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Electromagnetic observations have been used over the past decades to understand the nature of black
holes and the material around them. Our ability to learn about the fundamental physics relies on our
understanding of two key ingredients in the modeling of these electromagnetic observations: the gravity
theory that describes the black hole, and the astrophysics that produces the observed radiation. In this work
we study our current ability to constrain and detect deviations from general relativity using the accretion
disk spectrum of stellar-mass black holes in binary systems. Our analysis combines relativistic ray-tracing
and Markov-Chain Monte-Carlo sampling techniques to determine how well such tests of General
Relativity can be carried out in practice. We show that even when a very simple astrophysical model for the
accretion disk is assumed a priori, the uncertainties and covariances between the parameters of the model
and the parameters that control the deformation from general relativity make any test of general relativity
very challenging with accretion disk spectrum observations. We also discuss the implications of assuming
that general relativity is correct a priori on the estimation of parameters of the astrophysical model when
the data is not described by Einstein’s theory, which can lead to a fundamental systematic bias.
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I. INTRODUCTION

Studies of gravitational waves by the LIGO/Virgo
collaboration [1], along with decades of electromagnetic
observations [2], have provided extensive evidence for the
existence of stellar-mass black holes (BHs). Are these BHs
described by the solutions to Einstein’s theory of general
relativity (GR)?
The no-hair theorems assert that the only axisymmetric,

asymptotically flat, electrovacuum solutions to the Einstein
equations are fully described by only three parameters: the
mass M, the electric charge Q, and the angular momentum
S of the BH [3–6]. However, in realistic scenarios, black
holes should not be significantly charged, as they are
expected to be embedded in environments that are rich in
gas and plasma and therefore any net charge will be rapidly
neutralized [7,8].
The Kerr hypothesis further states that the exterior

spacetime of astrophysical BHs is described by the Kerr
metric. This hypothesis is a consequence of the no-hair
theorem in GR, provided astrophysical BHs are isolated
such that the assumptions of the theorem hold.
Astrophysical BHs with a time-dependent accretion disk
are, of course, not isolated. The assumptions of the theorem
then do not hold and the exterior spacetime is not exactly

described by the Kerr metric. The accretion disk contri-
butions to the spacetime, however, are very small, and can
thus be neglected [9,10]. Therefore, observational tests of
the Kerr hypothesis can be thought of as tests of GR,
without additional fields, as GR is the only assumption left
to break in the no-hair theorems.
Over the past decades, several authors have proposed

various ways to probe the spacetime geometry of BH
candidates (see Refs. [11,12] and references therein for
tests with electromagnetic observations, and Ref. [13] and
references therein for tests with gravitational waves, and for
a general review see Ref. [14]). In particular, one can
parametrize a potential deviation from the Kerr metric in
terms of a parameter, or a family of parameters. If an
observation of a compact object then yields a nonzero
deviation, this measurement implies that the no-hair the-
orems are violated [15], signaling a deviation from GR
(provided the other assumptions of the theorems are
sufficiently satisfied within observational uncertainties).
Parametrized deviations from the Schwarzschild or Kerr
metrics are commonly referred to as bumpy BH metrics.
The construction of bumpy BH spacetimes with arbitrary

multipole moments was first investigated by Ryan [16],
then revisited by Collins and Hughes [17], shortly after
by Glampedakis and Babak [18], and later by Vigeland
and Hughes [19]. These studies, however, required the
bumpy multipoles to satisfy Einstein’s equations, which
then introduced naked singularities in the spacetime [17].
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In an effort to avoid these, recent work has lifted the
requirement that the multipoles satisfy the Einstein equa-
tions, yielding bumpy BH metrics that could sometimes be
mapped to BH solutions in modified theories of gravity
[20–22]. The most recent incarnation of this idea by
Konoplya, Rezzolla, and Zhidenko [23,24] proposes a
parametrization of BH bumps with continued fractions.
These bumpy BH metrics have been used to carry out some
tests of GR using electromagnetic observations [25–35].
In a recent review [36], Krawczynski pointed out

qualitatively that astrophysical uncertainties can be so large
that they may prevent us from distinguishing between Kerr
and non-Kerr metrics. In general, there are many sources of
uncertainty when carrying out and analyzing electromag-
netic observations. In addition to statistical uncertainties in
the analysis of the data, there are typically also systematic
uncertainties related to calibration and to the astrophysical
modeling [37]. The latter is particularly problematic, as one
must choose a particular physical model that is not
necessarily complete, either because of our limited knowl-
edge of the astrophysics, or because one might be forced to
ignore important physical processes that are too difficult to
incorporate. For example, magnetic fields, the radiation
pressure, thickness of the disk, effects of a warm absorber
are often ignored in accretion disk models in order to make
computations more manageable [38,39].
Bearing in mind these limitations, an important question

