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We derive and discuss a general redshift formula in Finsler spacetimes. The condition for the existence of
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I. INTRODUCTION

According to Einstein’s general theory of relativity, the
frequency under which a standard clock in a gravitational
field is seen by another standard clock undergoes a redshift.
Verifying this gravitational redshift is known as “the third
classical test of general relativity,” in addition to the
deflection of light rays and the precession of the pericenter
of test particle orbits in a (spherically symmetric and static)
gravitational field. The gravitational redshift, as predicted
by general relativity, was measured for the first time by
Pound and Rebka [1] in 1959 with gamma quanta in a
building of approximately 22 m height. The accuracy of
this result was considerably improved by the Gravity Probe
A experiment with a hydrogen maser in a sounding rocket
in 1976; see Vessot et al. [2]. For many years, this remained
the most accurate confirmation of the gravitational redshift
as predicted by general relativity. Only very recently was
the accuracy improved with the help of two Galileo
satellites that were accidentally placed in an eccentric orbit
around Earth; see Delva et al. [3] and Herrmann et al. [4].
The prediction from general relativity is now confirmed,
in the gravitational field of Earth, with an accuracy of
approximately 10−5 at 1σ.
Redshift measurements are also of crucial relevance for

cosmology. In particular, our understanding that we are
living in a universe with an accelerated expansion is based
on redshift measurements of supernovae of type Ia; see
Riess et al. [5] and Perlmutter et al. [6]. These results
earned Perlmutter, Riess, and Schmidt the physics Nobel
prize in 2011.
In view of these facts, it seems fair to say that measure-

ments of redshifts are among the most powerful tools for

testing general relativity. To put this another way, redshift
measurements can provide bounds on alternative theories of
gravity. In this article, we want to provide the theoretical
background for investigating the gravitational redshift in
Finsler gravity. In our view, Finsler gravity is one of the most
attractive alternative theories of gravity. Whereas in general
relativity the spacetime geometry is given by a pseudo-
Riemannian metric of Lorentzian signature, in Finsler
spacetime theory it is given by a metric that has an additional
dependence on the tangent vector inwhich it is homogeneous
of degree zero. There are several motivations for considering
such a generalization which we mention here only briefly.
For more detailed recent discussions, we refer to
Lämmerzahl and Perlick [7] and to Pfeifer [8]. In our view,
the strongestmotivation comes from theEhlers-Pirani-Schild
[9] axiomatic approach to spacetime theory. In this approach,
light rays and freely falling particles are considered as the
primitive concepts, and axioms are formulated for the
behavior of these primitive concepts that, finally, establish
the spacetime structure of general relativity. However, if one
slightly modifies one of the axioms, one arrives at a Finsler
spacetime structure; seeTavakol andVanDenBergh [10] and
Lämmerzahl and Perlick [7]. As another motivation, we
mention that some approaches to a quantum theory of gravity
suggest to replace, at a certain level of approximation, the
pseudo-Riemannian spacetimegeometryof general relativity
by a Finslerian geometry; see, e.g., Girelli, Liberati, and
Sindoni [11]. Moreover, Finsler geometry comes up natu-
rally also in curved versions of very special relativity; see
Gibbons,Gomis, andPope [12] and, for themore special case
where the resulting Finsler spacetime is of Berwald type,
Fuster, Pabst, and Pfeifer [13], and in the Standard Model
Extension, see, e.g., Kostelecký [14].
We mention that there are also spacetime theories,

again motivated by ideas from a quantum theory of gravity,
where the propagation of light depends on the frequency,
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i.e., where the vacuum acts like a dispersive medium; see,
e.g., Amelino-Camelia et al. [15]. These theories, which
predict a so-called dual redshift or lateshift, meaning a
dependence of the travel time on the frequency, are outside
of the Finslerian framework, because they violate the
above-mentioned homogeneity property, and will not be
considered here.
The paper is organized as follows. In Sec. II, we specify

