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Consider compact objects—such as neutron star or black hole binaries—in full, nonlinear general
relativity. In the case with zero cosmological constantΛ, the gravitational radiation emitted by such systems
is described by the well established, 50þ year old framework due to Bondi, Sachs, Penrose and others.
However, so far we do not have a satisfactory extension of this framework to include a positive
cosmological constant—or, more generally, the dark energy responsible for the accelerated expansion of
the universe. In particular, we do not yet have an adequate gauge invariant characterization of gravitational
waves in this context. As the next step in extending the Bondi et al. framework to the Λ > 0 case, in this
paper we address the following questions: How do we impose the “no-incoming radiation” condition for
such isolated systems in a gauge invariant manner? What is the relevant past boundary where these
conditions should be imposed, i.e., what is the physically relevant analog of past null infinity I−

o used in the
Λ ¼ 0 case? What is the symmetry group at this boundary? How is it related to the Bondi-Metzner-Sachs
(BMS) group? What are the associated conserved charges? What happens in the Λ → 0 limit? Do we
systematically recover the Bondi-Sachs-Penrose structure at I−

o of theΛ ¼ 0 theory, or do some differences
persist even in the limit? We will find that while there are many close similarities, there are also some subtle
but important differences from the asymptotically flat case. Interestingly, to analyze these issues one has to
combine conceptual structures and mathematical techniques introduced by Bondi et al. with those
associated with quasilocal horizons. The framework introduced in this paper will serve as the point of
departure in the construction of the analog(s) of future null infinity, Iþ

o where the radiation emitted by
isolated systems can be analyzed systematically.
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I. INTRODUCTION

This is a continuation of a series of papers aimed at
constructing the theory of gravitational radiation emitted by
isolated systems in full, nonlinear general relativity with a
positive cosmological constant Λ. The first paper in the
series [1] pointed out that there are unforeseen—and rather
deep—conceptual obstructions that prevent a direct gen-
eralization of the well developed Λ ¼ 0 theory due to
Bondi [2], Sachs [3], Penrose [4] and others. From a
physical perspective these difficulties can be traced back to
the fact that, if Λ > 0, space-time curvature does not decay
no matter how far one recedes from sources, and its
presence in the asymptotic region makes it difficult to
extract gravitational waves in a gauge invariant manner.
From a geometrical perspective, in the Λ ¼ 0 case I�

o are
null, and using their null normals one can extract radiation
fields unambiguously. By contrast, in the Λ > 0 case, I� is
spacelike and, in absence of preferred null directions, the

notion of the radiation field becomes ambiguous [4–6].
Although we have formulated the discussion in terms of a
positive Λ, the conceptual and technical issues that are
relevant to this series of paper also arise if the observed
accelerated expansion of the universe is because of another
form of dark energy, so long as that the accelerated
expansion continues indefinitely.
The subsequent two papers [7,8] showed that these

obstructions can be overcome for linearized gravitational
waves on a de Sitter background, although subtleties still
persist. For example, because all Killing fields in the
de Sitter space-time are spacelike near its boundaries
I�, the conserved de Sitter “energy” carried away by
gravitational—or even electromagnetic waves—across I�
can be arbitrarily negative. Can time dependent isolated
systems then emit large amounts of negative energy
(thereby increasing their own energy by large amounts)?
A natural setup to analyze such issues is provided by a
time changing mass quadrupole, studied by Einstein over
a century ago, using the first post-Minkowski, post-
Newtonian approximation [9]. In presence of a positive
Λ, one can analyze the same problem using the first
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post-deSitter, post-Newtonian approximation. However,
one immediately faces a number of nontrivial conceptual
issues and technical difficulties in extending Einstein’s
quadrupole formula [8]. Fortunately, by now these issues
have been resolved. One finds that a time changing
quadrupole moment can only create gravitational waves
with positive energy. Thus, although a neighborhood of Iþ
does admit solutions to linearized Einstein’s equations with
negative energy, those waves cannot be produced by
physical sources [8,10]. Thus, at least at the linearized
level a careful analysis enables us to extend the Λ ¼ 0
theory to allow a positive Λ and the extension leads to
physically desirable results, just as one would hope.
Are there any observable consequences of this weak field

analysis? Einstein’s quadrupole formula does receive cor-
rections that depend on Λ. As one would expect, they go as
powers of Tdyn=TH, where Tdyn is the dynamical timescale

associated with compact binaries and TH ¼ ffiffiffiffiffiffiffiffiffi
3=Λ

p
is the

Hubble time scale of the background de Sitter space-time.
Tdyn associated with compact binaries of interest to the
current gravitational wave observatories is at most a few
minutes. The value of the Hubble parameter in our universe
changes with time and the current value of T0

H is huge. For a
rough estimate of the size of corrections, one could choose
as our background the de Sitter space-time whose TH

equals T0
H.

1 Then the corrections to Einstein’s quadrupole
formula are completely negligible for the LIGO-Virgo
detectors. However, this is now a conclusion of a systematic
analysis rather than assumption. Furthermore, the modifi-
cations are conceptually important as they bring out
features of general relativistic gravity that had remained
unnoticed in the asymptotically flat case. (For a summary,
see [10].) In this sense, the overall situation is not dissimilar
to what Einstein encountered with his quadrupole formula.
At the time, his result was only of conceptual importance
because it brought out a deep underlying contrast between
general relativity and Newtonian gravity, although the
result had no practical importance at all because of the
technological limitations.
In this paper we will begin the analysis of gravitational

waves emitted by isolated systems in full, nonlinear general
relativity with Λ > 0, using the experience and intuition
gained from the weak field analysis. Specifically, we will
introduce the analog of the past boundary I−

o of asymp-
totically flat space-times, now tailored to the study of
isolated system such as oscillating stars or compact binaries
that constitute interesting sources of gravitational radiation.
The central issue we resolve is the following. For these

isolated systems, one is interested in gravitational waves

produced by sources themselves, not the ones that are
incident from past infinity. In the Λ ¼ 0, asymptotically flat
case, the required “no-incoming radiation” condition can be
imposed in a gauge invariant fashion simply by requiring
the vanishing of the Bondi news tensor Nab at I−

o [2–4,12].
However, in the Λ > 0 case, we do not yet have an
unambiguous analog of Nab. Therefore, one has to find
other geometric structures that capture the no-incoming
radiation condition in a gauge invariant manner. In the
mathematical literature, there are powerful results on non-
linear stability of de Sitter space [13]. Can we not use them
to introduce the notions needed to impose this condition?
Unfortunately we cannot, at least not directly. Indeed,
even in the asymptotically flat case with Λ ¼ 0, the
mathematically powerful results on nonlinear stability of
Minkowski space-time [14–16] do not by themselves
provide us with criteria to characterize gravitational radi-
ation, or to calculate energy-momentum carried by gravi-
tational waves; these came from the independent and older
Bondi-Sachs-Penrose framework. The nonlinear stability
results do provide us confidence that the boundary con-
ditions are satisfied by a large class solutions to Einstein’s
equations. However, there are important limitations even in
this respect. First, in both Λ > 0 and Λ ¼ 0 cases, the
primary focus of nonlinear stability analyses is on vacuum
(or electro-vac [17]) solutions to Einstein equations while
in physical applications we are interested in the radiation
emitted by compact astrophysical objects. More specifi-
cally, in the Λ ¼ 0 case the physical interest lies in retarded
solutions in which there is no-incoming radiation—i.e.,
where Nab ¼ 0 at I−

o–and, among solutions considered in
the nonlinear stability analysis, only Minkowski space
meets this requirement. In the Λ > 0 case there is a further
twist. The global, nonlinear stability results for de Sitter
space-time assume that the topology of I� is S3 and
compactness of I� plays an important role in the analysis
[13,18]. As discussed in [1], for isolated systems such as
black holes and oscillating stars, I� are noncompact, with
topology S2 ×R, and the analysis becomes more compli-
cated. Together, these considerations bring out the need to
go beyond the conceptual setting and mathematical tools
provided by the nonlinear stability analysis.
Our goal is to carry out this task. In this paper, we

will formulate the “no-incoming radiation” condition
as the first step in the analysis of gravitational waves
emitted by spatially compact sources, and discuss the
associated geometrical structures and their physical con-
tent. Interestingly, the generalization of the Bondi et al.
framework requires us to combine physical concepts and
mathematical techniques they introduced [2–4] with those
from the theory of quasilocal horizons developed [19–21]
some 40 years later.
In Sec. II we introduce the appropriate past boundary on

which the no-incoming radiation boundary condition is to
be imposed. We will refer to it as the “relevant scri-minus”

1However, from the linearized analysis it is not clear whether
this strategy is justified; the value of H at the time of emission
may be more appropriate [11]. Then the corrections would be
more significant, especially for the supermassive black holes
created early in the history of the universe.
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and denote it by I−
Rel. In the Λ ¼ 0 case, explicit examples

are useful in bringing out the motivation for various
conditions imposed at I−

o , and understanding the physics
and geometry of structures that emerge from them. In the
same spirit, in Sec. III we discuss two basic examples of
isolated systems in presence of a positive Λ. (A third
example is discussed in Appendix A). In Sec. IV we discuss
symmetry groups and in Sec. V the associated charges that
lead to definitions of total energy and angular momentum
on I−

Rel. In both cases we compare and contrast the
structures with those at I−

o of the Λ ¼ 0 asymptotically
flat space-times. In particular, we will find that, to begin
with, symmetry group at I−

Rel is infinite dimensional, with
structure similar to that of the Bondi-Metzner-Sachs (BMS)
group B. However, addition of a physically motivated
structure reduces it to a finite dimensional group, that then
enables one to introduce the notion of energy and angular
momentum.2 In Sec. VI we summarize our results and
comment on how the presence of a positive cosmological
constant (or, more generally, continued accelerated expan-
sion) forces us to change our intuition in several respects.
Appendix B collects results that are secondary to the main
discussion of this paper but which may well be useful for
future work.
Our conventions are as follows. Throughout we

assume that the underlying space-time is 4-dimensional
and the space-time metric has signature −;þ;þ;þ.
Curvature tensors are defined via: 2∇½a∇b�kc ¼ Rabc

dkd,
Rac ¼ Rabc

b. Relation to the relevant Newman Penrose
curvature components is presented in Appendix B.

II. I −
Rel AND THE NO INCOMING
RADIATION CONDITION

In Sec. II A we recall from [1,8] that, because of
cosmological horizons, any given isolated system is visible
only from a part of the full asymptotically de Sitter space-
time. In terms of causal structure, then, this is the relevant
region of space-time for the given isolated system. We will
denote it by MRel. The cosmological horizon that con-
stitutes the past boundary of MRel is now the analog of I−

o
in theΛ ¼ 0 case. Therefore, wewill refer to this horizon as
the “relevant scri-minus” and denote it by I−

Rel. It is a null
3-manifold just as I− is in the Λ ¼ 0 case (see Fig. 1). We
will see that the no-incoming radiation condition can now
be naturally imposed by requiring that I−

Rel be a nonex-
panding horizon (NEH). In Sec. II B, we first recall the
notion of a nonexpanding horizon [19] and summarize its
properties that we will need. The older work on NEHs (see,
e.g., [19,20]) was focused primarily on black holes. New
issues arise while exploring their role as past boundaries

I−
Rel of isolated systems in presence of a positive Λ. In

subsequent sections we will find that now the relevant
geometrical structures are closer to those at I− in theΛ ¼ 0
case. In Sec. II C we specify the class of space-times we
consider in the rest of the paper.

A. The setting

Let us begin with a linearized source (such as a star
or a compact binary with time changing quadrupole) on
de Sitter background, depicted in Fig. 1. I� of de Sitter
space-time are spacelike 3-manifolds serving as future and
past boundaries, and the world-tube of the spatially
compact source intersects them in two points i�, respec-
tively. The future event horizon Eþði−Þ of i− divides space-
time into two parts, each of which serves as a “Poincaré
patch.” The causal domain of influence of the source is the
future Poincaré patch. Therefore, in the investigation of
properties of the radiation emitted by the given isolated
system, only this portion of space-time is relevant. It is then
natural to regard the past boundary Eþði−Þ of this region as
the relevant scri-minus. We will do so, and from now on
denote it by I−

Rel. Since we are interested only in the
radiation emitted by the time-changing quadrupole moment
of the source, it is natural to impose the no-incoming
radiation boundary condition at I−

Rel [8,10]. (See the left
panel of Fig. 1.)
This strategy is reenforced by energy considerations. The

points i� naturally select a de Sitter time-translation Killing
field Ta whose trajectories are depicted (in the right panel
of Fig. 1) by the (red) dashed lines with arrows. The center
of mass of the linearized source follows an integral curve of
Ta. This Killing field is timelike near the source but
becomes spacelike in a neighborhood of Iþ. (Indeed, all
Killing fields in de Sitter space-time have to be spacelike in
a neighborhood of Iþ because Iþ itself is spacelike and
every Killing field must be tangential to it.) As a conse-
quence, in general the flux of energy EðtÞ associated with
Ta across Iþ (or, a portion thereof) can carry either sign.
This is true for both gravitational and electromagnetic
waves [7]. Geometrically, one can pinpoint where positive
and negative contributions come from. For definiteness, let
us consider electromagnetic waves and consider the tri-
angular region of the right panel in Fig. 1, bounded by the
spacelike Iþ to the future and two null boundaries to the
past: (i) the portion denoted by Iþ

Loc (namely, the future half
of the past event horizon E−ðiþÞ of iþ that intersects I−

Rel at
a 2-sphere ioLoc), and, (ii) the portion of I−

Rel that lies to the
future of ioLoc. Conservation of stress-energy tensor implies
that the energy flux across Iþ equals the sum of energy
fluxes across the two null boundaries in the past. Note
however, that the Killing field Ta is future directed and
null on the boundary (i) (i.e. Iþ

Loc), but past directed
on the boundary (ii). Therefore in any solution to
Maxwell’s equations, the energy flux across Iþ

Loc is strictly

2A similar finite dimensional reduction ofB occurs if one uses
the no-incoming radiation condition to introduce a family of
“good cuts” on I−

o as additional structure; B reduces to the
Poincaré group [22,23].
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non-negative while that across the other null boundary
(ii) is strictly nonpositive. Since the energy flux across Iþ
is the sum of these two contributions, in general it can be of
either sign. However, if we are interested only in the
retarded solutions created by the source, then there is
no-incoming radiation across I−

Rel. Hence for these sol-
utions flux across the second null boundary (ii) vanishes
identically, and that across Iþ

Loc is positive, making the flux
across Iþ positive. Thus, while de Sitter space-time admits
solutions to Maxwell’s equations with negative energy,
these do not result from a physical source if there is no-
incoming radiation at I−

Rel. (The situation is the same for
gravitational waves but the argument requires symplectic
geometric methods since we do not have a local, gauge
invariant stress-energy tensor [7,8].) Thus, in this example,
imposing no-incoming radiation condition at I−

Rel has the
desired physical consequence.
Explicit geometrical structures in this well-understood

[8] example motivate our general strategy. Let us now
consider isolated systems in the full, nonlinear theory in
presence of a positive Λ. These systems are naturally
represented by asymptotically de Sitter space-times where
much of the structure we discussed is again available.
Indeed, these space-times admit a conformal completion
a la Penrose [4] with spacelike boundaries I�. The
spatially compact source would again intersect I� at points
i� and, in the study of the isolated system, the relevant
portion MRel of space-time will again lie to the future of
Eþði−Þ. Therefore, Eþði−Þ will again serve as the relevant
I− and we will denote it by I−

Rel also in the general context.
In Sec. II B we will provide a precise formulation of the no-
incoming radiation condition on I−

Rel. Note that while the

past boundary I− of the full space-timeM is spacelike, the
past boundary I−

Rel of the relevant portion MRel of space-
time is null, just as it is in the Λ ¼ 0 case.
While the focus of this paper will be on I−

Rel, it is useful
to note structures that will provide the appropriate arena
to investigate properties of radiation emitted by the system.
Although this structure will be heavily used only in
subsequent papers, we will discuss it here briefly because
it plays a role in our present considerations as well. In the
discussion of outgoing radiation, one possibility is to use
the spacelike future boundary Iþ as the arena, as was
done in the analysis that generalized Einstein’s quadrupole
formula to include a positiveΛ [8]. But there is also another
possibility [24]: use a more local, null boundary, adapted
to the cosmological horizon of the source, obtained as
follows. Consider the past event horizon E−ðiþÞ of iþ and
assume3 that it is long enough to intersect I−

Rel in a 2-sphere
that we will denote by ioLoc (see the right panel of Fig. 1).
The intersection between the causal past and the causal
future of the isolated system is the shaded triangular region
MLoc that is the “local neighborhood of the source” since it
is bounded by the past and future event horizons of the
world-tube of the source. Thus, MLoc is the intersection of
the causal future and the causal past of the isolated system;
events in MLoc can influence the system and can also be
influenced by it. The required null boundary would then be

FIG. 1. A linearized compact binary on de Sitter background. The binary is depicted by intertwined lines on the left edge of the figure.
It pierces spacelike I� of de Sitter space-time at points i�. Solid (black) arrows denote the emitted radiation. Left panel: The thick (blue)
diagonal line represents the future event horizon Eþði−Þ of i−. Observers whose worldlines are confined to the portion of space-time to
the past of Eþði−Þ—i.e. to the past Poincaré patch—cannot see the source, nor the radiation it emits. Therefore in the investigation of the
isolated system, the relevant part MRel of space-time is only the future Poincaré patch. It’s past boundary, denoted in the figure by I−

Rel
serves as the relevant I−. Right panel: For the future boundary, there are two choices: (i) spacelike Iþ; or, ii) local Iþ, the portion of the
past event horizon E−ðiþÞ of iþ that lies inMRel, denoted in the figure by Iþ

Loc. It intersects I
−
Rel in a (bifurcation) 2-sphere, denoted by

ioLoc. The (red) dashed lines with arrows represent integral curves of a de Sitter “time-translation” Killing field adapted to the center of
mass of the linearized source. It is timelike near the source but spacelike near Iþ.

3A priori, it is not clear whether in physically interesting
radiating space-times E−ðiþÞ will be “long enough” to intersect
I−
Rel. But nonlinear stability results [25] for Kerr-de Sitter space-

times suggest that there should be a large family of such space-
times representing isolated systems in presence of a positive Λ.
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the future boundary ofMLoc–the portion of E−ðiþÞ between
iþ and ioLoc. We will denote it by Iþ

Loc and call it local
scri-plus (see Fig. 1). Note thatMLoc resembles the Penrose
diagram of an asymptotically flat space-time containing an
isolated system, with the 2-sphere ioLoc playing the role of
spatial infinity. Finally, if the source is spherically sym-
metric and static, then the static Killing field Ta is timelike
everywhere in MLoc except on the boundaries where it
becomes null, mimicking the behavior of the time-
translation Killing fields in Minkowski (and
Schwarzschild) space-time. In Sec. III we will examine
the geometry of I−

Rel; I
−
Loc; i

o
Loc, and Ta in standard exam-

ples to gain further intuition.
Remark.—As mentioned in Sec. I, in de Sitter space-

time (without a linearized source), I� are spatially compact
with topology S3. This is also the case more generally
in asymptotically de Sitter space-times that are usually
considered in the geometric analysis literature in the
cosmological context [18], because there is no isolated,
(uniformly) spatially compact source that pierces I�. Then
there are no preferred points i� on I� and hence no
I−
Rel; I

þ
Loc and ioLoc. The situation is then qualitatively

different from the one of interest to this series of papers
where the focus is on isolated systems in presence of a
positive Λ.

B. Nonexpanding horizons and their properties

Since I−
Rel is a cosmological horizon, we can readily use

the available results on quasilocal horizons to impose the
no-incoming radiation boundary condition at I−

Rel. The
appropriate notion turns out to be that of a nonexpanding
horizon (NEH). (For reviews on quasilocal horizons, see,
e.g., [21,26,27].)
Definition 1 [20].—A 3-dimensional submanifold Δ of

space-time is said to be a nonexpanding horizon if
(i) Δ is diffeomorphic to the product Δ̃ × R where Δ̃ is

a 2-sphere, and the fibers of the projection Δ̃ ×R →
Δ̃ are null curves in Δ;

(ii) the expansion of any null normal la to Δ van-
ishes; and,

(iii) Einstein’s equations hold on Δ and the stress-energy
tensor Tab is such that −Ta

blb is causal and future-
directed on Δ.

Note that if these conditions hold for one choice of null
normal, they hold for all. Condition (iii) is very mild; in
particular, it is implied by the (much stronger) dominant
energy condition satisfied by the Klein-Gordon, Maxwell,
dilaton, Yang-Mills and Higgs fields as well as by per-
fect fluids. Finally, in view of the bundle structure, will
refer to Δ̃ as the base space and fields on it will carry a
tilde. (In the literature on quasilocal horizons, one generally
uses a hat rather than a tilde—we switched to a tilde
because hats have been used to denote conformal com-
pletion in Sec. II A.)