arises: Can one truly use bumpy BHmetrics to test GR with
electromagnetic observations? From a general perspective,
the answer could be “no” for several reasons. Bumpy BH
metrics could contain physical pathologies that would rule
them out from the beginning, such as naked singularities or
closed timelike curves outside the event horizon. But even
if one uses more physically-reasonable bumpy metrics,
degeneracies between the parameters that characterize the
deformations and those of the astrophysical model may
make these tests uninformative. Whether this is the case or
not is what we study in this paper using Bayesian statistical
theory.
As a proof-of-concept, we work here with the Rezzolla-

Zhidenko (RZ) metric [23], which represents a physically-
reasonable bumpy BH metric without spin [36]. The RZ
metric includes the Schwarzschild metric in the limit as the
bumpy deformation parameters vanish, and it can also be
mapped to a wide range of BH solutions in modified
theories of gravity. Therefore, in principle, if observational
constraints on the bumpy parameters are possible, these
could be translated into constraints on the coupling
parameters of modified theories.
Given the RZ metric, we then construct spectra from

a geometrically thin and optically thick accretion disk
characterized by certain disk model parameters. We begin
by prescribing the temperature of the disk using a Novikov-
Thorne model [40] and assuming the emission to be
blackbodylike locally. This temperature profile is then

used by the relativistic ray-tracing code GYOTO [41], which
solves for the motion of a photon ray from the image screen
to the accretion disk (integrating backwards in time). We
ray trace over 10,000 photon rays to generate the accretion
disk spectrum on a 129 × 129 pixel screen.
With this machinery in hand, we then carry out several

different studies. We first create a synthetic signal assuming
GR for a set of injected disk model parameters, and we
attempt to recover it with accretion disk spectra generated
with a non-GR model. The latter is determined by
5 parameters: the accretion rate, the BH mass, the distance
to the observer, the inclination angle, and a single bumpy
parameter. We carry out a Markov-Chain Monte-Carlo
(MCMC) exploration of the likelihood surface to find the
marginalized posterior distribution for each parameter in
the non-GR model. We find that the marginalized posterior
of the bumpy parameter is close to the flat prior we chose
on this parameter, implying the observation was uninform-
ative for this parameter. This is true whether we simulate
synthetic signals from current telescopes or from future
telescopes that are expected to be able to measure disk
parameters one order of magnitude more accurately. We
also find that if one freezes the disk parameters to the
injected values and only varies over the bumpy parameter,
one is typically misled to believe that a strong constraint
is possible. The reason is clearly that by freezing disk
parameters one is ignoring strong covariances between the
bumpy parameter and disk model parameters (in particular
the accretion rate and the inclination angle).
Our second study is aimed at determining whether

current parameter estimation of disk model parameters
assuming GR is correct could be systematically biased by
this a priori assumption. We thus create a synthetic signal
assuming a bumpy BH metric with a fixed bumpy defor-
mation parameter and a set of injected disk model param-
eters, and we attempt to recover it with accretion disk
spectra generated within GR. We find that for signals that
do not deviate much from GR, the amount of fundamental
bias in the recovered disk model parameters is minimal and
within the statistical uncertainties. Only once the bumpy
deformation becomes strong enough—typically well above
already ruled out values in particular modified theories—
does fundamental bias systematically affect parameter
estimation of the disk model parameters.
Finally, we study whether a signal generated from a non-

GR BHmetric could be distinguished from one produced in
GR. We thus create again a synthetic signal in a bumpy BH
metric (with fixed deformation parameter and disk model
parameters), and we attempt to recover it with bumpy BH
accretion disk spectra. As in the fundamental bias case, we
discover that if the injected deformation is large enough,
then the marginalized posterior distribution of the bumpy
parameter peaks away from zero, signaling a GR deviation.
However, for smaller values of the injected deformation,
the modified spectrum is not sufficiently different from
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those produced in GR to break the strong degeneracies with
the disk model parameters.
Our study therefore suggests that electromagnetic tests of

