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We study geodesics in the Schwarzschild space-time affected by an uncertainty in the mass parameter
described by a Gaussian distribution. This study could serve as a first attempt at investigating possible
quantum effects of black hole space-times on the motion of matter in their surroundings as well as the role
of uncertainties in the measurement of the black hole parameters.
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I. INTRODUCTION

Black holes were always one of the characterizing
predictions of general relativity (GR) [1,2], and the recent
detection of gravitational waves from the merging of
black hole binaries [3] has further boosted the interest in
such astrophysical objects. The mathematical properties of
these vacuum solutions of the Einstein equations are
already problematic at the classical level, where it is well
known that no sensible energy-momentum tensor can be
associated with them [4]. It becomes even more problem-
atic at the quantum level, since our very limited under-
standing from semiclassical approaches yields the famous
Hawking radiation [5] and a bunch of paradoxes (see, e.g.,
Refs. [6–11], and references therein).
On the other hand, our observational capacities remain

relatively weak in determining with precision what
astrophysical black holes are in nature, and a host of
alternative, somewhat more exotic, compact objects are
actively being investigated in the present literature (see,
e.g., Refs. [11–22]). In this respect, it is very important to
determine the physical consequences of alternative models
of compact objects or alternative descriptions of gravity on
observable quantities, regardless of the origin of such
deviations from the simple black hole metrics of GR.
For example, horizon quantum mechanics [23–26] offers

an alternative perspective to the semiclassical approach
to gravity, whose aim is to put under the spotlight the
quantum features of a black hole’s geometric structure
inherited by a purely quantum mechanical description of its

source. In this regard, the location of trapping surfaces
becomes fuzzy because of the quantum mechanical nature
of the source, thus providing a clear motivation for the
study presented here.
Another motivation can be found in light of the theory of

stochastic gravity (see, e.g., [27] and references therein),
which offers an extension of semiclassical gravity based on
the classical Einstein equations sourced by the stress-
energy tensor of quantum matter fields by including the
contribution of quantum fluctuations to the vacuum expect-
ation values of matter. Specifically, these fluctuations
are accounted for by means of a noise kernel bitensor,
and the semiclassical Einstein equations are replaced by the
so-called Einstein-Langevin equations.
In this work, after reviewing some generalities on the

structure of the orbits in both Newtonian gravity and GR, we
analyze the geodesics of a Schwarzschild space-time1 [28,29]

ds2 ¼ −
�
1 −

2GM
r

�
dt2 þ

�
1 −

2GM
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

affected by an uncertainty in the mass parameter modeled in
terms of a Gaussian distribution.

II. ORBITS IN NEWTONIAN GRAVITY AND IN
THE SCHWARZSCHILD GEOMETRY

The equation that governs the radial motion of a test
particle in the Schwarzschild metric (1) or in Newtonian
physics can be written as [1,2]*casadio@bo.infn.it
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1

2

�
dr
dτ

�
2

¼ E2

2
− VðrÞ≡ E − VðrÞ; ð2Þ

where we denoted with E and L, respectively, the con-
served energy and angular momentum per unit mass in the
massive case (ε ¼ 1) or the conserved energy and angular
momentum in the massless case (ε ¼ 0). The potential in
the above equation reads

VðrÞ ¼ ε

2

�
1 −

2GM
r

�
þ L2

2r2
− γ

GML2

r3
; ð3Þ

where the parameter γ ¼ 1 in GR and γ ¼ 0 (and ε ¼ 1) in
Newtonian gravity. Equation (2) formally resembles the
equation for a classical particle of unit mass and energy E
moving in a one-dimensional potential2 V (the conserved
energy per unit mass is E, but the effective potential
corresponds to E ¼ E2=2).

A. Circular orbits

The stationary points of the potential V represent circular
orbits, whose radius rc is thus given by

0 ¼ dV
dr

����
r¼rc

∼ εGMr2c − L2rc þ 3γGML2: ð4Þ

Of course, these circular orbits are stable (unstable) if they
correspond to a minimum (maximum) of the potential.

1. Newtonian gravity

In Newtonian gravity (γ ¼ 0), we have the following
well-known results:
(a) For massless particles (ε ¼ 0), no circular orbits exist.

In fact, bound orbits do not exist, in general (massless
particles move on a straight line).

(b) For massive particles (ε ¼ 1), there are stable circular
orbits at the radius

rc ¼
L2

GM
ð5Þ

as well as bound orbits that oscillate around the radius
rc. In general, if the energy is greater than the
asymptotic value3 E ¼ 1, the orbits are unbound
(parabolas or hyperbolas); otherwise, they are bound
(circles or ellipses).

2. General relativity

In GR (γ ¼ 1), the term GML2=r3 becomes important
when r is small and the potential V vanishes at the

Schwarzschild radius r ¼ 2GM. The following general
results are also well known:
(a) For massless particles (ε ¼ 0), we find

rc ¼ 3GM≡ rph; ð6Þ

which represents the innermost (unstable) circular
orbit of a photon. Note that the radius of this orbit
does not depend on L.

(b) For massive particles (ε ¼ 1), the zeros of Eq. (4) are
given by

r� ¼ L2

2GM

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12G2M2

L2

r �
≡ L2ð1� χÞ

2GM
:

ð7Þ

Hence, when L >
ffiffiffiffiffi
12

p
GM ≈ 3.46GM (that is, χ is

real), there is an inner unstable circular orbit (rin ¼ r−)
and an outer stable circular orbit (rout ¼ rþ). For large
L, we have

lim
L→∞

rin ¼ 3GM; ð8Þ

so that the unstable orbit approaches the massless orbit
(6), whereas

rout ∼
L2

GM
ð9Þ

and the stable circular orbit moves farther and farther
away, approaching the Newtonian expression (5).
Conversely, by decreasing L the two orbits come
closer together and coincide for L ¼ ffiffiffiffiffi

12
p

GM. The
common radius of this (stable) circular orbit is4

rc ¼ 2rph ¼ 6GM: ð10Þ

Finally, no circular orbits are possible when L <ffiffiffiffiffi
12

p
GM (since χ becomes imaginary).