Conditions in Definition 1 have a number of immediate
consequences [19,20]. First, the space-time metric gab
induces a natural degenerate metric qab of signature
(0;þ;þ) and an area 2-form ϵab on Δ, satisfying
Llqab ¼ 0, qablb ¼ 0 and Llϵab ¼ 0, ϵablb ¼ 0 for all
null normals la. Thus qab and ϵab can be regarded as pull-
backs to Δ of the metric and the area 2-form on the base
space Δ̃. In particular, then, the area of any 2-sphere cross
section of Δ is the same. This is a reflection of the fact that
there is no flux of energy—matter or radiation—across Δ.
Therefore if we ask that I−

Rel be an NEH, we would be
guaranteed that there is no-incoming radiation into MRel
from I−

Rel. On a dynamical horizon, by contrast, there are
fluxes of matter and/or radiation across the horizon and the
area of cross sections changes in response to these fluxes in
a precise, quantitative fashion [28,29].
The second set of consequences arises from fields

associated with the space-time (torsionfree) connection
∇ that is compatible with gab. The Raychaudhuri equation,
together with conditions in Definition 1 implies that all null
normals la are also shear-free. This property, together with
condition (ii) implies that ∇ induces a natural intrinsic,
torsion-free derivative operatorD onΔwhich is compatible
with the induced metric qab on Δ: Daqbc ¼ 0 on Δ.
Furthermore, given any future-directed null normal la,
we have:

Dalb ¼ ωalb; ð2:1Þ

for some 1-form ωa on Δ and, under the rescaling
la→l0a¼fla for any smooth positive function f on Δ,
we have:

ωa → ω0
a ¼ ωa þDa ln f: ð2:2Þ

(Thus, strictly, the 1-form ωa should also carry a label l
which we will omit just for notational simplicity.)
Following the Newman-Penrose notation, let us define
2ReΨ2 ¼ Cabcdlanblcnd, and 2ImΨ2 ¼ ⋆Cabcdlanblcnd,
where la is any null normal to Δ and, given a null normal,
na is any null vector field that satisfies lana ¼ −1. (The
NEH structure implies that the pull-back to Δ of the space-
time field Cabcdld vanishes, whence Ψ2 is well-defined in
spite of the freedom in choosing na.) The 1-form ωa
defined intrinsically on Δ serves as a potential for the
imaginary part ImΨ2 of the Newman-Penrose component
Ψ2 of the 4-dimensional Weyl tensor evaluated on Δ:

D½aωb� ¼ ImΨ2ϵab: ð2:3Þ

Since ImΨ2 determines the angular momentum multipoles
of the horizon [30], ωa is called the rotational 1-form. Its
component κl ≔ ωala along la is the surface gravity
associated with the null normal la. The real part ReΨ2 of
Ψ2 determines mass multipole [30]. Therefore, the field Ψ2
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plays a key role in characterizing the geometry of WIHs
and extracting their physics [21]. We note an important
identity that relates ReΨ2 to the scalar curvature 2R̄ of the
metric q̄ab on any 2-sphere cross section C of an NEH:

2R̄ ¼ −4ReΨ2 þ
2

3
Λþ 8πG

�
2lanbTab þ

1

3
T

�
: ð2:4Þ

where la is any null normal to the NEH, na the other null
normal to C such that gablanb ¼ −1, and T is the trace of
the stress energy tensor. Equation (2.4) is a special case of a
general geometric identity derived in Appendix B, now
applied to Δ on which the shear and expansion vanish for
any null normal la.
Finally we note that surface gravity κl need not be

constant on Δ for a general choice of the null normal la.
However, given an NEH Δ, one can exploit the freedom in
the choice of null normals to restrict κl. It turns out that
every NEH admits a subfamily of null normals la such that
Llωa ¼ 0 [20]. This condition says that not only is the
intrinsic metric qab of the NEH time-independent but a part
of the connection D on the NEH—namely the part that
determines its action on these null normals la—is also
time-independent. Thanks to the identity

Llωa ¼ 0 ⇔ Daκl ¼ 0 ð2:5Þ

that holds on any NEH [19], it follows that κl is constant,
i.e., the zeroth law of horizon dynamics holds for this
subfamily. If an NEH Δ is equipped with an equivalence
class ½la� of preferred null normals that satisfy Llω ¼ 0,
then the pair ðΔ; ½la�Þ constitutes a weakly isolated horizon
(WIH); here two null normals are considered equivalent if
they are related by a rescaling with a positive constant.
While the no-incoming radiation condition introduced in
Sec. II C refers only to the NEH structure, the WIH structure
will play an important role in the subsequent discussion.
Note that if la is an affinely parametrized geodesic

vector field, κl ¼ 0, and hence in particular a constant,
whence ðΔ; ½la�Þ is automatically a WIH. These WIHs are
said to be extremal. If κl ≠ 0, then ðΔ; ½la�Þ is said to be
nonextremal. WIHs are of special interest because they turn
out to satisfy not only the zeroth law of horizon mechanics
but also the first law. The WIH structure will play an
important role in Secs. IV and V. Specifically we will use
three of their properties [20]:

(i) Every NEH admits a canonical, extremal WIH

structure ðΔ; ½l
∘ a�Þ. [On every extremal WIH, the

rotational 1-form ωa is the pull-back to Δ of a
1-form ω̃a on the “base-space” Δ̃, and on the
canonical one, ω̃a is divergencefree on the base
space ðΔ̃; q̃abÞ].

(ii) An NEH does not admit a canonical nonextremal
WIH structure. However, given a geodesically

complete NEH, there is a 1-1 correspondence
between nonextremal WIH structures ðΔ; ½la�Þ on
it, and 2-sphere cross sections C½l� of Δ. The null
normals la ∈ ½la� vanish on C½l�, are future directed
to its past, and past directed to its future.

(iii) Every nonextremal horizon ðΔ; ½la�Þ admits a
canonical foliation (such that the pull-back ω̄a of
the rotational 1-form ωa on Δ to the leaves of this
foliation is divergence-free with respect to the
2-metric q̄ab on each leaf, pulled back from Δ.)
In terms of the canonical extremal WIH structure

ðΔ; ½l
∘ a�Þ on the underlying NEH, if we set the affine

parameter v
∘
along any l

∘ a
∈ ½l

∘
� to a constant value

on the preferred cross section C½l�, then the leaves of
the preferred foliation of ðΔ; ½la�Þ are precisely the
vo ¼ const cross sections of Δ.

Remarks.—
(1) On any WIH ðΔ; ½la�Þ we have ðLlDa −

DaLlÞlb ¼ 0 and, as we remarked above, given
any NEH, one can always choose null normals la

that satisfy this condition. Thus, one can always
pass from an NEH to a WIH simply by restricting
oneself to a class of null normals. The restriction is
analogous to the one often made on null infinity Iþ

o

where one restricts the null normal n
∘ a to be

divergencefree to simplify the subsequent math-
ematical expressions. In both cases, the restrictions
are compatible with symmetries that a space-time
may admit. Thus, in the Λ > 0 case, if the space-
time admits a Killing field whose restriction to Δ is
normal to it, then the normal automatically endows
Δ with the structure of a WIH.

(2) It is tempting to strengthen the WIH condition and
ask ðLlDa −DaLlÞtb ¼ 0 for all vector fields ta

tangential to the Δ. Then ðΔ; ½la�Þ is called an
isolated horizon. However, an NEH Δ need not
admit any null normal la satisfying this condition.
Thus, while one can endow any NEH with a WIH
structure “free of charge,” one cannot in general
endow it with the structure of a IH. The notion of an
IHs turns out to be well suited to describe black hole
horizons in equilibrium [21,26,27]. By contrast, it
turns out to be too strong to describe I−

Rel if
ðMRel; gabÞ admits radiation. Therefore we have
focused on NEHs and WIHs. This point will be
discussed in detail in a forthcoming paper on Iþ

Loc.
(3) One may be tempted to ask: What about the

actual universe we inhabit? Although it will be
asymptotically de Sitter in the future (assuming
the accelerated expansion continues indefinitely) it
is not asymptotically de Sitter in the past as we
assumed in Definition 2. Note that we started
with Penrose’s [4] conformal completion mainly
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to anchor the discussion in familiar constructions.
One could start with the physical space-time
ðM; gabÞ and consider sources whose spatial support
is compact and uniformly bounded and let MRel be
the causal future of the world-tube of the source, and
I−
Rel be its past boundary (see Fig. 1). MLoc would

then be the intersection of the causal future and
causal past of the world-tube of the source. One
could use Penrose’s conformal completion just for
ðMRel; gabÞ, and introduce Iþ and iþ, and use iþ to
define Iþ

Loc. This construction will go through also
for black holes formed by gravitational collapse, and
enable us to define also the black hole horizon (see
left panel of Fig. 2). Thus all reference to I− can be
eliminated. Indeed, even when I− exists, to inves-
tigate radiation emitted by a given isolated system,
I− is not the appropriate arena to specify the no-
incoming radiation condition; the appropriate arena
is I−

Rel. For example, in the Penrose diagrams
depicted in Fig. 1, there could be additional isolated
sources in the past Poincaré patch—e.g., at the
antipodal location depicted by the right vertical
line—in addition to the one of interest (depicted
in the figure). In this case, even if we were to impose
the no-incoming radiation condition at I−, radiation
in the upper Poincaré patch would be an admixture
of that emitted by the source of interest and that
emitted by the other source that is not of interest.
This problem is neatly bypassed by imposing the no-
incoming radiation condition at I−

Rel, without having
to know what is happening at I−.

(4) Finally, note that the notion of an isolated system is
an idealization that has been very useful in many
areas of physics. In the Λ ¼ 0 case, space-time is

just assumed to be asymptotically flat—one does not
worry about the fact that real stars and black holes
are produced at a finite time in the real universe.
Since there is now strong observational evidence that
Λ is positive, it is natural and meaningful to ask for a
generalization of the Λ ¼ 0 framework to the Λ > 0
case—i.e. to use Einstein’s equations Gab þ Λgab ¼
8πGNTab with Λ > 0—while retaining the ideali-
zation of an isolated system, and therefore not
worrying about the fact that real stars and black
holes are produced at a finite time in the real
universe. That is, in this idealization i− denotes
the birth of the star or the compact binary system,
just as it does in the Λ ¼ 0 case. Similarly, the
“center of mass of the isolated system” is a loose
physical term and we can just consider instead the
world tube representing the system.

C. Past boundary conditions on the relevant
part MRel of space-time

The strategy developed in Sec. II A and the structure
available on nonexpanding horizons summarized in Sec. II B
now lead us to specify the class of space-times we will
consider. Let us first recall from [1] the notion of asymp-
totically Schwarzschild-de Sitter space-times.
Definition 2.—A space-time is said to be asymptotically

Schwarzschild-de Sitter if there exists a manifold M̂ with a
future boundary Iþ and a past boundary I−, equipped with
a metric ĝab, and a diffeomorphism from M onto the
interior ðM̂nIþ ∪ I−Þ of M̂ such that:

(i) there exists a smooth function Ω on M̂ such that
ĝab ¼ Ω2gab on M; Ω ¼ 0 on I�; and na ≔ ∇aΩ is
nowhere vanishing on I�;

FIG. 2. Left panel: Collapse of a spherical star in general relativity with a positive Λ. The collapse results in a spacelike singularity in
the future, denoted by the wiggly (magenta) line. The singularity is hidden from the exterior region by a black hole horizon, and we also
have the future cosmological horizon of i− which serves as I−

Rel, and (portion of) the past cosmological horizon of iþ that serves as Iþ
Loc,

and intersects I−
Rel in a 2-sphere cross section i

o
Loc. The relevant space-timeMRel is the portion to the causal future of i−. There is a static

Killing field Ta outside the star, whose integral curves are denoted by dashed (red) lines with arrows. It is timelike in the region bounded
by the black hole horizon, Iþ

Loc and I−
Rel, but spacelike near Iþ. Right panel: Eternal spherically symmetric black hole in general

relativity with a positive Λ. Because I� are spacelike, the future (past) boundary of the maximally extended solution consists of an
infinite sequence of singularities flanked by Iþ (respectively, I−). Thus in contrast to the asymptotically flat, Λ ¼ 0 case, the space-time
diagram continues ad-infinitum. However, following the strategy discussed in Sec. II, for us the relevant part MRel of space-time is the
causal future of i− which contains only one future singularity and one Iþ. Situation with Iþ

Loc, i
o
Loc and the static Killing field is the same

as in the figure in the left panel. The shaded portion representsMLoc, the intersection of the causal future of i− with the causal past of iþ.
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(ii) gab satisfies Einstein’s equations with a positive
cosmological constant, i.e., Rab − 1

2
Rgab þ Λgab ¼

8πGTab with Λ > 0; where Ω−1Tab has a smooth
limit to I�; and,

(iii) I has topology S2 ×R, and the vector field na is
complete in any divergencefree conformal frame
(i.e., when the conformal factor Ω is chosen to
satisfy ∇̂a∇̂aΩ ¼ 0 at I�).

These conditions are appropriate for considering
space-times representing isolated systems in presence of
a positive Λ (assuming sources have spatially compact
support that is uniformly bounded in time). Now, since
S2 ×R ¼ S3nfp1; p2g (where p1, p2 are 2 points), we can
think of I� as being obtained from the de Sitter I� (with
S3 topology) by removing points i� representing the future
and past timelike infinity defined by the source, and points
io that can be thought of spatial infinity (see Fig. 1).
Discussion of Sec. II A leads to the next definition:
Definition 3.—The physically relevant portion MRel of

the given space-time ðM; gabÞ is that which lies to the future
of the future horizon Eþði−Þ of the point representing the
past timelike infinity i− of the isolated source.
Being the past boundary of the physically relevant

portion MRel, Eþði−Þ can be taken as I−
Rel, the relevant

scri-minus. Finally, we impose the no-incoming radiation
boundary condition on I−

Rel:
Definition 4.—We will say that the given space-time

satisfies the no-incoming radiation condition if:
(i) I−

Rel is a nonexpanding horizon; and,
(ii) It is geodesically complete.

The geodesic completeness requirement can be rephrased
as asking that the extremal null normals la (i.e., with
κl ¼ 0) are complete. If one extremal null normal is
complete then they are all complete. This completeness
requirement is completely analogous to the condition one
imposes on I− of the asymptotically Minkowski space-
times in the Λ ¼ 0) case (see, e.g., [12]).
In the rest of the paper we will work with asymptotically

Schwarzschild-de Sitter space-times with no-incoming
radiation. This is the class of space-times representing
isolated gravitational systems in presence of a positive
cosmological constant and it will be denoted by CΛisol.
Remark.—It is interesting to note the situation in the

asymptotically flat, Λ ¼ 0 case. Let us again denote the
physical space-time by ðM; gabÞ, the conformally com-
pleted space-time by ðM̂; ĝabÞ, and work with a divergence-
free conformal frame that is normally used to analyze
structure at null infinity, which we will denote by Io.
Suppose the space-time is asymptotically Minkowskian
[12]. Then, interestingly, I−

o is null, geodesically complete
and a nonexpanding horizon in ðM̂; ĝabÞ; its structure
closely resembles that of I−

Rel in the Λ > 0. However,
there is a key difference: whereas I−

Rel is a submanifold of
the physical space-time, in the Λ ¼ 0 case I−

o is the
boundary of the physical space-time (at which the physical

metric gab diverges). As a consequence, presence or
absence of gravitational radiation is not encoded in the
NEH structure of I−

o . To ensure that there is no radiation at
I−, one has to require, in addition, that the Bondi news
tensor Nab must vanish there. In the Λ > 0 case, by
contrast, the NEH structure implies that the shear tensor
σab of every null normal la vanishes on I−

Rel and this
vanishing suffices to ensure that there is no flux of radiation
across I−

Rel.

III. EXAMPLES

In this section we will examine the simplest examples
of isolated systems in general relativity with a positive
cosmological constant to illustrate the geometrical struc-
tures one can anticipate. (Another example is discussed in
Appendix A.) We will see explicitly that all conditions in
our definitions are satisfied in these examples. Furthermore,
the explicit form of the geometrical structures of these
examples—such as Killing vectors, curvature quantities
and their behavior in the Λ → 0 limit—will provide the
much needed intuition in the discussion of the symmetry
groups, physical fields and conserved charges at I−

Rel of
general space-times. Although we have attempted to restrict
ourselves to the most essential points, the discussion is
rather long because the presence of a positive Λ introduces
certain unfamiliar structures that turn out to be important in
the subsequent discussion.
Throughout this paper, we use the symbol l in two

different ways: l will stand for the cosmological radiusffiffiffiffiffiffiffiffiffi
3=Λ

p
, while la will denote null normals to I−

Rel.

A. Linearized gravity with sources
in the de Sitter space-time

In this subsection we will analyze the geometry and
symmetries of the future Poincaré patch, MRel, of the
space-time depicted in Fig. 1. We begin by listing the five
coordinate systems in which the background de Sitter
metric is commonly displayed because they are useful to
bring out various geometrical features that we will need.
The coordinates themselves are not important and will not
play an essential role in the subsequent discussion; only
the invariant structures they define in these examples will.
These include existence of I−

Rel and the WIH structure
thereon; I−

Loc, ioLoc and Iþ
Loc; and the relation between

physically interesting conserved quantities and these struc-
tures; see the last part of the discussion in each example.

1. Various forms of the metric

(1) Standard cosmological coordinates t, x, y, z:

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ;
with aðtÞ ¼ et=l: ð3:1Þ
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I−
Rel corresponds to r ¼ ∞ and t ¼ −∞ (with

r2 ≔ x2 þ y2 þ z2), and Iþ to t ¼ ∞. So the chart
does not cover either.

(2) Conformal time η, and spherical coordinates r; θ;φ,
again on the cosmological slices:

ds2 ¼ ã2ðηÞðdη2 þ dr2 þ r2ds
∘2
2Þ;

with η ¼ −le−t=l; ãðηÞ ¼ −
l
η
≡ aðtÞ;

ð3:2Þ

and where ds
∘2
2 stands for the unit 2-sphere metric. In

this chart, I−
Rel corresponds to r ¼ −η ¼ ∞, and Iþ

to η ¼ 0. Therefore, again I−
Rel and Iþ are not

covered by this chart.
(3) Static coordinates T; R; θ;φ, in which the T⃗ ≡

Ta∂a ≔ ∂=∂T is manifestly a static Killing field
and R is the proper radius of 2-spheres of symmetry:

ds2 ¼ −fðRÞdT2 þ dR2

fðRÞ þ R2ds
∘2
2;

with fðRÞ ¼ 1 −
R2

l2
: ð3:3Þ

This chart covers the lower half of the Poincaré patch
(i.e. the portion that lies to the past of Iþ

Loc)
excluding the boundaries I−

Rel and Iþ
Loc where

fðRÞ vanishes (see Fig. 1). In terms of η, r of (2),
we have:

R ¼ −
l
η
r T ¼ −

l
2
ln

�
η2 − r2

l2

�

r ¼ e−T=lRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2=l2

p ; η ¼ −
e−T=llffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2=l2

p ð3:4Þ

This form is best suited for generalization to the
Schwarzschild-de Sitter metric.

(4) Eddington-Finkelstein coordinates ðv; R; θ;φÞ

ds2 ¼ −fðRÞdv2 þ 2dvdRþ R2ds
∘2
2 with

v ¼ T þ R⋆ ≡ T þ l
2
ln
ð1þ R=lÞ
ð1 − R=lÞ : ð3:5Þ

As with the static coordinates, this chart covers the
lower half of the Poincaré patch, but now includes
the past boundary of this region—i.e., the lower half
of I−

Rel—along which v runs from −∞ (at i−) to ∞
(at ioLoc). It excludes I

þ
Loc because v ¼ ∞ there.

(5) Kruskal coordinates ðU;V; θ;φÞ

ds2 ¼ l2

ð1 −UVÞ2 ð−4dUdV þ ð1þ UVÞ2ds∘22Þ:

ð3:6Þ
This chart covers the entire Poincaré patch of interest
to this paper, excluding Iþ (as well as the lower
Poincaré patch that is not of interest to us). I−

Rel
corresponds to U ¼ 0 and is coordinatized by V
which runs from −∞ (at i−) to∞ (at ioÞ. (Thus ∂V is
future directed.) The 2-sphere ioLoc (at which the
Eddington v diverges) corresponds to V ¼ 0. Iþ

Loc is
the upper half of the V ¼ 0 surface on which U runs
from 0 (at ioLoc) to∞ (at iþ). The Kruskal coordinates
are related to the double-null Eddington-Finkelstein
coordinates ðu; vÞ via
U ¼ e

u
l; V ¼ −e−v

l; where u ¼ T − R⋆;
ð3:7Þ

to the static coordinates ðT; RÞ via:

U ¼ exp

�
T
l
−
1

2
ln

���� 1þ
R
l

1 − R
l

����
�
;

V ¼ − exp

�
−
T
l
−
1

2
ln

���� 1þ
R
l

1 − R
l

����
�
;

R
l
¼ 1þ UV

1 −UV
T
l
¼ 1

2
ln

U
−V

ð3:8Þ

and to the coordinates ðη; r; θ;φÞ adapted to the
cosmological slices, via

U ¼ l
r − η

V ¼ rþ η

l

η ¼ UV − 1

2U
l r ¼ UV þ 1

2U
l ð3:9Þ

2. Symmetries

While (the global) de Sitter space-time carries 10 Killing
fields, the Poincaré patch under consideration is left
invariant only by 7 of them [1]. These Killing fields are
manifest in the two cosmological charts (1) and (2) because
they are adapted to spatially flat slices, but not in the other
three. We have three spatial-translations SaðiÞ and three
rotations Ra

ðiÞ associated with the spatial cartesian coor-

dinates x, y, z, and a time-translation Ta defined by

T⃗ ≔ Ta∂a ¼ −
1

l
ðη∂ηþ x∂x þ y∂y þ z∂zÞ ð3:10Þ

in the chart (2). (Because of the form Ta takes in these
coordinates, it is sometimes referred to as a “dilation.”)
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The commutation relations between SaðiÞ and Ra
ðiÞ are the

familiar ones and Ta commutes with the three rotations
Ra
ðiÞ. These commutators do not refer to the cosmological

constant Λ; they are the same as those in Minkowski
space-time. On the other hand, commutators between Ta

and space-translations are new and explicitly involve
l ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

: ½T; Si�a ¼ 1
l S

a
i . Note that in the Λ → 0 limit,

l → ∞ whence the commutators vanish, as in Minkowski
space-time.
However, since the cosmological charts do not cover

I−
Rel—and also fail to extend to the Schwarzschild-de Sitter

space-time—to investigate the behavior of the Killing fields
on I−

Rel we need to work with either the Eddington-
Finkelstein or the Kruskal coordinates [charts (4) and
(5)]. In the Kruskal coordinates ðU;V; θ;φÞ, the three
rotations assume the familiar form:

R⃗1 ¼ −ðsinφÞ∂θ − ðcot θ cosφÞ∂φ;

R⃗2 ¼ ðcosφÞ∂θ − ðcot θ sinφÞ∂φ; R⃗2 ¼ ∂φ: ð3:11Þ
The time-translation becomes

T⃗ ¼ 1

l
ðU∂U − V∂VÞ ð3:12Þ

while the form of the spatial-translations is more compli-
cated because the chart is not tailored to spatially homo-
geneous slices:

S⃗1 ¼ sin θ cosφð−U2∂U þ ∂VÞ

þ 2U
1þUV

�
cos θ cosφ∂φ −

sinφ
sin θ

∂φ

�

S⃗2 ¼ sin θ cosφð−U2∂U þ ∂VÞ

þ 2U
1þUV

�
cos θ sinφ∂φ −

cosφ
sin θ

∂φ

�

S⃗3 ¼ cos θð−U2∂U þ ∂VÞ −
2U

1þ UV
sin θ∂θ ð3:13Þ

In this chart, I−
Rel corresponds to U ¼ 0, whence it is

manifest that all seven Killing fields are well behaved and
tangential to I−

Rel. Note in particular that the restriction to
I−
Rel of the 4 translations is given by:

S⃗1 ¼ ðsin θ cosφÞ∂V; S⃗2 ¼ ðsin θ sinφÞ∂V;

S⃗3 ¼ ðcos θÞ∂V; ð3:14Þ

and

T⃗ ¼ −
V
l
∂V: ð3:15Þ

Since ∂V is future directed on I−
Rel, and V is negative

between i− and io, the vector field T⃗ is also future directed

on I−
Loc. Recall that i

o
Loc is coordinatized by U ¼ V ¼ 0.

Therefore, the time-translation Killing field Ta vanishes at
the local ioLoc whence i

o
Loc is left invariant under the action

of the time-translation subgroup of the isometry group of
ðMRel; gabÞ. Similarly, the three rotations are tangential to
the 2-sphere ioLoc. Recall that I

−
Loc is the portion I−

Rel to the
past of ioLoc. The time-translation Ta and the three rotations
Ra
i leave I−

Loc invariant. By contrast, none of the three
space-translations SaðiÞ vanish at ioLoc. Therefore I

−
Loc is not

left invariant by any of the space-translations. Thus, only 7
of the 10 de Sitter isometries leave the upper Poincaré patch
MRel invariant, and only 4 leave the local cosmological
region MLoc around the source invariant. We will see in
Sec. IV that these features are reflected also in the structure
of the symmetry group at I−

Rel of the class of space-times of
interest to this paper.

