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We analyze the influence of extra dimensions on the static equilibrium configurations and stability
against radial perturbations. For this purpose, we solve stellar structure equations and radial perturbation
equations, both modified for a d-dimensional spacetime (d ≥ 4) considering that spacetime outside the
object is described by a Schwarzschild-Tangherlini metric. These equations are integrated considering a
MIT bag model equation of state extended for d ≥ 4. We show that the spacetime dimension influences
both the structure and the stability of compact objects. For an interval of central energy densities ρcdGd and
total masses MGd=ðd − 3Þ, we show that the stars gain more stability when the dimension is increased. In
addition, the maximum value of MGd=ðd − 3Þ and the zero eigenfrequency of oscillation are found with
the same value of ρcdGd; i.e., the peak value of MGd=ðd − 3Þ marks the onset of instability. This indicates
that the necessary and sufficient conditions to recognize regions constructed by stable and unstable
equilibrium configurations against radial perturbations are, respectively, dM=dρcd > 0 and dM=dρcd < 0.
We obtain that some physical parameter of the compact object in a d-dimensional spacetime, such as
the radius and the mass, depend of the normalization. Finally, within the Newtonian framework, the
results show that compact objects with adiabatic index Γ1 ≥ 2ðd − 2Þ=ðd − 1Þ are stable against small
radial perturbations.
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I. INTRODUCTION

In recent decades, as a direct consequence of Kaluza-
Klein theory [1,2] and some other theory on supergravity,
the idea that spacetime may have extra dimensions, as yet
undetected by experiment, has become accepted. Motivated
by this idea, the implications of the extra dimensions on
some physical phenomena arising in the study of compact
objects is theoretically investigated. For instance, within the
frame of the Newtonian theory of gravity, some studies
have analyzed the static equilibrium configurations of
white dwarfs [3,4]. Moreover, within the general relativity
(GR) context, the influence of the spacetime dimension in
the equilibrium configuration of compact objects [5,6], the
gravitational collapse of compact stars [7–9], and the
properties of black holes [10–12] have been addressed.

In Newtonian gravity, the most complete investigations
on static equilibrium configurations of compact stars, in a
higher-dimensional spacetime, have been investigated in
Refs. [3,4]. In these articles, based on the seminal paper of
Chandrasekhar [13], it has been shown that white dwarfs
become unstable in higher dimensions due to the pressure
of degenerate fermions that cannot counterbalance the
gravitational action, starting a gravitational collapse or
evaporating. Consequently, the fermion stars [3,4] cannot
exist in spacetime dimensions larger than d ¼ 4. This
implies that extra dimensions, if they exist, need to be
compactified since white dwarfs are confirmed by astro-
nomical observations. In addition, these investigations
considered that, at a star’s surface, the energy density
vanishes together with the pressure. In the case of quark
stars, fermion stars in which the pressure goes to zero at the
surface but the energy density does not, one naturally
questions the validity of such conclusions. Thus, in the
frame of GR, we investigate the static structure configu-
ration and the radial stability of a compact object in a
higher-dimensional spacetime by taking into account a
MIT bag model equation of state (EOS) in d dimensions.
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In GR, the influence of the dimension in the static
equilibrium configurations of homogeneous compact
objects [5,6] is investigated. This is realized by using
the Tolman-Oppenheimer-Volkoff (TOV) equation, also
known as the hydrostatic equilibrium equation, for a
higher-dimensional spacetime. In Refs. [5,6], by using
different normalization factors, it is shown how the total
mass depends of the spacetime dimension. In the latterwork,
Ref. [6], using themass (energy) conservation equation for a
higher-dimensional spacetime, the authors explain that
the dimensionality of spacetime increases the mass of the
object; however, it does not contribute to the fluid pressure.
Consequently, in a fixed volume where the fluid pressure is
fixed, a compact object would bemore prone to gravitational
collapse in dimensions greater than 4.
It is well known that gravitational collapse occurs when

an object’s internal pressure cannot sustains its own gravity,
yielding to formations of new stellar structures. Depending
of the initial conditions imposed, the final result of such
gravitational collapse could be either a naked singularity or
a black hole.
The gravitational collapse has been investigated in a

wide range of scenarios, including higher-dimensional
spacetime. Among these, it is highlighted how the extra
dimension affects the gravitational collapse of an inhomo-
geneous dust cloud [7,8] and null fluid [9]. In fact, such
contributions suggest that the naked singularity diminishes
with the increase of the spacetime dimension, which is a
signature of the collapse of an object with infinity density.
Thus, it would be less likely as this spacetime dimension
increases.
In contrast, in a black hole, where the singularity is

