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Screened modified gravity (SMG) and Brans-Dicke (BD) gravity are typical examples of scalar-tensor
theories with and without screening mechanisms, which can suppress the scalar field in dense regions. In
this paper, we investigate the tests of time-varying gravitational constant G, gravitational dipole radiation,
and Nordtvedt effect in BD and SMG theories, respectively. We place new constraints on these theories by
combining Cassini experiment, lunar laser ranging (LLR) measurements, and pulsar observations from
PSRs J1738þ 0333 and J0348þ 0432. We find that the screening mechanism has important influence on
theoretical constraints. The strongest, second, and weakest constraints on BD are from Cassini, pulsar, and
LLR tests, respectively. The most stringent constraint on SMG comes from LLR measurements and
improves the previous best constraint by more than seven orders of magnitude. We derive the bounds on the
cosmological evolution of the scalar background in these theories using the time variation of G. The results
of all tests agree well with general relativity (GR) and give more stringent constraints on the deviations
from GR. Finally, as an example, we consider the chameleon model and derive the constraints on the model
parameters.
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I. INTRODUCTION

Einstein’s general relativity (GR) is one of the two pillars
in modern physics. Nevertheless, it suffers from the dark
matter and dark energy problems [1,2], and cannot be
quantized as other field theories [3,4]. Therefore, there are
countless attempts to develop alternative theories of gravity.
One of the most simple and popular alternative theories is
scalar-tensor theory [5–7], in which the gravitational
interaction is mediated by an underlying scalar field and
the tensor field of GR.
In scalar-tensor theory, the gravitational constant G is

controlled by the background scalar field which can vary
with the expansion of the Universe [8]. The time variation
of G generally indicates a violation of strong equivalence
principle (SEP) [9,10], and leads to an important contri-
bution to the time change in the orbital period of the binary
systems [11]. The SEP violation causes the two centers of
gravitational and inertial masses of compact system to
separate from each other, which induces a mass dipole
moment. As binaries orbit each other, the mass dipole
moment will emit gravitational dipole radiation, which
dominates the orbital decay of asymmetric binary systems.

Therefore, one often has to consider both the variation of G
and the dipole radiation in a strong-field testing gravity
with binary pulsars [12–16]. Moreover, because of the
SEP violation, compact objects with different gravitational
self-energy feel different accelerations in the additional
field, which is called the Nordtvedt effect [11] and has
been tightly constrained by lunar laser ranging (LLR)
experiment [17].
Both Brans-Dicke (BD) gravity [18] and screened

modified gravity (SMG) [19] are examples of a scalar-
tensor theory. BD gravity is the earliest and most widely
studied scalar-tensor theory of gravity, and it predicts
stronger non-GR effects in strong-field regime [9,10].
Therefore, the strong-field tests of scalar-tensor gravity
are mostly based on BD gravity. SMG is a kind of scalar-
tensor theories of gravity with screening mechanisms,
including chameleon [20], symmetron [21], dilaton [22],
and fðRÞ [23,24] theories. SMG theories operate an
environment-dependent scalar field and suppress the scalar
force in dense regions, therefore the deviations from GR
become smaller and weaker in strong-field regime, which is
completely different from BD gravity (without screening
mechanism).
In this paper, we study the gravitational dipole radiation,

the time variation of G, and the Nordtvedt effect in BD and
SMG theories, respectively, which allows us to test the
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violation of SEP with current observations. We place new
constraints on dipole radiation and time-varying G by
performing Monte Carlo simulations and combining the
Solar system tests (LLR measurements and Cassini experi-
ment) and the pulsar observations (from PSRs J1738þ
0333 and J0348þ 0432). It turns out that there are huge
differences between the constraints on theories with and
without screening mechanisms. The Cassini experiment,
pulsar observations, and LLR measurements are the
strongest, second, and weakest constraints on BD gravity,
respectively. We find that the most stringent constraint on
SMG from LLR measurements in the Earth-Moon system
is several order of magnitude more stringent than the pulsar
observations, because in this theory the binary pulsar is a
strong screening system relative to the Earth-Moon system.
The LLR constraint on _G in the two theories is also more
stringent than the pulsar observations. Using the constraints
on _G, we derive the constraints on the time evolution of the
scalar background in the two theories, which differ by
several orders of magnitude because of screening mecha-
nism. The results about SMG are generically applicable, as
an example, we consider the exponential chameleon model
and derive the constraints on this model. In this paper all
tests show good agreement with GR and all the previous
works and yield very stringent constraints on the strong-
field deviations from GR.
The plan of the paper is as follows. In Sec. II, we study