our definition ofFinsler spacetimes andwediscuss thenotion
of (conformal) Killing vector fields which will play an
important role in all that follows. The definition of Finsler
spacetimes (i.e., Finsler structures with an indefinite metric)
is a subtle issue. Until now, it seems fair to say that there is no
general agreement aboutwhich definition ismost appropriate
in view of applications to physics. We refer to Lämmerzahl
and Perlick [7] for details. Here we mention only that we
essentially adopt Beem’s definition [16], with a slight
modification that will be indicated in Sec. II. There are
alternative definitions, which differ by technical but impor-
tant subtleties, by Asanov [17], by Pfeifer and Wohlfarth
[18,19], and by Javaloyes and Sánchez [20,21]. In Sec. III,
we present a redshift formula which holds for an arbitrary
emitter and an arbitrary receiver in an unspecified Finsler
spacetime. This redshift formula, which generalizes the
redshift formula of general relativity into a Finslerian setting,
was not known before, to the best of our knowledge, and is
considered by us as the main result of this paper. In Secs. IV
and V, we illustrate our general redshift formula with an
application to a spherically symmetric and static spacetime
and to a cosmological spacetime, respectively, thereby
indicating the relevance of our general result for measure-
ments (i) in the field of Earth or the Sun and (ii) in cosmology.

II. DEFINITION OF FINSLER SPACETIMES AND
(CONFORMAL) KILLING VECTOR FIELDS

For the purpose of this paper, we use the following
definition of a Finsler spacetime.
Definition 1.—A Finsler spacetime is a four-dimensional

manifold M with a Lagrangian function L that satisfies the
following properties:
(a) L is a real-valued and sufficiently smooth function on

the tangent bundle TM minus the zero section; i.e.,
Lðx; _xÞ is defined for all ðx; _xÞ with _x ≠ 0.

(b) L is positively homogeneous of degree two with
respect to _x, i.e.,

Lðx; k_xÞ ¼ k2Lðx; _xÞ for all k > 0: ð1Þ
(c) The Finsler metric

gμνðx; _xÞ ¼
∂2Lðx; _xÞ
∂ _xμ∂ _xν ð2Þ

is well defined and has a Lorentzian signature
ð−þþþÞ for almost all ðx; _xÞ with _x ≠ 0. (As usual,
“almost all” means “up to a set of measure zero.”)

(d) The Euler-Lagrange equations

∂Lðx; _xÞ
∂xμ −

d
ds

∂Lðx; _xÞ
∂ _xμ ¼ 0 ð3Þ

admit a unique solution for every initial condition
ðx; _xÞ with _x ≠ 0; at points where the Finsler metric is
not well defined, this solution is to be constructed by
continuous extension.

On a Finsler spacetime, we represent points inM by their
coordinates x ¼ ðx0; x1; x2; x3Þ and points in the fiber TxM
of the tangent bundle by their induced coordinates
_x ¼ ð_x0; _x1; _x2; _x3Þ. We use Einstein’s summation conven-
tion for Greek indices taking values 0, 1, 2, and 3.
Definition 1 is essentially Beem’s definition [16] of a

Finsler structure with Lorentzian signature. The only
modification is in the fact that in item (c) we require the
Finsler metric to be well defined and of Lorentzian
signature only for almost all ðx; _xÞ with _x ≠ 0, whereas
Beem required this for all such ðx; _xÞ. The motivation for
this generalization was discussed in Lämmerzahl, Perlick,
and Hasse [22].
Note that the homogeneity condition (1) of the

Lagrangian implies that

_xμ
∂Lðx; _xÞ
∂ _xμ ¼ 2Lðx; _xÞ; ð4Þ

_xμ
∂gρσðx; _xÞ

∂ _xμ ¼ 0; ð5Þ

Lðx; _xÞ ¼ 1

2
gμνðx; _xÞ_xμ _xν: ð6Þ

A general-relativistic spacetime (i.e., a four-dimensional
manifold with a pseudo-Riemannian metric of Lorentzian
signature) is the special case of a Finsler spacetime where
the gμν are independent of _x.
With the help of the Lagrangian, we classify nonzero

tangent vectors as timelike [Lðx; _xÞ < 0], lightlike
[Lðx; _xÞ ¼ 0], or spacelike [Lðx; _xÞ > 0]. We call the
solutions to the Euler-Lagrange equations (3) the affinely
parametrized Finsler geodesics. Again, by the homogeneity
condition (1) of the Lagrangian, Lðx; _xÞ is a constant of
motion; hence, Finsler geodesics can be classified as
timelike, lightlike, or spacelike. We interpret the timelike
geodesics as freely falling particles and the lightlike geo-
desics as light rays.
We can switch to a Hamiltonian formulation by intro-