3. Global structure and physical fields

The full space-time ðM; gabÞ trivially satisfies Definition
2; it is asymptotically Schwarz–de Sitter. The physically
relevant portion MRel of this space-time is the upper half
Poincaré patch. Since its past boundary I−

Rel is given by
U ¼ 0 in the Kruskal coordinates, it follows immediately
from (3.6) that its topology is S2 ×R and the expansion of
any of its null normal vanishes. Furthermore, the stress-
energy tensor Tab vanishes identically near I−

Rel. Therefore
it meets all three conditions of Definition 1; it is an NEH.
Finally, using the form (3.6) of the metric it is easy to verify

that l
∘ a

defined by l
∘ a∂a ¼ ∂=∂V is a future pointing,

affinely parametrized, null geodesic normal to I−
Rel. (As the

notation suggests, l
∘ a

is in fact the canonical extremal null
normal on I−

Rel, discussed in Sec. II B.) Since V runs from
−∞ to ∞ on I−

Rel, it is geodesically complete. Thus the
space-time under consideration belongs to the class CΛisol of
Sec. II C. In fact, this is the “simplest” example of a space-
time in this class. It is analogous to Minkowski space with a
linearized source of compact spatial support in the class of
all asymptotically flat space-times in the Λ ¼ 0 case.
The time-translation Killing field Ta is given by Ta∂a ¼

−ðV=lÞ∂V ¼ ∂v where, as before, v is the Eddington-
Finkelstein null coordinate. Thus Ta vanishes at ioLoc, and
its affine parameter v runs from −∞ (at i−) to ∞ (at ioLoc).
Therefore this vector field is complete already on I−

Loc. Let
us denote its restriction to I−

Loc by la. Since la is a null
normal to I−

Loc, it satisfies the geodesic equation l
a∇alb ¼

κllb with κl ¼ −1=l. Thus, while surface gravity of the
Killing field Ta evaluated on the cosmological horizon I−

Loc
is constant—as it must be since I−

Loc is a Killing horizon—
in a stark contrast to the more familiar black hole horizons,
it is negative. The rotation 1-form associated with la is
ωa ¼ −ð1=lÞ∂av, while that associated with the affinely

parametrized geodesic vector field l
∘ a

vanishes identically.
Hence Eq. (2.3) implies that ImΨ2 must vanish on I−

Rel.
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Similarly since the horizon is spherically symmetric with
proper radius l, Eq. (2.4) implies that ReΨ2 must also
vanish on I−

Rel. Of course this also follows trivially from the
fact that the de Sitter metric is conformally flat.
Finally, let us consider the limit Λ → 0. Interestingly,

while the conformal coordinates (2) and the Kruskal
coordinates (5) are well suited to the study of different
aspects of Killing vector fields, the forms (3.2) and (3.6) of
the metric show that the differential structures they define
(via ðη; rÞ and ðU;VÞ, respectively) are ill suited to take the
Λ → 0 limit.4 Static and Eddington Finkelstein coordinates,
on the other hand, are well suited. In static coordinates (3),
the limiting metric

lim
Λ→0

ds2 ¼ ds2o ¼ −dT2 þ dR2 þ R2ds
∘2
2 ð3:16Þ

is the Minkowski metric in the spherical coordinates
T; R; θ;φ. Since T ranges over ð−∞;∞Þ and R over
ð0;lÞ, the limiting space-time is the complete
Minkowski space ðMo; goabÞ. It is manifest that the Ta

becomes the standard time-translation Killing field in
Minkowski space, adapted to these coordinates. Note that
since I−

Loc and Iþ
Loc are given by R ¼ l, and l → ∞ as

Λ → 0, it follows that in the limit I−
Loc and Iþ

Loc become,
respectively the past and future null infinity I−

o and Iþ
o of

ðMo; goabÞ. Thus, in the limit, the (shaded) triangular part
MLoc of the de Sitter space-time expands to fill out all of
Minkowski space. However, since T ¼ �R⋆ along I−

Loc and
Iþ
Loc, in the limit both T and R become ill defined there. As

usual, one has to carry out a conformal completion to attach
I�
o as future and past boundaries of ðMo; goabÞ. The limiting

procedure and the final result is the same if we begin with
the Eddington-Finkelstein coordinates (4).
Remark.—One can also choose to work with the

cosmological chart (1) since in the limit Λ → 0 the metric
(3.1) remains well defined:

lim
Λ→0

ds2 ¼ ds2o ¼ −dt2 þ dx2 þ dy2 þ dz2: ð3:17Þ

Since each of the 4 coordinates range from −∞ to ∞, the
limiting space-time is again the complete Minkowski space
(Mo; goab). But there is an interesting and important differ-
ence from the result we obtained above using the static (3)
or the Eddington-Finkelstein chart (4). Let us introduce a
chart vo, r; θ;φ on the full Poincaré patch MRel, with r2 ¼
x2 þ y2 þ z2 as before, and vo ¼ tþ r. In the limit, the
Minkowski metric goab is now expressed in the advanced

null coordinates. So, by setting Ω ¼ 1=r,we can carry out a
conformal completion and attach a past null boundary I−

o ,
coordinatized by vo, θ;φ, to Mo. Then as vo runs over
ð−∞;∞Þ, one goes from i− to io. Thus, now, I−

o of the
limiting Minkowski space corresponds to the entire I−

Rel–
rather than its bottom half, I−

Loc. (Furthermore, in this full
Minkowski space, we can introduce another chart uo,
r; θ;φ, with uo ¼ t − r, and carry out a conformal com-
pletion to attach a future null boundary Iþ

o to the resulting
Minkowski space, coordinatized by uo, θ;φ. In this
completion, the entire Iþ of de Sitter space-times corre-
sponds to “timelike infinity” iþo of the conformally com-
pleted Minkowski space-time.)
This discussion brings out an important subtlety.

Because of global issues, we do not have a canonical
way to take the limit l → ∞. Because we have to restrict
ourselves to charts in which the limiting metric is well
defined, the freedom in the procedure used to take the
limit is curtailed. However, even within the restricted
freedom, global aspects—such as which surface in the
Λ ≠ 0 space-time goes over to I�

o in the limiting
Minkowski space-time—can depend on which admissible
chart is used. This is why we introduced both I−

Rel and I
−
Loc

in the class CΛisol of metrics under consideration.

B. Schwarzschild–de Sitter space-time

Interestingly, Schwarzschild anti–de Sitter space-times
have drawn much more attention in the literature than
Schwarzschild–de Sitter space-times which are physically
more directly relevant. Even in the Schwarzschild–de Sitter
literature, black hole horizons have been studied more
extensively than the cosmological horizon, probably
because the latter do not exist in Schwarzschild anti–de
Sitter space-times. Notable exceptions are Ref. [31] where
properties of cosmological horizons were explored from
thermodynamical considerations, and Ref. [32] where the
emphasis was on the ambiguity in the normalization of the
time-translation vector field used in the mechanics of
WIHs. We will complement that discussion with geometric
considerations that are brought to the forefront by our
strategy of using the cosmological horizon Eþði−Þ as I−

Rel
(and its bottom half as I−

Loc). Since the relevant structures in
this example are very similar to those in Sec. III A, we will
primarily focus on new issues that arise due to the presence
of the mass term in the metric.
Because of the mass term, space-time no longer admits a

spatially homogenous foliation. Therefore the first two
charts used in Sec. III A no longer exist. However, the
remaining three can be readily generalized. It is convenient
to express the space-time metric in these three charts
because, as in Sec. III A, different aspects of the structure
become transparent in different charts.
(1) Static coordinates T; R; θ;φ, in which the Ta∂a ≔∂=∂T is manifestly a static Killing field and R is the

proper radius of 2-spheres of symmetry:

4Note that in the limit Λ → 0 (i.e., l → ∞) differential
structures defined by coordinates in (1) to (5) are no longer
equivalent even in subregions. For example, it follows from (3.4)
that if we work in the differential structure given by η, r, then T, R
become ill defined in the limit and vice versa. So, one has to first
fix the differential structure and then take the limit. One cannot
freely pass from one of the systems to another after taking the
limit.
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ds2 ¼ −fðRÞdT2 þ dR2

fðRÞ þ R2ds
∘2
2;

with fðRÞ ¼ 1 −
2Gm
R

−
R2

l2
: ð3:18Þ

This chart covers only the region bounded by the
black hole horizon and Iþ

Loc to the future, and I
−
Loc to

the past.
(2) Eddington-Finkelstein coordinates ðv; R; θ;φÞ:

ds2 ¼ −fðRÞdv2 þ 2dvdRþ R2ds
∘2
2 with

v ¼ T þ R⋆: ð3:19Þ

where as usual the Tortoise radial coordinate R⋆ is
defined by dR ¼ fðRÞdR⋆. Its explicit form is more
complicated than in (3.5) because now fðRÞ has 3
roots, RðbÞ representing the radius of the black
horizon, RðcÞ representing the radius of the cosmo-
logical horizon and a negative root Ro. For our
purposes, it will suffice to note that R⋆ has the form

R⋆ ¼ ρðRÞ − l2RðcÞ ln
jR−RðcÞj

l

ðRðcÞ − RoÞðRðcÞ − RðbÞÞ

≡ ρðRÞ − 1

α
ln
jR − RðcÞj

l
; ð3:20Þ

where ρðRÞ is a rather complicated function of R that
is well behaved on the cosmological horizon and the
constant α, given by

α ¼ ðRðcÞ − RoÞðRðcÞ − RðbÞÞ
l2RðcÞ

; ð3:21Þ

is positive everywhere outside the black hole horizon
(and has dimensions of inverse length). This chart
contains the region covered by the static chart but
now also includes I−

Loc where v ranges from −∞
(at i−) to ∞ (at ioLoc). But it excludes I

þ
Loc because v

diverges there.
(3) Kruskal coordinates ðU;V; θ;φÞ:

ds2 ¼ 4eαρðRÞ

α2lR
ðR − RoÞðR − RðbÞÞdUdV þ R2ds

∘2
2;

ð3:22Þ
where the constant α is defined in (3.21). These
Kruskal coordinates are related to the past and future
Eddington-Finkelstein null coordinates v ¼ T þ R⋆
and u ¼ T − R⋆ via

U ¼ e
α
2
u and V ¼ −e−α

2
v: ð3:23Þ

Let us examine the range of coordinates and asso-
ciated geometrical structures. As in Sec. III A, ∂V is

future directed on I−
Rel: its affine parameter V

assumes the value −∞ at i−, zero at ioLoc and ∞
at iþ. Thus, as usual, the Kruskal coordinates extend
the Eddington Finkelstein chart, in our case to Iþ

Loc
and its future all the way to spacelike Iþ in the
asymptotic region. As in Sec. III A, past boundary of
the space-time covered by the Kruskal chart is the
entire I−

Rel, not just I
−
Loc. The future boundary is the

union of the black hole horizon in the interior region
and spacelike Iþ in the asymptotic region. (Note
that, unlike in the Λ ¼ 0 case, the black hole horizon
and the black hole region are excluded.)

Space-time has four Killing fields, a time-translation Ta

and three rotations Ra
i , i ¼ 1, 2, 3. The rotations have the

same form (3.11) as in Sec. III A. In Kruskal coordinates,
the static Killing field Ta is given by

Ta∂a ¼
αU
2

∂U −
αV
2

∂V ð3:24Þ

on entire MRel. It is timelike in MLoc and spacelike in the
asymptotic region near Iþ.
Finally, the relevant global structures and physical fields

can be summarized as follows. First, I−
Rel is clearly a NEH

since it is a Killing horizon. Second, l
∘ a

defined by l
∘ a∂a ≔∂V is a future pointing, affinely parametrized geodesic null

normal and I−
Rel is complete because V runs from −∞

(at i−) to þ∞ (at io). Thus, this space-time satisfies
Definitions 2 and 4 and therefore belongs to the class
CΛisol under consideration. Next, let us consider the static
Killing field Ta. Its restriction la to I−

Rel is given by

la ¼ −ðα=2ÞVl
∘ a
. Since l

∘ a
is future pointing and V is

negative to the past of ioLoc and positive to its future, it
follows that la is future pointing on I−

Loc, vanishes at i
o
Loc

and past pointing to the future of ioLoc (as in Sec. III A).
Surface gravity κl of this normal is given by
κl ¼ ð1=2RðcÞÞð1 − 3R2

ðcÞ=l
2Þ. The allowed range of R2

ðcÞ
is between l2 (when m ¼ 0) and l2=3 which corresponds
to the Nariai solution [33]. For the entire class of these
solutions, the surface gravity κ of Ta is negative on I−

Rel.

Thus, while ðI−
Rel; ½l

∘
�Þ is an extremal WIH, ðI−

Loc; ½l�Þ is a
nonextremal WIH.
The rotation 1-form ω

∘
a defined by l

∘ a
again vanishes,

and that associated with la is again exact, given by
ωa ¼ κlDav. Therefore ImΨ2ϵab ¼ D½aωb� vanishes on
I−
Rel, just as one would expect from the fact that since

the space-time is spherically symmetric, all angular
momentum multipoles must vanish on I−

Rel. The identity
(2.4) and spherical symmetry imply that the real part ReΨ2

on I−
Rel is given by

ReΨ2 ¼
1

2

�
1

R2
ðcÞ

−
1

l2

�
: ð3:25Þ
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(In fact this relation between Ψ2 and the area radius holds
on any spherically symmetric cosmological or black
horizon; see Appendix B.) Next, algebraic identities relate
Ψ2 to the parameter m in the expression of the space-time
metric to Ψ2 ¼ −Gm=R3. Therefore, in terms of structures
available at I−

Rel (or, Iþ
Loc), the parameter m in the

Schwarzschild–de Sitter geometry is given by the integral

m ¼ −
1

4πG

I
C
RðcÞReΨ2d2V ð3:26Þ

evaluated on any 2-sphere cross section C of I−
Rel (or I

þ
Loc)

Note that, in the asymptotically flat context, in absence of
incoming radiation, Bondi mass is given precisely by the
limit to I−

Rel of the 2-sphere integral on the right side.
What happens in the Λ → 0 limit? As in Sec. III A, the

Kruskal chart is ill suited to take this limit. But we can
take the limit using either the static or the Eddington-
Finkelstein chart. In either case, the region bounded by
the black hole horizon(s) and I�

Loc expands out to give
us the entire asymptotic region of the asymptotically flat
Schwarzschild metric (representing a spherical collapse of
a star as in the left panel of Fig. 2 or eternal black hole as in
the right panel). Thus, as in Sec. III A, in the limit I−

Loc
becomes I−

o and Iþ
Loc becomes Iþ

o of the asymptotically
flat Schwarzschild metric. The situation is completely
analogous to that in Sec. III A for the case when the limit
is taken using the static or the Eddington-Finkelstein chart.
Remarks.—
(1) Given any solution with a time-translation isometry,

energy Et is a linear map from the space of the time-
translation Killing fields to real numbers. Thus, if we
rescale the Killing field ta → t̄a ¼ λta, the energy
also rescales: Et̄ ¼ λEt. This scaling is needed in the
first law δEt ¼ κtδA of horizon mechanics. For,
surface gravity also rescales linearly while area of
the horizon is of course unaffected. Therefore, if the
first law holds for ta, it holds also for t̄a. For
considerations of the horizon energy and the first
law, then, we do not need to fix the rescaling
freedom in the time-translation Killing field.
On the other hand, only one of these energies Et

can be regarded as massM. In the asymptotically flat
case, it is Et associated with that time-translation
Killing field ta which is unit at infinity. This method
of fixing the rescaling freedom is not available in the
Λ > 0 case, because the norm of all time-translation
Killing fields Ta diverge at infinity in de Sitter
space-time. However, we can take the limit Λ → 0
and choose as preferred Ta that vector field which, in
the limit, goes to the unit time-translation asymp-
totically as one approaches I−

o . The time-translation
vector field Ta used in this section is precisely this
vector field. Can we characterize it intrinsically on
I−
Loc, without reference to the limit? The answer is in

the affirmative. It turns out that the restriction la of
Ta to I−

Loc is the unique nonextremal null-normal on
I−
Loc that satisfies two conditions:

(i) la vanishes at ioLoc; and,
(ii) Its surface gravity is κl ¼ ð1=2RðcÞÞð1 − 3R2

ðcÞ=
l2Þ. This fact will serve as a guiding principle
in Sec. V.

(2) The left panel of Fig. 2 depicts a spherical collapse
while the right side depicts an eternal black hole. In
both cases, the space-time continues ad infinitum—
on the right side for the collapsing situation and on
both sides for the eternal black hole. This means in
each case there is an infinite family of black and white
holes. However, as is well known, using the sym-
metries of the underlying space-time, for the eternal
black hole one can carry out an identification so that
we have only one black hole and only one white hole
(see, e.g., Sec. III. B in [1]). But then the topology of
space-time changes. Furthermore, this is not possible
for a collapsing star of the left panel without changing
the physical system we are interested in. From the
perspective developed in Secs. I and II, on the other
hand, the situation is simpler. Since we ignore every-
thing to the past of I−

Rel and impose the no-incoming
radiation condition there, we are led to consider only
one collapsing star and only one black hole that
results from the collapse; the relevant space-timeMRel
for us is precisely this region.

(3) For a linearized source in de Sitter space-time, we
found that there are two ways of taking the limit
Λ → 0. The first, discussed in the main text of
Sec. III A, generalizes the one we used for
Schwarzschild–de Sitter. The second, discussed in
the Remark at the end of Sec. III A exploited the
presence of spatially homogeneous slicing in de Sitter
space-time. If one uses the cosmological chart to take
this limit, entire I−

Rel tends to I−
o . Can we not use a

similar procedure here and obtain I−
o of the limiting

asymptotically flat Schwarzschild metric as the limit
of full I−

Rel? The procedure cannot be taken over
directly because Schwarzschild–de Sitter space-time
does not admit spatially homogeneous slices. None-
theless, one might imagine using the Eddington-
Finkelstein chart, expressing the Schwarzschild–de
sitter metric as ds2 ¼ ds2deSitter − 2Gm

R dv2, and then
using the cosmological chart t, x, y, z for the de Sitter
part of the metric. However, since the function v
diverges at ioLoc, the extra term 2mG

R dv2 becomes ill-
defined there. Therefore this strategy does not lead to
a limit in which full I−

Rel of the Schwarzschild-de
Sitter space-time goes over to I−

o of the asymptoti-
cally flat Schwarzschild metric. Thus, the second
method of taking the Λ → 0 limit in de Sitter space-
time exceptional and does not extend to more general
space-times in our class.
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Appendix A discusses the more complicated example of
Kerr-de Sitter space-time. We again find that: (i) the space-
time admits I−

Rel and I−
Loc; (ii) I−

Rel is geodesically
complete; (iii) there is a preferred time-translation
Killing vector field Ta that vanishes at ioLoc and its
restriction la to I−

Loc endows it with the structure of a
nonextremal WIH. The rotational Killing field is tangential
to ioLoc. Thus, i

o
Loc is again left invariant by the isometries.

We include this example to show that these structures are
robust in spite of important structural differences from the
Schwarzschild-de Sitter case. But we chose to postpone it
to the Appendix because expressions become long and the
discussion is technically more complicated.

IV. SYMMETRIES OF I −
Rel AND I −

Loc

Let us begin by recalling the symmetry groups in the
asymptotically flat case. The past boundary of space-times
representing isolated systems is I−

o which is endowed
with certain universal structure—the geometric structure
that is common to the past boundaries of all asymptotically
flat space-times. The symmetry group of I−

o is then
the subgroup of DiffðI−

o Þ that preserves this universal
structure. This is precisely the BMS group B. (For a
summary, see, e.g., [12].) Now, if we are interested in
isolated systems—-as opposed to, say vacuum solutions to
Einstein’s equations—then there is no-incoming radiation
at I−

o . This restriction can be used to introduce additional
structure on I−

o : a 4-parameter family of preferred cross
sections—often called “good cuts”—on which the shear of
the ingoing null normal na vanishes. This family is left
invariant by the BMS translations but not by the more
general supertranslations. If one adds this family of good
cuts to the universal structure, symmetries would be only
those elements of B that preserves this family. This is a 10
dimensional Poincaré group P of B [22,23]. We will see
that this situation in directly mirrored in the Λ > 0 case,
now under consideration.
In this case, the physically relevant portion MRel of

space-time is the causal future of i−. As we saw in Secs. II
and III, it is natural to impose the no-incoming radiation
condition at the past boundaries I−

Rel of MRel. Therefore,
symmetries of I−

Rel we are now seeking would be the
analogs of the symmetries of the past null infinity, I−

o . In
Sec. IVA we examine the universal structure at I−

Rel–the
structure that is shared by the past boundaries of the
relevant portions MRel of all space-times representing
isolated systems in presence of a positive cosmological
constant. The symmetry groupG of I−

Rel would then be the
subgroup of DiffðI−

RelÞ that preserves this universal struc-
ture. In section IV B we will analyze the structure of this
symmetry group G. We find that G is infinite dimensional,
analogous in its structure toB, but with an interesting twist
that captures the fact that we now have Λ > 0. (These
constructions were motivated by the analysis of

nonextremal black hole horizons in the Λ ¼ 0 case [34]
where the BMS group arises for different reasons.)
Motivated by considerations of Secs. II B and III, in

Sec. IV C we introduce an additional structure—a preferred
cross section ioLoc of I

−
Rel. (For purposes of this section, it

can be any cross section; it need not be the intersection of
the past event horizon E−ðiþÞ of iþ with I−

Rel.) I
−
Loc is the

portion of I−
Rel that is to the past of i

o
Loc. We find that I−

Loc is
naturally foliated by a 1-parameter family of cross sections.
These are the analogs of good cuts in the Λ ¼ 0 case. The
symmetry group of I−

Loc is therefore the subgroup ofG that
leaves this family invariant. Addition of new structure
always reduces the symmetry group. As in the asymptoti-
cally flat case, we find that the reduction is drastic: Infinite
dimensional G is reduced to a seven dimensional group
which we will denote by G7.
We will use these symmetries to introduce conserved

quantities in the next section.

A. Universal structure of I −
Rel

Recall that I−
Rel is an NEH that is geodesically complete.

Thus, we are led to seek geometrical structures that are
common to all complete nonexpanding horizons. Let us list
these structures.
First, every NEH is a 3-manifold that is topologically

S2 ×R, ruled by the integral curves of null normals la.
Second, as noted in Sec. II, each NEH comes equipped with

a canonical equivalence class ½l
∘ a� of future directed null

normals, where l
∘ a

≈ l
∘ 0a

if and only if l
∘ 0a ¼ cl

∘ a
for some

positive constant c. Each l
∘ a

is a complete vector field
on I−

Rel.
Next, each NEH is also equipped with a degenerate

metric qab of signature 0;þ;þ, satisfying qabl
∘ b ¼ 0 and

L
l
∘qab ¼ 0. However, the metric qab itself is not universal.

