass-radius diagram in Fig. 4.

Rainbow Model TOV Rainbow1.2 [24] Rainbow1.01 RR RRΣ1 RRΣ2

Parameters Σ 1.0 1.2 1.01 1.01 1.05 1.1
λ 1.0 1.0 1.0 0.999 0.999 0.999

QMCωρ Mmax 2.07 M⊙ 2.48 M⊙ 2.09 M⊙ 2.09 M⊙ 2.17 M⊙ 2.27 M⊙
RMmax

10.96 km 13.15 km 11.07 km 10.93 km 11.36 km 11.90 km
R1.4 12.83 km 15.55 km 12.99 km 12.56 km 13.07 km 13.68 km

General Modified
Relativity Gravity

Rastall Model TOV Rastall1.001 [16] Rastall0.999 RR RRλ1 RRλ2

Parameters λ 1.0 1.001 0.999 0.999 1.001 1.003
Σ 1.0 1.0 1.0 1.01 1.01 1.01

QMCωρ Mmax 2.07 M⊙ 2.07 M⊙ 2.06 M⊙ 2.09 M⊙ 2.09 M⊙ 2.09 M⊙
RMmax

10.96 km 11.18 km 10.82 km 10.93 km 11.29 km 11.76 km
R1.4 12.83 km 13.52 km 12.43 km 12.56 km 13.67 km 15.32 km
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rainbow gravity can be incorporated into the Rastall field
equations by considering an energy dependent metric and
an energy dependent gravitational constant. We consider a
line element with spherical symmetry and assume that the
matter in the stellar interior can be described by the tensor
energy-moment of a perfect fluid. In this work, we have
also derived the TOV-analogue for a compact star described
by hydrostatic equilibrium equations within the proposed
Rastall-rainbow gravity.
Three RMFmodels have been used to test the new theory,

namely IU-FSU, QMC and QMCωρ, all of them already
presentingmacroscopic properties not too far away from the
currently expected values. While IU-FSU reproduces well
the canonical star radius, it does not reach the maximum
stellarmass. On the other hand,QMCandQMCωρ reach the
2 M⊙ mass value, but the radii are a bit too large.
We have checked that while the Rastall theory alone

affects very little the maximum stellar mass, it increases the
corresponding radius, as already pointed out in [16]. We
have also confirmed that to avoid instabilities in the
pressure, only values of λ within 0.1% of difference from
general relativity are accepted [16]. Nevertheless, values
smaller than 1 for the λ parameter are possible, but the exact
number is model dependent.
The rainbow theory alone works in such a way that

the maximum stellar mass can either increase or
decrease, depending on the Σ values chosen. However, if
the maximum mass increases, so does the radius. If it
decreases, the radius also presents smaller values [24].
We have then verified that, independently of the model

considered, it is the combination of both theories that allows
the maximum mass to increase at the same time that the
canonical star radius decreases. Within this new framework,
allmodels studied can producemacroscopic propertieswithin
the currently accepted range for a variety of parameters.

Recent measurements point to the existence of NS with
masses around 2.07–2.28 M⊙ [64]. These massive stars
being confirmed, some RMF models currently accepted
may be excluded if the macroscopic properties are obtained
with the TOV equations. However, if the RR equations are
used instead, they can still be used to describe the internal
stellar structure, as can be seen from the values shown in the
present work.
Finally, an important consideration on the hyperon

puzzle should be made. In all EoS discussed in the present
work, only nucleons (and leptons to insure charge neutral-
ity and β-equilibrium) were considered. However, in very
dense matter as the one existing in the interior of neutron
stars, hyperons are indeed expected to appear, but their
inclusion are known to soften the EoS and hence, produce
lower maximum masses. One possible way to reconcile the
recent measurements of massive stars with relatively small
radii, is to incorporate either strange mesons or a new
degree of freedom (not necessarily known) in the calcu-
lations [65]. Had we included hyperons in our calculations
with all three models investigated in the present work, they
would all fail to describe 2 M⊙ stars. A clear way of
circumventing this puzzle is the use of the RR theory we
propose in the present work.
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