B. Noncircular orbits

Noncircular orbits in GR are not perfectly closed
ellipses. Nonetheless, they can be viewed, to a good level
of approximation, as ellipses that precess. Thus, it is rather
convenient to describe the evolution of the radial coordinate
r as a function of the angular coordinate φ, i.e., r ¼ rðφÞ.
Recalling that L ¼ r2dφ=dτ [1], from Eq. (2) we obtain

�
dr
dφ

�
2

¼ E2 − ε

L2
r4 þ 2εGM

L2
r3 − r2 þ 2γGMr: ð11Þ

2The potential V is actually the potential energy (per unit
mass).

3This follows from Vðr → ∞Þ ¼ 1=2 in Eq. (2). 4This is the innermost stable circular orbit.
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Letting x≡ L2=GMr, Eq. (11) becomes

�
dx
dφ

�
2

¼ L2ðE2 − εÞ
G2M2

þ 2εx − x2 þ γ
2G2M2

L2
x3; ð12Þ

which, upon differentiating with respect to φ, can also be
written as

d2x
dφ2

¼ ε − xþ γ
3G2M2

L2
x2: ð13Þ

Note that x ¼ 1 corresponds to the Newtonian circular
orbit (5).
For the purpose of finding analytical solutions to

Eq. (12), we define the dimensionless parameters

α ¼ GM
L

; β ¼ GM
EL

¼ α

E
; ρ ¼ 2G2M2

L2
¼ 2α2;

ð14Þ

so that Eq. (12) will read

�
dx
dφ

�
2

¼
�
1

β2
−

ε

α2

�
þ 2εx − x2 þ γρx3: ð15Þ

Analogously, Eq. (13) can be rewritten as

d2x
dφ2

¼ ε − xþ 3

2
γρx2: ð16Þ

1. Newtonian gravity

For Newtonian gravity (γ ¼ 0), Eq. (15) reduces to

�
dx
dφ

�
2

¼
�
1

β2
−

ε

α2

�
þ 2εx − x2

≡ −ðx − x1Þðx − x2Þ; ð17Þ

where the roots x1 ¼ ε − κ and x2 ¼ εþ κ, with

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

β2
−

ε

α2
þ ε2

s
: ð18Þ

The general solution to Eq. (17) is then given by

xðφÞ ¼ x1 þ ðx2 − x1Þ sin2
�
φ

2
þ δ

�
¼ εþ ðx1 − εÞ cos ðφþ 2δÞ; ð19Þ

where δ is an integration constant determined by the initial
condition xðφ0Þ ¼ x0. Equation (19) describes a conic of
eccentricity

e ¼ x2 − x1
x2 þ x1

¼ κ

ε
: ð20Þ

For massive particles (ε ¼ 1), we see that
(i) if x1 > 0 and x1 ≠ x2 (i.e., 0 < κ < 1), the orbit is an

ellipse where x1 and x2 represent the distances of
furthest and closest approach, respectively;

(ii) if x1 ¼ x2 (i.e., κ ¼ 0), the orbit is circular, with the
radius given by the Newtonian value (5) (this
happens when E2 ¼ 1 −G2M2=L2);

(iii) if x1 ¼ 0 (i.e., κ ¼ 1, namely, α ¼ β), the orbit is a
parabola and x2 represents the distance of closest
approach;

(iv) if x1 < 0 (i.e., κ > 1), the orbit is a hyperbola and x2
represents again the distance of closest approach.

For massless particles (ε ¼ 0), −κ ≤ x ≤ κ and the orbit is
always an unbound straight line.

2. General relativity

In the GR case (γ ¼ 1), the cubic polynomial on the
right-hand side of Eq. (15) admits three roots, which we
denote by x1, x2, and x3, so that�

dx
dφ

�
2

¼ ρðx − x1Þðx − x2Þðx − x3Þ; ð21Þ

with x1 þ x2 þ x3 ¼ 1=ρ. The general solution of Eq. (21)
is

xðφÞ ¼ x1 þ ðx2 − x1Þsn2
�
φ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx3 − x1Þ

p
þ δ; k

�
; ð22Þ

where snðz; kÞ is the Jacobi elliptic function with argument
z and elliptic modulus

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x1
x3 − x1

r
: ð23Þ

The integration constant δ is again found from the initial
condition xðφ0Þ ¼ x0.
The roots x1, x2, and x3 can be either all real or one real

and two complex conjugates. In the first case, we name the
roots such that x1 ≤ x2 ≤ x3, while in the second case we
denote the real root as x1. The following situations are
therefore possible:

(i) x1 < x2 < x3.—If all three roots are distinct real
numbers, the second derivative

d2x
dφ2

¼ ρ

2
½ðx − x2Þðx − x3Þ þ ðx − x1Þðx − x3Þ

þ ðx − x1Þðx − x2Þ� ð24Þ

is positive, negative, and positive at x ¼ x1, x ¼ x2,
and x ¼ x3, respectively. It follows that a graph of x
versus φ can either oscillate between x1 and x2
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or move away from x3 towards infinity (which
corresponds to r → 0). If x1 < 0, only part of an
oscillation will actually occur. This corresponds
to the particle coming from infinity, getting near
the central mass, and then moving away again
toward infinity, like the hyperbolic trajectory in
the Newtonian case.

(ii) x1 < x2 ¼ x3.—If the particle has just the right
amount of energy (for a given angular momentum),
x2 and x3 will merge. The radius rin ∼ 1=x2 ¼ 1=x3
is called the inner radius, and we have 3=2ρ ≤
rin ≤ 3ρ. There are three solutions in this case:
(1) the orbit spirals into rin, approaching the inner

radius (asymptotically) as a decreasing expo-
nential in φ, τ, or t;

(2) one can have a circular orbit at the inner radius
rin; or

(3) one can have an orbit that spirals down from the
inner radius rin towards the central singularity.