ducing canonical momenta

pμ ¼
∂Lðx; _xÞ
∂ _xμ ð7Þ

and the Hamiltonian

Hðx; pÞ ¼ pμ _xμ − Lðx; _xÞ: ð8Þ
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On the right-hand side of (8), _xμ must be expressed as a
function of x and p with the help of (7). With (1) and (2)
from Definition 1, Eqs. (7) and (8) specify to

pμ ¼ gμνðx; _xÞ_xν ð9Þ

and

Hðx; pÞ ¼ 1

2
gμνðx; pÞpμpν; ð10Þ

where gμνðx; pÞ is defined through

gμνðx; pÞgνσðx; _xÞ ¼ δμσ: ð11Þ

Here we have used (4) and (5). As a consequence, the
Hamiltonian Hðx; pÞ is homogeneous of degree two with
respect to the pμ,

pμ
∂Hðx; pÞ

∂pμ
¼ 2Hðx; pÞ; ð12Þ

and

gμνðx; pÞ ¼ ∂2Hðx; pÞ
∂pμ∂pν

: ð13Þ

The Finsler geodesics are the solutions to Hamilton’s
equations

dpμ

ds
¼ −

∂Hðx; pÞ
∂xμ ;

dxμ

ds
¼ ∂Hðx; pÞ

∂pμ
; ð14Þ

and they are lightlike if

Hðx; pÞ ¼ 0: ð15Þ

Interpreting the lightlike geodesics of a Finsler spacetime as
light rays is justified, because they are the bicharacteristic
curves (or “rays”) of appropriately generalized Maxwell
equations. (This was demonstrated in the Appendix of
Ref. [22]; the generalized Maxwell equations were further
discussed in Ref. [23].) Note that a transformation

Hðx; pÞ ↦ e−2Ωðx;pÞHðx; pÞ ð16Þ

leaves the solutions to (14) and (15) unchanged up to
parametrization. So we are free to perform such a trans-
formation if we are interested only in lightlike geodesics.
This is true with an arbitrary function Ωðx; pÞ which need
not be homogeneous of degree zero with respect to the
momenta; i.e., the transformed Hamiltonian need not be
associated with a Finsler metric.
At each point of M, the tangent vectors to lightlike

geodesics define the light cone. In the pseudo-Riemannian

case, the light cone has two connected components: a future
half-cone and a past half-cone. In a Finsler spacetime, there
may be more components. Criteria that guarantee the
existence of just two components have been worked out
by Minguzzi [24]. We emphasize that our redshift formula,
to be given below, is valid, in general, even if there are more
than two connected components. In the examples of
Secs. IV and V, however, we restrict to Finsler metrics
that are small perturbations of pseudo-Riemannian metrics;
then, at each point the light cone has exactly two connected
components.
Symmetries of Finsler metrics are described in terms of

(Finsler generalizations of) Killing vector fields. By def-
inition, a vector field KμðxÞ∂μ on a Finsler spacetimeM is a
Killing vector field if and only if its flow, if lifted to TM,
leaves the Lagrangian L invariant. This condition can be
rewritten in terms of the Finsler metric as

KμðxÞ ∂gρσðx; _xÞ∂xμ þ ∂KτðxÞ
∂xν _xν

∂gρσðx; _xÞ
∂ _xτ

þ ∂KτðxÞ
∂xρ gτσðx; _xÞ þ

∂KτðxÞ
∂xσ gρτðx; _xÞ ¼ 0: ð17Þ

The Finslerian Killing equation (17) has been known since
the early days of Finsler geometry; see Knebelman [25].
In the Hamiltonian formalism, Killing vector fields are
characterized by the fact that KμðxÞpμ is a constant of
motion, i.e.,

dðKμðxÞpμÞ
ds

¼ 0 ð18Þ

along any solution of Hamilton’s equations (14). This is
true if and only if KμðxÞ satisfies the condition

fHðx; pÞ; KμðxÞpμg ¼ 0; ð19Þ

where f·; ·g denotes the Poisson bracket

fAðx; pÞ; Bðx; pÞg

¼ ∂Aðx; pÞ
∂pν

∂Bðx; pÞ
∂xν −

∂Aðx; pÞ
∂xν

∂Bðx; pÞ
∂pν

: ð20Þ

With H inserted from (10), Eq. (19) reads

gσνðx;pÞpσpμ
∂KμðxÞ
∂xν −

1

2

∂gμσðx;pÞ
∂xν pμpσKνðxÞ¼0: ð21Þ

Differentiating with respect to pρ and then with respect to
pλ gives the Hamiltonian version of the Killing equation:
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− KνðxÞ ∂g
ρλðx; pÞ
∂xν þ ∂KσðxÞ