completely surrounded by an event horizon, unlike in
naked singularity, the singularity cannot be observed.
Moreover, Refs. [10–12] analyze the implication of space-
time dimensions such as the singularity, topology, and
dynamical stability, among other factors.
We investigate the influence of the extra dimensions in

the static structure and radial stability of compact objects
considering a MIT bag model EOS in d dimensions in the
framework of GR. This study is analyzed by solving
numerically the hydrostatic equilibrium [14,15] and the
Chandrasekhar radial pulsation equation [16,17], fully
including the extra dimension effects. We also analyze
the dependence of some physical compact object properties
such the fluid pressure, mass, radius, compressibility factor,
redshift, and the fundamental mode eigenfrequencywith the
spacetime dimensions. Moreover, we discuss the change of
such parameters with the normalization considered in this
work and those assumed in Refs. [5,6]. Finally, we study the
stability of these compact objects in the Newtonian frame.
This paper is divided as follows: In Sec. II, the general

relativistic formulations are presented; the steps to follow to
derive both the stellar structure and the stellar stability
equations and equation of state are shown. Section III

shows how the hydrostatic equilibrium and radial stability
are affected by both the extra dimensions and the normali-
zation chosen. In this section, we also study the radial
stability of these objects in the framework of Newtonian
gravity. Finally, in Sec. IV, we conclude.
Throughout this article, we consider the speed of light c

and the four-dimensional gravitational constant G4 to be
equal to unity; i.e., c ¼ 1 ¼ G4.

II. GENERAL RELATIVISTIC FORMULATION
IN d DIMENSIONS

A. Einstein field equation

The properties of compact objects in higher dimensions
are analyzed as a description of the Einstein equation in d
dimensions, d ≥ 4. For that purpose, the field equation in d
spacetime dimensions is assumed to be of the form [18]

Gμν ¼
d − 2

d − 3
Sd−2GdTμν; ð1Þ

with Gμν ¼ Rμν − 1
2
gμνR being the Einstein tensor and the

quantities Rμν, R, and gμν representing, respectively, the
Ricci tensor, the Ricci scalar, and the metric tensor.
The right-hand side of Eq. (1) bears the universal constant
Gd, which in four dimensions corresponds to Newton’s
gravitational constant. Sd−2 ¼ 2πðd−1Þ=2=Γððd − 1Þ=2Þ is
the area of unitary sphere Sd−2, where Γ is the usual
gamma function, and the factor ðd − 2ÞGdSd−2=ðd − 3Þ
corresponds to the 8π term in four dimensions (see
Ref. [18]). Tμν represents the matter energy-momentum
tensor of a perfect fluid, which in this study is written as

Tμν ¼ ðρ0d þ p0dÞUμUν þ p0dgμν; ð2Þ

with ρ0d being the energy density, p0d the pressure of the
fluid, and Uμ the velocity of the fluid in the d-dimensional
spacetime. Also, the fluid velocity follows the condition

UμUμ ¼ −1: ð3Þ

In all of the above definitions, the Greek indices μ, ν, etc.,
run from 0 to d − 1, where 0 represents the time, and the
other d − 1 coordinates are spacelike.

B. The background spacetime

To describe the static hyperspherically symmetric dis-
tribution of the fluid, we consider the interior line element
to be given by

ds2 ¼ −eν0dt2 þ eλ0dr2 þ r2
Xd−2
i¼1

�Yi−1
j¼1

sin2 θj

�
dθ2i ; ð4Þ
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where the functions ν0 ¼ ν0ðt; rÞ and λ0 ¼ λ0ðt; rÞ depend
on the temporal t and the radial coordinate r.
It is worth mentioning that the functions considered in

the metric potentials (ν0 and λ0) and in the variables of the
fluid (p0d and ρ0d) depend on the temporal t and the radial
coordinate r. To analyze the radial perturbation in an
equilibrium configuration, it is necessary to perturb the
variables of the metric and fluid. Thus, following the
method applied by Chandrasekhar in Ref. [16], we decom-
pose the aforementioned variables into the form

f0ðt; rÞ ¼ fðrÞ þ δfðt; rÞ; ð5Þ

with fðrÞ being the quantities that depend on the variable r
only. In turn, δfðt; rÞ depicts the Eulerian perturbations that
depend on the variables t and r.