GR with accretion disk observations that are competitive
with other tests, such as those carried out in the Solar System
[14], with binary pulsars [42] or with gravitational waves
[13], are, at the very least, very challenging with current and
future telescopes. In part, this is due to degeneracies between
disk model parameters and bumpy parameters that tend to
overwhelm the likelihood and prevent constraints on the
latter; we have verified that such a conclusion is robust
against different injected parameters of the synthetic signal.
But in part, these challenges are also because of other
fundamental limitations in the spectral analysis that we did
not include in our studies, such as calibration uncertainties,
uncertainties in the overall modeling of the disk (such as
through the inclusion of thickness [35]), and exacerbated
degeneracies when the disk model also includes spin [34]
values. The inclusion of such limitations should make our
conclusions even stronger.
The remainder of this paper presents the details of the

results summarized above and it is organized as follows:
Section II briefly reviews the RZ metric; Sec. III summa-
rizes the accretion disk model used and the general
expressions tailored for this particular background;
Sec. IV describes the MCMC methods used to explore
the likelihood surface; Sec. V shows the results of the
different type of simulations performed; Sec. VI concludes
and points to future work. Throughout the paper, we mostly
use geometric units in which G ¼ 1 ¼ c, and the
ð−;þ;þ;þÞ metric signature. Commas in index lists will
stand for partial derivatives.

II. A BUMPY BH METRIC

In this section, we establish the notation by briefly
summarizing the parametric solutions proposed in Ref. [23]
to describe bumpy BH metrics. For simplicity, we will here
keep only a single bumpy deformation parameter; we could
retain more, but their inclusion would only increase the
level of degeneracy and thus hinder any constraints even
further.
The starting point of the bumpy BH metrics of Ref. [23]

is a spherically symmetric and static line element, which in
spherical polar coordinates ðt; r; θ;ϕÞ can be written as

ds2 ¼ −N2ðrÞdt2 þ B2ðrÞ
N2ðrÞ dr

2 þ r2dΩ2; ð1Þ

where dΩ2 ≡ dθ2 þ sin2θdϕ2 is the line element on the
two-sphere. If such a line element is to represent the
exterior spacetime of a BH, then it must contain an event
horizon, i.e., a null hypersurface generated by null
geodesics with vanishing expansion, whose location
r ¼ r0 > 0 is given by Nðr0Þ ¼ 0. This line element can
be recast in terms of a compactified radial coordinate

x≡ 1 −
r0
r
; ð2Þ

so that x ¼ 0 corresponds to the location of the event
horizon, while x ¼ 1 corresponds to spatial infinity.
With this at hand, we must now choose a parametrization

of the metric functions NðxÞ and BðxÞ. The first one can be
expressed as

N2ðxÞ ¼ xAðxÞ ð3Þ
for some other function AðxÞ > 0 that Ref. [23] chooses to
write as

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þO½ð1 − xÞ3�;
ð4Þ

and similarly

BðxÞ ¼ 1þ b0ð1 − xÞ þO½ð1 − xÞ2�: ð5Þ
The terms proportional to ð1 − xÞ3 in AðxÞ and ð1 − xÞ2 in
BðxÞ are identically zero when one sets all additional
bumpy parameters to zero, as we do in this paper. The
line element is then characterized in terms of the constant
bumpy parameters ϵ, a0, and b0, which characterize the
magnitude of the non-Schwarzschild deformation.
The physical meaning of these bumpy parameters can be

inferred by studying the post-Minkowskian limit of the line
element. An expansion of the metric about spatial infinity
reveals that the bumpy parameters are related to the
parameterized post-Newtonian (PPN) parameters ðβ; γÞ
via [14]

β ¼ 1þ 2½a0 þ b0ð1þ ϵÞ�
ð1þ ϵÞ2 ð6Þ

γ ¼ 1þ 2b0
1þ ϵ

; ð7Þ

while the horizon location is related to ϵ via

1þ ϵ ¼ 2M
r0

; ð8Þ

where M is the ADM mass of the spacetime. From the
current observational constraints [14] of β and γ, the lowest
order bumpy parameters are constrained to a0 ∼ 10−4 ∼ b0,
and therefore, in this paper, we will set a0 and b0 to zero
and consider only deviations in the metric due to a
nonvanishing ϵ, which has a clear physical meaning in
terms of corrections to the event horizon location.