Since snðz; 1Þ ¼ tanhðzÞ, in this case Eq. (22)
simplifies to

xðφÞ ¼ x1 þ ðx2 − x1Þ tanh2
�
φ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx2 − x1Þ

p
þ δ

�
:

ð25Þ

(iii) x1 ¼ x2 < x3.—A circular orbit also results when
x1 ¼ x2. In this case, the radius rout ∼ 1=x1 ¼ 1=x2
is called the outer radius.

(iv) x2, x3 ∈ C.—If the particle approaches the center
with enough energy and sufficiently low angular
momentum, then only x1 will be real. This corre-
sponds to the particle spiraling and falling into a
black hole with a finite change in φ.

Equivalent forms of the above solutions are briefly
reviewed in the Appendix.

III. THE CENTRAL MASS AS
A RANDOM VARIABLE

We shall now consider the massM as a random variable,
assumed to be normally distributed with mean value M0

and standard deviation σM (the variance is σ2M) [30].
Equivalently, we may denote the mass M as M0 þ δM,
where δM is a random variable with zero mean value,
μδM ¼ 0, and variance σ2M, that is,

δM ∼N ð0; σ2MÞ; ð26Þ

whereN ðμz; σ2zÞ is the normalized Gaussian distribution of
mean value μz.
Since δM is a random variable, any trajectory para-

metrized as r ¼ rðφÞ will be a functional of this random
variable, which, for a given value of the angle φ, will
therefore become a random variable itself. In order to stress

that the angle φ is now seen as a parameter and δM is
treated as an independent (random) variable, we shall
employ the notation r ¼ rφðδMÞ.
Since Eq. (12) has the known analytical solution (22), it

is conceivable to carry out the analysis of the probability
distribution of rφ, representing the position of the particle
at a given angle φ, without relying on any perturbation
methods.
In order to show explicitly the dependence on the mass

M, we first rewrite Eq. (21) [equivalent to Eq. (12)] as�
du
dφ

�
2

¼ ρ

M
ðu − u1Þðu − u2Þðu − u3Þ; ð27Þ

where we introduced the (dimensionful) variable

u ¼ Mx ¼ L2

Gr
; ð28Þ

and ui ¼ Mxi, for i ¼ 1, 2, 3. The solution of Eq. (27)
[equivalent to the solution (22)] is now given by

uðφÞ ¼ u1 þ ðu2 − u1Þsn2
�
φ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

M
ðu3 − u1Þ

r
þ δ; k

�
;

ð29Þ

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u1
u3 − u1

r
ð30Þ

and uðφ0Þ ¼ u0. It is important to remark that u1, u2, u3, δ,
ρ, and k are now all functions ofM. Since we are assuming
M to be a random variable with a given probability density
function fM, the variable uφ ≡ uðφÞwill turn into a random
variable with probability distribution fUφ

.
As is customary in probability theory, from now on

we shall indicate the random variables with capital letters
(M and Uφ, respectively, for the mass and the dependent
variable uφ) and with lowercase letters (m and uφ, respec-
tively) the values taken on by the random variables. We can
therefore write Eq. (27) as

Uφ ¼ u1 þ ðu2 − u1Þsn2
�
φ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G2M
L2

ðu3 − u1Þ
r

þ δ; k

�
:

ð31Þ

In order to determine the probability density function fUφ

of the random variable Uφ, it is useful to work with its
cumulative distribution function FUφ

ðuφÞ, defined as the
probability P of Uφ taking on values smaller than or equal
to uφ. Since Uφ is a monotonically increasing function of
M [which we shall denote with the symbol g, Uφ ¼ gðMÞ],
we have
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FUφ
ðuφÞ ¼ PðUφ ≤ uφÞ ¼ Pð0 ≤ M ≤ mÞ

¼
Z

m

0

fMðξÞdξ

¼
Z

g−1ðuφÞ

0

fMðξÞdξ; ð32Þ

where uφ ¼ gðmÞ. Making use of the fundamental theorem
of calculus, we obtain

fUφ
ðuφÞ ¼

dFUφ
ðuφÞ

duφ
¼ dFUφ

ðuφÞ
dg−1ðuφÞ

dg−1ðuφÞ
duφ

¼ fMðmÞ dg
−1ðuφÞ
duφ

¼ fMðmÞ
g0ðmÞ ¼ fMðmÞ

jg0ðmÞj : ð33Þ

Were the function gmonotonically decreasing, the previous
derivation could be repeated just changing the sign of the
inequality, that is,

FUφ
ðuφÞ ¼ PðUφ ≤ uφÞ ¼ PðM > mÞ

¼
Z

∞

m
fMðξÞdξ

¼ −
Z

g−1ðuφÞ

∞
fMðξÞdξ; ð34Þ

which would lead to

fUφ
ðuφÞ ¼ −

fMðmÞ
g0ðmÞ ¼ fMðmÞ

jg0ðmÞj : ð35Þ

The case of a nonmonotonic function g can be treated
similarly, just splitting the integration range so as to have a
monotonic function in each interval. It is then easy to see
that, if the function fUφ

has N roots, which we denote as
uφ ¼ gðmkÞ, for k ¼ 1; 2;…; N, we obtain the general
formula

fUφ
ðuφÞ ¼

XN
k¼1

fMðmkÞ
jg0ðmkÞj

: ð36Þ

The validity of the previous relation is not limited toUφ and
M. In order to stress this, and for future use, the previous
relation can be written as

fYðyÞ ¼
XN
k¼1

fXðxkÞ
jg0ðxkÞj

; ð37Þ

for a generic random variable Y function of X (with
whatever probability density function fX), such that
Y ¼ gðXÞ.

