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A number of detections have been made in the past few years of gravitational waves from compact
binary coalescences. While there exist well-understood waveform models for signals from compact binary
coalescences, many sources of gravitational waves are not well modeled, including potential long-transient
signals from a binary neutron star postmerger remnant. Searching for these sources requires robust
detection algorithms that make minimal assumptions about any potential signals. In this paper, we compare
two unmodeled search schemes for long-transient gravitational waves, operating on cross-power
spectrograms. One is an efficient algorithm first implemented for continuous wave searches, based on
a hidden Markov model. The other is a seedless clustering method, which has been used in transient
gravitational wave analysis in the past. We quantify the performance of both algorithms, including
sensitivity and computational cost, by simulating synthetic signals with a special focus on sources like
binary neutron star postmerger remnants. We demonstrate that the hidden Markov model tracking is a good
option in model-agnostic searches for low signal-to-noise ratio signals. We also show that it can outperform
the seedless method for certain categories of signals while also being computationally more efficient.
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I. INTRODUCTION

The discoveries of gravitational waves (GW) by
Advanced Laser Interferometer Gravitational Wave
Observatory (Advanced LIGO) and Advanced Virgo detec-
tors [1,2] have opened the new window for gravitational
wave astrophysics. As of the end of the second observing
run (O2), LIGO and Virgo have observed multiple binary
black hole (BBH) coalescences [3] and one binary neutron
star (BNS) merger GW170817 [4], with the latter marking
the advent of multimessenger astronomy [5].
There is also considerable interest in understanding the

fate of the BNS merger remnant. In particular, searches
have been carried out using O2 interferometric data from
LIGO, Virgo, and GEO600 for GW signals from a possible
short, intermediate, or long lived remnant of GW170817
with timescales of order of 1 s, 100–1000 s and ≳1000 s
respectively [6–9]. Since the nature of the remnant and
the exact form of GW emission is unknown, unmodeled
searches have played a large role in the analysis. The
Stochastic Transient Analysis Multi-detector Pipeline
(STAMP), which searches for excess GW power in spectro-
grams of cross-correlated data, has been employed in
both intermediate and long duration searches. These

spectrograms are parsed by pattern recognition algo-
rithms for GW signals. Several such algorithms have
been proposed in the past; they can be broadly catego-
rized as seed-based and seedless [10–13]. Seed-based
algorithms identify loud seed pixels in the spectrogram
(above some threshold) and attempt to grow contiguous
clusters from them by adding neighboring pixels.
Seedless algorithms pick out clusters by drawing tracks
from some predefined template bank. Since they do not
depend on initial loud pixels, they are generally more
sensitive than seeded algorithms, especially towards
toward narrowband waveform models albeit at a higher
computational cost [12,14]. Seedless algorithms have to
compromise between computational cost and sensitivity
to waveform morphology—for example the implementa-
tions of seedless algorithms in [6,8] adopt quadratic
fitting in the time-frequency spectrograms.
Here, we apply a hidden Markov model (HMM) tracking

algorithm—first implemented for continuous gravitational
wave searches in Refs. [15–17]—to cross-correlated data.
HMM-based tracking in frequency domain provides accu-
rate estimates of the signal frequency at low signal-to-noise
ratio (SNR) when a large number of observational samples
are available [18,19]. In the GW context, it was applied in
the first observing run (O1) of Advanced LIGO to search
for continuous waves from the brightest low-mass X-ray
binary, Scorpius X-1 [20]. A revised HMM was used to
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search for signals from a long-lived post-merger remnant
of the binary neutron star merger GW170817 [8,21]. We
apply this algorithm to the cross-power maps produced by
STAMP and make a quantitative comparison between the
performance of HMM and the seedless algorithm. We
demonstrate that HMM can outperform seedless algorithms
for specific waveform models, and in particular for models
used in postmerger remnant searches [22].
The rest of the paper is organized as follows. In Sec. II,

we briefly describe the cross-power maps, the pixel SNR
statistic and the detection statistic. In Sec. III, we describe
the two methods being compared—HMM tracking and the
seedless clustering algorithms. In Sec. IV, we compare the
detection efficiency and computational cost of the two
algorithms for a variety of waveform models, and demon-
strate that the HMM tracking generally outperforms in both
aspects. A summary of the paper is given in Sec. V.