∂xν pσ
∂gρλðx; pÞ

∂pν

þ ∂KλðxÞ
∂xν gρνðx; pÞ þ ∂KρðxÞ

∂xν gλνðx; pÞ ¼ 0: ð22Þ

We mention that Eq. (22) characterizes the symmetry of
a nondegenerate Hamiltonian in general; i.e., it is true even
if the Hamiltonian is not homogeneous with respect to the
momenta—cf. Eq. (45) in Barcaroli et al. [26].
More generally, KμðxÞ∂μ is called a conformal Killing

vector field if

fe−2Ωðx;pÞHðx; pÞ; KμðxÞpμg ¼ 0 ð23Þ
with some functionΩðx; pÞ. Evaluating this equation along
a solution to Hamilton’s equations (14) yields

e−2Ωðx;pÞ
�
dðKμðxÞpμÞ

ds
−2Hðx;pÞfΩðx;pÞ;KμðxÞpμg

�
¼0;

ð24Þ
so the conservation law (18) still holds along lightlike
geodesics, Hðx; pÞ ¼ 0.

III. THE REDSHIFT FORMULA
IN FINSLER SPACETIMES

We use units making ℏ equal to 1. Then the momentum
pμ of a light ray is the same as the wave covector.
With respect to an observer, the wave covector pμ can
be decomposed into a spatial wave covector and a fre-
quency. In a Finsler spacetime, an observer is determined
by fixing a worldline, i.e., a curve γðτÞ in M with

gμν

�
γðτÞ; dγðτÞ

dτ

�
dγμðτÞ
dτ

dγνðτÞ
dτ

¼ −c2; ð25Þ

where c is the vacuum speed of light. The normalization
condition (25) means that the worldline is parametrized by
Finsler proper time. If this observer meets a light ray xðsÞ at
an event γðτ0Þ ¼ xðs0Þ, we decompose the wave covector
according to

pμðs0Þ¼
ωðs0Þ
c2

gμν

�
γðτ0Þ;

dγ
dτ

ðτ0Þ
�
dγν

dτ
ðτ0Þþp⊥

μ ðs0Þ; ð26Þ

where p⊥
μ ðs0Þ is the spatial wave covector which satisfies

the condition p⊥
μ ðs0Þ dγ

μ

dτ ðτ0Þ ¼ 0 and

ωðs0Þ ¼ −pμðs0Þ
dγμ

dτ
ðτ0Þ ð27Þ

is the frequency.
Now consider a light ray xðsÞ that is emitted at an event

xðs1Þ and received at an event xðs2Þ; see Fig. 1. By (27), the
emitter assigns to the light ray the frequency

ω1 ¼ −pμðs1Þ
dγμ

dτ
ðτ1Þ; ð28Þ

where γðτÞ is the worldline of the emitter and
γðτ1Þ ¼ xðs1Þ. Similarly, the receiver assigns to the light
ray the frequency

ω2 ¼ −pμðs2Þ
dγ̃μ

dτ̃
ðτ̃2Þ; ð29Þ

where γ̃ðτ̃Þ is the worldline of the receiver and
γ̃ðτ̃2Þ ¼ xðs2Þ.
The redshift z is defined as

z ¼ ω1 − ω2

ω2

; ð30Þ

and thus

1þ z ¼ pμðs1Þ dγ
μ

dτ ðτ1Þ
pρðs2Þ dγ̃

ρ

dτ̃ ðτ̃2Þ
: ð31Þ

We may go back from the Hamiltonian to the Lagrangian
formalism with the help of (7) and rewrite the redshift
formula (31) as

1þ z ¼
∂L
∂ _xμ ðxðs1Þ; _xðs1ÞÞ dγ

μ

dτ ðτ1Þ
∂L
∂ _xρ ðxðs2Þ; _xðs2ÞÞ dγ̃

ρ

dτ̃ ðτ̃2Þ
: ð32Þ

Note that in the numerator and in the denominator of this
version of the redshift formula, the expression ∂L=∂ _xμ is