the orbital period decay effect and the Nordtvedt effect
in SMG and BD gravities, respectively. In Sec. III, we
place the constraints on the two theories by combining the
observations of the Solar system and the binary pulsars. In
Sec. IV, we apply our results to the exponential chameleon
model and derive the constrains on the model parameters.
Our conclusions are summarized in Sec. V.

II. BD AND SMG

In this section we investigate the orbital period decay of
binary pulsars caused by dipole radiation and time-varying
G in BD and SMG theories, then discuss the Nordtvedt
effect due to the violation of SEP in these theories. These
will allow us to place constraints on these theories.

A. Orbital period decay

The change in the orbital period of the binary pulsars is
related to the damping of the orbital energy due to the
emission of gravitational waves (GWs). In fact, the mon-
itoring of the orbital period led to the first indirect
detection of GWs [25–27]. The orbital period decay caused
by dipole radiation in an elliptical binary system is given
by [9,10,28,29]

_PD
b ¼ −

4π2G
Pb

m1m2

m1 þm2

κDðs1 − s2Þ2
1þ e2=2

ð1 − e2Þ5=2 ; ð1Þ

where κD is a model-dependent constant that quantifies
the contribution of the dipole radiation induced by self-
gravity, κD ¼ 0 in GR, but it is generally not the case in
SEP-violating theories of gravity. The quantity si is the ith
object’s sensitivity, defined by si ≡ ðd lnmi=d lnϕÞ0 [30],
which describes the response of the gravitational binding
energy to the external gravitational field. In general, κD
and si take different values for different theories of gravity.
In these theories under consideration, κD ¼ 2=ðωBD þ 2Þ
and si ¼ Eg

i for BD [9,10], and κD ¼ 2M2
Pl=ϕ

2
VEV and si ¼

ϕ2
VEV=ð2M2

PlΦiÞ for SMG [28]. Here, ωBD is a dimension-
less parameter of BD gravity, and ϕVEV is the scalar
background1 in SMG (i.e., the vacuum expectation value
(VEV) of the scalar field). The quantity Eg

i (E
g
i ≥ 0) is the

negative of the gravitational self-energy per unit mass,
Φi ¼ Gmi=Ri is the ith object’s compactness (i.e., negative
gravitational potential at the surface), and they are of the
same order of magnitude. Note that si in BD is positively
correlated to the compactness, but on the contrary in SMG,
si is inversely proportional to the compactness, which is the
most important difference between the theories with and
without screening mechanisms.
In scalar-tensor theory, the gravitational constant G can

become time-dependent and vary with the expansion of
the Universe. Nordtvedt [11] first pointed out that a
time-varying G leads to an additional contribution to the
change in the orbital period of the binary system. To
leading order, the change rate in the orbital period due to _G
is given by [11]

_P
_G
b ¼ −2Pb

_G
G

�
1þ 2m1 þ 3m2

2ðm1 þm2Þ
c1 þ

3m1 þ 2m2

2ðm1 þm2Þ
c2

�
;

ð2Þ
where ci is the body-dependent quantity, defined by ci ≡
ðd lnmi=d lnGÞ0 [11]. In these theories under considera-
tion, ci ¼ −si for G ∝ 1=ϕ0 in BD [9,10], and ci ¼
Φ1Φ2=ð2ΦiÞ for G∝1þϕ2

VEV=ð2M2
PlΦ1Φ2Þ in SMG [31].

In most alternative theories of gravity, both dipole
radiation and time-varying G appear simultaneously.
Therefore, one often has to consider both effects
_PD
b þ _P

_G
b for testing GR using binary pulsars.