C. The stellar structure equations

The static equilibrium configurations are analyzed
through the stellar structure equations. With the aim of
deriving this set of equations, we consider relation (5) and
δfðt; rÞ ¼ 0 in the nonzero components of the Einstein
field equation and the Bianchi identity, yielding

1

2eλr
dλ
dr

−
ðd − 3Þ
2eλr2

þ ðd − 3Þ
2r2

¼ 1

d − 3
Sd−2Gdρd; ð6Þ

1

2eλr
dν
dr

þ ðd − 3Þ
2eλr2

−
ðd − 3Þ
2r2

¼ 1

d − 3
Sd−2Gdpd; ð7Þ

dν
dr

¼ −
2

ðpd þ ρdÞ
dpd

dr
: ð8Þ

Now, to represent the gravitational mass in a d-
dimensional spacetime, the function mGd=ðd − 3Þ is intro-
duced in such a way that

e−λ ¼ 1 −
2mGd

ðd − 3Þrd−3 : ð9Þ

Replacing the last equality in Eq. (6), we obtain

dm
dr

¼ Sd−2ρdrd−2: ð10Þ

Equation (10) represents mass (energy) conservation as
measured in the hypersphere frame.
Combining Eqs. (7) and (8), the d-dimensional hydro-

static equilibrium equation is represented by

dpd

dr
¼ −ðpd þ ρdÞGd

2
4Sd−2pdr

ðd−3Þ þ m
rd−2

1 − 2mGd

ðd−3Þrd−3

3
5: ð11Þ

Equation (11) is also called as the Tolman-Oppenheimer-
Volkoff equation. This equation is modified from its

original form to include the influence of the spacetime
dimensions [6]. In addition, for d ¼ 4, Eq. (11) is reduced
to the traditional TOV equation [14,15].
In order to find stellar equilibrium configurations, the

stellar structure equations, Eqs. (8), (10), and (11), must be
integrated, from the center toward the surface of the star.
The stellar structure equations integration starts in the

center of the hypersphere (r ¼ 0), where

mð0Þ ¼ 0; λð0Þ ¼ 0; νð0Þ ¼ νc;

pdð0ÞGd ¼ pcdGd; and ρdð0ÞGd ¼ ρcdGd; ð12Þ

up until the surface of the object (r ¼ R), which is attained
when the fluid pressure vanishes, i.e.,

pdðr ¼ RÞGd ¼ 0: ð13Þ

The variables pcGd and ρcGd represent, respectively, the
pressure and energy density at the center of the object.
At the object’s surface, the interior spacetime connects

smoothly to the exterior Schwarzschild-Tangherlini space-
time [19,20], where the interior and the exterior metric
functions satisfy the relation

eνðRÞ ¼ 1

eλðRÞ
¼ 1 −

2MGd

ðd − 3Þrd−3 ; ð14Þ

with MGd=ðd − 3Þ being the total mass.

D. The radial stability equations

To investigate the spacetime dimension influences in the
radial stability, Eulerian perturbations must be determined.
As a first step, the d-dimensional velocity components are
defined. With the aim of satisfying Eq. (3), these compo-
nents have the same form as those used by Chandrasekhar
[16]. Later, both the metric functions and fluid properties
are decomposed into the form indicated in Eq. (5). The
definitions and decompositions aforesaid are introduced
into the components of the Einstein equation. Maintaining
only the first-order terms, we obtain

δλ ¼ −
2reλ

d − 3
Sd−2Gdðpd þ ρdÞζ; ð15Þ

∂ðδνÞ
∂r ¼ 2reλ

d − 3
Sd−2Gd

�
δpd−ðpd þ ρdÞζ

�
dν
dr

þ d − 3

r

��
;

ð16Þ

δρd ¼ −
dρd
dr

ζ −
ðpd þ ρdÞeν=2

rd−2
d
dr

�
rd−2ζ

eν=2

�
; ð17Þ

δpd ¼ −
dpd

dr
ζ −

Γ1pdeν=2

rd−2
d
dr

�
rd−2ζ

eν0=2

�
; ð18Þ
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where Γ1 ¼ ðpdþρd
pd

Þ dpd
dρd

represents the adiabatic index and ζ
depicts the “Lagrangian displacement” with respect to the
world time t defined by v ¼ ∂ζ=∂t. To analyze the stability
of hyperspherical objects against radial perturbations, the
linearized form of the energy-momentum tensor conserva-
tion and the aforementioned perturbed quantities with their
temporal dependences of the form eiωt must be considered.
Thus, we get