It is possible to extend the idea described above and to
assume other parameters as random variables as well, not
just the mass M. For instance, the initial position u0 of the
particle can be assumed as a random variable. In such a
case, Eq. (37) can be applied, where the dependent and
independent random variables are Uφ and U0, respectively,
and Uφ ¼ gðU0Þ.
The next step is to assume more parameters simulta-

neously as random variables. For example, the energy E
and the angular momentum L might actually be considered
as random variables with mean values equal to their
nominal values (say, μE and μL, respectively) and variances
accounting for their uncertainties (say, σ2E and σ2L, res-
pectively). The random variables E and L would be in this
case independent and follow normal distributions, E ∼
N ðμE; σ2EÞ and L ∼N ðμL; σ2LÞ, respectively. In this case, it
is also conceivable that the variables E and L are not
independent. In this scenario, it could be more accurate to
introduce a joint probability density function fELðe; lÞ,
instead of two independent probability density functions
fEðeÞ and fLðlÞ for the energy and angular momentum
separately. This approach is, of course, more general, and
the case of independent variables could be recovered
when fELðe; lÞ ¼ fEðeÞfLðlÞ.
This idea can be generalized even further. If the energy E,

the angular momentum L, and the initial position u0 are all
affected by uncertainties and should be treated as random
variables, we could have a joint probability density function
fELU0

ðe; l; u0Þ. In all these cases, the variable Uφ repre-
senting the quantity u at some angle φ would be a
multivariate random variable, i.e., a function of more than
one random variable. We shall continue to use the symbol g
for this function. However, a straightforward generalization
of Eq. (37) to this case does not appear possible.
In the case of two random variables, say, E and L, with

joint probability density function fEL, a procedure similar
to the one presented for the case where M is treated as a
random variable would yield

FUφ
ðuφÞ ¼ PðUφ ≤ uφÞ ¼ PðgðE;LÞ ≤ uφÞ

¼
Z
DðuφÞ

fELðξ; ηÞdξdη; ð38Þ

where DðuφÞ ⊂ R2 is the region of the EL plane over
which gðE; LÞ ≤ uφ. Once the cumulative distribution
function FUφ

ðuφÞ is known, the probability density func-
tion fUφ

ðuφÞ can be finally obtained by means of the
definitions of FUφ

and fUφ
, i.e.,

fUφ
ðuφÞ ¼

dFUφ
ðuφÞ

duφ
: ð39Þ

In contrast to the case of a single random variable, this
procedure for obtaining fUφ

ðuφÞ is unlikely to be feasible
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analytically, due to the complexity of both the function g
and the domain of integration D. It can probably be done
numerically, though.
Following this approach, it should be possible to inves-

tigate the uncertainty on the orbit, described by a random
variable Uφ, due to the uncertainties on the parameters E,
L, and U0 (and possibly others), and to compare this
uncertainty on the orbit to the one produced by an
uncertainty of the central mass M. The basis of this
approach is laid on two key ingredients:
(1) finding the (analytical or numerical) solution of the

equation of motion (13) and
(2) computing theprobability density functionof the orbit,

once the probability density functions of the param-
eters are given, following themethod described above.

IV. MASS UNCERTAINTY AND
NONCIRCULAR ORBITS

In Sec. II B 2, solutions of the equation of motion (2) were
reviewed, and qualitatively different kinds of orbit have been

identified. For these orbits, the effect of assuming the
mass M as a normally distributed random variable is now
investigated for orbits with set initial conditions for the
position and velocity. Let us first recall that we shall be using
the (dimensionful) variable u in Eq. (28), like in the previous
section, and that the orbits are divided into the following four
groups (u0 represents the initial position of the particle):

(i) If the third degree polynomial on the right-hand side
of Eq. (27) has three distinct real roots (u1<u2<u3),
we can have the following behaviors:
if 0 < u1 < u0 < u2 < u3, the graph of u versus φ
oscillates between u1 and u2 (first case);

if 0<u1<u2<u3<u0, the graph of u versus φ
moves away from u3 towards infinity (sec-
ond case);

if u1<0<u0<u2<u3, only part of an oscillation
occurs, with the particle first approaching the cen-
tral mass and then moving away towards infinity
(third case);

(ii) If the polynomial has one real root and two complex
conjugates roots, the particle falls into the black hole

FIG. 1. (First case) Orbits for different values ofM ¼ 1.5, 2, 2.5 (left to right, with G ¼ 1, E ¼ 0.9, L ¼ 10, and u0 ¼ 1.) The red dot
is the starting point, and the colors are the same as in Fig. 2.

FIG. 2. (First case) Graphs of uðφÞ for different values ofM ¼ 1.5, 2, 2.5 (with G ¼ 1, E ¼ 0.9, L ¼ 10, and u0 ¼ 1) (left panel) and
maximum amplitude of the oscillations as a function of the mass M (right panel).
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and the orbit is a spiral with a finite change in φ
(fourth case).

It is important to recall that, if the energy and the angular
momentum of the particle are such that u1 < u2 ¼ u3, three
behaviors are possible: the orbit may be circular at the

radius rin ∼ 1=u2 ¼ 1=u3 (the inner radius), or it may spiral
in asymptotically approaching the inner radius or spiral
down from the inner radius to the central point. If instead
u1 ¼ u2 < u3, a circular orbit at the radius rout ∼ 1=
u1 ¼ 1=u2 (the outer radius) is also possible. In all of

FIG. 3. (First case) Probability density function for the mass M (left panel) and for the amplitude A (right panel). The amplitude
corresponding to the mean value of M is ∼3.68; the value of the amplitude corresponding to the maximum of the distribution of A if
∼3.64. (The random variable A is not normally distributed, and its distribution is not symmetric).

FIG. 4. (Second case) Orbits for values of M ¼ 1.7, 1.9, 2.1, 2.3 (left to right, with G ¼ 1, E ¼ 0.99, L ¼ 10, and u0 ¼ 27.) The red
dot is the starting point, and the colors are the same as in Fig. 5(a).

FIG. 5. (Second case) Graphs of uðφÞ for values ofM ¼ 1.7, 1.9, 2.1, 2.3 (left panel, withG ¼ 1, E ¼ 0.99, L ¼ 10, and u0 ¼ 27) and
uφ as a function of the mass M for fixed angles φ (right panel).
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these cases, after the slightest perturbation of the central
mass M, we fall back in one of the four previous cases. For
example, when the stable orbit is perturbed, we fall in the
first case.
In the following, we shall analyze the above four cases.