B. Nordtvedt effect

Most alternative theories of gravity predict that strongly
self-gravitating bodies do not follow geodesics of the
background spacetime, massive bodies with different
gravitational binding energy feel different accelerations,
which leads to the violation of SEP in these theories. This is
known as the Nordtvedt effect [32,33], usually parame-
trized by the Nordtvedt parameter ηN (also called the SEP
violation parameter),

1In this paper, the scalar background in BD is labeled as ϕ0.
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mg

mi
¼ 1 − ηNEg; ð3Þ

where Eg is the negative of the gravitational self-energy per
unit mass, and mi and mg are the inertial and gravitational
masses of bodies, respectively. In GR ηN ¼ 0, but it is
generally nonzero in alternative theories that violate the
SEP. The relative acceleration of two bodies a and b in an
external gravitational potential Uc is then

aab ¼ ηNðEg
a − Eg

bÞ∇Uc; ð4Þ

whereUc ¼ −Gmc=r for a source of spherically symmetric
mass distribution. This leads to detectable effects in
the Solar system. Most notably, it leads to an Earth-
Moon range oscillation in the gravitational field of the
Sun [33,34], which can be constrained by using LLR
experiment [17].
In BD gravity, ηN is a body-independent constant,

given by ηN ¼ 1=ðωBD þ 2Þ [9,10]. Below let us derive
the Nordtvedt parameter in SMG. The Nordtvedt effect
results in an anomalous difference in the accelerations of
two different objects in an external gravitational field.
Therefore, the Nordtvedt parameter can be extracted from
the equations of motion. In the previous work [28], we have
derived in detail the n-body equations of motion in SMG,
and up to Newtonian order, given by

aa ¼ −
X
b≠a

Gabmb

r2ab
r̂ab; ð5Þ

with

Gab ¼ G

�
1þ 1

2
ϵaϵb

�
; ð6Þ

where aa ≡ d2ra=dt2 is the acceleration of the ath object,
r̂ab is the unit direction vector from the bth object to the
ath object, and rab ¼ jra − rbj. The quantity Gab is the
effective gravitational constant between two objects a and
b, ϵi is the scalar charge of the ith object, defined by ϵi ¼
ϕVEV=ðMPlΦiÞ [28]. Now, considering a pair of bodies a
and b moving in the gravitational field of a third body c, in

the case of rab ≪ rac and rac ≃ rbc, from Eq. (5) the
relative acceleration is

aab ¼ −
1

2
ðϵa − ϵbÞϵc

Gmc

r2ac
r̂ac: ð7Þ

By comparing with (4), yields

ηN ¼ ϕ2
VEV

2M2
Pl

1

ΦaΦbΦc

Φa −Φb

Eg
a − Eg

b

: ð8Þ

Note that, unlike ηN in BD (body-independent constant), ηN
in SMG is the three-body-dependent parameter. The results
of this section will allow us to test these theories of gravity
with current observations in the next section.

III. CONSTRAINTS

The tests of dipole radiation and time-varying G need
any two binary pulsars with different orbital periods to
break the degeneracy between Eqs. (1) and (2), because of
_PD
b ∝ P−1

b and _P
_G
b ∝ Pb. We use two different pulsar-white

dwarf binaries, namely PSRs J1738þ 0333 [14] and
J0348þ 0432 [35], with the system parameters shown in
Table I. Note that the intrinsic value of _Pb has been given
by subtracting the kinematic effect [36] and Shklovskii
effect [37] from its observed value. The excess orbital
period change _PExc

b can be obtained by subtracting _PGR
b

predicted by GR’s quadrupole radiation from the intrinsic
_PInt
b . The excess _PExc

b comes from the contributions of the

below physical effects, _PExc
b ¼ _P _M

b þ _PT
b þ _P

_G
b þ _PD

b [36],

where _P _M
b and _PT

b are the contributions from mass loss and
tidal effects, respectively. In the two systems under con-

sideration, _P _M
b and _PT

b can be neglected, because they are
much smaller than the uncertainty in the measurement of
the excess _PExc

b .
Each pulsar system provides a constraint on _PExc

b , which
allows us to test the dipole radiation and time-varying G
over the time span of the observation. Using this and
Eqs. (1) and (2), and performing 106 Monte Carlo simu-
lations, yields the constraints on dipole radiation and time-
varying G as shown in Fig. 1. The individual constraints at
68.3% confidence level (CL) are for BD

TABLE I. Parameters of the binary pulsar systems with 1 − σ uncertainties.