For example, on the de Schwarzschild–de Sitter I−
Rel, qab is

spherically symmetric, while on the Kerr–de Sitter I−
Rel it is

only axi-symmetric. More generally qab may not admit any
isometry. The scalar curvature 2R of qab varies from
one NEH to another. However, each NEH admits a unique

3-parameter family of unit round metrics q
∘
ab that are

conformally related to its qab. By construction, these round

metrics q
∘
ab are themselves conformally related to one

another. Furthermore, since the q
∘
ab are all unit, round

metrics, the relative conformal factors between them have a
very specific form:

q
∘ 0
ab ¼ α2q

∘
ab; where α−1ðθ;φÞ ¼ α0 þ α1 sin θ cosφ

þ α2 sin θ sinφþ α3 cos θ; ð4:1Þ

where α0, αi with i ¼ 1, 2, 3 are real constants satisfying,
−α20 þ jα⃗j2 ≡ −α20 þ α21 þ α22 þ α23 ¼ −1, and θ and φ are a
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set of standard spherical coordinates associated with the

metric q
∘
ab. Thus, α−1ðθ;φÞ in (4.1) is just a linear

combination of the first four spherical harmonics of q
∘
ab.

Note that the relative conformal factor αðθ;φÞ refers only to
the family fq∘ abg of round 2-sphere metrics; it has no
memory of the physical metric qab which varies from one
space-time to another.
To summarize, the past boundary I−

Rel of every space-
time in the class CΛisol under consideration, is equipped with
the following three structures:
(1) I−

Rel is a 3-manifold, topologically S2 ×R;
(2) It carries with a preferred, equivalence class ½l

∘ a� of
complete vector fields l

∘ a
where two are equivalent if

they are related by a rescaling by a positive constant.

Integral curves of these vector fields l
∘ a

provide a
fibration of I−

Rel, endowing it with the structure of a
fiber bundle over S2.

(3) I−
Rel carries an equivalence class of unit round

2-sphere metrics q
∘
ab, related to each other by a

conformal transformation of the type (4.1), such that

q
∘
abl

∘ b ¼ 0 and L
l
∘q
∘
ab ¼ 0 for every q

∘
ab in this

family. This is the universal structure at I−
Loc.

Overall, the situation is analogous to that at null infinity,
I−
o , of asymptotically flat space-times. If we were to restrict

ourselves to Bondi conformal frames–as is often done–then
the universal structure at I−

o consists of pairs ðq∘ ab;l
∘ aÞ of

fields on I−
o , where q

∘
ab is a unit, round, 2-sphere metric,

and l
∘ a

a null normal, such that any two pairs are related

by conformal rescalings of the type ðq∘ 0ab;l
∘ 0aÞ ¼

ðα2ðθ;φÞq∘ ab; α−1ðθ;φÞl
∘ aÞ with αðθ;φÞ again is given by

(4.1). (See, e.g., [12].) There is however one difference:

while I−
Rel admits a canonical ½l

∘ a� that is not tied to the

3-parameter family of unit round metrics q
∘
ab, in the

asymptotically flat case, I−
o admits a 3-parameter family

of null normals l
∘ a
, each tied to a round metric q

∘
ab,

undergoing a rescaling by α−1ðθ;φÞ when q
∘
ab is rescaled

by α2ðθ;φÞ. This difference will play a key role: It lies at the
heart of the subtle but important difference between the
BMS group B at I−

o and the symmetry group G of I−
Rel,

discussed in Sec. IV B.
Note that the universal structure on I−

Rel refers neither to
the physical metric qab, nor to the intrinsic derivative
operator Da, nor to the rotation 1-form ωa, as these
structures vary from the I−

Rel of one physical space-time
to another. These constitute physical fields on I−

Rel that
capture physical information—such as mass, angular
momentum and multipole moments—contained in the
gravitational field of the specific space-time under

consideration. (In particular, in the universal structure,

½l
∘ a� are only complete vector fields; not geodesic vector
fields since the notion of geodesics requires a connection.)
This situation is completely analogous to that in the
asymptotically flat case. There, the connections Da on
I−
o whose curvature defines the news tensor Nab [23], and

the Newman Penrose components [4,12] Ψo
0;…;Ψo

4 of the
(appropriately rescaled) Weyl curvature of the of the con-
formally rescaled metric ĝab are physical fields on I−

o that
vary from one space-time to another.

B. Symmetries of I −
Rel

As in the asymptotically flat case, discussion of asymp-
totic symmetries is most transparent if one first introduces
an abstract 3-manifold, IAbs, that is not tied to any specific
space-time, but is endowed with the universal structure of
I−
Rel. Thus, IAbs will be:
(1) a 3-manifold, topologically S2 ×R; equipped with:

(2) a class ½l
∘ a� of complete vector fields l

∘ a
, related to

each other by a rescaling by a positive constant; and,
(3) a class fq∘ abg of conformally related, unit, round

2-sphere (degenerate) metrics such that q
∘
abl

∘ b ¼ 0

and L
l
∘q
∘
ab ¼ 0. [Note that the fact that the q

∘
ab are

unit, round metrics that are conformally related
implies that the relative conformal factor α must
of the type (4.1).]

The space of integral curves of l
∘ a

is topologically
S2 and we will denote it by ĨAbs.

The symmetry group G is then the subgroup DiffðIAbsÞ
that preserves this structure. Given any concrete space-time
in our class CΛisol, there exist diffeomorphisms from the

concrete I−
Rel to IAbs that send ½l

∘ a� and fq∘ abg on I−
Rel to

½l
∘ a� and fq∘ abg on IAbs. However, these diffeomorphisms
are not unique. Any two are related by an element of the
symmetry group G (since elements of G are the diffeo-
morphisms from IAbs to itself that preserve the universal
structure on IAbs).
Let us examine the structure of G. As in the asymptoti-

cally flat case, it is simplest to first discuss the structure of
its Lie algebra g. Since G is a subgroup of DiffðIAbsÞ,
every element of g is represented by a vector field ξa that
generates a 1-parameter family of diffeomorphisms pre-

serving the universal structure. Elements of ½l
∘ a� differ from

each other only by a rescaling l
∘ a

→ cl
∘ a

where c is a

positive constant, and elements of fq∘ abg are related by

q
∘
ab → α2ðθ;φÞq∘ ab where the conformal factor αðθ;φÞ is

specified in (4.1). Therefore, under a 1-parameter family
dðλÞ of diffeomorphisms generated by a symmetry vector
field ξa, we must have:
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l
∘ a

→ cðλÞl
∘ a

and q
∘
ab → α2ðλÞq∘ ab ð4:2Þ

where for each λ, cðλÞ is a constant, and αðλÞ is a function
of θ;φ of the form given in Eq. (4.1), with cjλ¼0 ¼ 1 and
αjλ¼0ðθ;φÞ ¼ 1. Furthermore, Eq. (4.1) implies that the
four constants α0ðλÞ…α3ðλÞ in the expression of the
conformal factor αðλÞ must satisfy α20ðλÞ − jα⃗ðλÞj2 ¼ 1

for each λ. Now, to obtain infinitesimal action of the Lie
algebra element, we just need to take the derivative with
respect to λ and evaluate the result at λ ¼ 0. Thus, to qualify
as an infinitesimal symmetry, the vector field ξa on IAbs
must satisfy

Lξl
∘ a ¼ −κl

∘ a
and Lξq

∘
ab ¼ 2ϕðθ;φÞq∘ ab;

∀ l
∘ a

and ∀ q
∘
ab: ð4:3Þ

where−κ ¼ ðdcðλÞ=dλÞjλ¼0 and ϕ ¼ ðdαðλÞ=dλÞjλ¼0. Here
the constant κ ∈ R depends on ξa but is independent of the

choice of l
∘ a

∈ ½l
∘ a� (and the minus sign in front of κ is

introduced in (4.3) for later convenience). The function ϕ,

on the other hand, varies from one round metric q
∘
ab to

another. Restrictions on αðλÞ imply that ϕ is a linear
combination of the first three spherical harmonics defined

by q
∘
ab and in particular satisfies Ll

∘ϕ ¼ 0. Thus, it projects

down to a function ϕ̃ on the space ĨAbs of integral curves of

l
∘ a

(and satisfies D̃
∘
aD̃
∘
bϕ̃ ¼ ϕ̃q̃

∘
ab, where D̃

∘
a is the deriva-

tive operator defined by q̃
∘
ab on ĨAbs).

Since the conditions (4.3) that characterize infinitesimal
symmetries ξa are so simple, it is rather straightforward to
analyze the structure of the Lie algebra g.
Let us first consider the space V of symmetry vector

fields ξa that are vertical, i.e. proportional to l
∘ a
. These

would be analogous to supertranslations on I−
o . Let us fix a

fiducial l
∘ a

in ½l
∘ a� and set ξa ¼ ξl

∘ a
. (Thus, given a ξa there

is an ambiguity ξ → c−1ξ in the choice of function ξ.) Since

L
l
∘q
∘
ab ¼ 0 and q

∘
abl

∘ b ¼ 0, it follows immediately that

Lξq
∘
ab ¼ 0 for all q

∘
ab in our universal structure. Therefore,

the second of Eq. (4.3) is automatically satisfied (with
ϕðθ;φÞ ¼ 0). The first condition on the other hand is a
genuine restriction on the function ξ. To write the solution
explicitly, let us introduce a cross section C of IAbs and

denote the affine parameter of l
∘ a

that vanishes on this C by

v
∘
. Let us also introduce spherical coordinates ðθ;φÞ on C

and extend them to all of IAbs by demanding that they be

constant along fibers (i.e. integral curves of l
∘ a
). Then, the

general solution to the first of Eqs (4.3) is simply

ξ ¼ κv
∘ þ fðθ;φÞ so that ξa ¼ ðκv∘ þ fðθ;φÞÞl

∘ a
:

ð4:4Þ
Thus ξa ∈ V if and only if it has the form (4.4), whence
every vertical symmetry vector field ξa can be labeled by a
pair ðκ; fÞwhere κ is a real number and f a function on IAbs

satisfyingL
l
∘f ¼ 0.5 Now, given a vertical vector field ξa1 ¼

ξ1l
∘ a

in V and a general infinitesimal symmetry ξa2, by first
of the Eq. (4.3), the commutator is given by

½ξ2; ξ1�a ¼ ððLξ2 − κ2Þξ1Þl
∘ a
: ð4:5Þ

Since the right side is again vertical, it follows that the
space V of vertical symmetry fields constitutes a Lie-ideal
of g.
Let us therefore take a quotient g=V. Each element of

g=V is an equivalence class fξag of symmetry vector fields
ξa, where two are equivalent if they differ by a vertical
symmetry vector field. Since, furthermore, L

l
∘ ξa is again

vertical for any ξa ∈ g, it follows that every symmetry
vector field ξa can be projected to a vector field ξ̃a on the
base space ĨAbs of IAbs unambiguously and, furthermore,
all vector fields in a given equivalence class fξag have the
same projection ξ̃a. Therefore elements of the quotient g=V
are in 1-1 correspondence with the projected vector fields
ξ̃a on ĨAbs. Now, the second of Eq (4.3) implies that each ξ̃a

is a conformal Killing field for every round metric q̃
∘
ab on

ĨAbs in our universal structure. (If it is a conformal Killing

field for one q̃
∘
ab, it is also a conformal Killing vector field

for every other because all our round metrics are con-
formally related.) Thus, the quotient g=V is isomorphic
with the Lie algebra of conformal Killing vectors on our

family of unit, round metrics q̃
∘
ab on the 2-sphere ĨAbs. But

it is well known that this Lie algebra is isomorphic to the
Lie algebra L of the Lorentz group L in 4 space-time
dimensions. Thus, we conclude that the quotient g=V
of the symmetry Lie algebra by the subalgebra of vertical
symmetry fields is isomorphic with the Lorentz Lie
algebra L.
Returning to the group G, we have shown that the

vertical diffeomorphisms in G constitute a normal sub-
group V, and the quotient G=V is isomorphic with the
Lorentz group. Thus, G is a semidirect product of the
Lorentz group L with V: G ¼ V⋊L. Recall that, in
the asymptotically flat case, the BMS group B has similar

5However, this labeling depends on our choice of l
∘ a

and the
choice of an affine parameter v

∘
(or a cross section C of IAbs).

Under the most general change of these fiducial choices, we have

l
∘
→ l

∘ 0a ¼ cl
∘ a

and v
∘
→ v

∘ 0 ¼ ð1=cÞðvo þ aðθ;φÞÞ, with c > 0,
we have: κ0 ¼ κ and cf0ðθ;φÞ ¼ fðθ;φÞ − aðθ;φÞκ.
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structure: It is a semidirect product B ¼ S⋊L where S is
the group of supertranslations. However, there are two key
differences that can be traced back directly to the
differences in the universal structure in the two cases:
(1) The normal subgroupV ofG is generated by vertical

vector fields of the form ξa ¼ ðκvo þ fðθ;φÞÞl
∘ a

where κ ∈ R and fðθ;φÞ is a smooth function on
the base space ĨAbs. In the case of the BMS group, the
supertranslation subgroup S is generated by vector

fields on Io of the type ξa ¼ fðθ;φÞl
∘ a

(where l
∘ a

is
again a fiducial null normal, now representing a
“pure” time-translation in a fiducial Bondi conformal
frame). Thus heuristically, V has “one more” gen-
erator than S. Furthermore, while the supertranslation
subgroup S is Abelian, V is not.

(2) Another—and more important—difference is that
the semidirect product structure is quite different. In
the parametrization introduced above, a general
element ξa of g can be represented as

ξa ¼ ½κv∘ þ fðθ;φÞ�l
∘ a þ K̄a ð4:6Þ

where K̄a has the following properties:

(i) L
l
∘ K̄a ¼ 0; and, (ii) K̄a is tangential to each v

∘ ¼
const cross sections of IAbs and a conformal Killing

field of the metric q̄
∘
ab, obtained by pulling back to

the cross section any round, unit 2-sphere metric q
∘
ab

in the universal structure. Thus, for any given choice

of the affine parameter v
∘
of l

∘ a
, we have a decom-

position of ξa into a vertical vector field, propor-

tional to l
∘ a

and a horizontal vector field K̄a, that is

tangential to all v
∘ ¼ const cross sections. The six

horizontal K̄a are generators of a Lorentz subgroup
L ofG.6 The situation in the BMS group is different.
There, none of the Lorentz subgroups leave invariant

an entire family of cross sections, v
∘ ¼ const, of Io.

Indeed, every Lorentz subgroup L of B leaves
invariant precisely one cross section.

There is another way to display the structure of G that
brings out a different aspect of its relation to the BMS

group. It is clear from Eq. (4.4) that supertranslations—i.e.

vertical vector fields of the type ξa ¼ fðθ;φÞl
∘ a
—form an

Abelian sub-Lie algebra of g. Furthermore, if ξa1 ¼
f1ðθ;φÞl

∘ a
is a supertranslation, and ξa2 is a general element

of g, then Eq. (4.5) implies:

½ξ2; ξ1�a ¼ ððLξ2 − κ2Þf1ðθ;φÞÞl
∘ a ¼ Fðθ;φÞl

∘ a ð4:7Þ

for some Fðθ;φÞ, since it is easy to verify that
L
l
∘ ððLξ2 − κ2Þf1ðθ;φÞÞ ¼ 0. Thus, the subgroup S of

supertranslations is also a normal subgroup of the sym-
metry group G. As one would expect from the fact that V
can be thought of as “the Lie algebra s of supertranslations,
augmented with one extra element,” the quotient is a 7
dimensional group G7. Thus, G can also be expressed as
another semidirect product where the normal subgroup is
the group S of supertranslations: G ¼ S⋊G7. Recall that
for the BMS group B we have B ¼ S⋊L where L is the
6-dimensional Lorentz group.
To explore the structure of G7, let us work with Lie

algebras. An element of the Lie algebra g7 is an equivalence
class fξag of elements of g where two are equivalent if they
differ by a supertranslation. It is immediate from the form
(4.6) of a general infinitesimal symmetry ξa that a general
element of g7 can be written as an equivalence class

fκv∘l
∘ a þ K̄ag of elements of g. Each equivalence class is

labeled by a real number κ and a conformal Killing field K̄a

on a unit, round 2-sphere. Now, since the vector space of
conformal Killing fields is 6 dimensional, it follows that g7
is a 7 dimensional Lie algebra. It is easy to verify that the

element fκv∘l
∘ ag commutes with every element of g7.

Therefore, at the level of groups,G7 is just a direct product
G7 ¼ R × L. Put differently, G7 is a central extension of
the Lorentz group, albeit a trivial one.
Let us summarize. The symmetry group G of IAbs is

infinite dimensional. Its structure is similar to that of the
BMS group B, in that it is a semidirect product of the
Abelian group S of supertranslations with a finite dimen-
sional group. However, while B ¼ S⋊L, where L is the
Lorentz group, G ¼ S⋊G7 where G7 is a trivial central
extension of the Lorentz group: G7 ¼ R × L. In presence
of a positive Λ, this extension has a crucial role. As we saw
in the examples considered in Sec. III, the time-translation
isometry (singled out by the source) is precisely the “extra”

element κv
∘
l
∘ a

in G7 added to the Lorentz group; it is
missing in the BMS group B. In the Schwarzschild–de
Sitter space-time, we could take the limit Λ → 0. In this
limit, Killing vector Ta of the Schwarzschild–de Sitter
space-time on MLoc tends to the time-translation Killing
field of the Schwarzschild space-time in the asymptotic
region outside the horizon. The restriction of this Ta to I−

Rel

is precisely the extra element κv
∘
l
∘ a

in G7.

6Since q̄
∘
ab is a unit 2-sphere metric, the six conformal Killing

vectors Ka have the form Ka ¼ q̄
∘ ab

Dbϕðθ;φÞ þ ϵ̄
∘ab

Dbψðθ;φÞ.
Here ϵ̄

∘ab
is the alternating tensor defined by q̄

∘ ab
, and ϕðθ;φÞ and

ψðθ;φÞ are linear combinations of the three Y1;mðθ;φÞ, i.e.,

solutions to D̄
∘ 2

ϕ ¼ −2ϕ and D̄
∘ 2

ψ ¼ −2ψ on each v
∘ ¼ const

cross section. Finally, if we change the vector l
∘ a

→ l
∘ 0a ¼ cl

∘ a
in

½l
∘ a� but retain the cross section C as the origin of the affine
parameter—that v

∘ 0 ¼ v
∘ ¼ 0 on C—then κ0 ¼ κ; f0ðθ;φÞ ¼

ð1=cÞfðθ;ϕÞ;K0a ¼ Ka.
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Remarks.—
(1) Recall that in the case of the BMS groupB, since the

Lorentz group L arises as the quotient L ¼ B=S,
there are “as many” Lorentz subgroups ofB as there
are supertranslations: the group S of supertransla-
tions acts simply and transitively on the space SL of
all Lorentz subgroups of B. But S also acts simply
and transitively on the space SC of all cross sections
of I−

o . Therefore the two spaces, SC and SL, are
isomorphic. In fact there is a natural isomorphism:
Each cross section C in SC is left invariant by one
and only one Lorentz subgroup L of B. What is the
situation at I−

Rel? Here, G7 arose as the quotient
G7 ¼ G=S of the full symmetry group G by its
subgroup S of supertranslations, whence S acts
simply and transitively on the space SG7 of all
G7 subgroups of G that are isomorphic with G=S
under the projection. But we also know that S acts
simply and transitively on the space SC of all cross
sections of I−

Rel (just as it does on I−
o in the

asymptotically flat case). And again there is a
natural isomorphism between the two spaces,
SG7 and SC, on each of which the supertranslation
group S acts simply and transitively: Each cross
section C in SC is left invariant precisely by one G7

subgroup in SG7.
(2) In Sec. III A, we considered a linearized source on a

de Sitter background. In this case, we found that I−
Rel

(as well as the upper Poincaré patch MRel) is left
invariant by a seven dimensional subgroup of the de
Sitter group. Let us call it G7. In this section we
encountered another seven dimensional groupG7. In
terms of the full symmetry groupG on I−

Rel, the two
groups have the following roles. G7 is the subgroup
of G that arises in de Sitter space-time and is

generated there by: (i) the time-translation v
∘
l
∘ a
;

(ii) three space-translations Y1ml
∘ a
; and, (iii) three

rotations. While the time-translation and the three
rotations leave one cross section, ioLoc, of I−

Rel
invariant, the three space-translations do not leave
any cross section of I−

Rel invariant. By contrast, in
general space-times in the class CΛisol under consid-
eration, the group G7 arises as the quotient
G7 ¼ G=S; it is not a canonical subgroup of G.
As we noted above in Remark 1, given a cross
section C of I−

Rel we can naturally embedG7 intoG;
but by construction that subgroup leaves the chosen
cross section invariant while G7 leaves no cross
section of I−

Rel invariant.
(3) There is a discussion of symmetry groups also in the

literature on quasilocal horizons [21,35,36] where
these groups were found to be finite dimensional.
However, that analysis referred to symmetries of
specific WIHs. The vector fields were required

to preserve not just the universal structure but
certain physical fields, in particular the physical
(degenerate) metric qab and the rotational 1-form on
the given WIH. In the present paper, on the other
hand, the focus is on symmetries of I−

Rel of all space-
times in our collection CΛisol. Therefore, we were led
to introduce the universal structure shared by all
(geodesically complete) NEHs and consider as
infinitesimal symmetries all vector fields on I−

Rel
that leave this universal structure invariant. Since
this is amuchweaker requirement, the Lie algebra of
symmetry vector fields turned out to be infinite
dimensional. If a specific space-time in our class
CΛisol were to admit a Killing vector, not only would it
belong to the infinite dimensional g but its action
would also leave the geometrical fields on I−

Rel
invariant. Therefore, it would also be a symmetry
in the stronger sense considered in the quasilocal
horizon literature.