II. CROSS-POWER MAP

Unmodeled transient searches with STAMP are usually
done on spectrograms of cross-power. They are constructed
by cross-correlating data between two GW detectors in the
frequency domain. We follow the definition in Ref. [13]
and construct normalized cross-power spectrograms as
follows:

ρðt; f; n̂Þ ¼ ℜ

2
64 2Q̃ðt; f; n̂Þs̃�I ðt; fÞs̃Jðt; fÞ
jQ̃ðt; f; n̂Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
PIðt; fÞPJðt; fÞ

q
3
75; ð1Þ

where s̃I;Jðt; fÞ is the discrete Fourier transform of data
from detector I, J calculated over some segment duration T,
and PI;Jðt; fÞ is the noise autopower [23] in detector I, J.
Here ℜ denotes the real part of a complex number, and
Q̃ðt; f; n̂Þ is a complex filter function which helps “point”
the search in direction of n̂ as seen from Earth, given by,

Q̃ðt; f; n̂Þ ¼ 2 exp ð2πifn̂ · ⃗ΔxIJ=cÞP
AF

A
I ðt; n̂ÞFA

J ðt; n̂Þ
: ð2Þ

Here FA
I;Jðt; n̂Þ is the antenna pattern of detector I, J for

polarization A ∈ fþ;×g, ⃗ΔxIJ is the distance between the
detectors, and c is the speed of light. We point the reader to
Ref. [13] for a derivation of Eqs. (1) and (2). Since ρðt; f; n̂Þ
has been normalized with the noise PSD, it is called the
pixel SNR. Cross-power spectrograms such as in Fig. 1 are
made by repeating this over many segments of data.
Pattern recognition or clustering algorithms pick out a

cluster of pixels in the spectrogram, representing a possible
signal, e.g., one monotonically evolving in frequency.
The SNRs of these pixels are then summed up to give
the detection statistic. The normalized cluster SNR of the
track, Γc is given by

Γc ¼
1

N

X
c

ρi; ð3Þ

where i indexes over all the pixels in the cluster c, andN is
an empirically chosen normalization factor. Γc plays the
role of the detection statistic. The cluster with the largest Γc
will be the trigger for the spectrogram, and the distribution
of Γc is computed for spectrograms containing pure noise
to measure the background for the search. A good cluster-
ing algorithm finds an optimal cluster which samples as
much of a potential signal as possible, without a corre-
sponding increase in the background.
While the existing STAMP analyses have generally used

data from two detectors, the formalism could be extended
to more detectors. One way would be running the clustering
algorithm separately on cross-power spectrograms com-
puted from each pair of detectors, and demanding the
triggers be coherent among the pairs. Alternatively we
could run the clustering algorithm on the combined
spectrogram from all the pairs of detectors (We refer the
readers to Sec. III E of Ref. [13] for more details).

III. CLUSTERING ALGORITHMS

In this section, we describe the two clustering algorithms
we use here, HMM tracking (Sec. III A) and seedless
clustering (Sec. III B), using the cross-power spectrograms
computed as described in Sec. II.

A. HMM tracking

A HMM is a memoryless, probabilistic state automaton
based on a Markov process, composed of the hidden state
variable qðtÞ ∈ fq1;…; qNQ

g and themeasurement variable

FIG. 1. An example of a cross-power spectrogram in the
frequency-time plane, with a loud simulated signal added to it,
which is visible as a narrow track. The color of the pixels
indicates the SNR.
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oðtÞ ∈ fo1;…; oNO
g sampled at discrete times t ∈ ft0;…;

tNT
g. A full description of HMM formulation and the

computationally efficient Viterbi algorithm [24] used for
solving the HMM can be found in Ref. [15].
We track qðtÞ ¼ fgwðtÞ in a Markov chain, where fgwðtÞ

is the GW frequency at time t. The discrete hidden states qi
are mapped one-to-one to the frequency bins in the cross-
power map, with bin size Δf ¼ m=T, where m is a coarse-
graining integer coefficient (see Sec. IVA). We choose a
constant k to satisfy

����
Z

tþT

t
dt0 _fgwðt0Þ

���� ≤ ðk − 1ÞΔf; ð4Þ

for 0 ≤ t ≤ Tobs, where _fgw is the first time derivative of the
GW signal frequency. The HMM emission probability at
each discrete time, defined as the likelihood of hidden state
qi being observed in state oj, is given by [15]