PSR J1738þ 0333 [14] J0348þ 0432 [35]

Eccentricity, e (10−6) 0.34� 0.11 2.4� 1.0
Orbital period, Pb (day) 0.3547907398724(13) 0.102424062722(7)
Intrinsic period derivative, _PInt

b (10−13 s s−1) −0.259� 0.032 −2.73� 0.45
_Pb predicted by GR, _PGR

b (10−13 s s−1) −0.277þ0.015
−0.019 −2.58þ0.08

−0.11
Pulsar mass, mp (M⊙) 1.46þ0.06

−0.05 2.01� 0.04
Companion mass, mc (M⊙) 0.181þ0.008

−0.007 0.172� 0.003
Companion radius, Rc (R⊙) 0.037þ0.004

−0.003 0.065� 0.005

CONSTRAINING THE SCALAR-TENSOR GRAVITY THEORIES … PHYS. REV. D 100, 024038 (2019)

024038-3



_G
G

¼ ð−2.5� 5.2Þ × 10−12 yr−1; ð9Þ

2

ωBD þ 2
¼ ð0.7� 2.3Þ × 10−4; ð10Þ

and for SMG

_G
G

¼ ð−1.4� 2.5Þ × 10−12 yr−1; ð11Þ

ϕ2
VEV

M2
Pl

¼ ð2.7� 8.5Þ × 10−16: ð12Þ

These yield the bounds on the theoretical parameters at
95.4% CL,

ωBD ≥ 3800 for BD; ð13Þ

and

ϕVEV

MPl
≤ 4.4 × 10−8 for SMG: ð14Þ

LLR test of the Nordtvedt effect and a variation in the
gravitational constant are given by _G=G ¼ ð−0.7� 3.8Þ ×
10−13 yr−1 and ηN ¼ ð−0.6� 5.2Þ × 10−4 at 68.3% CL in
the literature [17]. Using the LLR constraint on ηN, we
obtain the two following bounds at 95.4% CL,

ωBD ≥ 1000 for BD; ð15Þ

and

ϕVEV

MPl
≤ 7.8 × 10−15 for SMG; ð16Þ

which improves the previous best constraint on ϕVEV. The
above results are also shown by the yellow region in Fig. 1.
Comparing the pulsar and LLR constraints, we can see that
the pulsar constraint is more stringent than the LLR
constraint for BD gravity, but for SMG the LLR constraint
is around seven order of magnitude more stringent than the
pulsar constraint. This is because in SMG the binary pulsar
is a strong screening system relative to the Solar System.
For BD gravity, combining the LLR constraint on _G and

the pulsar constraint on _PExc
b from PSR J1738þ 0333, we

obtain a better bound of ωBD ≥ 13000 (95.4% CL),
which is still weaker than the limit 40000 from the
Cassini experiment [38,39]. Using the parametrized post-
Newtonian (PPN) parameter γ ¼ ðωBD þ 1Þ=ðωBD þ 2Þ in
BD [9,10], and combining the Cassini constraint on γobs ¼
1þ ð2.1� 2.3Þ × 10−5 [38] and the pulsar constraint on
_PExc
b from PSR J1738þ 0333, we obtain a better bound of
_G=G ¼ ð−0.2� 2.3Þ × 10−12 yr−1 (68.3% CL) relative to
the constraint from two pulsars (9).
For G ∝ 1=ϕ0 in BD [9,10] and G ∝ 1þ ϕ2

VEV=
ð2M2

PlΦ1Φ2Þ in SMG [31], the constraint on _G=G can
be translated directly to a bound on the time variation of the
scalar background. Using the LLR constraint on _G=G, we
obtain the two following bounds at 68.3% CL,

_ϕ0

ϕ0

¼ ð0.7� 3.8Þ × 10−13 yr−1 for BD; ð17Þ

FIG. 1. Confidence contours of _G=G and dipole radiation parameter (2=ðωBD þ 2Þ for BD and ϕ2
VEV=M

2
Pl for SMG) based on PSRs

J1738þ 0333 and J0348þ 0432 using Monte Carlo simulations. The yellow region and shaded region mark the 95.4% confidence limit
from LLR [17], and the gray region marks the 95.4% confidence limit from the Cassini experiment [38]. The red triangle represents the
GR result.
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and

_ϕVEV

ϕVEV
¼ ð0.06� 4.8Þ × 10−4 yr−1 for SMG: ð18Þ

Note that, we would like to emphasize that above all
results about SMG are generically applicable to all SMG
theories, which includes chameleon [20], symmetron [21],
dilaton [22], and fðRÞ [23,24] theories. In the next section
we consider the chameleon model as an example.