C. ioLoc and symmetry reduction: Symmetries of I −
Loc

As we saw in Sec. IV B, given a cross section C of I−
Rel,

we can set the affine parameter v
∘
of l

∘ a
to be zero on C and

then obtain a natural foliation of I−
Rel by the v

∘ ¼ const

surfaces. This foliation refers to the entire class ½l
∘ a� of

vector fields that I−
Rel is endowed with. Under

l
∘ a

→ l
∘ 0 ¼ cl

∘ a
, the labeling of the leaves of the foliation

changes via v
∘ 0 ¼ ð1=cÞv∘ , but the leaves of the foliation

remain the same. Let us use this foliation in the decom-
position (4.6) of ξa into vertical and horizontal parts.
Then, each part is individually left unchanged under

l
∘ a

→ l
∘ 0 ¼ cl

∘ a
. In particular, we have K0a ¼ Ka. As we

vary symmetry vector fields ξa, we obtain different hori-
zontal vector fields Ka and together, they constitute a

Lorentz subalgebra L of g. Thus, the foliation v
∘ ¼ const

selects a specific Lorentz-subgroup L of the symmetry
group G.
What happens under a change of the initial cross section

that serves as the “origin” of the affine parameter? If

C → C0 then we have v
∘
→ v

∘ 0 ¼ vo þ aðθ;φÞ where a is
any function on I−

Rel satisfying L
l
∘a ¼ 0. Now the new

foliation v
∘ 0 ¼ const is distinct, related to the original one

v
∘ ¼ const by a supertranslation. Therefore the decompo-
sition of symmetry vector fields ξa changes:

K̄a → K̄0a ¼ K̄a − ðLK̄aðθ;φÞÞl
∘ a
; ð4:8Þ

The vector fields K0a that are tangential to the v
∘ 0 ¼ const

cross sections constitute another Lorentz Lie-algebra L0
of g.
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Now suppose we add to our universal structure the cross
section ioLoc at which I

þ
Loc intersects I

−
Rel. Then we acquire a

preferred foliation of I−
Rel and hence a preferred Lorentz

subgroup. Furthermore, as we recalled in Sec. II B, there is
a 1-1 correspondence between cross sections of any
complete NEH and nonextremal WIH structures thereon:
Given any C, the corresponding nonextremal null normals
½la� vanish on that C. What is the canonical nonextremal
WIH structure ½la� induced on I−

Rel by the cross section

ioLoc? It is given by ½la� ¼ ½cv∘l
∘ a�. Thus, each of these

preferred nonextremal normals is indeed a symmetry vector
field in g. Note that these symmetries also leave invariant

ioLoc, and the foliation v
∘ ¼ const. An inspection of the form

(4.6) of general symmetry vector fields ξa shows that the
symmetry vector fields that leave ioLoc—and the associated

family of cross sections v
∘ ¼ const—invariant are precisely

linear combinations of the preferred nonextremal null
normals la ∈ ½la�, and the horizontal vector fields Ka that
are tangential to the preferred foliation selected by ½la�:

ξaloc ¼ κvol
∘ a þ Ka ≡ la þ Ka

for some la ∈ ½la�≡ ½v∘l
∘ a� ð4:9Þ

They constitute a seven dimensional sub-Lie-algebra,
isomorphic to g7 ¼ g=s. That is, because we fixed a cross
section ioLoc of I

−
Rel, we are able to find a canonical lift of the

quotient g=s into g. Recall that G7 is the trivial central
extension of the Lorentz group:G7 ¼ R × L. Motivated by
examples discussed in Sec. III and Appendix A, we will
refer to the R part, “the 1-dimensional group of time-
translations,” and label it by T 1. Its induced action on a
suitable phase space will lead us to a Hamiltonian that we
will identify with energy. Similarly the induced action of L
will lead us to the notion of angular momentum.
To summarize, the addition of the 2-sphere cross section

ioLoc to the universal structure reduces the infinite dimen-
sional symmetry group G of I−

Rel to a seven dimensional
subgroup G7. Its generators are given by (4.9). This
reduction has several interesting features that bring out a
nontrivial confluence of ideas and structures from: (i) the
theory of WIHs, (ii) specific examples we discussed in
detail in Sec. III and Appendix A; and, (iii) our strategy of
using I−

Rel and I−
Loc as the appropriate analogs of I

−
o in the

asymptotically flat case. These features can be summarized
as follows.
(1) The reduced symmetry group G7 preserves I−

Loc
because the reduction gets rid of the supertranslation
subgroup S—precisely the elements of the full
symmetry groupG that fail to leave ioLoc—and hence
I−
Loc—invariant.

(2) The affine parameter v of every preferred nonex-
tremal null-normal la ∈ ½la� selected by ioLoc runs
from −∞ (at i−) to ∞ (at ioLoc). Thus, each of these

nonextremal null normals is a future directed and
complete vector field on I−

Loc. (It is also a complete
vector field on the complement I−

RelnI−
Loc of I

−
Loc but

there it is past-directed.) In examples discussed in
Sec. III and Appendix A, the preferred nonextremal
null normals la are all restrictions to I−

Rel of a time-
translation Killing vector field, which are future
directed and timelike in a neighborhood of I−

Loc in

MLoc. The affine parameter of v
∘
of l

∘ a
corresponds to

the Kruskal coordinate V, while the affine parameter
v of la corresponds to the Eddington-Finkelstein
coordinate, which was also denoted by v.

(3) Recall from Sec. II B that each nonextremal horizon
admits a canonical foliation on which the pull-back
ω̄a of the rotational 1-form ω is divergence-free.
Therefore, it would appear that we have two pre-
ferred foliations of I−

Loc: one provided by the
nonextremal null normals ½la�, and another provided
by the v

∘ ¼ const cross sections, which serve as

affine parameters of the extremal null normals ½l
∘ a�,

with v
∘ ¼ 0 at ioLoc. However, the first family actually

coincides with the second. This can be seen as

follows. The pull-back ω̄
∘
a to the vo ¼ const cross

sections of the rotation 1-form ω
∘
a of l

∘ a
is diver-

gencefree, by the very definition of the canonical

½l
∘ a�. Now, since la ¼ κv

∘
l
∘ a
, and the rotation 1-form

ωa of the nonextremal la is given by ωa ¼ ω
∘
aþ

Da ln κv
∘
. Since the pull-back of the second term to

the vo ¼ const 2-spheres vanishes, it follows that

ω̄a ¼ ω̄
∘
a. Hence the canonical foliation on nonex-

tremal WIHs determined by the condition that ω̄a be
divergencefree on each leaf of the foliation is

satisfied by the v
∘ ¼ const foliation. Thus, there is

a pleasing coming together of: (i) the canonical

extremal null normals ½l
∘ a�, the canonical foliation

associated with the nonextremal null normals ½la�
selected by any cross section of I−

Rel, and, (iii) the
symmetry vector fields ξa in g7.

(4) Since v ¼ ln v
∘
is an affine parameter for la ¼ v

∘
l
∘ a

it
follows that the canonical foliation can be labeled

either by v
∘ ¼ const or by v ¼ const. This foliation

provides us with a family of good cuts of I−
Loc. As

we saw, the reduction from the infinite dimensional
G to its 7-dimensional subgroupG7 occurs if we add
this 1-parameter family to our universal structure.

(5) It is instructive to compare the situation at the past
null infinity I−

o of asymptotically flat space-times.
There, if we work with Bondi conformal frames,
we obtain a preferred 4-parameter family of null-
normals. Motions along these null normals generate
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the 4-dimensional subgroup T of BMS translations
of B. Therefore, if we are given a cross section C of
I−
o one obtains a 4-parameter family of cross

sections, related to the initial C by elements of T .
On I−

Rel, by contrast we have a 1-parameter family of

preferred null normals ½l
∘ a�. Therefore, if we fix a

cross section C on I−
Rel, we obtain a 1-parameter

family of cross sections. In particular, then, by fixing
ioLoc, we obtain a rest frame on I−

Loc. Such a
frame is not available at I−

o of asymptotically flat
space-times.

(6) Symmetry reduction from G to G7 is analogous to
what happens at I−

o of asymptotically flat space-
times of isolated systems. To begin with, the
symmetry group of I−

o is the infinite dimensional
BMS group B. However, because the Bondi-news
tensor vanishes on I−

o , we obtain a canonical
4-parameter family of good cuts [4,12,23]. As we
noted in the beginning of Sec. IV, if we add this
family to the universal structure of I−

o , then B
reduces to a 10 dimensional Poincaré subgroup P
thereof. Note that, while in the Poincaré group there
is no preferred time-translation, G7 admits a pre-
ferred 1-parameter family—in fact this is the only
time-translation subgroup in G7. This difference is
directly related to the presence of a canonical rest
frame on I−

Loc.
We conclude by noting that the main considerations of

this section hold if we add to the universal structure any
cross section C (which then provides, via our canonical

extremal null normals ½l
∘ a�, a 1-parameter family of cross

sections). Our use of ioLoc forCwas motivated by the special
role it plays in examples. More generally, if the past horizon
E−ðiþÞ is long-enough to intersect I−

Rel, we have available
three notions— Iþ

Loc, i
o
Loc and I−

Loc—that are analogous to
Iþ
o , io and I−

o in the Λ ¼ 0 case (see footnote 3).

V. PHYSICAL FIELDS AND
CONSERVED CHARGES

This section is divided into two parts. In the first we
collect the “leading order” physical fields that are available
at I−

Rel and I−
Loc of any space-time representing an isolated

system in our class CΛisol. In the second, we use these fields
together with symmetries at I−

Loc to introduce the notion of
total mass and angular momentum of the system from the
perspective of the local space-time MLoc. It would be
interesting to investigate how our notions of symmetries
and conserved quantities are related to those introduced in
[37] on general null boundaries.

A. Physical fields at the past boundary

Fields on I−
Rel are of two types: (i) the “universal ones”

that are common to all space-times in our class CΛisol that

were discussed in Sec. IVA; and, (ii) fields that vary from
space-time to space-time, some of which were mentioned
in Sec. II. In this subsection, we will gather the geometric
structures and fields on I−

Rel from Secs. II–IV. This succinct
list will help us streamline the discussion of conserved
quantities in the next subsection. (For proofs and deriva-
tions, see [19,20].)
Let us fix a space-time ðMRel; gabÞ in our class and

examine the structures that are induced on I−
Rel by the

space-time metric gab. First, the past boundary I−
Rel of MRel

comes with a preferred equivalence class ½l
∘ a� of null

normals, which are complete, affinely parametrized geo-

desics with respect to gab. Here l
∘ a

∈ ½l
∘ a� and l

∘ 0a
∈ ½l

∘ a� if
and only if l

∘ 0a ¼ cl
∘ a

for some positive constant c. These
null geodesics provide a ruling of I−

Rel and the quotient, Ĩ
−
Rel,

is topologically S2. However, because surface gravity κ
l
∘,

expansionΘ
l
∘ and shear σ

l
∘ all vanish for every l

∘
∈ ½l

∘
�, there

is no simple way to remove the rescaling freedom in c and

extract a preferred null normal l
∘ a

in the equivalence class.
As we will see in Appendix B, this fact has an important
consequence. The second field is qab, the pull-back of gab to
I−
Rel. qab is a degenerate metric of signature (0;þ;þ),

satisfying qabl
∘ a ¼ 0 and L

l
∘qab ¼ 0. Thus, qab is the pull-

back to I−
Rel of a metric q̃ab on the base space Ĩ

−
Rel. The third

field on I−
Rel an area 2-form ϵab, the pullback to I−

Rel of the
area 2-form ϵ̃ab compatible with the metric q̃ab on Ĩ−

Rel.
These are the zeroth order fields on I−

Rel, in the sense that
they are directly induced by the space-time metric itself.
The first order field is a (torsion-free) intrinsic derivative

operator D on I−
Rel, induced by the (torsionfree) space-time

derivative operator ∇ on MRel compatible with gab. Since D
is the pull-back of ∇, it follows immediately that it satisfies
Daqbc ¼ 0 and Daϵbc ¼ 0. Next, given any null normal la

to I−
Rel, we acquire a 1-form ωa on I−

Rel through Dalb ¼
ωalb (since Dalb is necessarily proportional to lb in any
NEH). As we explained in Sec. II B, the 1-form ωa is tied to
the null normal la and under la → l0a ¼ fla, we have
ωa → ω0

a ¼ ωa þDa ln f. But for notational simplicity we
will not attach a label la to ωa. The 1-form ωa, in turn leads
to several interesting structures that will play an important
role for us:
(1) The component κl ¼ ωala of the 1-form ωa is the

surface gravity of la. If κl ¼ 0, the null normal la

to I−
Rel is said to be extremal; if κl ≠ 0, it is said to be

nonextremal. The natural null normals l
∘ a

∈ ½l
∘ a� on

I−
Rel are all extremal.

(2) Given a nonextremal WIH structure ½la� on I−
Rel, one

acquires a unique foliation of I−
Rel by a 1-parameter

family of 2-spheres [20]. The defining property of this
foliation is that the pull-back ω̄a of ωa is divergence-
free on each leaf of the foliation: q̄abD̄aω̄b ¼ 0,
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where q̄ab is the natural metric on the leaves of the
foliation and D̄ the derivative operator compatible
with it. The 1-parameter family of diffeomorphisms
generated by any la ∈ ½la� leaves this foliation
invariant. In particular, for each la one obtains a
unique affine parameter v, up to the shift of origin,
i.e., up to v → vþ const.

(3) Given a cross section C of I−
Rel, there is a unique

nonextremal equivalence class ½la� that endows I−
Rel

with the structure of a WIH. Each la in ½la� vanishes
on the cross section C (and nowhere else on I−

Rel).
The converse is also true: every nonextremal WIH
structure ½la� on I−

Rel determines a unique cross
section C on which each la ∈ ½la� vanishes.

(4) If the past event horizon E−ðiþÞ is long enough so as
to intersect I−

Rel in a cross section (which we labeled
by ioLoc), then because of property 3, we acquire a
preferred nonextremal WIH structure ½la� on I−

Rel.
In this case, the portion of I−

Rel joining i− to ioLoc
defines I−

Loc–which can be regarded as local I−–and
the portion of E−ðiþÞ joining iþ to ioLoc defined
Iþ
Loc–which can be regarded as local Iþ.

(5) The null normals la on I−
Loc generate the 1-

dimensional time-translation subgroup T 1 of the
symmetry group G7. Because of property 2, I−

Loc is
equipped with a preferred foliation, defining a
rest frame.

(6) Under a constant rescaling of a null normal,
la → l0a ¼ cla, we have κl0 ¼ cκ. Therefore, given
a nonextremal WIH structure ½la�, one can select a
preferred null normal la in the equivalence class ½la�
by specifying a (nonzero) value of surface gravity.
This is in stark contrast with the preferred family

½l
∘ a� of null normals on I−

Rel which are extremal.
These properties, together with the interplay between

physics and geometry in de Sitter, Schwarzschild–de Sitter
and Kerr–de Sitter space-times (discussed in Sec. II and
Appendix A), will lead us to a natural strategy to define the
mass of a general space-time in our class CΛisol. In these
examples, E−ðiþÞ is indeed long enough to provide us with
ioLoc. Furthermore, the WIH structure provided by the
resulting ½la� is induced on I−

Rel by a Killing vector field
ta which is null on I−

Rel and vanishes on ioLoc (and nowhere
else).7 This Killing field ta is a time-translation in the sense
that it is timelike in a (large) neighborhood of I�

Loc, with
orbits that are topologicallyR. Furthermore, in these space-
times ta is the unique Killing field, up to a constant
rescaling, with these properties. Now, since in the limit
Λ → 0, the I−

Loc of these space-times becomes the I−
o of

Minkowski, Schwarzschild and Kerr space-times, we can
fix this rescaling freedom in ta by requiring that it approach

the unit time-translation Killing field of these space-times
in a neighborhood of their I−

o . Interestingly, this normali-
zation can be directly transferred to general space-times of
interest using property 5 above. More precisely, in all
examples, the correctly normalized time-translation Killing
field ta has the property that its restriction la to I−

Loc has a
specific surface gravity: κl ¼ ð1=2RðcÞÞð1 − 3ðR2

ðcÞ=l
2ÞÞ.

This will lead us to associate mass M of a general space-
time with that null normal la in the equivalence class ½la�,
selected by ioLoc, which has surface gravity κl.
This concludes our discussion of the “first order struc-

ture” at I−
Rel made available by the derivative operator D.

The second order structure at I−
Rel is induced by space-

time curvature. The fact that I−
Rel is an NEH immediately

leads to constraints on the Ricci tensor Rab of the space-
time metric gab, evaluated on I−

Rel:

RablaXb ¼ 0 ∀ Xatangential to I−
Rel;

which in particular impliesRablalb ¼ 0: ð5:1Þ
In the Newman-Penrose notation these conditions translate
to the vanishing of 4 components, Φ00 and Φ01 of the Ricci
tensor. For the Weyl tensor, we have

CabcdXa
1X

b
2X

c
3l

d ¼ 0; ∀ Xa
1; X

a
2; X

a
3 tangential to I

−
Rel

ð5:2Þ
which, in the Newman-Penrose notation implies that 4
components, Ψ0 and Ψ1, of the Weyl tensor must also
vanish on I−

Rel. (Recall that in the Λ ¼ 0 case, Ψo
0 is the

radiation field on I−
o and both Ψo

0 and Ψo
1 vanish if the

Bondi news vanishes on I−
o .)

As we already remarked in Sec. II B, the one-form ωa
serves as a potential to ImΨ2 on I−

Rel:

2ImΨ2 ¼ ϵabD½aωb�: ð5:3Þ
We will see that the angular momentum at I−

Rel–which
represents the total angular momentum of space-time—is
determined by ImΨ2. The mass, on the other hand, is
encoded in ReΨ2 which is related by Eq. (2.4) to the scalar
curvature of the 2-metric q̄ab on any cross sectionC of I−

Rel:

2R̄ ¼ −4ReΨ2 þ
2

3
Λþ 8πG

�
2lanbTab þ

1

3
T
�
: ð5:4Þ

where la is any null normal to the NEH, na the other null
normal to C such that gablanb ¼ −1, and T is the trace of
the stress energy tensor. (For a proof, see Appendix B.)

B. Conserved charges

This subsection is divided into three parts. In the first, we
introduce the notion of mass M using a physical thought
experiment involving tidal acceleration. In the second, we

7In Sec. II, this Killing field is denoted by Ta and in
Appendix A, by ta.
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obtain an expression for energy as the Hamiltonian gen-
erating time-translations T t ∈ G7 and discuss its relation to
M. In the third, we discuss angular momentum as the
Hamiltonian generating Lorentz transformations L ∈ G7.

1. Mass at I −
Loc

Already in theΛ ¼ 0 case, we had to develop intuition as
to what constitutes mass in general relativity. The early
analysis by Arnowitt, Deser, and Misner and others [38] of
the structure of the gravitational field at spatial infinity and
by Bondi, Sachs, Penrose and others [2–4] at null infinity
led us to precise notions of mass in the two regimes. As a
result, we habitually identify the parameter m in the Kerr
family as the ADM or the Bondi mass of the space-time.
But as Appendix A shows, this identification is no longer
tenable for Kerr-de Sitter metrics: the notion of mass is
more complicated even for this special, explicitly known
family. Therefore, to define mass at I−

Loc for general space-
times, we need further guidance. In this section we will
begin by introducing some physical considerations as
motivation, then define mass on I−

Loc, and finally discuss
properties of this notion of mass.

Motivation.—Since I−
Loc is analogous to I−

o of isolated
systems in the Λ ¼ 0 case, let us begin by recalling the
notion of the Bondi mass in that case. Fix an asymptotically
flat space-time ðMo; goabÞ. We will work in a neighborhood
of I−

o where Tab ¼ 0. Let us introduce Bondi coordinates
ðv; r; θ;ϕÞ such that ∂v is the asymptotic time-translation in
the asymptotic rest frame of the system. In these coor-
dinates, the 3-surfaces v ¼ const are portions of ingoing
null cones. Let us fix one, say v ¼ vo, and foliate it by a
family of 2-spheres R ¼ const, where R is the area-radius
of the 2-spheres. Denote these 2-spheres by CR. As R
increases, the 2-spheres CR approach a cross section C of
I−
o . Next, introduce a Newman-Penrose null tetrad adapted

to this foliation of the v ¼ vo surface: Let na be a (future
directed) null normal to the v ¼ vo 3-surface, and let la

be the other (future pointing) null normal to the R ¼ Ro;
v ¼ vo 2-spheres, with nala ¼ −1. Then, using the no-
incoming radiation condition on I−

o , the Bondi mass can be
defined by the following limiting procedure:

MBondi ¼ −
1

4πG
lim
CR→C

I
CR

RReΨ2d2V: ð5:5Þ

Here ReΨ2 ¼ 1
2
Cabcdnalbncld is the component of the

Weyl tensor that falls off as 1=r3 in asymptotically flat
space-times [4], capturing the “Coulombic aspect” of the
asymptotic gravitational field. (Note that Ψ2 is insensitive
to the rescaling of the initial choice of na.) Because of the
no-incoming radiation condition, MBondi equals the ADM
mass and thus represents the total mass of the system.
While in the post-Newtonian limit one finds an explan-

ation of how mass can be identified, e.g., using geodesics of

test particles in standard textbooks, somewhat surprisingly
it appears that a similar physical “justification” as to why
the right side of (5.5) should represent the mass at I−

o does
not exist in the literature. Therefore we will first present
such a justification and then use it to motivate the definition
of mass at I−

Loc in the Λ > 0 case. Let us begin with an
isolated system in Newtonian gravity. So the matter density
has compact spatial support and the Newtonian potential is
given byΦ ¼ −GM=rþOð1=r2Þ. In full general relativity,
it is the tidal force ∇a∇bΦ that has a clean counterpart in
terms of curvature. So, let us express massM in terms of the
tidal force. For this, we can consider a large 2-sphere of
radius r surrounding the matter source, and a nearby
concentric 2-sphere of radius r − δ. Let us now consider
a shell of (massive) test particles at rest on each of these two
2-spheres. Let us drop them at t ¼ 0. Then, to the leading
order, the 2-spheres will continue to remain 2-spheres but
their separation will increase because of tidal effects
associated with the inhomogeneity of the field because
particles on the inner 2-sphere will experience a slightly
greater acceleration than those on the outer 2-sphere,
whence δ will increase in time. To the leading order, we
have:

δ̈ ¼ 2GM
r3

δ ¼ δr̂ar̂bDaDbΦ ð5:6Þ

where Da is just the 3-dimensional derivative operator of
the Euclidean space. This equation leads to an expression
of mass of the isolated system in terms of the tidal
acceleration, as a limit of a 2-sphere integral

M ¼ 1

8πG
lim
ro→∞

I
r¼ro

rr̂ar̂bDaDbΦd2V: ð5:7Þ

We can now carry over this physical idea to general
relativity by replacing the Newtonian tidal acceleration
with the appropriate component of curvature that features
in the geodesic deviation equation. Let us consider an
isolated system in general relativity (with Λ ¼ 0) repre-
sented by an asymptotically flat space-time as in our
discussion that led to Eq. (5.5). We can consider two
concentric spheres R ¼ Ro and R ¼ Ro − δ on the v ¼ vo
surface in the asymptotic region, where R denotes the area
radius. Using the null vector fields la and na, let us define a
unit timelike vector field t̂a and a spacelike (radial) vector
field r̂a, both orthogonal to the family CR of 2-spheres:
t̂a ¼ ð1= ffiffiffi

2
p Þðla þ naÞ and r̂a ¼ ð1= ffiffiffi

2
p Þðna − laÞ. We

again consider a shell of (massive) test particles on each
of the two shells with 4-velocities aligned with t̂a at the
initial time and let them freely fall, i.e., follow geodesic
orbits. Then, by the standard geodesic deviation equation,
at the initial time we have:
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r̂aðδr̂aÞ·· ¼ −ðδÞr̂ar̂cðt̂bt̂dRabcdÞ
¼ −ðδÞnanclbldCabcd ¼ −2ðδÞReΨ2 ð5:8Þ

where in the second equality we have used the fact that
the test particles are all in the asymptotic, sourcefree
region where the Ricci tensor of goab vanishes, and in the
third step we have used the definition of the component
ReΨ2 of the Weyl tensor. The thought experiment sug-
gested by Newtonian considerations leads us to replace the
Newtonian tidal acceleration r̂ar̂bDaDbΦ by −2ReΨ2 and
think of the resulting integral

−
1

4πG

I
CR

RReΨo
2d

2V ð5:9Þ

as the “mass contained in the 2-sphereCR.”Now, in general
relativity gravity itself gravitates. Therefore, even if the
matter source is confined to some spatially compact region,
to obtain the total mass we have to take a limit as R → ∞
i.e. the family of 2-spheres CR tend to the cross section C
of I−

o . When this is done, we recover precisely the
expression (5.5).
Remark.—Since the displacement vector δra is initially

orthogonal to t̂a, it continues to remain orthogonal since
Ltr̂a ¼ 0, t̂a∇at̂b ¼ 0, and t̂at̂a ¼ −1. Therefore ðδr̂aÞ·· has
components only along r̂a and angular directions m̂a and
we have: ðδr̂aÞ·· ¼ −2ðδÞ½ReΨ2r̂a þ ReΨ1m̂a� in the
Newman-Penrose notation (see Appendix B). However,
because of the no-incoming radiation condition at I−

o , the
contribution fromΨ1 vanishes in the limit and only the term
ReΨ2 survives; i.e., in the limit the vector ðδr̂aÞ·· becomes
just δ̈r̂a and the analogy with the Newtonian expression
becomes even closer.