Lojqi ¼ P½oðtnÞ ¼ ojjqðtnÞ ¼ qi�: ð5Þ

Here we leverage the cross-power pixel SNR in Eq. (1), and
define the emission probability over each time interval
½t; tþ T� as

LoðtÞqi ¼ P½oðtÞjfi ≤ fgwðtÞ ≤ fi þ Δf� ð6Þ

∝ exp½ρðt; fiÞ�: ð7Þ

We also choose T ≤ 100 s such that the Earth rotation can
be neglected during the interval ½t; tþ T� in the frequency
range of interest. The transition probability of qi from time
tn to tnþ1 is defined as [15]

Aqjqi ¼ P½qðtnþ1Þ ¼ qjjqðtnÞ ¼ qi�; ð8Þ

which depends on the signal evolution characteristics. Here
we consider a model-agnostic, long-transient signal whose
frequency rapidly decreases, e.g., a signal from a binary
neutron star postmerger remnant. Assuming that the signal
frequency can be approximated by a negatively biased
random walk, with frequency change over each segment T
uniformly distributed in range ½0; ðk − 1Þm=T�, i.e., 0 ≤
fgwðtnÞ − fgwðtnþ1Þ ≤ ðk − 1ÞΔf [see Eq. (4)], we adopt
the transition probabilities

Aqi−jqi ¼
1

k
; ð9Þ

with all other entries being zero. In Eq. (9), j takes integer
values 0 ≤ j ≤ k − 1. We can always adjust Eq. (8) in
searches for other types of signals. Since we have no
independent knowledge of fgw, we choose a uniform
prior, viz.

Πqi ¼ N−1
Q : ð10Þ

The probability that a hidden state path Q ¼ fqðt0Þ;…;
qðtNT

Þg gives rise to an observed sequenceO ¼ foðt0Þ;…;
oðtNT

Þg via a Markov chain equals

PðQjOÞ ¼ LoðtNT
ÞqðtNT

ÞAqðtNT
ÞqðtNT−1Þ � � �Loðt1Þqðt1Þ

× Aqðt1Þqðt0ÞΠqðt0Þ: ð11Þ

Themost probable Viterbi path is the maximum a posteriori
track, which maximizes PðQjOÞ. The detection statistic
is the cluster SNR as defined by Eq. (3) of the optimal
Viterbi path.

B. Seedless clustering

We now briefly describe the seedless clustering algo-
rithm following Refs. [12,14]. The algorithm attempts to
pick out the morphology of a potential signal in the cross-
power spectrogram by drawing tracks from a template base.
In principle the template could have any possible form. In
the case of compact binary coalescence sources for exam-
ple, one could employ very specific templates drawing
upon precise models of GW radiation from them [25,26].
Yet, in the presence of uncertainty about the sources and
morphology of astrophysical signals, using quadratic
Bézier curves is a good tradeoff between sensitivity and
computational cost. Quadratic Bézier curves provide good
sensitivity to many monotonically evolving waveform
models, and have been applied in several searches con-
ducted in the past [6,8,27].
In practice we pick three points (i.e., three pixels)

randomly within the spectrogram with the only condition
being that the frequency evolution between them be
monotonic. The three pixels Ni ¼ ðfi; tiÞ are then fit with
quadratic curves parametrized by ξ:

�
fðξÞ
tðξÞ

�
¼ ð1 − ξÞ2N0 þ 2ð1 − ξÞξN1 þ ξ2N2: ð12Þ

Each Bézier template is defined as one choice of
ðN0; N1; N2Þ, which completely describe a quadratic curve
in Eq (12). Usually a total number of templates Ntemp ∼ 106

are used for a single spectrogram [28]. The SNR for the
cluster obtained from one template, Γc, is defined as the
sum of the SNRs of all pixels along the quadratic curve, and
is again calculated using Eq. (3). These are the triggers for
the search and the loudest trigger for a spectrogram is
picked as the prospective signal candidate for further
scrutiny.
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IV. SENSITIVITY AND COST