III. ACCRETION DISK MODEL

The spectral energy distribution of x-ray binaries is
commonly dominated by a thermal component and a
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power-law tail. The thermal spectral component, the subject
of this work, is believed to be quasiblack body emission
from the accretion disk that peaks around kT ∼ 0.1–1 keV
in case of stellar-mass black holes.The power-law tail is
believed to originate from the Compton up-scattering of
thermal photons by a hot electron corona. In this work, we
focus on the thermal component of the x-ray spectrum of a
stellar-mass BH with a low-mass companion. For this
particular type of system, the x-ray region is the most
informative feature of the spectrum about the spacetime
metric, given the fact that the power drops away from the
peak by orders of magnitude and that longer wavelength
emission is produced at larger radii, where GR or any
deviations thereof are unimportant. The accretion disk is
modeled by the Novikov-Throne model [40], i.e., a
geometrically thin (h=r ≪ 1, where h is the semithickness
of the disc at a radial coordinate r) and optically thick disk
(the photon mean free path l ¼ ðnσphotÞ−1 ≪ h, where σphot
is the photon scattering cross section in the disk medium
and n is the number density of scattering particles in
the disk).
The disk spectrum depends on the temperature profile of

the disk TðrÞ, which in turn determines on the radial flux
F ðrÞ via the Stefan-Boltzmann law F ðrÞ ¼ σT4ðrÞ, where
σ is the Stefan-Boltzmann constant. The time-averaged
energy flux emitted from the surface of a geometrically thin
and optically thick accretion disc with material in circular
rotation is given by [26]

F ðrÞ ¼
_M
4π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−grrgttgϕϕ
p −Ω;r

ðE −ΩLÞ2
Z

r

rin

ðE −ΩLÞL;r0dr0

ð9Þ
in spherical polar coordinates, where grr, gtt, and gϕϕ are
the ðr; rÞ, ðt; tÞ, and ðϕ;ϕÞ components of the metric. The
inner edge of the disk rin is assumed here to coincide with
the innermost stable circular orbit (ISCO), and the disc is
assumed to extend to at least r ¼ 300M. The specific
energy E, the (z-component of the) specific angular
momentum L, and the orbital frequency Ω are found from
the metric, assuming the disk is in the equatorial plane
(θ ¼ π=2) via

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N0ðrÞNðrÞ

r

r
; ð10Þ

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N3ðrÞ
NðrÞ − rN0ðrÞ

s
; ð11Þ

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3N0ðrÞ
NðrÞ − rN0ðrÞ

s
: ð12Þ

The location of the ISCO r� can be determined by
considering the (timelike) geodesic motion of a massive

particle. This motion reduces to that of a particle in a one-
dimensional effective potential

VeffðrÞ ¼
E2

N2ðrÞ −
L2

r2
− 1: ð13Þ

A circular orbit then satisfies the condition

VeffðrÞ ¼ 0 ¼ V 0
effðrÞ: ð14Þ

while the innermost stable orbit additionally satisfies the
condition

V 00
effðr�Þ ¼ 0: ð15Þ

Combining (13)–(15), the ISCO radius is thus the real
nonzero root of

3Nðr�ÞN0ðr�Þ − 3r�Nðr�ÞN00ðr�Þ ¼ 0; ð16Þ

which can be solved numerically.
For BHs, the Eddington luminosity sets a theoretical

maximum luminosity and the Eddington accretion rate
is [43]

_MEdd ≈ 1018
�
0.1
ηr

��
M
M⊙

�
½g s−1� ð17Þ

where ηr is the radiative efficiency, and we have assumed
that LEdd ¼ ηr _MEddc2. For a BH with M ¼ 10 M⊙ accret-
ing at ∼10% of the Eddington limit, the mass accretion rate
is ∼1018½g s−1�.
The temperature profile has to be numerically evaluated

on a radial grid (as Eq. (9) cannot be solved analytically)
and provided to the relativistic ray-tracing code GYOTO [41]
as an input. GYOTO then solves for the motion of photon
rays from the image screen, located a distance robs at an
inclination angle i, to the accretion disk (integrating
backwards in time). Once a map of the Planck function
Bν is computed on the screen, the observed flux is then
given by [26]

Fν;obs ¼
X
pix

BνðTpixÞ cos θ
ΔΩ
Npix

; ð18Þ

where the sum is performed over Npix ¼ 129 × 129 pixels,
θ is the angle between the normal of the screen and the
current pixel direction, ΔΩ ¼ πFOV2=r2obs is the solid
angle subtended by the screen and FOV is the field-of-view.
The accretion disk spectrum is then fully determined by

the parameters λ⃗ ¼ ðϵ; _M;M; robs; iÞ. Figure 1 shows how
the spectrum is modified by changing one model parameter
at a time. From this figure alone, it is already clear that
parameter degeneracies are intrinsic to the model. For
example, a combination of a simultaneous change in _M and
i can mimic a simultaneous change in i andM, as well as a
change in robs and a change in ϵ. Fortunately, however,
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some of these parameters, such as the source distance and
the BH mass can be measured from other observations
[2,44,45], which can be used in our choice of priors to
partially break some of these intrinsic degeneracies.