Λ > 0: Definition of mass and its properties.—The strategy
is to carry over this physical idea to the Λ > 0 case.
However, there is a new conceptual subtlety: now the
Ricci tensor is nonzero outside matter sources, given by
Rab ¼ Λgab, and this part of the curvature also contributes to
the geodesic deviation. In particular, while there is no
geodesic deviation in Minkowski space-time, there is non-
trivial geodesic deviation in de Sitter space just due to
cosmic expansion. Thus, there is a part of geodesic deviation
that has nothing to do with the presence of physical mass in
the space-time and we have to subtract it out to obtain the
mass of the isolated system under consideration. Fortunately
this can be done rather easily because the Riemann tensor
neatly decomposes into the Weyl and the Ricci parts.
Let us then consider the same thought experiment,

replacing the asymptotically flat space-time ðMo; goabÞ by
a space-time ðM; gabÞ in our class. Furthermore, since I−

Loc
is now “at a finite distance” we need not consider a limiting
procedure, but simply start by considering a shell of
(massive) test particles of area radius R ¼ RðcÞ that lies
on I−

Loc, and another shell of radius R ¼ RðcÞ − δ. Then, the

geodesic deviation equation for (massive) test particles on
these two 2-spheres now yields;

ðδr̂aÞ·· ¼ −ðδÞr̂cðt̂bt̂dRa
bcdÞ

¼ −ðδÞr̂ct̂bt̂d
�
Ca

bcd þ
2

l2
δa½cgd�b

�

¼ ðδÞ
�
1

l2
r̂a − Ca

bcdt̂bncld

�
¼ ðδÞ

�
1

l2
− 2ReΨ2

�
r̂a

ð5:10Þ
where in the last step we have used the fact (noted above in
the Remark) that ðδr̂aÞ·· is orthogonal to t̂a and Ψ1 vanishes
on I−

Loc.
The first term in the last step can be directly identified as

the contribution to the geodesic deviation due to the
cosmological constant. It is nonzero already in de Sitter
space, where the separation δ between the shells will
increase just because of the accelerated expansion of the
universe, even though there is no physical mass in the
space-time. The second term vanishes in de Sitter space-
time and represents the geodesic deviation over and above
the contribution due to the cosmic accelerated expansion. It
is then natural to attribute this part to the presence of the
mass within the 2-sphere CR. These considerations lead us
to define the mass at I−

Loc as:

M ¼ −
1

4πG

I
C
RðcÞReΨ2d2V; ð5:11Þ

where C is any cross section of I−
Loc and RðcÞ is the area-

radius of I−
Loc. Thus, the mass M is completely determined

by the following physical fields on I−
Rel: the area radius R,

the component Ψ2 of the Weyl tensor, and the area 2-form
ϵab on I−

Rel that defines the volume element d2V on C. Note
that in the right side of (5.11) we can use any cross section
C of I−

Rel and any (nonvanishing) null normals la, na to C.
Because Ψ0 ¼ Ψ1 ¼ 0 on the entire I−

Rel, it follows that Ψ2

is insensitive to these choices. Finally, M is conserved
because LlRðcÞ ¼ 0 and LlðReΨ2Þ ¼ 0 on I−

Loc.
This notion of mass has several interesting properties.
(1) The identity (5.4) relates ReΨ2 with the scalar

curvature 2R of the 2-metric qab on the (base space
Ĩ−
Loc of) I

−
Loc, the cosmological constant Λ and the

trace T of the stress energy tensor of matter fields at
I−
Loc. For simplicity, let us suppose that the stress-

energy tensor of matter at I−
Loc, if any, is tracefree

(e.g., a Maxwell or Yang-Mills field). Then, since by
the Gauss theorem

H
C
2Rd2V ¼ 8π, Eq. (5.4) implies

M ¼ RðcÞ
2G

�
1 −

R2
ðcÞ
l2

�
: ð5:12Þ

The right side vanishes if and only if RðcÞ ¼ l,
which is achieved in de Sitter space-time. Physically,
one might expect that “due to the attractive nature of
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gravity,” the cosmological horizon is, so to say,
“pulled in” by the presence of a mass in the interior.
This expectation is borne out in the Schwarzschild–
de Sitter family, where RðcÞ ≤ l and equals l only
for the de Sitter solution. Therefore the right side is
always positive, and reaches its maximum Msup ¼
1

3
ffiffi
3

p l in the Nariai solution, when RðcÞ ¼ l=
ffiffiffi
3

p
. For

the Schwarzschild–de Sitter family, then, M equals
the parameter m that enters the solution.

(2) This is no longer the case for the Kerr-de Sitter
family. Nonetheless,M is again positive and numeri-
cal calculations of RðcÞ show that the maximum
value of M is again Msup ¼ 1

3
ffiffi
3

p l. For this 3-

parameter family, we can focus on a neighborhood
N of I−

Loc ∪ Iþ
Loc within MLoc and take the limit

Λ → 0, keeping m and a fixed. In the limit, the
space-time geometry in N tends to the space-time
geometry of a neighborhood of I−

o ∪ Iþ
o of the Kerr

family and M of Eq. (5.11) tends to the Bondi mass
on I�

0 of the Λ ¼ 0 null infinity. We expect that this
will be the case for all space-times in our class CΛisol
for which there is a physically well-motivated
procedure to take the Λ → 0 limit. An example of
such a procedure would be to consider a double null-
surface framework to solve source free Einstein’s
equations in a neighborhood of I−

Loc ∪ Iþ
Loc within

MLoc, using I−
Loc for one of the two null surfaces.

One could use a power series expansion of the
solution away from I−

Loc as in [39,40], and then take
the limit Λ → 0 in that expansion.

(3) In this discussion of mass, we focused on I−
Loc

because for Λ > 0, it is the natural analog of I−
o in

the asymptotically flat case. However, from the strict
Λ > 0 perspective, we could have worked with I−

Rel

as well, and used an extremal null normal l
∘ a

to I (in
place of the nonextremal null normal la adapted to
I−
Loc) in the expressions (5.11) of M without

changing the result. Since l
∘ a

is nowhere vanishing
on the entire I−

Rel, the other null-normal n
∘ a to any

cross section C of I−
Rel is also well defined, and we

can use any 2-sphere cross section of I−
Rel to evaluate

the integral. Thus the mass M is really associated
with the entire I−

Rel, not just with I−
Loc.

(4) Since M is conserved, we can also think of it as
being associated with the point io at spatial infinity,
or the point i− at past timelike infinity, of MRel (see,
e.g., Fig. 1). We have other definitions of mass at
both these points. The one at io uses spacelike
surfaces (such as the cosmological slices in the de
Sitter space-time) that extend to io (see, e.g.,
[41,42]). The one at i− is obtained by working with
(the spacelike) I−, and imposing the no-incoming
radiation condition by requiring that the magnetic

part of the (appropriately conformally rescaled)
Weyl tensor vanishes there (see, e.g., [1]). It is
likely that these definitions agree with (5.12) under
appropriate conditions. However, to establish these
results one would need to understand the precise
relation between limits of various physical fields as
one approaches io along I−

Rel and along spacelike
surfaces, and i− along I− and along I−

Rel.

2. The Hamiltonian framework, energy
and the first law

In Sec. V B 1 we arrived at a definition of the total
mass of the space-time ðMLoc; gabÞ using physical consid-
erations involving the motion of appropriately chosen test
particles near I−

Loc. In the Λ ¼ 0 case, these considerations
do yield the correct definition of mass at I−

o [2–4] as well at
spatial infinity ioo [38,43]. However, in that case we also
have conserved charges that arise as Hamiltonians gen-
erating the action of asymptotic symmetries on a suitably
defined phase space. In particular, using the 4-dimensional
group of asymptotic translations, one can define the ADM
and the Bondi 4-momentum of the system. For Λ > 0, the
symmetry group of I−

Loc is G7, and elements of the Lie

algebra g7 have the form: ξaloc ¼ κv
∘
l
∘ a þ Ka ≡ la þ Ka

[see Eq. (4.9)]. The vertical vector fields la generate the
1-dimensional time-translation subgroup T 1 of G7.
Therefore, we are led to ask:

(i) Are there charges Ql associated with the generators
la of the T 1 ? If so,

(ii) What is the relation between those charges and the
mass M defined in (5.12)?

(iii) Do these charges serve as Hamiltonians generating
canonical transformations corresponding to these
symmetries on an appropriate phase space, tailored
to I−

Rel or I
−
Loc? and,

(iv) Since, in addition to being the analog of I−
o in

asymptotically flat space-times, I−
Loc is also a non-

extremal WIH, do the charges associated with the
time-translation symmetry of I−

Loc satisfy a first law
of horizon mechanics? In this subsection we will
show that the answer to these questions is in the
affirmative. Charges associated with the Lorentz
generators Ka will be discussed in the next sub-
section. Together, they provide charges associated
with the symmetry Lie algebra g7 on I−

Loc. On full

I−
Rel, we also have supertranslations ξa ¼ fðθ;ϕÞl

∘ a

that belong to g. The corresponding charges will be
discussed in Appendix B.

Let us then begin with the 1-dimensional time-translation
subgroup T 1. The existing literature on WIHs [19,21,35]
spells out a procedure to construct a covariant phase space
ΓCov from solutions to Einstein’s equations admitting a WIH
boundary. We can apply that procedure because our
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solutions gab on MLoc do admit a WIH horizon—namely
I−
Loc—as a boundary. Given any null normal, la, generating

T 1 on I−
Loc, we can extend it to a neighborhood of I−

Loc
within MLoc by a timelike vector field ta and consider the
1-parameter family of transformations induced on our ΓCov
by the diffeomorphisms generated by this ta. It turns out that
this induced action is Hamiltonian if and only if the first law
holds, i.e., if and only if there is a function Et on ΓCov such
that [19]

δEt ¼ κlδA ð5:13Þ
for any vector field δ on ΓCov, where A is the area of any
cross section of I−

Rel and κl is the surface gravity of the null
normal lwe began with. If this condition is satisfied, thenEt
is the Hamiltonian function on ΓCov generating the canonical
transformation. Note that this condition refers only to the
boundary value la of ta and not to the details of our
extension of la away from I−

Loc (whencewe could have used
the symbol El in place of Et).
Now, I−

Loc is endowed with a canonical null normal la

with surface gravity κl ¼ ð1=2RðcÞÞð1 − 3R2
ðcÞ=l

2Þ, where,
as before RðcÞ is the area radius of any cross section of the
cosmological horizon I−

Loc. Every l
a that generates a time-

translation symmetry is proportional to la: la ¼ kla where
k is a positive constant. Therefore, one can easily integrate
(5.13) on ΓCov to obtain

Et ¼ k
RðcÞ
2G

�
1 −

R2
ðcÞ
l2

�
≡ kM; ð5:14Þ

where in the last step we have used Eq. (5.12). Thanks to
the expression (5.11) of M, this function Et on ΓCov
provides an explicit linear map from the space of time-
translations la on I−

Loc to R via

la → Et ¼ −
1

8πG

I
C
RðcÞCabpqlanblpnq;

d2V ≡ −
k

4πG

I
C
RðcÞReΨ2d2V ð5:15Þ

where nb is any future pointing null vector field on I−
Loc

satisfying lana ¼ −1. Thus, the numerical value of the
Hamiltonian Et generating the time-translation ta is M
precisely if tajI−

Loc
¼ la, the preferred null normal. As

discussed in the Appendix A, in the Kerr–de Sitter space-
time, la is the restriction to I−

Loc of the uniqueKilling field t
a

with the following key properties: (i) It is timelike in a
neighborhood of I−

Loc ∪ Iþ
Loc within MLoc; and (ii) is so

normalized that in the limit Λ → 0, its norm with respect to
the physical metric tends to −1 as one approaches I−

0 ∪ Iþ
0 .

Thus, near I−
Loc ∪ Iþ

Loc, the Killing field ta in Kerr–de Sitter
space-time is the precise analog of the properly normalized
time-translation Killing vector field in Kerr space-time near
I−
0 ∪ Iþ

0 . That fact led us to a “correctly normalized”

generator la of time-translations in T 1 for all space-times
in ΓCov. We have now found that the energy associated with
these time-translations by Hamiltonian considerations is
precisely the mass M we obtained from the “tidal accel-
eration” considerations in Sec. V B 1.
To summarize, there is a Hamiltonian framework

that lets us define energy El for each generator la of the
time-translation subgroup T 1 of the symmetry group G7. If
the generator is so normalized as to correspond to the unit
time-translation ta in the Kerr family, then the energy equals
mass: El ¼ M. For the Kerr family the energy is positive
and heuristics motivated by the “attractive nature of gravity”
suggest that the energy and (hence also the mass) on I−

Loc
should be positive in general. Note that, in contrast to the
asymptotically flat case, we do not have a notion of 3-
momentum (or, alternatively, the 3-momentum vanishes)
because the available structure naturally leads us to a
preferred rest frame, reflected in the fact that the translation
subgroup is one dimensional and, furthermore, there is only
1-parameter family of good cuts of I−

Loc. By contrast, in the
asymptotically flat case we have a 4-dimensional translation
subgroup on I−

o and absence of radiation leads us to a
4-parameter family of good cuts. Different 1-parameter
subfamilies define different rest frames, whence we are
led to the (Bondi) 4-momentum.

3. Angular momentum

Recall from Sec. IV C that I−
Loc admits a natural

foliation, and its symmetry group G7 admits a canonical
Lorentz subgroup L whose action leaves each leaf of this
foliation invariant. As before let us denote the vector fields
generating L by Ka; these are the “horizontal” vector fields
in g7. The WIH framework provides a natural strategy to
define charges QK associated with each of these vector
fields. Let us extend these vector fields in a neighborhood
of I−

Loc ∪ Iþ
Loc within MLoc and denote the extension also

by Ka. Then diffeomorphisms generated by any one Ka

induce a 1-parameter family of canonical transformations
on ΓCov and QK are precisely the corresponding
Hamiltonians [21,35]. As we noted in Sec. II, on any
WIH these angular momentum charges can be expressed
using the “rotational 1-form” ωa defined by Dalb ¼ ωalb:

QK ¼ −
1

8πG

I
C
ωaKad2V ð5:16Þ

where C is a leaf of the preferred foliation on the

nonextremal WIH I−
Loc, with v ¼ v

∘
for some constant v

∘
.

Since Ka is tangential to these 2-spheres, it can be
expanded as

Ka ¼ ϵ̄abD̄bf þ q̄abD̄bg ð5:17Þ
where q̄ab and ϵ̄ab are the pull-backs to the leaves of the
foliation of the physical metric qab and the area 2-form ϵab
on I−

Loc. Recall that the defining property of the preferred
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foliation v ¼ vo is that the pull-back ω̄a of ωa is diver-
gencefree on each leaf with respect to the induced physical
metric qab: q̄abD̄aωb ¼ 0. Therefore we can simplify the
expression of QK:

QK ¼ −
1

8πG

I
C
ωaðϵ̄abD̄bf þ q̄abD̄bgÞd2V

¼ 1

8πG

I
C
fϵ̄abD̄bω̄ad2V

¼ −
1

4πG

I
C
fImΨ2d2V; ð5:18Þ

where in the second step we have carried out an integration
by parts and in the third step used (5.3). There are some
noteworthy aspects of the final expression.
(1) While energy Et is determined by ReΨ2, [see

Eq. (5.15)], the angular momentum charges are
governed by ImΨ2. This in line with the fact that
while 2ReΨ2¼Kabcdlanblcnd is a scalar, 2ImΨ2 ¼⋆Kabcdlanblcnd is a pseudoscalar. In the asymp-
totically flat case, the situation at io is completely
analogous: The ADM energy is defined using ReΨ2

while angular momentum is contained in ImΨ2 [43].
(2) If f ¼ 0, i.e., Ka ¼ q̄abD̄bg, we have QK ¼ 0. So in

place of the “relativistic angular momentum” asso-
ciated with the full 6-dimensional Lorentz-group, we
have an angular momentum 3-vector associated with
a SOð3Þ subgroup of L. This is in line with the fact
that, whereas I−

o in the Λ ¼ 0 case is endowed with
a 4-parameter family of (relatively boosted) ‘good
cuts,’ I−

Loc is endowed with a 1-parameter family of
good cuts. The angular momentum 3-vector refers to
the rest frame selected by ½la� and the “center of
mass world-line” selected by the 1-parameter family
of good cuts.8

(3) Note, however, that the decomposition (5.17) of Ka

into a “rotation part” ϵ̄abD̄bf and a “boost part”
q̄abD̄bg depends on the physical metric qab on I−

Loc,
and thus varies from one space-time to another in the
covariant phase space ΓCov. Therefore, as we move
from one space-time to another, the SOð3Þ subgroup
of L that defines the angular momentum 3-vector
changes. As a consequence, given any Ka in the Lie

algebra of L, there is a space-time in ΓCov for which
QK is nonzero. Therefore, from the Hamiltonian
perspective, none of these diffeomorphisms corre-
sponds to gauge transformation in ΓCov; they are all
physical symmetries.

(4) Suppose the space-time admits a rotational Killing
field φa. Then we can also calculate the Komar
integral associated with φa. Even though we now
have Rab ¼ Λgab ≠ 0 outside sources, the Komar
integral is conserved in the following sense: Its values
evaluated on 2-spheres S1 and S2 in the sourcefree
region agree if there is a 3-surface Σ—with S1 and S2
as boundaries—to which φa is everywhere tangential.
Therefore, the Komar integral is an interesting quan-
tity. When correctly normalized, its value agrees with
the component of the angular momentum Qφ ob-
tained by setting Ka ¼ φa [35]. This provides an
additional support for the definition of QK. Note,
incidentally, that if we have a space-time that admits a
time-translation Killing field ta, the corresponding
Komar integral is not as interesting if Λ ≠ 0 because
it is generically not possible to find a 3-manifold Σ
that joins a 2-sphere S1 in the interior (but still outside
sources) and S2 on I−

Loc or I
− and, in addition, ta is

tangential to it.

VI. DISCUSSION

Although Einstein [9] showed that general relativity
admits gravitational waves in the linear approximation
around Minkowski space already in 1916, there was much
confusion about the reality of gravitational waves in full
general relativity for several subsequent decades [44].
Strange as this state of affairs may seem, especially in
light of the recent discoveries by the LIGO-Virgo collabo-
ration, the confusion was not due to some trivial mis-
understanding. Rather, it was rooted in the fact that, when
space-time geometry is itself dynamical, it is quite subtle to
separate gravitational radiation from coordinate effects in
the full, nonlinear theory. The issue was fully resolved only
in the early 1960s by the careful work by Bondi et al.9 As
was natural at the time, the work assumed that the
cosmological constant Λ is zero, and therefore modeled

8Recall from special relativity that the angular momentum
tensor Mab of a system/field in Minkowski space-time refers to a
Lorentz group, selected by choosing an origin. If we are also
given a rest frame, i.e., a preferred time translation Killing field
ta, one can further decompose the Lorentz Lie algebra into a
rotation part and a boost part. One can always select a world-
line passing through the given origin—called the center of
mass world-line—along which the boost angular momentum
vanishes—i.e.Mabta ¼ 0. On I−

Loc the choice of a cross section is
analogous to the choice of an origin in Minkowski space, the
canonical time translation provides a rest frame, and the
1-parameter family of preferred cross sections is the analog of
the center of mass world line.

9“Wave propagation” was discussed already in the 1952
seminal work on the Cauchy problem by Choquet-Bruhat
[45]. However, those considerations were local, and one cannot
decide locally if there is radiation carrying energy, momentum,
etc. For example, the c-metric [46]—an exact solution discovered
by Levi-Civita in 1918—admits a Killing vector that is timelike in
large patches. Therefore it was often thought that the solution has
no gravitational radiation. It is only in 1981 that a detailed
analysis of its asymptotic structure at Iþ

o became available in full
general relativity and established that it does carry gravitational
radiation [47] (emitted by two eternally accelerated black holes).
This could not have been dome using local considerations; the
Bondi, Sachs, Penrose et al. framework was essential.
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isolated systems by asymptotically flat space-times. In this
case space-time curvature decays as we move away from
sources, giving rise to several simplifications. In presence
of a positive Λ on the other had, space-time curvature does
not decay no matter how far you move away from sources.
Therefore, it is now much more difficult to distinguish
ripples in space-time geometry representing genuine gravi-
tational waves from gauge artifacts. To capture the notion
of an isolated system, on the other hand, one needs to
provide a gauge invariant criterion to ensure that there are
no physical gravitational radiation incident on the system
from infinity. In this paper, we have addressed this problem
by introducing the notions of I−

Rel and I−
Loc.