A. Sensitivity analysis

In this section, we compare the sensitivities obtained
from HMM tracking and seedless clustering. We make
comparisons using two different sizes of spectrograms. The
“long duration” spectrograms are 15 000 seconds long,
made of short Fourier transforms (SFTs) of 100 seconds
of data coarse-grained to 1-Hz frequency resolution (i.e.,
m ¼ 100). The same configuration of spectrograms has
been used in Ref. [8] to search for long-duration postmerger
remnant signals. The “intermediate duration” spectrograms
are 500 seconds long with 1 s SFTs and 1 Hz bin sizes (i.e.,
m ¼ 1). Spectrograms of this intermediate size have been
used extensively in the past [29], most recently in
Refs. [6,27]. For each configuration, we make a compari-
son between the two algorithms using (1) Gaussian data
recolored to the PSD of the first observing run (O1) of
Advanced LIGO, and (2) O2 data from Advanced LIGO
Hanford and Livingston detectors, with an unphysical time
shift between them [30]. The former sets an ideal scenario
for comparison, while the latter aims to accurately capture
the impact of non-Gaussian, non-stationary artifacts in real
interferometer data [31].
The long and intermediate duration analyses are

described in Secs. IV C and IV D, respectively, while the
waveform models used for simulated signals are described
in IV B. For the sake of simplicity and for reducing the
computational cost, we fix the sky position of all simulated
signals to be the same as GW170817 [5], and it is also
assumed to be known in the search. All comparisons of
sensitivities are made at a false alarm probability (FAP)
less than 10−4. Finally, the search configurations used for
HMM tracking and seedless clustering are listed in Table I,
with column 2 and 3 for long and intermediate-duration
spectrograms, respectively.

B. Signal models

1. Magnetar model

For both the long and intermediate-duration spectro-
grams, we simulate synthetic signals using a neutron star
spin-down model, although the search itself is model-
agnostic. This model characterizes the gravitational wave
radiation from an nonaxisymmetric long-lived post-merger
remnant. The remnant might be spinning down due to GW
radiation or electromagnetic radiation or some combination
thereof. This model has been used in setting limits for post-
merger GW emission from GW170817 in both the inter-
mediate-duration and long-duration searches [6,8]. The
frequency evolution of the rapidly spinning down signal
is given by [32]:

fgwðtÞ ¼ fgwð0Þ
�
1þ t

τ

� 1
1−n
; ð13Þ

where n is the braking index defined via _fgw ∝ fngw,
τ ∝ f1−ngw =ð1 − nÞ is the spin-down timescale [8], and
fgwð0Þ is the starting frequency at reference time t ¼ 0.
The gravitational-wave strain amplitude is given by [32]:

h0ðtÞ ¼
4π2G
c4

Izzϵf2gwð0Þ
D

�
1þ t

τ

� 2
1−n
; ð14Þ

where G is Newton’s gravitational constant, Izz is the
principal moment of inertia of the neutron star, ϵ is its
equatorial ellipticity, and D is the distance to the source.
In Table II, rows 1–2 and 3–4 list the parameters of the

synthetic magnetar signals in the long and intermediate-
duration analyses, respectively. For all waveform models,
detection efficiency at a particular root-sum-squared strain
amplitude hrss is defined as the fraction of simulated signals
recovered given a FAP of less than 10−4. In the frequency
domain, hrss is defined as

hrss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Z
fmax

fmin

dfðjh̃þðfÞj2 þ jh̃×ðfÞj2Þ
s

; ð15Þ

where h̃þ and h̃× are strain amplitudes of the waveform in
frequency domain for the þ and × polarizations, respec-
tively, and fmin and fmax are the minimum and maximum
frequencies of the waveform in the frequency band being
analyzed, respectively.

2. Accretion disk instability model

For intermediate-duration spectrograms, we also test with
a different model based on instabilities of accretion disks
(ADI) around black holes. These waveforms are parame-
trized by themass of the blackholeMBH, dimensionless Kerr
spin parameter a�, and the fraction of mass forming inho-
mogeneities in the disk η. The inhomogeneities are modeled
to behave as a binary system and act as a source of

TABLE I. Search configurations for long and intermediate-
duration spectrograms. The last two rows are parameters
for HMM or seedless only. From top down, the parameters
stand for the frequency band searched, segment duration,
frequency resolution, spectrogram duration, HMM configuration
constant [see Eq. (4)], and total number of seedless templates
used.

Parameters Long duration Intermediate duration

f 30–1800 Hz 30–1800 Hz
T 100 s 1 s
Δf 1 Hz 1 Hz
Tobs 15 000 s 500 s
NT 150 500
k (HMM) 10 10
Ntemp (Seedless) 106 106
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gravitational waves. We refer to Refs. [29,33,34] and the
references therein for more details about these waveforms.
The last two rows in Tables II list the parameters of the ADI
signals simulated.
Model spectrograms of the waveforms models used in

this paper are shown in the Appendix.