IV. MCMC METHODS

In this section, we describe the MCMC methods we use
to explore the likelihood surface when carrying out
parameter estimation.
Given a synthetic data injection Linj characterized by N̄�

injected parameters λ⃗� ¼ ðλ�1;…; λ�̄N� Þ, we estimate the N̄
parameters λ⃗ ¼ ðλ1;…; λN̄Þ in the model Lmod by minimiz-
ing the reduced χ2, defined by

χ2redðN̄Þ ¼ χ2

F
¼ 1

F

XF
i¼1

�
Lmodðνi; λ⃗Þ − Linjðνi; λ⃗�Þ

σðνiÞ
�2
; ð19Þ

where the summation is over F ¼ 50 sampling frequencies
νi ∈ ð1016.8; 1018.3Þ½Hz� evenly spaced logarithmically. We
model the standard deviation of the distribution, σ, via

σðνiÞ ¼
XN̄
j

σjðνiÞ; ð20Þ

where the sum is over the number of free parameters in the
model, and where

σjðνiÞ¼
jLðνi; λ⃗�∉n;λ�nþδλ�nÞ−Lðνi; λ⃗�∉n;λ�n−δλ�nÞj

2
: ð21Þ

The term δλ�n is a measure of the observational error in
the injected parameter λ�n ∈ λ⃗�. Based on previous
works [2,44,46–48], we here choose δϵ ¼ 0.1,
δ log _M ¼ 0.2 g s−1, δM ¼ 1.0 M⊙, δrobs ¼ 2 kpc, and
δi ¼ 5°.

FIG. 1. Impact of the model parameters on the thermal spectrum of a thin disk. The parameters not specified in the caption are fixed to
ϵ ¼ 0.0, _M ¼ 1018 g=s,M ¼ 10 M⊙, robs ¼ 10 kpc, and i ¼ 60°. Observe how a combination of a variation in _M and in i can mimic a
variation in ϵ.
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We use the affine invariant MCMC sampler EMCEE [49]
to explore the likelihood surface and construct the posterior
distribution of the model parameters. The latter is propor-
tional to the likelihood function

Lðdjλ⃗Þ ¼ e−χ
2
redðλ⃗Þ=2 ð22Þ

times the parameter priors. For the latter, we choose
uninformative (flat) priors on the parameters ϵ, _M and i,
with ranges −0.9 < ϵ < 0.9, 17 < log _M½g s−1� < 19 and
0 < i½rad� < π=2. For the parameters robs and M, we
choose Gaussian priors with means μrobs ¼ r�obs μM ¼ M�
and standard deviations σrobs ¼ δrobs and σM ¼ δM. We
make this choice because these parameters are typically
known to some degree from independent observa-
tions [2,45].
The ensemble of walkers is always initialized by

sampling from the prior distributions. For all the cases
studied here, we burn-in the sampler for more than 50
autocorrelation timescales and run until ∼100;000 samples
are obtained after burn-in.

V. EXPERIMENTAL RELATIVITY STUDIES

In this section, we carry out different experimental
relativity studies associated with accretion disk spectral
observations. We classify the different studies based on
whether the synthetic injection is constructed within GR or
outside GR and whether the model used to recover the
injection is built within GR or outside GR, as summarized
in Table I. Cases A and B are those in which the injected
signal is generated assuming GR, and we use either a GR
(case A) or a non-GR model (case B), to recover the
injection. Cases C and D are those in which the injected
signal is generated with a non-GR model (ϵ ≠ 0), and we
use either a GR (case C) or a non-GR model (case D) to
recover the injection. In all cases, the synthetic injection

and the model are both constructed as described in Sec. III,
so in the GR cases the parameter are λ⃗ ¼ ðlog _M;M; robs; iÞ
since ϵ ¼ 0, while in the non-GR cases the parameters
are λ⃗ ¼ ðϵ; log _M;M; robs; iÞ.
The reason for these different studies is that each case

allows a different type of investigation. Case A is perhaps
the simplest, and in fact, what most of observed accretion
disk spectra analysis implement. The goal of such a study
would be to determine how well the parameters that
describe the accretion disk model can be extracted given
an observation. Case B is also a common investigation,
whose goal is to determine how well a non-GR deviation
can be constrained given an observation consistent with
GR. Cases C and D, however, have not been studied as
much. Case C allows one to determine how much system-
atic error one accrues by assuming GR is correct a priori
(an assumption sometimes referred to as fundamental bias)
if nature were to deviate from GR (see, for instance,
Ref. [50] for an example). Case D allows one to determine
whether a GR deviation could be detected and differ-
entiated from GR if nature were to deviate from GR.
Even though we show results for mainly a few repre-