For the purpose of making the results more readable, we
will first show plots of the orbits corresponding to fixed

numerical values of the parameters of relevance for each
distribution of the mass M and specifically chosen for the
purpose of displaying clearly the qualitative features of
the orbits in the case under consideration. We then display
the chosen distribution for the mass M and the final
distribution of the quantity of relevance again for each
specific case (e.g., amplitude of the oscillation, minimum

FIG. 6. (Second case) Probability density function for the mass M (left panel) and for the variable uφ for different angles φ
(right panel).

FIG. 7. (Third case) Orbits for values of M ranging from 0.2 to 2.4 (top left to bottom right, with G ¼ 1, E ¼ 1.02, L ¼ 10, and
u0 ¼ 1.) The red dot is the starting point, and the colors are the same as in Fig. 8.
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distance from the center, etc.). In particular, we shall use
units with G ¼ 1.

A. First case

When the orbit oscillates between u1 and u2, it is
interesting to analyze the amplitude A (and the period)
of the oscillations as a function of the random variable M.
For example, the trajectories r ¼ rðφÞ corresponding to
three different values of M are shown in Fig. 1 in polar
form. Cartesian plots of uðφÞ are shown in Fig. 2, together
with the amplitude of the oscillations A, as a function of the
mass M. (When comparing Fig. 1 with Fig. 2, it should be
noted that r ¼ L2=Gu ¼ 100=u.)
If the random variable M is normally distributed with

mean value μM ¼ 1.5 and standard deviation σM ¼ 0.1, the
probability density function fA of the random variable A
can be obtained by means of Eq. (37) once the probability
density function fM and the function A ¼ gðMÞ are known.
The probability density functions fM and fA are shown
in Fig. 3.

B. Second case

The second possibility listed above is that the particle
will monotonically move towards the central mass
(u → ∞), as is shown by the polar trajectories rðφÞ
represented in Fig. 4. For such a type of orbits, the function
uðφÞ is plotted for several values of M in Fig. 5. For this
case, it is therefore interesting to analyze the behavior of uφ
as a function of M for different values of the angle φ that
parameterizes the orbit.
If the random variable M is normally distributed with

mean value μM ¼ 1 and standard deviation σM ¼ 0.05, the
resulting probability density function fU of the random
variable uφ, for some exemplary values of φ, is shown in
Fig. 6 along with the corresponding probability density
function fM. As expected, the variance of the probability
density function of uφ increases with φ.

C. Third case

Another type of solution is the one representing a particle
coming from infinity towards the central mass and then

FIG. 8. (Third case) Graphs of uðφÞ for values of M ranging from 0.2 to 2.4 (left panel, with G ¼ 1, E ¼ 1.02, L ¼ 10, and u0 ¼ 1)
and maximum value D of u (inverse minimum distance of the particle from the central mass) as a function of the mass M (right panel).

FIG. 9. (Third case) Probability density function for the mass M (left panel) and for the amplitude D inversely proportional to the
minimum distance from the central mass (right panel).
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moving back towards infinity (r → ∞, i.e., u → 0). Some
typical polar trajectories rðφÞ of this kind are shown in
Fig. 7, and the corresponding functions uðφÞ are displayed in
Fig. 8. The maximum value D of u reached along the
trajectory (proportional to the inverse of the minimum
distance from the central mass) is also plotted as a function
of M.
If the random variable M is normally distributed with

mean value μM ¼ 1 and standard deviation σM ¼ 0.2, the

probability density function fD of the random variable D is
again obtained by means of Eq. (37). The probability
density functions fM and fD are shown in Fig. 9.

D. Fourth case

The last type of solution is the one representing a particle
with enough energy and sufficiently low angular momen-
tum which spirals into a black hole with a finite change

FIG. 10. (Fourth case) Orbits for values ofM ¼ 1, 1.3, 1.6, 1.9 (left to right, withG ¼ 1, E ¼ 0.98, L ¼ 10, and u0 ¼ 50). The red dot
is the starting point, and the colors are the same as in Fig. 11.

FIG. 11. (Fourth case) Graphs of uðφÞ for values ofM ¼ 1, 1.3, 1.6, 1.9 (left panel, with G ¼ 1, E ¼ 0.98, L ¼ 10, and u0 ¼ 50) and
maximum value D of u (inverse minimum distance of the particle from the central mass) as a function of the mass M (right panel).

FIG. 12. (Fourth case) Probability density function for the mass M (left panel) and for the amplitude U (right panel).
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in φ. Some examples of these orbits are shown in Fig. 10,
and the corresponding function uðφÞ is plotted in Fig. 11,
along with the behavior of uφ as a function of M for
different values of the angle φ.
For M normally distributed with mean value μM ¼ 2.2

and standard deviation σM ¼ 0.05, the resulting pro-
bability density functions fU for some angles φ are shown
in Fig. 12.

V. PERTURBATION OF CIRCULAR ORBITS

We can now study circular orbits again using the variable
u defined in Eq. (28), so that Eq. (12) reads

�
du
dφ

�
2

¼ E2L2

G2
− ε

L2

G2
þ 2εMu − u2 þ γ

2G2M
L2

u3 ð40Þ

and Eq. (13) reads

d2u
dφ2

¼ εM − uþ γ
3G2M
L2

u2: ð41Þ

We wish to study the effect on circular orbits of small
perturbations affecting the central mass M and the initial
position of the test particle. We shall first use an analytical
perturbative approach for Eq. (41) with the initial conditions

uð0Þ ¼ uc ≡ L2

Grc
;

du
dφ

ð0Þ ¼ 0; ð42Þ

where rc is the radius of a circular orbit (either internal or
external). Note that the initial condition on the derivative
implies that an instantaneous perturbation of the mass does
not instantaneously alter the tangential component of the
particle velocity.