C. Long duration

Fig. 2 presents the detection efficiency for HMM
tracking and seedless clustering, generated by injecting
synthetic signals in Gaussian data recolored with O1 noise
PSD (top panels) and real time-shifted O2 data (bottom
panels). The dashed and solid curves indicate results from
HMM tracking and seedless clustering, respectively. We
inject simulated signals at 18 amplitude levels chosen to be
uniform in log amplitude. At each amplitude level, 150
simulated signals are used for the Gaussian case and 80 for
the real case. These discrete results are then fit to a sigmoid
to generate the efficiency curves in Fig. 2.
We see that HMM tracking outperforms seedless cluster-

ing (Ntemp ¼ 106). For example, the strain hrss needed by
HMM for an efficiency of 0.9 is lower than seedless by about
a factor of two in all cases in Fig. 2. A part of the gain comes
from the fact that magnetar signal curves are nonquadratic.
The quadratic Bézier curves used in seedless clustering do
not fit the signal well, while the HMM tracking does not
assume a particular shape of the signal curve. One can expect
that a better template (for instance a template made of cubic
Bézier curves or from the waveform model itself) will give
better sensitivity, albeit at a substantial increase in computa-
tional cost or loss in sensitivity to other waveforms.
We also compare the sensitivity obtained here using

HMM tracking with cross-power spectrograms to the
existing HMM method used in Ref. [8], which operates
on normalized power in SFTs summed over multiple
detectors, i.e.,

P
X x̃

X
i x̃

X�
i , where i indexes the frequency

bins of the normalized SFT x̃, and X indexes the detector
[21]. With simulations done on time-shifted O2 data, we

compute the 90% sensitive distance, d90%, i.e., the largest
distance atwhich90%of the injected signals canbe recovered
for HMM run on cross-power spectrograms. Using the same
moment of inertia of 4.38 × 1038 kgm2 and the maximum
possible ϵ as described inRef. [8], we obtaind90% ≈ 0.5 Mpc
and 0.2Mpc formagnetar E andMmodels, respectively. This
is done by calculating h0 corresponding to the hrss value
required for 90% efficiency, and using Eq. (14) to convert h0
to the limit on distance. While these are still astrophysically
unrealistic distances for a source like GW170817, they are
significantly better than the d90% values (d90% ≈ 0.064 Mpc
and 0.035Mpc) quoted for similar waveforms in [8] using the
existing HMM method.
Note that there are some differences between the simu-

lations in this paper and in Ref. [8]: (1)We use braking index
of n ¼ 2.5 here as opposed to n ¼ 5 in [8]; (2) We use
cos ι ¼ 1 (the inclination of the source) here as opposed to
randomized cos ι in [8]; (3) The FAP in this paper and in [8]
are≤10−4 and 10−2, respectively. Although setting cos ι ¼ 1

can improved90% by a factor of 2–3 compared to randomized
cos ι, d90% for signals with n ¼ 5 are generally better than
n ¼ 2.5 by a factor of <2 [21]. Combined with the much
more stringent FAP adopted in this paper, these results
demonstrate that using HMM operated on cross-correlated
spectrograms outperforms its usage on incoherent SFT
powers from two detectors. The improvement is not unex-
pected given that the cross-power SNR statistic demands that
the phase difference of the signals between two detectors be
consistent with the sky position [see Eq. (1)], whereas the
SFT power spectrograms effectively marginalize over the
phase and the sky position [21]. A more detailed study of
the difference between cross-power and SFT spectrograms is
out of the scope of this paper.

D. Intermediate duration

In the intermediate duration search, we inject simulated
signals at 18 amplitude levels for the magnetar model and at

TABLE II. Parameters of the magnetar and ADI models used to generate synthetic signals in Secs. IV C and IV D.
Magnetar models E and M are used for long-duration signal simulations. Magnetar model A and B are used for
intermediate-duration signal simulations. The same parameters are used for both Gaussian and time-shifted real
interferometer data. The two ADI models are used for intermediate-duration signal simulations, both of which
assumes a disk mass of 1.5 M⊙.