sentative examples of certain combinations of injected
parameters, the features we find are generic and based
on an extensive numerical study in a very large region of
parameter space. We present our results through corner
plots that show the one and two dimensional projections of
the posterior probability distributions of the parameters
discussed in each case of study. The diagonal parts of the
corner plots show the marginalized posterior distribution
for each parameter, which allows one to read off the value
of the best fit and the accuracy to which this best fit is
determined. The off-diagonal parts of the corner plot show
the two-dimensional projections of the likelihood, which
show the covariances between parameters.

A. Case A: Parameter estimation in GR

We start with Case A: a GR injection extracted with the
same GR model. Figure 2 shows the corner plot for this
analysis. As expected, the posterior distribution of M and
robs are close to Gaussian, but this is not because the
posterior is dominated by the likelihood, but rather it is
because it is dominated by the Gaussian priors. The
posterior distributions for _M and i tell a different story,
with _M measured to roughly one order of magnitude, while
i is not measured at all. This is because of the strong
covariances between _M and i in the energy flux, which we
already highlighted in Sec. III.

B. Case B: Constraints on GR deviations

We now move on to Case B: a GR injection recovered
with a non-GR model. Figure 3 shows the corner plot for
this analysis using the observational errors described below
Eq. (21) (red distributions), which are consistent with
current telescope capabilities, as well as errors that are

TABLE I. Classification of cases studied in this paper. In case
A, we inject a GR signal and attempt to extract it with a GR
model, allowing us to estimate the accuracy to which accretion
disk model parameters can be measured. In case B, we inject a
GR signal and extract it with a non-GR model, allowing us to
determine how well a non-GR deviation can be constrained. In
case C, we inject a non-GR signal and extract with a GR model,
allowing us to estimate the systematic uncertainties introduced in
the extraction of accretion disk model parameters due to the
a priori assumption that GR is correct. In case D, we inject a non-
GR injection and extract with a non-GR model to determine
whether GR deviations can be detected if they are present in
the data.

Signal
Model GR Non-GR

GR A C
Non-GR B D
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one order of magnitude smaller (blue distributions), which
are consistent with future telescope capabilities. Observe
that the posterior distribution on the bumpy parameter ϵ is
nearly flat, changing very little from the initial flat prior
distribution even when using future telescope capabilities.
This is also the case for the parameters _M and i when using
current telescope capabilities, which is consistent with the
results of Fig. 2. However, when we employ future tele-
scope capabilities, _M and i can now be measured.
One way to quantify how similar or dissimilar the

posterior distribution is relative to the prior distribution
is through the Kullback-Leibler (KL) divergence measure
[51]. This quantity is defined by

Dn ¼
Z

prðλnÞlog2
�
prðλnÞ
pðλnÞ

�
dλn; ð23Þ

where prðλnÞ is the prior on the λn, while pðλnÞ is the
posterior. Clearly, when the posterior is equal to the prior,
the divergence measure vanishes, while it increases loga-
rithmically the more dissimilar these distributions are. The
divergence measure can thus be thought of as quantifying
the amount of information (measured in bits) that is gained
by performing a given observation. Table II presents the
divergence measure for case B, which confirms the con-
clusions of the previous paragraph: there is very little
information gained in all parameters with current telescope
capabilities. In particular, there is little information gain

in ϵ, but also inM and robs, because the posteriors of Fig. 3
are actually dominated by the Gaussian priors we chose.
Let us now focus only on the posterior distribution of the

bumpy deformation parameter ϵ. Figure 4 shows this
posterior both assuming current telescope capabilities
(red) and future telescope capabilities (blue). Moreover,
this figure also shows a separate MCMC run in which we
freeze all parameters in the non-GR model at the injected
values, except for ϵ (dashed curves). Observe that in

FIG. 2. Corner plot resulting from the MCMC analysis for case
A. The vertical black lines correspond to the injected values.
Observe that _M and robs are well constrained, but this is because
of the Gaussian priors we used. Observe also that M and i are
much less well estimated due to the large degeneracies between
these two parameters.

TABLE II. Information gain between prior to posterior in bits
for the two cases shown in Fig. 3 for each parameter. The first
column correspond to the choice of observational error described
below Eq. (21) (consistent with current telescope capabilities),
while the second one correspond to observational errors that are
one order of magnitude smaller (consistent with future telescope
capabilities).