A. Mass perturbation

If we denote with δM the perturbation on the massM, the
perturbed solution can be written as

u ¼ uð0Þ þ δM
M

uð1Þ þO
�
δM2

M2

�
: ð43Þ

Upon replacing into Eq. (41) and keeping terms up to the
order of δM=M, we find

d2uð0Þ

dφ2
þ δM

M
d2uð1Þ

dφ2
¼ εðMþ δMÞ− uð0Þ −

δM
M

uð1Þ

þ γ
3G2

L2
ðMþ δMÞ

�
uð0Þ þ δM

M
uð1Þ

�
2

:

ð44Þ

Assuming uð0Þ satisfies the unperturbed equation (2) with
fixed M, we obtain that the first-order correction must
satisfy

d2uð1Þ

dφ2
¼ αcuð1Þ þ βc; ð45Þ

where

αc ≡ γ
6G2M
L2

uð0Þ − 1 ð46Þ

and

βc ≡ γ
3G2M
L2

ðuð0ÞÞ2 þ εM: ð47Þ

Moreover, the initial conditions for uð1Þ are given by

uð1Þð0Þ ¼ duð1Þ

dφ
ð0Þ ¼ 0: ð48Þ

Focusing on the case γ ¼ 1 and restricting ourselves, from
now on, to the perturbation of circular orbits (uð0Þ ¼ uc),
we treat the massive and massless cases separately.
In the massive case (ε ¼ 1), two circular orbits exist

[see Eq. (7)]:
(1) For the internal orbit, we have rc ¼ rin ¼ r− in

Eq. (7), that is,

uc ¼ uin ¼
L2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 − 12G2M2L2

p

6G2M
; ð49Þ

for which αc ¼ α > 0 [see Eq. (7)] and βc ¼ uin.
The analytical solution of Eq. (45) is then

uð1Þ ¼ βc
αc

½cosh ð ffiffiffiffiffi
αc

p
φÞ − 1�; ð50Þ

and it is easy to see that, as expected, this orbit is
unstable. In fact, the perturbed solution (43) to first
order reads

uðφÞ ≃ uin

�
1þ δM

M
cosh ð ffiffiffi

α
p

φÞ − 1

α

�
; ð51Þ

from which we can see that increasing the mass
(δM > 0) leads to r → 0 (u → ∞). On the other
hand, reducing the mass (δM < 0) leads to r → ∞
(u ¼ 0) for some finite value of φ.

(2) For the external orbit, we have rc ¼ rout ¼ rþ in
Eq. (7), or

uc ¼ uout ¼
L2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 − 12G2M2L2

p

6G2M
; ð52Þ

so that αc ¼ −α < 0 and βc ¼ uout. The analytical
solution of Eq. (45) is now
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uð1Þ ¼ βc
αc

½cos ð
ffiffiffiffiffiffiffiffi
jαcj

p
φÞ − 1�; ð53Þ

which implies that the outer orbit is stable, with uð1Þ
oscillating between 0 and 2βc=jαcj. The perturbed
solution to first order is given by

uðφÞ ≃ uout

�
1þ δM

M
1 − cos ð ffiffiffi

α
p

φÞ
α

�
; ð54Þ

so that δM > 0 leads to periodic oscillations inter-
nal (u ≥ uout) to the stable orbit r ¼ rout, whereas
δM < 0 leads to periodic oscillations external
(u ≤ uout) to the stable orbit r ¼ rout. This is
potentially quite interesting in practical terms, be-
cause the oscillations are proportional to the pertur-
bation δM (assuming that the oscillations are large
enough to be detectable).

For the massless case (ε ¼ 0), there is one possible
circular orbit rc ¼ rph in Eq. (6), or

uc ¼ uph ¼
L2

3G2M
: ð55Þ

In this case, Eq. (45) becomes

d2uð1Þ

dφ2
¼ uð1Þ þ uph; ð56Þ

and its analytical solution is

uð1Þ ¼ uc½coshðφÞ − 1�: ð57Þ

It is clear that, since uð1Þ → ∞ as φ → ∞, the orbit

uðφÞ ≃ uph

�
1þ δM

M
½coshðφÞ − 1�

	
ð58Þ

is unstable, and it will fall into the singularity (u → ∞) if
δM > 0 or escape to infinity (u → 0) if δM < 0.

B. Initial position perturbation

Let us now consider a perturbation δu0 on the initial
position u0, so that

u ¼ uð0Þ þ δu0
u0

uð1Þ þO
�
δu20
u20

�
: ð59Þ

From Eq. (41), we have

d2uð0Þ

dφ2
þ δu0

u0

d2uð1Þ

dφ2
¼ γ

3G2M
L2

�
ðuð0ÞÞ2 þ δu0

u0
ðuð1ÞÞ2 þ 2

δu0
u0

uð0Þuð1Þ
�

þ εM − uð0Þ −
δu0
u0

uð1Þ ð60Þ

so that the first-order perturbation must satisfy

d2uð1Þ

dφ2
¼ αcuð1Þ; ð61Þ

with αc still given by Eq. (46). Moreover, the proper initial
conditions are given by

uð1Þð0Þ ¼ δu0;
duð1Þ

dφ
ð0Þ ¼ 0: ð62Þ

Similarly to the case of mass perturbations, we shall
consider only circular orbits (uð0Þ ¼ uc ¼ u0 and

δu0 ≡ δuc) for γ ¼ 1 and distinguish the massive and
massless cases.
In the massive case (ε ¼ 1), we distinguish the internal

and the external orbits:
(1) For the internal orbit uc ¼ uin, we can write the

perturbation as

uð1Þ ¼ δuc cosh ð
ffiffiffiffiffi
αc

p
φÞ; ð63Þ

where αc ¼ α. The perturbed solution

uðφÞ ≃ uin

�
1þ δuc

uin
cosh ð ffiffiffi

α
p

φÞ
�

ð64Þ

is therefore unstable.

TABLE I. Overview of perturbed solutions.