Model fgwð0Þ (Hz) τ (s) n Duration (s) cos ι

Magnetar E 1k 104 2.5 104 1
Magnetar M 2k 104 2.5 104 1
Magnetar A 1k 102 3 103 1
Magnetar B 2k 102 3 103 1

Model MBH a� η Duration (s) f (Hz)

ADI B 10 M⊙ 0.95 0.2 9.4 110–209
ADI C 10 M⊙ 0.95 0.04 236 130–251
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22 amplitude levels for the ADI model, uniform in log
amplitude. At each amplitude level, 100 simulated signals
are injected. Discrete results are fit to a sigmoid to generate
the efficiency curves in Figs. 3 and 4.
Figure 3 shows the relative performance of HMM and

seedless clustering using magnetar models A and B, in both
recolored Gaussian noise (O1 PSD) and O2 real interfero-
metric data. HMM tracking still outperforms seedless
clustering, although in these intermediate-duration simu-
lations in read data, the sensitivity gain from HMM is not as
significant as the long-duration search.

The same intermediate-duration search configuration
(column 3 in Table I) is used for recovering accretion-disk
instability (ADI) simulations. For illustration purpose, we
perform the ADI simulations in Gaussian noise only. The
detection efficiencies for these waveforms are shown in
Fig. 4. For the ADI models, the recovery efficiencies from
HMM tracking and seedless clustering are generally
comparable. Unlike the magnetar models described above,
the ADI signal waveforms are better sampled by quadratic
Bézier curves, and hence seedless is expected to produce
similar sensitivity as to HMM.

FIG. 2. Detection efficiencies (i.e., the rates of correctly recovering injections) for long-duration simulations based on the magnetar
models E and M. The curves shown are generated from sigmoid fits of the discrete injection results. HMM tracking generally performs
better than seedless clustering for these waveforms. The top panels are from simulations in Gaussian noise. The bottom panels are with
simulations of the same waveform injected into time-shifted real O2 data. The results demonstrate that the gain in sensitivity from HMM
tracking is not affected by non-Gaussian, non-stationary noise in real interferometric data. We note that the Gaussian data is recolored
with O1 noise PSD, and the real data is from the O2 run. The colored regions represent 1σ binomial uncertainty in detection efficiency.
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E. Computing cost

We have demonstrated that HMM tracking provides
detection efficiencies better than or at least comparable to
seedless clustering in the parameter space considered here.
In this section, we show that HMM tracking significantly
outperforms seedless clustering with respect to run time
and computational cost, and briefly explain the reason.
We have tested the run time of both HMM and seedless

methods (with identical scenarios and configurations) for
both the intermediate and long-duration spectrograms.
Over 2500 realizations of the intermediate-duration spec-
trograms, the median run time of HMM tracking was ∼35
times shorter than seedless clustering with 106 templates

(see Table III). A similar test for the long-duration spectro-
grams produces an improvement of a factor of ∼23 for
HMM compared to seedless. The gain is less significant in
long-duration spectrograms probably because the coarse-
grained long-duration spectrograms consist of a smaller
number of pixels, Npixel, compared to the intermediate-
duration spectrogram (see Npixel in Table III). Although the
amount of raw data in the 15 000 second long spectrograms
is much larger than the intermediate-duration ones, coarse-
graining is generally employed [35] to reduce the volume
of data being analyzed. Coarse-graining is done by
averaging both the cross and auto-power in finer frequency
bins to give coarser bins. While averaging reduces the

FIG. 3. Detection efficiencies for intermediate-duration simulations based on the magnetar models A and B. The curves shown are
generated from sigmoid fits of the discrete injection results. HMM tracking generally performs better than seedless clustering. The top
panels are from simulations in Gaussian noise. The bottom panels are with simulations of the same waveform injected into time-shifted
real O2 data. For intermediate-duration signals, the gain in sensitivity from HMM tracking is slightly affected by non-Gaussian, non-
stationary noise in real interferometric data. The colored regions represent 1σ binomial uncertainty in detection efficiency.
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computational cost of analyzing long duration spectro-
grams, it also leads to a loss of sensitivity. The natural
Fourier transform frequency resolution of 1=T ¼ 10 mHz
(T ¼ 100 s) in the long-duration spectrograms would
require a prohibitively large number of seedless templates
for analysis. The efficiency of HMM tracking makes it a
promising tool to run deeper searches over spectrograms
with finer frequency resolution.
We now briefly discuss the reason why using HMM

shows a significant improvement in computational cost.
The HMM tracking uses the dynamic programming algo-
rithm, Viterbi, which reduces the total number of compar-
isons required to find the optimal path from NNTþ1