DKL½σðνÞ� DKL½σðνÞ=10�
ϵ 0.029 0.45
_M 0.186 1.50
M 0.037 0.30
robs 0.035 0.32
i 0.010 0.25

FIG. 3. Corner plot resulting from the MCMC analysis of
case B, with the vertical black lines corresponding to the injected
values. The red distributions correspond to the choice of
observational error described below Eq. (21) (consistent with
current telescope capabilities), while the blue distributions
correspond to observational errors that are one order of magni-
tude smaller (consistent with future telescope capabilities).
Observe that the posterior on the bumpy parameter is consistent
with the prior in both cases, with a slight improvement when
decreasing the observational error.
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general the posterior distributions are rather flat and
consistent with the priors, indicating that one cannot
constrain ϵ at all. However, if one freezes all parameters
except for ϵ and uses a sufficiently small estimate for the
accuracy to which ϵ can be measured, then one may be
misled into believing that ϵ can be constrained rather well.
This is clearly an artifact of freezing the parameters in the
model, and therefore ignoring the important and strong
covariances between the parameters, which tend to deterio-
rate our ability to test GR. Based on the results shown in
Table II, an improvement of two orders of magnitude in
telescope capabilities will provide a gain of information
DKL of order unity, allowing ϵ to be constrained.

C. Case C: Fundamental bias

Let us now consider case C: a non-GR injection
extracted with a GR model. Figure 5 shows the corner
plot for two such analyses, where in one we injected a non-
GRmodel with ϵ� ¼ −0.5 (red) and in the other we injected
ϵ� ¼ −0.1 (blue). For the parametersM and robs the effects
of a non-GR signal are minimal because these parameters
are already assumed to be well constrained independently
through the Gaussian priors we chose. For the parameters
_M and i, however, the posteriors are quite different when
we inject a non-GR deviation with a large enough bumpy
parameter than what we found before. When ϵ� ¼ −0.1
(blue case), the posteriors are indeed very similar to what
we obtained with an ϵ� ¼ 0 (GR) injection. But when ϵ� ¼
−0.5 (red case), the posteriors peak significantly away from
the injected values.
The conclusion of this analysis is that if astrophysical

BHs are not described by the Schwarzschild metric, but
instead there is a sufficiently large deformation, then the
extraction of accretion disk model parameters could be

systematically biased. Care must be taken with this state-
ment, however, since the value of the deformation that is
required for this to happen is unrealistically large. Indeed,
other observations using Solar System data, binary pulsar
data, gravitational wave data or BH low-mass X-ray
binaries have already constrained GR to a certain degree
that typically would disallow values of ϵ as large as those
injected here. As a particular example, the strongest
constraint on Einstein-dilaton-Gauss-Bonnet gravity [52]
comes from low-mass x-ray binary observations [53]. For
this particular theory, the deformation parameter maps to
ϵ ¼ 49=80ð16πα2=M4Þ, where α is the coupling constant
of theory, implying that ϵ≲ 0.05 for the systems stud-
ied here.

D. Case D: Detecting deviations from GR

Finally, let us consider case D: a non-GR injection
extracted with a non-GR model. Figure 6 shows the corner
plot for 3 such analysis, where we injected a non-GR
signals with ϵ ¼ −0.5 (red), ϵ ¼ −0.1 (blue), and ϵ ¼ þ0.5
(green). As the posteriors show, when the injected GR
deviation is large enough, then the posterior on ϵ peaks
significantly away from zero, indicating the presence of an
anomaly that ought to be investigated further. However, for
smaller deformations, as in the case of ϵ� ¼ −0.1 and
ϵ� ¼ þ0.5, the deformation is not significant enough to

FIG. 4. Marginalized posterior distributions for the bumpy
deviation parameter ϵ assuming current (red) and future (blue)
telescope capabilities. The dashed distributions correspond to
separate MCMC runs in which all parameters in the non-GR
model are frozen to their injected values except for ϵ. Observe
how keeping the parameters of the model fixed could mislead us
into believing we can constrain ϵ quite well, which is merely an
artifact of ignoring the covariances in the model parameters.