Recall that already in the first discussions of conformal
completions of space-times, Penrose [4] considered the
possibility of a cosmological constant and showed that for
Λ > 0, the boundaries I� of the conformal completion are
spacelike. In the asymptotically flat case, one specifies the
no-incoming radiation condition by requiring that the
gauge invariant Bondi news tensor Nab should vanish on
the past boundary I−

o. Why did we not simply repeat that
strategy at the spacelike past boundary I− in the Λ > 0
case? As we pointed out in Sec. I, we do not yet have the
analog of Nab on I� in the Λ > 0 case. Why not take
recourse to the notion of the radiation field Ψo

4 on Iþ
o (and

Ψo
0 on I

−
o ) that is routinely used in numerical simulations of

binary black hole simulations to calculate the wave forms?
In theΛ ¼ 0 case, I�

o are null and their normals provide the
null vector that is needed to define Ψo

4 (and Ψo
0). For Λ > 0,

I� are spacelike and we no longer have a canonical null
direction to extract Ψo

4 on Iþ (or Ψo
0 on I−) in a gauge

invariant manner [5,6]. There are two further conceptual
obstacles associated with I− that are naturally overcome if
one uses I−

Rel and I
−
Loc instead. First, consider gravitational

collapse of a star depicted in the left panel of Fig. 2. If we
use the boundaries I�, then, in contrast to the Λ ¼ 0 case,
the space-time diagram continues to the right because the
analytical continuation of the Schwarzschild de Sitter
metric goes on ad infinitum. If on the other hand we focus
just on the relevant part MRel of space-time, this problem
disappears since the part of space-time to the right of I−

Rel is
simply not relevant. Second, already in the Kerr-de Sitter
space-time, in the limit Λ → 0 the part of space-time near
I− disappears. Therefore, if we imposed the no-incoming
radiation condition on I− and extracted physical informa-
tion from fields thereon, it would not be directly related to
the physical information extracted from structures at I−

o of
the Λ ¼ 0 theory.
Our strategy of using I−

Rel or I
−
Loc as the past boundary in

place of I− led to a rich structure. First, we saw that in the
standard examples discussed in Sec. III and Appendix A,
I−
Rel does have all the structure we introduced to impose the

no-incoming radiation condition, to discuss symmetry
groups and to define conserved charges. In particular we
saw that, in these examples:

(i) I−
Rel is geodesically complete;

(ii) Iþ
Loc is long enough to intersect I−

Rel in a
2-sphere ioLoc;

(iii) via a general construction, the 2-sphere ioLoc endows
I−
Loc with a specific weakly isolated horizon (WIH)

structure. This structure is also the natural one from
the perspective of individual examples and their
isometries. For example, in the Schwarzschild–de
Sitter space-time, this is precisely the WIH structure
induced on the cosmological horizon by the standard
“static” Killing field Ta;

(iv) in the region MLoc of the Kerr-de Sitter space-time,
the Killing field selected by the WIH null normals
½la� is very similar in its structure to the standard
stationary Killing field ta in the asymptotic region of
Kerr space-time. The Vaidya solution depicting
“evaporation” of a Schwarzschild–de Sitter black
hole to de Sitter space-time also provides support for
our framework. It is somewhat more interesting
because it is dynamical [1] but we chose not to
discuss it in detail because the discussion of exam-
ples is already quite long. These examples together
with the results on linearized gravitational waves on
de Sitter background [7,8] provide some concrete
evidence in favor of the boundary conditions intro-
duced in Sec. II C. It is interesting to note in
retrospect that in the Λ ¼ 0 case concrete evidence
in favor of the boundary conditions was the same
when Bondi, Sachs, Penrose and others [2–4] first
introduced them.

However, since then there have been significant
advances in approximation methods, numerical simulations
and geometric analysis. They can all be used to create
additional evidence for or against the conditions introduced
in Sec. II. For example, one can use approximation
methods to analyze radiating solutions “near” Kerr–de
Sitter by making an order by order expansion along the
lines of [39,40], but now in a neighborhood of the
cosmological horizon I−

Rel, rather than the black hole
horizon. On the numerical side, the framework is supported
by simulations of collapse of gravitational waves [48], and
head-on collisions of black holes [49]. Finally, on the
geometric analysis side, as we pointed out in footnote 3,
there are interesting results [25] on nonlinear perturbations
of the Schwarzschild–de Sitter solution (which allow the
angular momentum to change). Those results suggest—but
do not establish—that there is a large class of examples
with gravitational radiation in which Iþ

Loc is “sufficiently
long.” These solutions asymptotically approach Kerr–de
Sitter geometry near iþ in the shaded region of the
right panel of Fig. 2. Similarly, there are results [50]
suggesting that there exists a nonlinear neighborhood of
the Schwarzschild-de Sitter space-time in which Iþ

Loc and
I−
RelnI−

Loc are sufficiently long, and Iþ admits radiation.
Interestingly, in these space-times, the asymptotic geometry
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near Iþ will not be that of Kerr-de Sitter because the
magnetic part of the Weyl tensor will not vanish there
[1,50]. Thus, the first steps needed to establish that the class
CΛisol of space-times introduced in Sec. II C admits an
infinite dimensional family of radiating solutions have
been taken. It would be very helpful to use the techniques
already developed to solve the characteristic initial value
problem to establish global existence (for small data) in the
future light cone of i− of the right panel of Fig. 2. The
characteristic initial data would be specified on the null
boundary of this region, such that it is trivial on I−

Rel, and
nontrivial on the rest of the boundary (that consists of the
white and black hole horizons). Triviality on I−

Rel will
ensure that I−

Rel will continue to serve as the relevant
scri-minus also for the radiating solution, and the nontrivial
data on the rest of the null boundary will mimic the
radiation that would be emitted by a more realistic compact
binary in the shaded portion of the right panel of Fig. 2. To
summarize, the setup introduced in Sec. II C suggests
generalizations of analytical approximation methods along
the lines of [39,40], more numerical simulations along the
lines of [48,49], and geometric analysis investigations to
extend results of [25,50].
In Sec. IV we found that the symmetry groupG of I−

Rel is
analogous to the BMS groupB at I−

o in asymptotically flat
space-times: both are semidirect products of an Abelian
group S of supertranslations with a finite dimensional
group. However, there is also an interesting twist that
captures an essential signature of a positive Λ. While on I−

o
the finite dimensional group is just the 6 dimensional
Lorentz group L, on I−

Rel the finite dimensional group is the
7 dimensional G7, which is a (trivial) central extension of
L:G7 ¼ T 1 ⊗ L. The extra one dimensional subgroup T 1

of G7 is the time-translation group selected by the canoni-
cal nonextremal WIH structure on I−

Loc, which has no
analog on I−

o . We compared and contrasted in detail the
structures of I−

o and I−
Rel, and of the BMS groupB and the

symmetry group G. The no-incoming radiation condition
endows I−

o with a 4 parameter family of preferred cross
sections, called the good cuts. By contrast, I−

Rel is endowed
with a 1-parameter family of good cuts. Thus in contrast
with I−

o , we have a preferred rest frame on I−
Loc (which

extends to I−
Rel). Finally, while G7 initially arises as the

quotient,G7 ¼ G=S, there is a canonical embedding ofG7

into G that leaves every good cut of I−
Loc invariant. By

contrast, in the Λ ¼ 0 case, there is no Lorentz subgroup L
of the BMS group B that leaves any 1-parameter family of
good cuts on I−

o invariant.
Subsequently, in the main text we focused on I−

Loc and
this canonical G7 subgroup of G, leaving the further dis-
cussion of the supertranslation subgroup S to Appendix B.
In Sec. V we discussed the notion of massM of I−

Rel and of
charges Et and QK associated with the time-translation
subgroup T 1 and the Lorentz subgroup L of G7. The
definition of mass was motivated by a thought experiment

that extracted M from the (tidal acceleration or) geodesic
deviation of a suitable set of test particles. The definition
of charges was arrived at using a covariant phase space
ΓCov tailored to I−

Loc. Specifically the charges are the
Hamiltonians that generate canonical transformations on
ΓCov, induced by the action of time-translation and Lorentz
vector fields in the Lie algebra g7 of G7. Thus, the mass M
and the charge Et associated with the time-translation
symmetry group T 1 were arrived at from entirely different
considerations, whence their initial expressions appear
completely unrelated: M arises as the integral of a compo-
nent of the Weyl curvature over a 2-sphere cross section of
I−
Loc, while Et arises as a function of the area-radius of this

cross section. Yet, because of a differential geometric
identity, and the WIH structure of I−

Loc, the two seemingly
unrelated expressions are equal to each other. In Kerr–de
Sitter space-times, not only is the massM positive, but it is
also bounded above. From general physical considerations,
we would expect that M would be positive for all space-
times under consideration. One approach to establishing
positivity in the case when the only past boundary of MLoc
is I−

Loc would be to use a spinorial argument a la
Witten [51].
Perhaps the most striking difference from the past

boundary I−
o in the Λ ¼ 0 case is the dual role played

by I−
Loc (and I

−
Rel). On the one hand I

−
Loc is analogous to I

−
o

and in fact goes over to I−
o as Λ → 0 in examples where

there is a clear-cut limiting procedure. On the other hand it
is also a nonextremal WIH.10 Thanks to this dual role
of I−

Loc, we could go back and forth between the two
seemingly different sets of structures. For example, the
symmetry group G resulted by examining the structure of
I−
Rel from the perspective of I−

o , while the preferred
foliation and the symmetry group G7 on I−

Loc arose from,
the structure I−

Loc inherits from being a nonextremal WIH.
Similarly, we treated I−

Loc as the analog of I−
o to fix the

normalization of the time-translation in T 1 and also to
introduce the definition (5.11) of the mass M in terms of
ReΨ2. On the other hand, we used the fact that it is a
nonextremal WIH to define horizon charges—energy Et
and angular momentum QK—and express M and Et using
the area radius RðcÞ through Eqs (5.12) and (5.14); these
expressions are simply not available at I−

o .
Indeed, because I−

Rel and I−
Loc lie, so to say, “in the

middle of space-time” rather than at an infinite separation
from sources, a priori it was not clear that it would have
any of the structures that are needed to extract physics of
the isolated system in a gauge invariant fashion. The fact
that this is possible can be traced back directly to the fact
that I−

Rel and I−
Loc have the structure of nonexpanding

horizons. Finally, let us consider Iþ
Loc. First results reported

10By contrast, I−
o is an extremal WIH, and that too from the

perspective of the conformally completed space-time, not the
physical one.
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in [24] indicate that Iþ
Loc will also have a dual structure.

To describe properties of gravitational radiation across
Iþ
Loc, one can emphasize its similarity with Iþ

o , while to
speak of symmetries and corresponding charges, one can
endow it with a “fiducial” structure of a WIH that is
“dragged” from ioLoc. Thus, constructions introduced in this
paper and the results that they led to serve as points of
departure to obtain a gauge invariant characterization of
gravitational waves at Iþ

Loc (and/or I
þ), and to study their

properties.
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APPENDIX A: THE KERR–DE SITTER
SPACE-TIME

In this Appendix we will summarize the relevant
geometrical structures of the Kerr–de Sitter space-time
and their relation to our discussion of symmetries and
conserved quantities in Secs. IVand V. We will find that the
geometry is much more intricate than in the two examples
discussed in Sec. III. In particular, there is an unforeseen
complication: it is no longer transparent which of the
2-parameter family of Killing fields should be identified as
the time-translation symmetry—the analog of Ta in the
Schwarzschild–de Sitter space-time.
The Kerr–de Sitter metric is generally written in the

Boyer-Lindquist coordinates as [52,53]:

gabdxadxb ≡ ds2 ¼
�
a2sin2θ

�
1þ a2

l2
cos2θ

�
− ΔðrÞ

�
dt2

ðr2 þ a2cos2θÞð1þ a2

l2Þ2

þ 2

�
ΔðrÞ − ðr2 þ a2Þ

�
1þ a2

l2
cos2θ

��
asin2θdtdφ

ðr2 þ a2cos2θÞð1þ a2

l2Þ2

þ r2 þ a2cos2θ
ΔðrÞ dr2 þ r2 þ a2cos2θ

1þ a2

l2 cos
2θ

dθ2

þ
�
ðr2 þ a2Þ2

�
1þ a2

l2
cos2θ

�
− a2sin2θΔðrÞ

�
sin2θdφ2

ðr2 þ a2cos2θÞð1þ a2

l2Þ2
; ðA1Þ

where

ΔðrÞ ¼ −
r4

l2
þ
�
1 −

a2

l2

�
r2 − 2Gmrþ a2: ðA2Þ

Since ΔðrÞ is a polynomial of order 4, it has four roots. The
Boyer-Lindquist chart fails at the three positive roots r∓, rc
(with r− ≤ rþ ≤ rc) of ΔðrÞ (the fourth root is negative).
These correspond, respectively, to the inner black hole (or,
the Cauchy) horizon, the outer black hole (or, the event)
horizon, and the cosmological horizon, shown in Fig. 3.
Since the cosmological constant Λ is positive, space-time
boundaries I� in the Penrose conformal completion are of
course spacelike. I−

Rel, shown as a (blue) bold-faced line, is
the future event horizon of i− that connects i− on I− with io

on Iþ (exactly as in Figs. 1 and 2). It is again a
nonexpanding horizon, ruled by complete null geodesics.
For the single, rotating black hole under consideration, the
relevant portion MRel of space-time is the causal future of
i−. This structure implies that Kerr-de Sitter space-time

belongs to the class CΛisol of space-times introduced in
Sec. II C. The local region MLoc of space-time is inter-
section of the causal future of i− with the causal past of iþ,
depicted in the figure by the shaded region, bounded by
I−
Loc and r ¼ rþ in the past and r ¼ rþ and Iþ

Loc in the
future.
In the Λ ¼ 0 case, Kerr black holes are characterized

just by the two parameters m, a with m > 0 and jaj ≤ Gm;
and we have the extremal Kerr solution at Gm ¼ jaj for
which the inner and outer black hole horizons coincide
and the surface gravity vanishes. With Λ > 0 the situation
is much more complicated because now the solution
carries three parameters, m; a;l and three horizons. All
three coincide if Gm ¼ 4lðð2= ffiffiffi

3
p Þ − 1Þ3=2 ≈ 0.24l and

a ¼ ð2 − ffiffiffi
3

p Þl ≈ 0.27l. Note that in this case Gm < a.
Next, we have the possibility that only two of the three
horizons coincide: the two black hole horizons can coincide
(as in the extremal Kerr for Λ ¼ 0), the cosmological
horizon remaining distinct, lying outside the common black
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hole horizon; or, the outer black hole horizon can coincide

with the cosmological horizon, leaving the inner horizon

distinct. The parameter values at which these possibilities
are realized involve rather complicated relations between
m; a;l.11

As in the Λ ¼ 0 case, it is clear from inspection of
Eq. (A1) that the space-time admits two commuting Killing
fields ta and φa. They lead us to the physical notions of
mass and angular momentum. From the perspective of I−

Loc
developed in Secs. III–V, the relevant symmetry to define
the mass at I−

Loc (or I
−
Rel) is generated by the Killing field

that is: (i) a null normal la to I−
Loc, (ii) vanishes at i

o
Loc, and,

(iii) normalized such that the surface gravity κl is given by
κl ¼ ð1=2RðcÞÞð1 − 3R2

ðcÞ=l
2Þ. (See Remark 1 at the end of

Sec. III B.) Here RðcÞ is the area-radius of the cosmological
horizon I−

Rel:

R2
ðcÞ ¼

a2 þ r2ðcÞ
1þ a2

l2
: ðA3Þ

Therefore, we are led to seek the linear combination of
the two Killing fields that coincides with la on I−

Rel.
Now, motions generated by both Killing fields leave the
local region MLoc of the Kerr space-time invariant, whence
they leave Iþ

Loc; I
−
Loc and ioLoc invariant. Hence condition

(ii) is satisfied by every linear combination of ta and φa. In
the Schwarzschild–de Sitter case, the restriction of ta to
I−
Loc is null, whence it satisfies condition (i) and we only

had to rescale it so it has the desired surface gravity on I−
Rel

to define mass. However, if a ≠ 0, the vector field ta is
spacelike on I−

Rel. The vector field which is proportional to
la is given by the following linear combination of the two
Killing fields

ta ¼ Kðta þ Ωcφ
aÞ with

Ωc ¼
a

ðl2 þ a2Þ
�
1þ l2

R2
ðcÞ

�
1 −

R2
ðcÞ
l2

��
; ðA4Þ

where K is a nonzero constant that, as remarked above, can
vary from one Kerr–de Sitter solution to another, i.e., can
depend on m and a. The Killing field ta has two interesting
properties:
(1) It is timelike in a (large) neighborhood of I−

Loc
within MLoc; up to constant rescalings, it is the only
Killing field in the Kerr–de Sitter space-time with
this property.

(2) Irrespective of the choice of the constant K, its
surface gravity on I−

Rel is nonzero. Therefore, the
equivalence class ½ta� endows I−

Rel with the structure
of a nonextremal WIH structure. It then follows that
½ta�must vanish on one and only one cross section of
I−
Rel. That cross section turns out to be precisely i

o
Loc.

This implies that, irrespective of the choice of the
nonzero constant K, the affine parameter v of the
restriction of ta to I−

Rel runs from −∞ to ∞ on I−
Loc

as well as on Iþ
Loc.

Since surface gravity is nonzero, we can simply fix the
constantK such that the surface gravity of ta has the desired
value κl. With this choice, ta satisfies all three desired
conditions. Note that ta is the precise analog of the
standard time-translation Killing vector ta in Kerr
space-time in the following sense. First, ta is null on I−

Loc ∪
Iþ
Loc just as the t

a is on I−
o ∪ Iþ

o . Second, I−
Loc and I

þ
Loc are

both complete with respect to the affine parameter of ta, just
as I−

o and Iþ
o are complete with respect to the affine

parameter of ta in the Λ ¼ 0 case. Finally, the neighbor-
hood of I−

Loc ∪ Iþ
Loc in which ta is timelike is completely

analogous to the neighborhood of I−
o ∪ Iþ

o in which ta is
timelike—both extend up to the ergoregion that surround
the black hole horizons.
Since ta is the Killing field that defines the mass in

Kerr space-time with Λ ¼ 0 case, it is natural to use la

to define mass at I−
Loc in the Λ > 0 case. This is exactly

what our general procedure of Sec. V leads us to do.

FIG. 3. Kerr-de Sitter space-time. The future and past boun-
daries, I�, of the asymptotic region are spacelike because we
have a positive Λ. The future event horizon I−

Rel of i
− intersects

the past cosmological horizon of iþ in a 2-sphere ioLoc just as in
Figs 1 and 2. The vertical wiggly lines depict the singularities. We
now have three horizons separating the singularity from the
asymptotic regions near Iþ: the inner black hole horizon r ¼ r−,
the outer black hole horizon r ¼ rþ and the cosmological r ¼ rc.
As in Figs. 1 and 2, black hole and cosmological horizons serve
as the past and the future boundaries of the (shaded) local space-
time region MLoc, the intersection of the causal future of i− with
the causal past of iþ. The full past boundary I−

Rel is the extension
of I−

Loc all the way to spatial infinity io, the “right end” of Iþ.

11For example, for there to be three distinct horizons, we
must have m− < m < mþ where m∓ are functions of a;l,
given by m∓ ¼

ffiffiffiffiffi
A�

p
8l2 ðA� þ 4B�Þ with A� ¼ ð8a2l2Þ=ðl2 − a2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl2 − a2Þ2 − 12a2l2
p

Þ, and B� ¼ l2−a2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2−a2Þ2−12a2l2

p
2

.
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The resulting mass (determined byΨ2 on I−
Loc as in Sec. V)

is then given by:

M ¼ RðcÞ
2G

�
1 −

R2
ðcÞ
l2

�
≡m

2
64
�
1þ a2

l2 − a2

R2
ðcÞ

	1
2

ð1þ a2

l2Þ2

3
75: ðA5Þ

In the Schwarzschild–de Sitter space-time, we have 0 ≤
M ¼ m ≤ ðl=3 ffiffiffi

3
p Þ. In Kerr–de Sitter space-time, on the

other hand, M < m if a ≠ 0, and for a given value of
the parameter m, the mass M decreases as a increases.
For the full Kerr–de Sitter family we again have
0 ≤ M ≤ l=ð3 ffiffiffi

3
p Þ; the minimum value,M ¼ 0, is reached

for de Sitter space-time m ¼ a ¼ 0, and numerical eval-
uations show that the maximum value M ¼ l=ð3 ffiffiffi

3
p Þ is

again reached at the Nariai solution.
Results of Sec. V also enable us to calculate the angular

momentum. Recall first that the rotational Killing fields are
normalized by asking that their affine parameter should run
in the interval ½0; 2πÞ. Therefore, the presence of a positive
cosmological constant does not introduce any complica-
tions in identifying the Killing field with which to associate
angular momentum: It is just φa. The angular momentum
Jφ, given by setting Ka ¼ φa in Eq. (5.18), can now be
expressed as:

Jφ ¼ −
Ma�

1þ a2

l2 −
a2

R2
ðcÞ

	1
2

¼ −
ma

ð1þ a2

l2Þ2
: ðA6Þ

In the Schwarzschild–de Sitter space-time we have a ¼ 0
whence Jφ vanishes, as it must. For the full Kerr-de Sitter
family, in the limit Λ → 0 we have l → ∞ and RðcÞ → ∞,
whence we obtain Jφ → −Ma, as in the Kerr space-time
withΛ ¼ 0. Thus, both the massM and angular momentum
Jφ reduce to the expected results in the two independent
limits, a → 0 and Λ → 0. For the full Kerr–de Sitter family,
Eqs. (A5) and (A6) are simply the evaluations of
Hamiltonians, discussed in Sec. V, that generate motions
along ta and φa for all permissible values of m; a;l.
We will conclude with a discussion of how these notions

of mass and angular momentum are related to those defined
at I�. In the Λ ¼ 0 case, the Killing vector field ta becomes
unit and hypersurface orthogonal at infinity. Since it defines
a time-translation in an asymptotically nonrotating frame, we
associate mass with ta. But in the Λ > 0 case, the physical
norm of the Killing field ta diverges at infinity and it fails to
be hypersurface orthogonal even asymptotically. The com-
bination of these two facts create an unforeseen complication
in defining mass of Kerr–de Sitter space-time at I�.
More precisely, we have the following. In the