ω2ðpd þ ρdÞeλ−νζ −
�

2

d − 3

�
Sd−2Gdðpd þ ρdÞζeλpd

þ e−λ=2−ν
d
dr

�
eλ=2þν pdΓ1

rd−2
eν=2

d
dr

ðe−ν=2rd−2ζÞ
�

−
2ðd − 2Þζ

r
dpd

dr
þ ðpd þ ρdÞζ

4

�
dν
dr

�
2

¼ 0; ð19Þ

where ω is known as the eigenfrequency. Equation (19) is
known as the radial pulsation or Chandrasekhar pulsation
equation. This equation is modified from its traditional form
to analyze the influence of the extra dimensions in the radial
stability. Moreover, Eq. (19) could be placed in a more
appropriate form to numerical integration. Following
Ref. [21] (see also Ref. [22]), the radial oscillation equation
is placed into the form of two first-order equations as shown
below:

dξ
dr

¼ ξ

2

dν
dr

−
1

r

�
ðd − 1Þξþ Δpd

pdΓ1

�
; ð20Þ

dΔpd

dr
¼ ξreλ

eν
ðpdþρdÞω2þðpdþρdÞrξ

4

�
dν
dr

�
2

−
�
Sd−2Gd

reλðpdþρdÞ
d−3

þ1

2

dν
dr

�
Δpd

−2ðd−2Þξdpd

dr
−2Sd−2GdðpdþρdÞeλrξ

�
pd

d−3

�
;

ð21Þ

where ξ ¼ ζ=r denotes the relative radial displacement and
Δp depicts the Lagrangian perturbation. For d¼ 4, Eqs. (20)
and (21) are reduced to the two first-order equation form
presented in Refs. [21,22].
To integrate the differential equations (20) and (21), the

boundary conditions must be defined. With the aim of
determining regular solutions, in the center of the object
(r → 0), the following is required:

ΔpdGd ¼ −ðd − 1ÞðξΓ1pdGdÞcenter: ð22Þ

In r → 0, for normalized eigenfunctions, we have
ξðr ¼ 0Þ ¼ 1. On the other hand, the object’s surface
(r ¼ R) is attained when pdGd → 0 and, consequently,

ðΔpdGdÞsurface ¼ 0: ð23Þ

E. Equation of state

For the strange quark matter contained in the object, we
consider the pressure pd and energy density ρd are
connected through a generalization of the MIT bag model
EOS in d-dimensions:

pd ¼
1

d − 1
ðρd − dBdÞ; ð24Þ

with Bd being the generalized bag constant. For a four-
dimensional spacetime, d ¼ 4, this equality depicts a fluid
made of up, down, and strange quarks. It was proposed by
Witten [23] that the strange quark matter could be the true
ground state of strongly interactingmatter. This conjecture is
verified by Farhi and Jaffe [24] considering massless and
noninteracting quarks. The four-dimensional MIT bag
model equation of state was considered in some previous
investigations on structure and stability against radial
perturbations, for example, to investigate the radial pulsa-
tions inRefs. [25–29] and the stability of thin shell interfaces
within compact stars [30] (see also Refs. [31,32]).
Owing to the volume, the bag constant Bd and functions

ρd and pd are dimension dependent units. Thus, with the
objective of having these units be spacetime dimension
independent, we use those of the form BdGd, ρdGd, and
pdGd. The units of all of these variables are MeV=fm3.
With the aim of comparing our results with those ones

obtained in the four-dimensional spacetime [25–29], we
use Eq. (24) by considering dBdGd ¼ 240 MeV=fm3.

III. INFLUENCE OF THE DIMENSION
IN THE EQUILIBRIUM AND STABILITY

OF COMPACT OBJECTS

A. Numerical method

To investigate the extra dimensions’ influence on the
static equilibrium configurations and radial stability, the
stellar structure and radial oscillation equations are, respec-
tively, resolved. These equations are integrated from the
center toward the surface of the object.