ε uc uðφ; δMÞ uðφ; δu0Þ
1 uin in Eq. (49) uin½1þ δM

M
cosh ð ffiffi

α
p

φÞ−1
α � uin½1þ δuc

uin
cosh ð ffiffiffi

α
p

φÞ�
1 uout in Eq. (52) uout½1þ δM

M
1−cos ð ffiffi

α
p

φÞ
α � uout½1þ δuc

uout
cos ð ffiffiffi

α
p

φÞ�
0 uph in Eq. (55) uphf1þ δM

M ½coshðφÞ − 1�g uph½1þ δuc
uph

coshðφÞ�
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(2) For the external orbit uc ¼ uout, the perturbation is
given by

uð1Þ ¼ δuc cos ð
ffiffiffiffiffiffiffi
jαcj

p
φÞ; ð65Þ

with αc ¼ −α. The perturbed solution reads

uðφÞ ¼ uout

�
1þ δuc

uout
cos ð ffiffiffi

α
p

φÞ
�
; ð66Þ

FIG. 13. Potential V as a function of the radial coordinate r for values of the central mass M ¼ 0.99, 1, 1.01 (with G ¼ 1 and
L ¼ 3.75). Black dots represent the local maximum of the potential, corresponding to the unstable circular orbits.

FIG. 14. Radial coordinate r̃ ¼ r=GM of trajectories subject to perturbations δM starting from the unstable circular orbit for L̃ ¼
L=GM ¼ ffiffiffiffiffi

12
p

(top panel); trajectories subject to the perturbation δM=M ¼ 10−5 (bottom left panel), δM=M ¼ 10−3 (bottom center
panel), and δM=M ¼ 10−1 (bottom right panel).
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which is stable, with oscillations of amplitude 2δuc
around the circular orbit.

For the massless case (ε ¼ 0), there is one possible
circular orbit (6) with uc ¼ uph ¼ L2=3G2M, and Eq. (61)
reads

d2uð1Þ

dφ2
¼ uð1Þ; ð67Þ

with the solution

uð1Þ ¼ δuc coshðφÞ: ð68Þ

As expected, the orbit is unstable:

uðφÞ ≃ uph

�
1þ δuc

uph
coshðφÞ

�
: ð69Þ

We can now easily compare the effect of a perturbation in
the initial position with the one produced by a perturbation
in the central mass by looking at Table I. It appears that the
two effects are very similar, in fact, and in the following we
shall focus on the first case in the table.

VI. UNSTABLE CIRCULAR ORBITS

In this section, we want to analyze in more detail the
unstable inner circular orbit rin for massive particles. Since
the analysis will be performed numerically, it is convenient
to introduce the dimensionless variables

L̃≡ L
GM

; r̃in ≡ rin
GM

; ð70Þ

and recall that (two) circular orbits exist under the condition
L̃ ≥

ffiffiffiffiffi
12

p
. In particular, as discussed in Sec. II A 2, the

inner radius

3 ¼ r̃inðL̃ → ∞Þ ≤ r̃in ≤ r̃inðL̃ ¼
ffiffiffiffiffi
12

p
Þ ¼ 6: ð71Þ

Since the energy and the angular momentum of test
particles moving on the internal circular orbits are con-
nected by the relation

E ¼ 108½36 − L̃−1ðL̃2 − 12Þ3=2 þ L̃�; ð72Þ
the effects of a perturbation of the mass M can be
determined by considering L as the only free parameter.
It is worth noticing that, in our analysis, an instantaneous

reduction of the mass M, i.e., a perturbation δM < 0, leads
to a smaller radius for the circular orbit and to an increase of

FIG. 15. Radial coordinate r̃ ¼ r=GM of trajectories subject to perturbations δM starting from the unstable circular orbit for L̃ ¼
L=GM ¼ 4 (top panel); trajectories subject to the perturbation δM=M ¼ 10−5 (bottom left panel), δM=M ¼ 10−3 (bottom center panel),
and δM=M ¼ 10−1 (bottom right panel).
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the corresponding potential V (see Fig. 13). After the
perturbation, the particle orbiting on the circular orbit
would happen to have an energy lower than the potential
energy V. We shall therefore consider only perturbations
δM > 0, i.e., instantaneous increases of the mass M. [Note
that, in the analytical perturbation method, solutions are

found under the condition du=dφð0Þ ¼ 0; see Eq. (42) and
the following comment.]
The change of the radial coordinate of the particle as a

function of the angle φ following an instantaneous pertur-
bation δM > 0 are shown in Figs. 14–16 for three values of
the angular momentum, namely,

FIG. 16. Radial coordinate r̃ ¼ r=GM of trajectories subject to perturbations δM starting from the unstable circular orbit for L̃ ¼
L=GM ¼ 100 (top panel); trajectories subject to the perturbation δM=M ¼ 10−5 (bottom left panel), δM=M ¼ 10−3 (bottom center
panel), and δM=M ¼ 10−1 (bottom right panel).

FIG. 17. Number of revolutions N corresponding to a change of 5% in the radial coordinate as a function of the perturbation δM=M
ranging from 10−6 to 10−1.
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(1) L̃ ¼ ffiffiffiffiffi
12

p
, which is the minimum possible value for

which the circular orbit exists—the radius of the
circular orbit in this case is r̃in ¼ 6 (Fig. 14);

(2) L̃ ¼ 4, for which the radius of the circular orbit is
r̃in ¼ 4 (Fig. 15);

(3) L̃ ¼ 100, for which the radius of the circular orbit is
r̃in ≈ 3.0009, close to the minimum possible value
r̃in ¼ 3 (Fig. 16).