FIG. 5. Corner plot resulting from theMCMC analysis of case C.
The vertical lines correspond to the injected values. The red
distribution correspond to an injected bumpy deformation param-
eter of ϵ� ¼ −0.5, while the blue distributions correspond to an
injection with ϵ� ¼ −0.1. Observe that when the GR deviation is
negative enough, the posteriors for the accretion rate and the
inclination angle peak significantly away from the injected value,
indicating a systematic uncertainty due to fundamental bias.
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allow an observation of this type to distinguish between GR
and non-GR. In this sense, one could thus easily be in a
situation in which a GR deviation is present in the BH
background, yet the observed accretion disk spectra is not
sensitive enough to detect it (or distinguish a GR model
from a non-GR model).
One may wonder at this juncture why it is that an ϵ� ¼

−0.5 allows for the identification of a non-GR deviation,
while when ϵ� ¼ þ0.5 this is not the case. The answer is
that when ϵ < 0, the corrections introduced on the ISCO
location are significantly larger than when ϵ > 0. Indeed,
the ISCO radius can change to 12.33M when ϵ� ¼ −0.5,
while it moves to 5.24M when ϵ� ¼ þ0.5. Since the ISCO
radius controls the location of the innermost edge of the
accretion disk, this has a dominant effect on the magnitude
of the non-GR correction to the flux.

VI. CONCLUSIONS

We simulated the thermal accretion disk spectra of
stellar-mass BHs within and outside of GR, where the
modifications were parametrized in terms of a bumpy
deformation parameter. We have shown that the use of
the accretion disk spectrum to constrain or identify non-GR

deformations from a GR background is, at the very least,
challenging. This is because of the degeneracy between the
accretion disk model parameters and the non-GR bumpy
parameter. Our analysis used a relatively simple spectral
model, in which we ignored other sources of systematic
error, such as those introduced due to calibration, other
spectral components or incomplete modeling of the accre-
tion disk physics. The inclusion of such effects can only
strengthen the conclusions we arrived at, making it even
more difficult to test GR with such observations.
Our study also demonstrates the rather well-known fact

(at least in some scientific communities) that carrying out a
detailed exploration of the likelihood surface when esti-
mating parameters is of crucial importance. Indeed, χ2

studies that focus on a particular subregion of parameter
space (e.g., freezing a subset of the model parameters) can
greatly underestimate the effect of parameter covariances,
and thus, be incorrectly led to too strong a set of
conclusions on how well parameters can be measured.
An MCMC exploration of the likelihood is a powerful
technique to properly explore the likelihood, though it is
computationally expensive and, as in the case studied here,
it may require the use of high-performance computing
clusters.
Our work can of course be extended along several

different directions. As a proof-of-study, our analysis
focused on a rather simple accretion disk model, in which
we ignored the BH spin, the accretion disk thickness, and
other accretion disk physics (beyond those approximated in
a simple geometrically thin/optically thick set-up). One
could thus repeat our analysis to include these effects, and
we expect that such a study will only strengthen our
conclusions, i.e., competitive tests of GR with accretion
disk observations will be found to be even harder. This is
because the inclusion of these effects does not increase the
accuracy of the dataset or produce any discernible features
in the model, while it does increase the parameter degen-
eracies in the model. It is important to note that, while the
effect on the deformation parameter studied here has a
similar effect on the spectrum as the spin parameter, these
two parameters are not completely degenerate, since spin
also introduces frame dragging and other modifications to
the metric that are different from those introduced by the ϵ
parameter (though these differences are subdominant in the
continuum spectrum). Therefore, in order to consider spin,
one should deform away from the Kerr metric (not the
Schwarzschild metric considered here), as otherwise one
could be misled to believe one has measured a GR
deviation when in reality this is not the case. That is
why if a deviation is ever measured, the results should be
taken with extreme caution.
Another possible direction for future research would be

to investigate other non-GR deformations of the Kerr
metric. In this work we focused on a particular bumpy
metric, and on top of that, we restricted attention to a single

FIG. 6. Corner plot resulting from the MCMC analysis of case
CD The vertical lines correspond to the injected values. The red
distribution correspond to an injected bumpy deformation param-
eter of ϵ� ¼ −0.5, the blue to ϵ� ¼ −0.1, and the green to
ϵ� ¼ þ0.5. Observe that when the GR deviation is negative
enough, the posterior on ϵ� peaks significantly away from zero,
indicating the presence of a GR deviation. However, when the
deformation is not large enough, then the accretion disk spectra
are not sensitive enough to identify a deviation.
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deformation parameter. The inclusion of multiple param-
eters in the bumpy metric is necessary from a theory stand
point, since no BH solution in any known modified theory
leads only to a modification in the location of the event
horizon, as we considered here. The inclusion of more
parameters in the bumpy metric, however, will only
increase the parameter degeneracies in the model, thus
again worsening the constraints we can achieve on modi-
fied gravity.
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