1. Numerical method for the stellar structure equations

For the hydrostatic equilibrium, the stellar structure
equations, Eqs. (8), (10), and (11), equation of state (24)
and boundary conditions (12) and (13) are numerically
solved. This is realized through the fourth-order Runge-
Kutta method complemented with the shooting method.
We solve Eqs. (10), (11), and (24) using the fourth-order

Runge-Kutta method for some ρcdGd and d. Once we
obtain pdGd, ρdGd, mGd, and λ for a given ρcdGd and d,
Eq. (8) is solved by the mean of the shooting method. To
numerically solve this equation, first, we consider a trial
value for νc. If after the integration the boundary condition
(14) is not fulfilled, we repeat this process until it is
satisfied.
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2. Numerical method for the radial stability equations

Equations of radial pulsations are solved using the
shooting method. This method starts by considering the
coefficients of the radial oscillation equations, which are
obtained solving the stellar structure equations for a specific
ρcdGd and d and a proof value for ω2. If, at the end of the
numerical integration, the boundary condition (23) is not
satisfied, ω2 is rectified until it is attained in the next
integration.

B. Influence of the dimension in the pressure
and energy density

In order to check the EOS behavior, in Fig. 1, the
pressure pdGd against energy density ρdGd is plotted for
some spacetime dimensions. The energy density consid-
ered runs from 240 MeV=fm3 (dBdGd) to 5000 MeV=fm3.
It is observed that a linear EOS in four dimensions remains
linear in d > 4. From graphic, also note that the fluid
pressure decays with the increment of d.

C. Static equilibrium configurations in
a d-dimensional spacetime

The total mass of the object MGd=ðd − 3Þ versus the
central energy density ρcdGd is plotted in Fig. 2 for
different spacetime dimensions. The central energy density
used goes from 250 to 5000 MeV=fm3. The complete
circles established on the curves denotes the places where
maximum masses are found. It is important to say that the
curve built for a four-dimensional spacetime (d ¼ 4) is
similar to the one found in Refs. [28,29]. In all spacetime
dimensions considered, the mass increases with the central
energy density until the maximum mass point is attained;
henceforward, the mass decreases with the increment of
ρcdGd. In addition, note that the mass is nearly constant for
central energy densities larger than ∼700 MeV=fm3.

Figure 2 also shows the influence of the spacetime
dimension d in the mass of compact objects. In order to
compare the masses of the objects found in higher dimen-
sions with those obtained in a four-dimensional spacetime,
we consider the length of the extra dimension around
l ∼ 1018 km; see Ref. [33]. Thus, from Table I, we can
distinguish that themaximummass ðMGdÞMax found in each
spacetime dimension, d > 4, with respect the one found in
d ¼ 4, changes roughly with the factor

½Md�Max

½M4�Max
∼ ½1019�d−4. ð25Þ

The last relation indicates that the maximum masses of
objects in dimensions d > 4 are much larger than the ones
determined in d ¼ 4. Whether the extra dimension length is
larger than the Planck length, for d > 4, compact objects
with smallermasses can be found. In addition, it is important
to say that the compact objects with masses MGd ≤
ðMGdÞMax are stables against small radial perturbations
(see, e.g., Fig. 6). Contrary to what is obtained in Ref. [3],
because the energy density is non-null at the surface the
object, we found stable compact stars in d > 4.
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FIG. 1. Pressure versus energy density for a few different
spacetime dimensions.
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FIG. 2. Mass of the object against the central energy density for
different spacetime dimensions. The full circles indicate the
places where maximum masses are found.

TABLE I. Spacetime dimensions and the maximum values of
MGd=ðd − 3Þ with their respective central energy densities
ρcdGd, radii R, and ratios χ ≡ ðd − 3ÞRd−3=MGd. The units of
the maximum masses, the central energy densities and radii are,
respectively, kmd−3, MeV=fm3, and km.

d MGd=ðd − 3Þ ρcdGd R χ

4 2.8997 1123.2 10.710 3.6935
5 17.321 1554.4 10.842 6.7865
6 106.06 2102.4 10.510 10.946
7 723.54 2570.7 10.391 16.113
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The total mass as a function of the total radius is
presented in Fig. 3 for different spacetime dimensions.
As in Fig. 2, the complete circles over the curves point
out the places where maximum masses are found. In the
figure, we see how both the mass and the radius
change with the spacetime dimension. In four dimensions,
as is characteristic in strange stars, in the interval
2.22≲M ≲ 2.95 km, the masses and radii follow roughly
the relation MðRÞ ∝ R3. In addition, it is important to say
that the curve bends counterclockwise for a total mass of
around 2.95 km (for a review, see for instance, Ref. [34]).
The ratio ðd − 3ÞRd−3=MGd ¼ χ as a function of the