Schwarzschild–de Sitter space-time (which can again be
obtained by setting the parameter a ¼ 0 in the metric), ta is
hypersurface orthogonal. Therefore, in the Schwarzschild
de Sitter space-time, motions along ta can be regarded as
time-translations in the asymptotic frame that is nonrotating

and we can use it to define mass [1].12 In the Kerr-de Sitter
case, ta is not hypersurface orthogonal but one may hope
that it would become hyperspace orthogonal asymptoti-
cally, as in the Kerr solution. To investigate if this happens,
let us carry out a conformal completion of the Kerr-de Sitter
space-time usingΩ ¼ 1=r as the conformal factor. Then the
conformally rescaled metric ĝab ¼ Ω2gab is smooth at the
boundaries I�. The intrinsic 3-metric q̂ab on the spacelike
boundaries I� of the conformally completed space-time is
given by [1]:

q̂abdxadxb ¼
1

ð1þ a2

l2 Þ2
dt2 −

2asin2θ

ð1þ a2

l2 Þ2
dtdφ

þ l2

1þ a2

l2 cos
2θ

dθ2 þ l2sin2θ

1þ a2

l2
dφ2; ðA7Þ

Thus, ta fails to be hypersurface orthogonal even on I�.
There is a Killing field, unique up to constant rescalings,
that is hypersurface orthogonal at I�, but it is given by a
(constant) linear combination of ta and ϕa:

t̃a ¼
�
ta þ a

a2 þ l2
φa

�
; ðA8Þ

It is this t̃a that generates time-translations (in the generalized
sense of footnote 12) in the frame that is nonrotating at
infinity. In theΛ ¼ 0 case, one fixes the rescaling freedom in
the analog of t̃a by requiring that the norm of the vector field
(with respect to the physical metric) should tend to −1 at
infinity. In the Λ > 0 case, the norm diverges as one
approaches I�. Therefore, without a new, extra input, we
cannot eliminate the freedom to rescale t̃a by a constant, and
furthermore this constant can depend on m and a, i.e., can
vary from one phase space point to another. As far as we
know the issue of finding the “correct” normalization has not
been discussed in the Kerr–de Sitter case. However, in the
case of Kerr anti–de Sitter space-times, this freedom is
generally fixed by requiring that the first law of black hole
mechanics should hold (see, e.g., [54]). Although there are
no cosmological horizons in Kerr anti–de Sitter space-time,
the main ideas can be carried over also to the cosmological
horizon I−

Loc in the Kerr–de Sitter family. The required
rescaling leads us to rescale t̃a as:

t̂a ¼
�
1þ a2

l2

�
t̃a; so that la ¼ t̂a þ Ω̂cφ

a

with Ω̂c ¼
a

R2
ðcÞ

�
1 −

R2
ðcÞ
l2

�
; ðA9Þ

12This interpretation holds only in a generalized sense, since ta
is spacelike on I rather than timelike as in the Λ ¼ 0 case. But
this generalization is inescapable because I� are themselves
spacelike, and every space-time Killing field must be tangential to
I�, whence spacelike.
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is a null normal to I−
Loc. Thus, the “correct” expression of

energy is given by the “charge” associated with the time-
translation Killing field, t̂a; it is now the Λ > 0 analog of ta

in the Λ ¼ 0 case. One can use the structure at I� to define
this charge Qt̂a , and angular momentum Qφ associated with
φa for the Kerr–de Sitter family[1]:

Qt̂a ¼
m

ð1þ a2

l2Þ2
≡ M�

1þ a2

l2 −
a2

R2
ðcÞ

	1
2

and

Qφ ¼ −
ma

ð1þ a2

l2Þ2
≡ Jφ: ðA10Þ

(These are direct analogs of the mass and angular momen-
tum used in the discussion of the first law in Kerr anti–de
Sitter space-time [54].) Then we have the familiar-looking
first law: δQt̂a ¼ ð1=8πGÞκlδA − Ω̂δQφ, where κl is the
surface gravity of the null normal la and A, the area of any
2-sphere cross section of I−

Loc.
This discussion brings out the fact that the parametersm,

a that enter the metric are not as directly related to the mass
and angular momentum as they are in the Λ ¼ 0 case,
irrespective of whether one defines the mass—or, the
charge associated with the time-translation symmetry—
using structures available at I−

Loc, as in our main text, or
at Iþ.
Remarks.—
(1) As we saw in Sec. V, a first law of horizon

mechanics holds on I−
Loc for the entire class CΛisol

of space-times considered in this paper: δM ¼
ð1=8πGÞκlδA where A is again the area of any
2-sphere cross section of I−

Loc. In particular, the law
holds for our Kerr–de Sitter family and, as we saw,
M is associated with the time-translation generated
by the Killing field ta that coincides with la on I−

Loc.
As we just discussed, in the Kerr–de Sitter family,
one can use the Killing vectors, define charges
associated with them using structures at I�, and
arrive at another first law, with a more familiar
form, δQt̂a ¼ ð1=8πGÞκlδA −ΩδQφ.

(2) The emergence of two distinct first laws may seem
surprising at first. But this is in fact a general feature
of the WIH framework, where we have an infinite
family of first laws, each associated with a (so-called
“permissible”) vector field that generates horizon
symmetries [19–21]. Furthermore, there is an inter-
esting interplay with the Hamiltonian theory: a first
law emerges if and only if the 1-parameter family of
diffeomorphisms generated by these vector fields
induces a Hamiltonian flow on the covariant phase
space (of all solutions to field equations that admit a
WIH as a boundary).
The salient differences in the two distinct first

laws we discussed are the following: (i) the null

normal la used in the first version is distinct from
the null normal la used in the second. They are
proportional to each other on I−

Loc and they both
vanish on ioLoc. However, the proportionality factor
varies from one Kerr–de Sitter space-time to another,
whence κl ≠ κl. (ii) In the first version, mass M is
the charge associated with ta (which is null on I−

Loc)
and evaluated using fields at I−

Loc. In the second
version, the charge Qt̂a is associated with the vector
field t̂a (which is spacelike on I−

Loc) and evaluated
using fields on I� [1]. (iii) Finally, the angular
velocities–Ωc in the first version and Ω̂c in the
second version—are also different.

(3) General space-times in the class CΛisol considered in
this paper do not admit any Killing field. Yet, as we
saw in section V, structure naturally available on
I−
Loc enables us to introduce a notion of mass (and an

angular momentum vector) because I−
Loc is analo-

gous to I−
o in the asymptotically flat case. The fact

that there is also a first law is an added bonus arising
from the fact that, I−

Loc is also a WIH.

APPENDIX B: MISCELLANEOUS ISSUES

In this Appendix we introduce the Newman-Penrose
tetrads and specify the corresponding components of
various geometric fields used in the main text; prove a
key identity (5.4) used in Sec. V; and discuss conserved
charges associated with the generators of the symmetry
group G.

1. The Newman-Penrose tetrads

Let la denote a null normal to I−
Rel. Then, given any

2-sphere cross section C of I−
Rel we introduce three vector

fields na, ma and m̄a on C to obtain a Newman Penrose
null tetrad: na is the other null normal to C satisfying
gablanb ¼ −1; ma is a complex null vector field tan-
gential to C; and m̄a, its complex conjugate, such that
gabmam̄b ¼ 1. Thus, the only nonzero scalar products
between these tetrad vectors are lana and mam̄a.
Generally we need these tetrad vectors only on C but they
can also be extended away from C by demanding that they
be parallel transported along la. Occasionally we special-
ize la so that it belongs to the canonical equivalence class

of normals ½l
∘ a� on I−

Rel (where l
∘ a

∼ l
∘ 0a

iff l
∘ 0a ¼ cl

∘ a
where

c is a positive constant), or to the canonical null normal la

on I−
Loc, selected by the cross section ioLoc and the

normalization condition (motivated by the Kerr-de Sitter
solution).
Geometrical fields we used that refer to this null tetrad

are: the intrinsic 2-metric and the area 2-form on C:

q̄ab ¼ 2mðam̄bÞ and ϵ̄ab ¼ 2m½am̄b�; ðB1Þ
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the expansion and the shear of la and na

ΘðlÞ ¼ q̄ab∇albð≕ − 2ρÞ; and

ΘðnÞ ¼ q̄ab∇anbð≕ 2μÞ; ðB2Þ

σðlÞab ¼
�
q̄caq̄db −

1

2
q̄abq̄cd

�
∇cldð≕ − σm̄am̄bÞ;

σðnÞab ¼
�
q̄caq̄db −

1

2
q̄abq̄cd

�
∇cndð≕ λmambÞ; ðB3Þ

and six components of the Weyl tensor, given by

Ψ0 ¼ Cabcdlamblcmd; Ψ1 ¼ Cabcdlamblcnd;

and Ψ2 ¼ Cabcdlambm̄cnd: ðB4Þ

In Eqs. (B2) and (B3) the scalars (ρ, μ, σ, λ) in parenthesis
refer to the commonly used Newman-Penrose notation for
spin coefficients. Finally, because I−

Rel is a nonexpanding
horizon (NEH), Ψ0 and Ψ1 vanish identically and the real
and imaginary parts of Ψ2,

ReΨ2 ¼
1

2
Cabcdlanblcnd and

ImΨ2 ¼
1

2
⋆Cabcdlanblcnd ðB5Þ

are insensitive to the choice of the null normal la and na to
the cross section C.

2. Derivation of Eq. (5.4)

Fix a space-time ðM; gabÞ and a 2-dimensional spacelike
submanifold S in M. Denote by q̄ab the intrinsic metric on
S. There is a general identity that relates the 4-dimensional
curvature Rabcd of gab to the intrinsic curvature of S which
is completely determined by its scalar curvature 2R. This is
the 2þ 2 analog of the more familiar Gauss equation that
relates curvature of gab with that of the induced metric on a
3-dimensional submanifold, which leads to the familiar
Hamiltonian constraint of general relativity.
Let Va be a vector field inM that is tangential to S. Then,

the action of the intrinsic (torsionfree) derivative operator
D̄a on S, compatible with q̄ab is related to the action
of the (torsionfree) derivative operator ∇a on M, com-
patible with gab via: DaVb ¼ qma qnb∇mVn. Using this
fact and the definition of the curvature tensor, we can
relate the Riemann tensor 2Rabcd of q̄ab with the Riemann
tensor Rabcd of gab and the extrinsic curvatures of S in M.
These extrinsic curvatures can be expressed conveniently
using any two null normals la and na to S such that
gablana ¼ −1. Then the extrinsic curvature terms can be
expressed in terms of the shear and expansion of the null
vectors la and na and one obtains:

q̄acq̄bdRabcd ¼ 2Rþ ΘðnÞΘðlÞ − 2σðnÞab σ
ðlÞ
cd q̄

acq̄bd: ðB6Þ

We can now decompose the 4-dimensional Riemann tensor
in terms of its Weyl and Ricci parts to simplify the left side:

q̄acq̄bdRabcd ¼ −2Cabcdlanblcnd þ 2Gablanb −
1

3
R

ðB7Þ

where as usualGab denotes the Einstein tensor. The last two
equations are just differential geometric identities that hold
on any spacelike 2-manifold S in any 4-dimensional space-
time ðM; gabÞ. Let us now use Einstein’s equation Gab þ
Λgab ¼ 8πGTab to arrive at an equation that relates the
intrinsic curvature 2R of q̄ab to ReΨ2, Λ, Tab and the
extrinsic curvatures:

2R ¼ −4ReΨ2 þ
2

3
Λþ 8πG

�
2Tablanb þ 1

3
T
�

þ 2σðnÞab σ
ðlÞ
cd q̄

acq̄bd − ΘðnÞΘðlÞ: ðB8Þ

Note that the right side is insensitive to the choice of null
normals la and na to S so long as they satisfy lanbgab¼−1.
This local equality holds for any 2-dimensional spacelike
surface S in a solution to Einstein’s equation with a
cosmological constant Λ. Let us now restrict S to be a cross
section of I−

Rel. Because I−
Rel is an NEH, ΘðlÞ ¼ 0 and

σðlÞab ¼ 0. Hence the last two terms in (B8) vanish and we
obtain Eq (5.4) used in the main text.

3. The symmetry group G on I −
Rel

and conserved charges

In Secs. III and IV we consideredMRel as well asMLoc as
portions of space-time of interest. Their past boundaries are
I−
Rel and I−

Loc, respectively. The symmetry group G of I−
Rel

is infinite dimensional. However, that of the portion
I−
Loc–or its complement, I−

RelnI−
Loc–is just a seven

dimensional subgroup G7 of G. In order to make contact
with I−

o in the asymptotically flat case, in Sec. V we
focused on I−

Loc and introduced the charges Et correspond-
ing to the time-translation subgroup T 1 of G7, and QK
corresponding to the Lorentz subgroup L. They arose as
Hamiltonians generating the action of these groups on the
covariant phase space ΓCov, tailored to the natural WIH
structure induced on I−

Loc by the null normals ½la� (selected
by ioLoc). We will now return to I−

Rel and seek charges Qξ

associated with the generators ξa of G.
Recall from Eq. (4.6) that, if we choose a fiducial null

normal l
∘ a

in the equivalence class ½l
∘ a� that I−

Rel is naturally

equipped with, and an affine parameter v
∘
of this l

∘ a
, then

any ξa in the Lie algebra g of G can be expressed as
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ξa ¼ ½fðθ;φÞ þ κv
∘ �l

∘ a þ K̄a ¼ Va þ K̄a: ðB9Þ

Here, in the first step, κ is a constant, and K̄a is tangential to
the vo ¼ const cross sections and a conformal Killing field

of the round 2-sphere metrics q̄
∘
ab thereon, and in the

second step we have simply grouped together the first two
vector fields which are vertical. Recall that on I−

Loc, we
have a canonical foliation. If we choose the affine param-

eter v
∘
so that v

∘ ¼ const 2-spheres used in (B9) are the
leaves of this preferred foliation, then the vector fields

ðκv∘Þl
∘ a þ K̄a span a sub-Lie-algebra g7 of g that we used to

obtain the charges Et and QK (in Secs. V B 2 and V B 3).
We will now introduce a natural extension of that procedure
to general ξa of the form (B9).
Because we are now interested in I−

Rel as a whole, let us
drop reference to ioLoc (and therefore to I−

Loc) and let the

foliation be general. Consider the rotation 1-form ω
∘
a

defined by Dal
∘ b ¼ ω

∘
al
∘ b

(which is associated with the

full equivalence class ½l
∘ a� since it is insensitive to constant

rescalings of l
∘ a
). Since l

∘ a
provides an extremal WIH

structure on I−
Rel, we have: ω

∘
al
∘ a ¼ 0 and L

l
∘ω
∘
a ¼ 0.

Therefore ω
∘
a is the pull-back to I−

Rel of a 1-form ω̃
∘
a on

the space Ĩ−
Rel of integral curves of l

∘ a
. By the very

definition of l
∘ a
, the 1-form ω̃

∘
a is divergencefree on Ĩ−

Rel
(with respect to the metric q̃ab thereon). Hence, the pull-

back ω̄
∘
a of ω

∘
a to the leaves of our foliation is also

divergencefree. Therefore we repeat the procedure used
in Sec. V B 3 to defineQK̄. We first note that, being a vector

field tangential to the 2-spheres v
∘ ¼ const, we can expand

K̄a as

K̄a ¼ ϵ̄abD̄bf̄ þ q̄abD̄bḡ ðB10Þ

for some functions f̄ðθ;ϕÞ and ḡðθ;ϕÞ, where q̄ab and ϵ̄ab
are the pull-backs to the leaves of the foliation of the
physical metric qab and the area 2-form ϵab on I−

Rel.
13

Following the procedure used in Sec. V B 3 we are led
to express QK̄ as an integral over a leaf C of the foliation:

QK̄ ¼ −
1

8πG

I
C
ω̄
∘
aK̄ad2V

¼ 1

8πG

I
C
f̄ϵ̄abD̄aω̄

∘
bd2V

¼ −
1

4πG

I
C
f̄ImΨ2d2V; ðB11Þ

where in the second step we have used (B10) and carried
out an integration by parts, and in the third step used (5.3).
Although we have expressed QK as an integral over a
2-sphere v ¼ vo, the final result is independent of this
choice. Indeed, since ξa projects down unambiguously to
the base space S̃, QK̄ can be expressed entirely using an
integral on the base space S̃ without reference to any
foliation at all. The angular momentum charges on I−

Rel are
the same as those we obtained in Sec. V B 3 on I−

Loc.
Let us next consider the vertical part Va ¼ ðfðθ;ϕÞ þ

κv
∘Þl

∘ a
of ξa. To begin with let us suppose that κ is nonzero.

Since Va is a null normal to I−
Rel with surface gravity κ,

from now on we will replace κ with κV . Since κV is a
nonzero constant, it follows that Va endows I−

Rel with
the structure of a nonextremal WIH. (As expected, Va

vanishes precisely at one cross section of I−
Rel, given by

v
∘ ¼ −ð1=κVÞfðθ;ϕÞ; it is a complete vector field on either
side of this cross section; and is future directed on one side
and past directed on the other.) Therefore, we can use the
covariant phase space ΓCov that is available for space-times
admitting a nonextremal WIH as a boundary [19]. The
issue then is whether the diffeomorphism generated by a
space-time vector field preserves the symplectic structure;
if it does, the Hamiltonian generating the corresponding
canonical transformation would provide the charge QV .
However, as has been explained in detail in the literature,
there is a subtlety: we need to specify what we mean by the
“same” vector field in different solutions of Einstein’s
equations that constitute ΓCov. This step can be carried out
by specifying the surface gravity of the vector field Va as a
function of the horizon area. Indeed, we used this strategy
on I−

Loc by encoding in surface gravity the “correct
normalization” (which in turn was determined by taking
the Λ → 0 of the Kerr family). One can argue that the same
strategy should be used in the general case. Then, the same
arguments that were used in Sec. V B 2 lead us to the
Hamiltonian

EV ¼ −
1

8πG

I
C
RðcÞCabpqlanbVpnqd2V

≡ −
κV

4πGκl

I
C
RðcÞReΨ2d2V ðB12Þ

where, as before κl ¼ ð1=2RðcÞÞð1 − 3ðR2
ðcÞ=l

2ÞÞ. (The

only difference between (5.15) of Sec. V B 2 and (B12)
is that la is now replaced by Va.)

13Note that each ξa admits a natural projection K̃a to the

2-sphere S̃ of generators of I−
Rel since L

l
∘ ξa ∝ l

∘ a
. The natural

diffeomorphism between S̃ and any v
∘ ¼ const 2-sphere sends K̄a

to K̃a and vice versa. Therefore we can express K̃a as
K̃a ¼ ϵ̃abD̃bf̃ þ q̃abD̃bg̃, and use pull-backs of f̃ and g̃ as f̄
and ḡ in (B10). Then we have L

l
∘ f̄ ¼ 0 and L

l
∘ ḡ ¼ 0, whence f̄; ḡ

are functions only of ðθ;ϕÞ.
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So far we have restricted ourselves to the vertical
vector fields Va for which κV ≠ 0. However, because the
charge EV is a linear map from the space of vertical
vector fields V to R, EV of (B12) admits a unique

extension to all V. Suppose Va ¼ ðfðθ;ϕÞ þ κv
∘Þl

∘ a
and

V 0a ¼ ðf0ðθ;ϕÞ þ κv
∘Þl

∘ a
, we have EV ¼ EV 0 , with κ ≠ 0.

Then the above prescription can be applied to both Va and
V 0a, whence by linearity we arrive at a rather surprising

result that EV ¼ 0 if Va ¼ fðθ;ϕÞl
∘ a
, i.e., if Va is any

supertranslation. Therefore, from the above Hamiltonian
perspective, supertranslations have to be regarded as
“gauge transformations” and the space of genuine sym-
metries is then the quotient G=S ¼ G7.
This perspective is natural from the WIH framework

where the Hamiltonian framework is based on nonextremal
WIH structures. On the other hand, I−

Rel is naturally
endowed with an extremal WIH structure through its

equivalence class of null normals ½l
∘ a� and there may well

be other perspectives that emphasize the extremal WIH
structures. Indeed, as pointed out in Remark 3 at the end of
section V B 1, the notion of mass M can be introduced
using these extremal null normals. The first equality in
(B12) suggests a natural strategy to define supermomenta.

Suppose we could select a preferred l
∘ a

∈ ½l
∘ a�. Then, given

a supertranslation Sa ¼ fðθ;ϕÞl
∘ a
, using Eq. (B12) as

motivation we could set

QS ¼
1

8πG

I
C
RðcÞCabpql

∘ a
n
∘ bSpn∘ qd2V

¼ 1

8πG

I
C
fðθ;ϕÞRðcÞCabpql

∘ a
n
∘ bl

∘p
n
∘ qd2V

≡ 1

4πG

I
C
fðθ;ϕÞReΨ2d2V; ðB13Þ

so that fðθ;ϕÞ serves as a weighting function in the last
step. Indeed, this is precisely how supermomentum is
defined on I−

o in the asymptotically flat context (in absence
of incoming radiation): Given any Bondi conformal frame,

we obtain a preferred null normal l
∘ a

(rather than an

equivalence class [l
∘ a
]) and supermomentum is defined

precisely as the limit of (B13) as C approaches a cross

section of I−
o . (This l

∘ a
is the limit to I−

o of a unit time-
translation.) Thus, if there were a physically motivated and/
or mathematically natural procedure to select a preferred

l
∘ a
, on I−

Rel we would at least have a candidate expression.
We could then investigate if it arises as a Hamiltonian
generating the canonical transformation induced by the
supertranslation Sa. But for this strategy to work, we do

need a preferred l
∘ a

∈ ½l
∘ a�. For, under a constant rescaling

l
∘ a

→ kl
∘ a
, we have n

∘ a → ð1=kÞn∘ a and fðθ;ϕÞ →
ð1=kÞfðθ;ϕÞ, whence the right hand side of (B13) would
be multiplied by 1=k, giving us a different value of QS on
the same I−

Rel. Now, in the nonextremal case, we could
select a canonical la ∈ ½la� by fixing its surface gravity.
In the extremal case, this avenue is not available because

κ
l
∘ ¼ 0 for all l

∘ a
∈ ½l

∘ a�. And the shear and expansion of

each l
∘ a

also vanish because I−
Rel is an NEH. Thus, it seems

difficult to select a canonical l
∘ a

∈ ½l
∘ a�, i.e. to write down

an unambiguous candidate expression for supermomentum
on I−

Rel.
There is also a deeper conceptual obstruction to selecting

a preferred l
∘ a

∈ ½l
∘ a�. What principle would one use to

“correctly normalize” l
∘ a

on I−
Rel? On I−

Loc we chose the
“correctly” normalized la by making appeal to the Λ → 0
limit, in which a neighborhood of I−

Loc of the Kerr–de Sitter
family becomes a neighborhood of I−

o of the Kerr solution,
and we know what the correct normalization is for the time-
translation Killing field in the Kerr space-time. As we saw
in Sec. III B, already for the Schwarzschild–de Sitter
family, full I−

Rel does not have a well-defined limit as
Λ → 0.14 Consequently, there is no guidance as to what the

correct normalization of l
∘ a

should be. Indeed, if super-
translations Sa were to be regarded as genuine symmetries
of I−

Rel, at least in the Kerr–de Sitter family one would
expect them to tend to a symmetry of I−

o in the limitΛ → 0.
But this does not seems possible because: (i) for each
Λ > 0 the supertranslations fail to leave I−

Loc invariant;
(ii) the expression of Sa makes no reference to Λ; and
(iii) I−

o is the limit of I−
Loc.

14Following considerations suggest that this will happen more
generally. In the Λ ¼ 0 case, the asymptotic region of the
physical space-time is the intersection of the causal past of iþ
with the causal future of i−. In the Λ > 0 case, this intersection is
just MLoc, whose past outer boundary is I−

Loc and future outer
boundary is Iþ

Loc. In the limit Λ → 0, they will tend to I−
o and Iþ

o
respectively. Thus, as in de Sitter space-time discussed in Sec. III
A and Schwarzschild–de Sitter space-time discussed in Sec. III B,
I−
RelnI−

Loc will simply disappear in the limit.
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