IV. APPLICATION TO CHAMELEON

The most important one of the SMG theories is the
chameleon model, introduced as a screening mechanism by
Khoury and Weltman [20]. The chameleon operates an
environment-dependent scalar field, which can acquire a
large mass in dense regions to suppress the fifth force. The
original model has already been ruled out by the combined
constraints from the Solar System and cosmology [40,41].
However, the idea of chameleon can be resurrected by
an exponential potential and an exponential coupling
function [42],

VðϕÞ ¼ Λ4 exp

�
Λα

ϕα

�
; AðϕÞ ¼ exp

�
βϕ

MPl

�
; ð19Þ

where α, β, and Λ are a dimensionless constant index, a
dimensionless coupling constant between chameleon and
matter, and the energy scale of the theory, respectively.
The cosmological constraints require that the energy

scale Λ is close to the dark energy scale of 2.24×
10−3 eV [41,43]. The chameleon VEV is given by ϕVEV ¼
½αMPlΛ4þαðβρbÞ−1� 1

αþ1 [41], where ρb is the background
matter density. Using this and the best constraint on ϕVEV

(16) from LLR, we present the allowed region of the
parameter space ðα; βÞ, marked as the blue shaded region in
Fig. 2. The pulsar constraint (14) from PSRs J1738þ 0333
and J0348þ 0432 is illustrated in Fig. 2 by the yellow
region. In addition, the PPN parameter is given by
γ ¼ 1–2βϕVEV=ðMPlΦÞ [41], from the Cassini constraint
jγobs − 1j ≤ 2.3 × 10−5 [38], the allowed region is shown
by the gray shaded region in Fig. 2. We can see from this
figure that α ≥ 0.58 if the chameleon is weakly coupled to
matter (β ≤ 1). Combining the LLR and Cassini constraints
gives a stringent bound of α ≥ 0.35, which improves
slightly on the previously published limit of 0.2 [31].

V. CONCLUSION

As a simple generalization of GR, SMG and BD
gravities are scalar-tensor theories of gravity with and
without screening mechanisms, respectively. In this paper,
we investigated the tests of the existence of dipole radiation
and time-varying G and the Nordtvedt effect in BD and
SMG theories using Cassini experiment, LLR measure-
ments, and pulsar observations from PSRs J1738þ 0333
and J0348þ 0432, respectively. We derived new con-
straints on dipole radiation and time-varying G in these
theories by combining these tests. We found that screening
mechanism has significant impact on the model constraints.
For BD gravity, the strongest, second, and weakest con-
straints are from Cassini experiment, pulsar observations,
and LLR measurements, respectively. Because of the
existence of screening mechanism in SMG, the LLR
constraint on SMG is several order of magnitude more
stringent than the pulsar observations, which also improves
the previous best constraint on the scalar background. The
LLR constraint on _G is also more stringent than the pulsar
observations. We translated the constraint on _G into the
bounds on the time evolution of the scalar background in
these theories, which differ by several orders of magnitude.
As an application, we applied our results to the expo-

nential chameleon model. We derived the combined con-
straints on the model parameters from Cassini, LLR, and
pulsar tests, and obtained a new bound on the chameleon
parameter of α ≥ 0.35. Finally, we would like to emphasize
that the results of all tests show good agreement with GR
and all the previous works and give more stringent
constraints on the deviations from GR.
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FIG. 2. In the parameter space of exponential chameleon
model, the gray shaded region, the blue shaded region, and
the yellow region are allowed by Cassini probe, LLR measure-
ments, and pulsar observations from PSRs J1738þ 0333 and
J0348þ 0432, respectively. The overlap region yields a lower
bound of α ≥ 0.35.
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