central energy density ρcdGd is presented in Fig. 4 for
some spacetime dimensions d. In all curves, note that χ
decreases monotonically with the central energy density
until reaching ρcdGd ∼ 1200 MeV=fm3; hereafter, the fac-
tor χ is nearly constant. This implies that, for central energy

densities larger than 1200 MeV=fm3, χ is independent
of ρcdGd.
The dependence of ðd − 3ÞRd−3=MGd with the space-

time dimension d is also shown in Fig. 4. In all cases,
χ is far from attaining the Buchdahl limit [35] for a d-
dimensional spacetime; i.e., the factor ðd − 1Þ2=2ðd − 2Þ is
far from being reached [6,36].
An important factor to be investigated is the redshift at

the object’s surface. It shows how the light emitted by an
object is deflected to the red end of the spectrum. Thus, the
redshift at the surface of the star versus the central energy
density is investigated in Fig. 5 for different spacetime
dimensions. For d ≤ 6, the redshift grows with ρcdGd up to
a point of inflection. After this peak, the redshift begins to
fall with the increase of the central energy density. In turn,
for d > 6, the redshift grows monotonically with ρcdGd. In
the last case, a maximum redshift point is not found;
moreover, when ρcdGd ¼ 1200 ∼MeV=fm3, the redshift
remains nearly constant.
In addition, it is clearly noted in Fig. 5 that the redshift

changes with the dimension. For larger dimensions, com-
pact objects with lower redshifts are found.
In Table I is presented the spacetime dimensions used

and the maximum value of MGd=ðd − 3Þ with their
respective central energy densities ρcdGd, total radii R,
and compressibility factors χ.

D. Radial stability in a d-dimensional spacetime

The behavior of the fundamental mode’s eigenfrequency
with the total mass is presented in Fig. 6 for different
dimensions. In the figure, we consider static equilibrium
configurations with ω ≥ 0. It is important to say that the
behavior of the curve found in d ¼ 4 is very similar to the
one derived in the study of radial stability of strange stars in
Refs. [25,28,29]. In all curves, a monotonic decline of ω
with the increment of the mass is observed until we attain a
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FIG. 3. Total mass of the object against the total radius for
different spacetime dimensions. The complete circles mark the
points where the maximum masses are found.
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FIG. 4. Ratio ðd − 3ÞRd−3=MGd ¼ χ as a function of the
energy density for different spacetime dimensions.
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zero eigenfrequency in the maximum total mass value.
Thus, independent of the spacetime dimension, the maxi-
mum mass point dM=dρcd ¼ 0 marks the onset of insta-
bility; see Fig. 2. In other words, in a sequence of compact
objects in the same spacetime dimension, the conditions
dM=dρcd > 0 and dM=ρcd < 0 are necessary and suffi-
cient to identify regions made of stable and unstable stars
against radial perturbations, respectively.
In addition, the radial stability of compact objects in a

higher-dimensional spacetime is analyzed in a similar way
as the turning-point method for axisymmetric stability of
rotating relativistic stars [37,38] (for a detailed discussion
about this point, see Ref. [39]). Instead of fixing the angular
momentum in a sequence of rotating compact objects to
calculate the turning point, in this work, the spacetime
dimension is fixed in a sequence of spherically symmetric
static objects.
On the other hand, the influence of the dimension is

viewed in Fig. 6. For some interval of mass, the increment
of the dimension helps to grow the radial stability.
The eigenfrequency of the fundamental mode of oscil-

lation against central energy density is plotted in Fig. 7 for
different spacetime dimensions. As noted in the figure, we
only consider ρcdGd with ω ≥ 0. In all cases, ω diminishes
monotonically with central energy density until it reaches
the zero eigenfrequency; this indicates that the radial
stability of a compact object decreases with the increment
of the central energy density.
The effect of the dimension on the radial stability is also

noted in Fig. 7. For a fixed central energy density, the
fundamental eigenfrequency of oscillation ω grows with
the dimension d; i.e., an object is more stable in higher
dimensions.
In Fig. 8 is schemed the squared eigenfrequency of

the fundamental mode against the spacetime dimension
for five different central energy densities. From graphic,
the change of the radial stability with spacetime dimensions

is observed. For objects with ρcdGd lower than
∼2000 MeV=fm3, the radial stability increases with
the dimension until attain a turning point in d ¼ 10;
hereafter, ω2 starts decreasing with d. In turn, for ρcdGd≳
2000 MeV=fm3, the stability of the object decreases when
the dimension goes from 4 to 5. From d ≥ 5, the eigen-
frequency of oscillation increments with the dimension
until d ¼ 11; henceforth, the eigenfrequency of the funda-
mental mode decays with the spacetime dimensions.