Q to
ðNT þ 1ÞN2

Q in a spectrogram with Npixel ¼ NQNT

[15,19]. When matrix Aqjqi only contains ten nonzero
terms along the diagonal, the total number of comparisons
reduces to 10Npixel. Hence in the intermediate and long
duration spectrograms, the total numbers of comparisons
are 8.9 × 106 and 2.7 × 106, respectively. As a dynamic

process, at each step, the algorithm only records 10NQ ¼
1.8 × 104 paths for both configurations, but effectively
ensures that the optimal one is kept. This is significantly
more efficient than fitting 106 curves and summing up the
NT SNR pixels for each curve as is done in seedless.

V. CONCLUSION

In this paper, we describe two clustering strategies for
long-transient gravitational-wave searches, both operating
on precalculated, cross-power spectrograms. We conduct a
large number of simulations—about ∼16 000, and ∼21 000
for the long-duration (15 000 s) and intermediate-duration
(500 s) signals, respectively—in both Gaussian noise and
real interferometric data. In the simulations and comparison
carried out in this paper, we mainly focus on the magnetar
model that is adopted in BNS post-merger remnant and other
long-transient searches. We have demonstrated that HMM
tracking can produce detection efficiency better than or at
least similar to seedless clustering, and reduce the computing
cost significantly, based on the same sets of spectrograms.
HMM tracking can also be applied to track a variety of signal
models in addition to the ones tested above, e.g., nonmono-
tonic signals, by adjusting transition probabilities (see
Ref. [17]). In addition, a small improvement in the sensitive
distance will give a relatively large improvement in sensitive
volume. With much lower computational requirements,
HMM tracking method can be a good option in unmodeled
all-sky searches for long-transient signals. Inmodel-agnostic,
computationally challenging searches, HMM tracking can
prove to be a superior strategy to parse spectrograms.
The HMM tracking algorithm operated on cross-power

spectrograms also outperforms the existing HMM tracking

FIG. 4. Detection efficiencies for intermediate-duration simulations based on the ADI models B and C in Gaussian noise. The curves
shown are generated from sigmoid fits of the discrete injection results. The performance of two methods is generally comparable. The
colored regions represent 1σ binomial uncertainty in detection efficiency.

TABLE III. Total number of pixels and median run time of
HMM tracking and seedless clustering for intermediate and long
duration spectrograms (over 2500 realizations). We note that the
tests were run on a computing cluster with machines containing
various intel CPU generations, and the run time depends on the
CPU architecture. Hence the improvement ratio in the last
column is of more interest in the comparison.

Npixel HMM (s) Seedless (s) Ratio

Intermediate 8.9 × 105 4 145 36.25
Long 2.7 × 105 1.6 37.8 23.63
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operated on SFT power spectrograms used in previous
searches for long-duration BNS postmerger signals [8].
This new implementation can serve as a more sensitive and
efficient alternative in future analyses of the same kind.
Finally, this work might also open the window to otherwise
prohibitively expensive all-sky long-duration searches
(with ∼104-s or longer spectrograms), given the significant
reduction in computational cost by using HMM tracking.
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APPENDIX: SPECTROGRAMS

We show sample spectrograms of the waveform models
used in this study in Fig. 5 for the long-duration spectro-
grams and Figs. 6–7 for the intermediate-duration ones.

FIG. 5. Sample long-duration spectrogram of the magnetar
model E. The spectrogram is for time duration 15000 s and
frequency band 30–1800 Hz. The signal is visible from about
1000–500 Hz.

FIG. 6. Sample intermediate-duration spectrogram of the mag-
netar model A. The spectrogram is for time duration 500 s and
frequency band 30–1800 Hz. The signal is visible from about
1000–500 Hz. The horizontal bars and vertical lines are noisy
frequencies which have been notched out or segments which have
been vetoed by data-quality cuts.

FIG. 7. Sample intermediate-duration spectrogram of the ADI
model C. The spectrogram is for time duration 500 s and
frequency band 30–1800 Hz. A subband 30–1000 Hz is displayed
here in order to show the injected signal more clearly. The
horizontal bars are noisy frequencies which have been
notched out.
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