For all three cases analyzed here, the radial position of the
particle as a function of the number N of revolutions
(N ¼ φ=2π) is shown for several values of the perturbation
δM=M, ranging from 10−5 to 10−1. The results show that
the number of revolutions after which the particle decreases
its radial coordinate by 5% of the original value is always
less than 2 and decreases as the perturbation increases or
the angular momentum increases. For each of the three
cases, the polar representations of the orbits are shown
for three selected values of the perturbation, namely,
δM=M ¼ 10−5; 10−3; 10−1. The number of revolutions N

after which the variation of the radial position of the particle
amounts to 5% of the initial value has then been system-
atically investigated for values of the perturbation param-
eter δM=M varying between 10−6 and 10−1. The result is
shown in Fig. 17.
Let us next assume the perturbation δM > 0 is a random

variable with distribution N �ðμδM; σδMÞ, i.e., a random
variable with probability density function

fδMðxÞ ¼
(
0 x < 0;

2ffiffiffiffiffiffiffi
2πσ2

p exp
h
− ðx−μδMÞ2

2σ2δM

i
x ≥ 0:

ð73Þ

Setting μδM ¼ 0 and σδM ¼ 0.0005, the corresponding
random variable representing the number of revolutions
N after which the variation of the radial coordinate amounts
to 5% of the initial value is shown in Fig. 18. The same
analysis for a 10 times larger value of σδM ¼ 0.005 is also
shown in Fig. 19. The cumulative distribution functions of

FIG. 18. Probability density function of the perturbation δM ∼N �ðμδM ¼ 0; σ2δM ¼ 0.00052Þ (left panel) and corresponding
probability density function of the number of revolutions N after which the variation of the radial position of the particle amounts
to 5% of the initial value (right panel).

FIG. 19. Probability density function of the perturbation δM ∼N �ðμδM ¼ 0; σ2δM ¼ 0.0052Þ (left panel) and corresponding
probability density function of the number of revolutions N after which the variation of the radial position of the particle amounts
to 5% of the initial value (right panel).
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the random variable N for the two cases σδM ¼ 0.0005 and
σδM ¼ 0.005 are shown in Fig. 20.

VII. DISCUSSION AND OUTLOOK

In this work, we started to consider in detail the effects
of uncertainties in the determination of the black hole mass
on geodesics, mainly motivated by studies of quantum
aspects of black holes [23–27]. In particular, we analyzed
the consequences of a randomly distributed mass on
qualitatively different orbits, and we were interested in
the possible differences between such effects and those
simply stemming from the experimental uncertainties in
the measurements of masses and positions. It is, in fact,
important to be able to tell apart the two sources of
uncertainties if one eventually wishes to look for exper-
imental evidence of quantum gravity in black hole physics.
A comparison between the two kinds of uncertainties

for circular orbits was considered in Sec. V, where we
showed that they appear functionally very similar, which
points to the fact that it would be very difficult to identify
quantum effects from experimental data [31] about such
orbits of test bodies obtained, for instance, by the Event
Horizon Telescope [32] and BlackHoleCam [33,34]. In the
search for more significant signatures of quantum effects,
beside considering more explicitly models of quantum
black holes [11–14,35–38], we also intend to study other
effects occurring on black hole space-times. In particular, it
will be interesting to investigate the redshift of signals
emitted by sources either falling towards the black hole
along (perturbed and unperturbed geodesics) as well as
following perturbed unstable circular orbits. Given the
precision with which the redshift can be measured, this
might be a more promising route towards experimental
quantum gravity.
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APPENDIX: EQUIVALENT ANALYTIC
SOLUTIONS

Introducing the change of variable x̃ ¼ ð3ρx − 1Þ=12,
Eq. (15) can be written as [39,40]�

dx̃
dφ

�
2

¼ 4x̃3 − g2x̃ − g3; ðA1Þ

with

g2 ¼
1

12
−

ρ2

4α2
; g3 ¼

1

216
þ
�

1

24α2
−

1

16β2

�
ρ2; ðA2Þ

whose general solution is given by the Weierstrass elliptic
function ℘ðz; g2; g3Þ of parameters ðg2; g3Þ. Hence, the
general solution of Eq. (15) can be expressed as

xðφÞ ¼ 1

ρ

�
4℘ðφþ δ̃; g2; g3Þ þ

1

3

�
; ðA3Þ

where the constant δ̃ is again obtained from the initial
condition xðφ0Þ ¼ x0.
Moreover, the Weierstrass elliptic function ℘ can be

written in terms of Jacobi’s elliptic function sn as

℘ðzÞ ¼ e1 þ
e3 − e1

sn2ðz ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3 − e1

p
; k̄Þ ; with k̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − e1
e3 − e1

r
;

ðA4Þ
where e1, e2, and e3 are the roots of the polynomial on the
right-hand side of Eq. (A1), i.e.,

4x̃3 − g2x̃ − g3 ¼ 4ðx̃ − e1Þðx̃ − e2Þðx̃ − e3Þ; ðA5Þ
with e1 þ e2 þ e3 ¼ 0. Taking into account that, for
j ¼ 1, 2, 3,

FIG. 20. Cumulative distribution functions of the random variable N resulting from a probability density function of the perturbation
δM ∼N �ðμδM ¼ 0; σ2δM ¼ 0.00052Þ (left panel) and N �ðμδM ¼ 0; σ2δM ¼ 0.0052Þ (right panel).
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ej ¼
ρ

4
xj −

1

12
; ðA6Þ

we see that k̄ ¼ k in Eq. (23). Making use of the
relation [39]

℘ðzÞ ¼ e1 þ
e3 − e1

sn2ðz ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3 − e1

p
; kÞ

¼ e1 þ
e2 − e1

k2sn2ðz ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e3 − e1

p
; kÞ ; ðA7Þ

the solution (A1) can be also written as

xðφÞ ¼ x1 þ
x2 − x1

k2sn2ðφ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx3 − x1Þ

p þ δ̄; kÞ ; ðA8Þ

where δ̄ ¼ δ̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx3 − x1Þ

p
=2. Finally, making use of the

relation [39]

℘ðzÞ ¼ e1 þ ðe2 − e1Þsn2ððz − ω3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 − e3

p
; kÞ; ðA9Þ

where ℘ðω3=2Þ ¼ e3, Eq. (A1) can be finally written as

xðφÞ ¼ x1 þ ðx2 − x1Þsn2
�
φ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx3 − x1Þ

p
þ δ�; k

�
;

ðA10Þ

where δ� ¼ ðδ̃ − ω3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx3 − x1Þ

p
=2. Of course, the three

expressions (22), (A8), and (A10) are perfectly equivalent.
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