E. About the d-dimensional equilibrium and stability
for other normalizations

The stellar equilibrium equations derived in this work
and those ones found by Harko and Mak [5] and Ponce de
Leon and Cruz [6] are obtained by using different normali-
zations. The form of the stellar structure equations in each
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FIG. 7. Fundamental mode eigenfrequency against the central
energy density for different dimensions.
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work depend on how both the Einstein field equation and
the d-dimensional mass are defined.
By using scales of Table II within Eqs. (10) and (11), the

equations of structures presented in Refs. [5,6] are recov-
ered. This points out that the inputs values used and the
total masses defined in this article must change. This
change can be realized using the relations presented in
Table II.
Albeit the normalizations used in Refs. [5,6] are differ-

ent, for a central energy density ρ�c and a spacetime
dimension d, the radius and mass are, in both cases, the
same. However, in this work, for a central energy density ρ�c
and a spacetime dimension d, the radius and mass are
smaller than those ones found in Refs. [5,6]. In addition,
independent of the normalization used, the zero eigenfre-
quency of oscillations and the maximum masses values are
found in the same central energy densities; in this way, the
maximum mass marks the beginning of instability.

F. Perturbation about equilibrium in Newtonian limit

In the Newtonian limit, the EOS (24) is well represented
by the EOS ρd ¼ dBd. Note that this EOS describes a
constant energy density along the whole compact object. In
these homogeneous objects in equilibrium, the fluid pres-
sure is given by

pd ¼
Sd−2GdðdBdÞ2

2ðd − 1Þ ðR2 − r2Þ: ð26Þ

To analyze the radial stability of homogeneous objects in
the Newtonian limit, Eq. (19) takes the form

ω2ρdζ þ
d
dr

�
pdΓ1

rd−2
d
dr

½rd−2ζ�
�
−
2ðd − 2Þζ

r
dp
dr

¼ 0: ð27Þ

From this last equation, regular solutions are obtained
since

ζ ¼ 0 at r ¼ 0; ð28Þ

ζ ¼ finite at r ¼ R: ð29Þ

Substituting Eq. (26) into Eq. (27), we obtain

ð1 − x2Þζ00 þ
�
d − 2

x
− dx

�
ζ0 þ

�
A0 −

d − 2

x2

�
ζ: ð30Þ

In this last equation, the dimensionless function x ¼ r
R, the

prime over the variables represents ð0Þ ¼ d
dx and

A0 ¼
2ðd − 1Þω2

Sd−2GdðdBdÞΓ1

− ðd − 2Þ þ 4ðd − 2Þ
Γ1

: ð31Þ

In order to solve Eq. (30) and to satisfy boundary condition
(28), following Ref. [40], we consider ζ of the form

ζ ¼
X∞
n¼0

anxnþ1: ð32Þ

Replacing Eq. (32) with Eq. (30), after some algebra, we
find that a1 ¼ a3 ¼ a5 ¼ 0 and

anþ2

an
¼ n2þðdþ1Þnþd−A0

n2þðdþ3Þnþ2dþ2
; n¼ 0;2;4;…: ð33Þ

From this last equation, the series diverges and, conse-
quently, ζ does not satisfy condition (29). Thus, with the
aim of obtaining ζ ¼ finite at r ¼ R, it is required that

A0 ¼ n2 þ ðdþ 1Þnþ d; n ¼ 0; 2; 4;…; ð34Þ

and, as a consequence,

ω2 ¼ Sd−2GddBd

2ðd − 1Þ ½Γ1ðn2 þ ðdþ 1Þnþ 2ðd − 1ÞÞ

−4ðd − 2Þ�; n ¼ 0; 2; 4;…: ð35Þ

From this last equality, the compact objects are stable if

Γ1 ≥
2ðd − 2Þ
ðd − 1Þ : ð36Þ

In addition, from Eq. (35), the neutral equilibrium mode
ω2 ¼ 0 is obtained with Γ1 ¼ 2ðd − 2Þ=ðd − 1Þ and n ¼ 0.
It is important to say that, unlikewhat is obtained in awhite

dwarf in d dimensions, we found stable compact objects
against radial perturbations. This is possible because, in the
present case, their energy densities are nonzero at their
surfaces.

IV. CONCLUSIONS

The influence of the spacetime dimension in the equi-
librium and radial stability of compact objects is

TABLE II. Normalizations used to transform both the
stellar structure equations and results presented by Arbañil,
Carvalho, Lobato, Marinho, and Malheiro (ACLMM) into
the formalism used by Harko and Mak (HM) [5] and Ponce
de Leon and Cruz (PC) [6]. The tildes and bars over
some constants and variables are used to distinguish between
the ones taken into account by HM and PC, respectively. The
constants a1¼8πðd−3Þ=Sd−2ðd−2Þ, b1¼ðd−3Þ, b2 ¼ ðd − 3Þ=
ðd − 2Þ2d−5.

Scales Inputs Masses

ACLMM Gd mGd ρcdGd BdGd MGd
HM G̃da1 m̃G̃db2 ρ̃cdG̃da1 B̃dG̃da1 M̃G̃db2
PC Ḡda1 m̄Ḡdb1 ρ̄cdḠda1 B̄dḠda1 M̄Ḡdb1
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investigated in this work. To this aim, the stellar structure
equations and the Chandrasekhar radial pulsation equation
are modified to include the extra dimensions’ effects.
Moreover, it a linear relation between the pressure and
energy density of the fluid is assumed. We consider that the
equilibrium configurations investigated are matched
smoothly with the exterior Schwarzschild-Tangherlini
metric. Both the equilibrium and the stability are analyzed
for different central energy densities ρcdGd and spacetime
dimensions d.
Regarding the static equilibrium configurations, we note

that some physical properties change with the spacetime
dimension; namely, the fluid pressure, total mass, radius,
and redshift on the surface of the object depending on d.
Considering that the length of the extra dimension is around
l ∼ 10−18 km (see Ref. [33]), the compact object maxi-
mum mass in each spacetime dimension, d > 4, is
∼½1019�d−4 times the one found in d ¼ 4.
By means of the radial perturbation method, we find that,

for a central energy density interval and total mass range,
the increment of the spacetime dimension assist in enhanc-
ing the stability of compact stars. In addition, the maximum
mass point and the zero fundamental eigenfrequency of
oscillation are derived using the same central energy
density ρcdGd. From this, we infer that the conditions
dM=dρcd > 0 and dM=dρcd < 0 are necessary and suffi-
cient to distinguish, respectively, stable and unstable
equilibrium configurations.
It is worth highlighting that the very massive and stable

compact objects analyzed in this study might be hidden
within the category of supermassive black holes. Certainly,
in the future, the results on the shadow of the M87 black
hole [41] could aid in discriminating these compact objects
from black holes. In addition, if a very massive compact
object is detected, it might be considered evidence of the
existence of extra dimensions.
We also find that some physical properties depend on the

normalization considered. For a fixed central energy
density ρ�c and spacetime dimension d, we find a lower
mass and total radius than those derived in Refs. [5,6]. In
addition, in all spacetime dimensions used, independent of
the normalization considered, we prove that the maximum

mass point and the zero eigenfrequency of oscillation are
found in the same central energy density.
Finally, we investigate the radial stability of compact

objects Newtonian regime. In this limit, the generalizedMIT
bag model EOS takes the form established for a homo-
geneous object. In contrast to what it is observed in white
dwarfs [3], we find stable compact objects against small
radial perturbation. From this, we show that stable solutions
for extradimensional spacetimes with the chosen EOS are
obtained. We known that, in a four-dimensional spacetime,
the effects of general relativity on the structure of white
dwarfs are a little dominant in their mass [42]. If we assume
that these effects are still small in more dimensions, white
dwarfs within the framework of general relativity in dimen-
sions greater than 4 are also unstable. Thus, since stars with
the white dwarf EOS are unstable in extra dimensions, their
astronomical observation exclude the possibility of an
extended higher dimension. To reconcile this fact with
the stable solution, we find, for extradimensional quark
stars, thatwe need to consider that our extra dimensions need
to be compactified. In fact, the quark confinement under-
stood as a manifestation of quarks propagating in extra
dimensions compactified is considered in the literature to
explain color confining and the hadronic spectroscopy in the
AdS-QCD conjecture [4]. In our d-dimension strange stars,
the deconfinement density energy needed to liberate quarks
from the confinement is in fact present since the lowest
energy density of the star surface is ρd ¼ dBd. This is
exactly the deconfinement energy density in d dimensions.
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