FIG. 1. Light ray xðsÞ from an emitter to a receiver.
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the coordinate version of the fiber derivative FL of the
Lagrangian, which mediates between the Lagrangian and
the Hamiltonian form; see, e.g., Abraham and Marsden
[27], Def. 3.5.2. Also note that we have not explicitly used
the homogeneity property of the Lagrangian for deriving
the redshift formula (32). However, we have used that light
rays are solutions of the Euler-Lagrange equation (3) with
Lðx; _xÞ ¼ 0; if the Lagrangian is not homogeneous (of any
degree), L is not, in general, a constant of motion, so
solutions with Lðx; _xÞ ¼ 0 need not exist.
With the help of (9), the redshift formula (31) in a Finsler

spacetime can be written more specifically as

1þ z ¼ gμνðxðs1Þ; _xðs1ÞÞ_xνðs1Þ dγ
μ

dτ ðτ1Þ
gρσðxðs2Þ; _xðs2ÞÞ_xσðs2Þ dγ̃

ρ

dτ̃ ðτ̃2Þ
: ð33Þ

It looks exactly the same as the familiar redshift formula in
a general-relativistic spacetime (see, e.g., Straumann [28]),
with the only difference that now the gμν depend also on the
tangent vector of the light ray.
The redshift formula (33) takes a particularly simple

form if γ and γ̃ are integral curves of a vector field VμðxÞ∂μ

that is proportional to a conformal Killing vector field
KμðxÞ∂μ:

KμðxÞ ¼ efðxÞVμðxÞ: ð34Þ

Then (31) can be rewritten as

1þ z ¼ pμðs1Þe−fðxðs1ÞÞKμðxðs1ÞÞ
pρðs2Þe−fðxðs2ÞÞKρðxðs2ÞÞ

: ð35Þ

Because of the conservation law (18), this simplifies to

lnð1þ zÞ ¼ fðxðs2ÞÞ − fðxðs1ÞÞ; ð36Þ

where ln denotes the natural logarithm. In this situation, we
say that f is a redshift potential. From general-relativistic
spacetimes, it is known [29] that the existence of a timelike
conformal Killing vector field KμðxÞ∂μ implies the exist-
ence of a redshift potential (36) for observers whose
worldlines are (reparametrized) integral curves of
KμðxÞ∂μ. We have now demonstrated that this result carries
over to the Finsler case.

IV. REDSHIFT IN A SPHERICALLY SYMMETRIC
STATIC FINSLER SPACETIME

As our first example, we consider the same type of
spherically symmetric and static spacetime with a Finsler
perturbation as in Lämmerzahl, Perlick, and Hasse [22].
The Lagrangian for the geodesics is of the form

2L¼ð1þϕ0ðrÞÞhttðrÞ_t2þð1þϕ1ðrÞÞhrrðrÞ_r2

þ r2ð _ϑ2þ sin2ϑ _φ2Þþϕ2ðrÞhrrðrÞr2 _r2ð _ϑ2þ sin2ϑ _φ2Þ
hrrðrÞ_r2þ r2ð _ϑ2þ sin2ϑ _φ2Þ ;

ð37Þ

where hμν is the Schwarzschild metric,

httðrÞ ¼ −FðrÞ; hrrðrÞ ¼
c2

FðrÞ ; ð38Þ

and

FðrÞ ¼ c2
�
1 −

2GM
c2r

�
: ð39Þ

Here G is Newton’s gravitational constant, c is the vacuum
speed of light, and M is the mass of the central body in the
unperturbed Schwarzschild spacetime. We refer to the
functions ϕAðrÞ as to the “perturbation coefficients” and
we assume that they are so small that all equations can be
linearized with respect to them. ϕ0 and ϕ1 change the time
measurement and the radial length measurement, respec-
tively, without affecting the pseudo-Riemannian character
of the spacetime geometry. By contrast, a nonzero ϕ2

destroys the spatial isotropy in each tangent space which
results in a genuinely Finslerian geometry. We refer to ϕ2 as
to the “Finslerity.”
The Hamiltonian corresponding to the Lagrangian (37)

reads

2H ¼ ð1 − ϕ0ðrÞÞ
p2
t

httðrÞ
þ ð1 − ϕ1ðrÞÞ

p2
r

hrrðrÞ

þ 1

r2

�
p2
ϑ þ

p2
φ

sin2ϑ

�
−

p2
rðp2

ϑ þ p2
φ

sin2ϑÞϕ2ðrÞ
r2p2

r þ hrrðrÞðp2
ϑ þ p2

φ

sin2ϑÞ
:

ð40Þ

We observe that ∂t þ Ω∂φ is a Killing vector field, for any
constant Ω:

fH; pt þΩpφg ¼ −
∂H
∂t − Ω

∂H
∂φ ¼ 0: ð41Þ

We want to calculate the redshift for the case that the
emitter and receiver are in circular (in general, nongeode-
sic) uniform motion in the equatorial plane. If we use
coordinate time t for the parametrization, their worldlines
are given as

emitter∶ rðtÞ¼ r1; φðtÞ¼φ01þΩ1t; ϑðtÞ¼π

2
; ð42Þ

receiver∶ rðtÞ¼ r2; φðtÞ¼φ02þΩ2t; ϑðtÞ¼π

2
: ð43Þ
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If reparametrized with proper time, these worldlines are
integral curves of the vector fields

Vμ
a∂μ ¼ e−faðrÞð∂t þ Ωa∂φÞ ð44Þ

with

efaðrÞ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞ −Ω2

ar2
q �

1þ ϕ0ðrÞFðrÞ
2ðFðrÞ −Ω2

ar2Þ
�

ð45Þ

for a ¼ 1 and a ¼ 2, respectively.
By (31), the redshift is

1þ z ¼ pt þ Ω1pφ

pt þ Ω2pφ
ef2ðr2Þ−f1ðr1Þ

¼ 1 − Ω1b
1 − Ω2b

ef2ðr2Þ−f1ðr1Þ; ð46Þ

where

b ≔
pφ

−pt
ð47Þ

is the impact parameter of the light ray that connects the
emitter and receiver. Geometrically, b determines the angle
under which the light ray arrives at the receiver. For
evaluating (46) we have to determine for each observation
event the impact parameter b of the particular light ray that
arrives from the emitter at this observation event. This
makes (46) difficult to use.
There is only one special case where this problem does

not exist, namely if Ω1 ¼ Ω2≕Ω, i.e., if the emitter rigidly
corotates with the receiver. In this case we may think of the
receiver as a station on Earth and of the emitter as a
geostationary satellite. Then we have a redshift potential
f1ðrÞ ¼ f2ðrÞ≕ fðrÞ and the redshift is given as

1þ z ¼ efðr2Þ−fðr1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr2Þ −Ω2r22
Fðr1Þ −Ω2r21

s

×

�
1þ ϕ0ðr2ÞFðr2Þ

2ðFðr2Þ −Ω2r22Þ
−

ϕ0ðr1ÞFðr1Þ
2ðFðr1Þ −Ω2r21Þ

�
:

ð48Þ

This equation takes a particularly simple form for Ω ¼ 0
(observers at rest) because then only the difference
ϕ0ðr2Þ − ϕ0ðr1Þ occurs. More generally, we see that
according to (48) the Finslerity ϕ2 (and also the perturba-
tion function ϕ1) has no influence on the redshift. This
result remains true even if we consider a Finsler perturba-
tion beyond the linearization: As the vector fields (44)
have no components in the direction of ∂r, the functions
(45) are insensitive to terms in the Lagrangian that involve a

factor _r. Therefore, if we want to use redshift measurements
in the gravitational field of Earth or the Sun as a genuine
Finsler test, we have to consider the case Ω1 ≠ Ω2.
Then we have to solve the geodesic equation for the light

rays. Starting out from the equationH ¼ 0 in the equatorial
plane, where the Hamiltonian is given by (40), we find that
the momentum coordinate pr of each light ray is given by

pr ¼ �
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p2

t − FðrÞp2
φ

q
rFðrÞ

�
1 −

ϕ0ðrÞr2p2
t

2ðr2p2
t − FðrÞp2

φÞ

þ ϕ1ðrÞ
2

þ ϕ2ðrÞFðrÞp2
φ

2r2p2
t

�
: ð49Þ

Inserting this expression for pr into Hamilton’s equations

dt
ds

¼ ∂H
∂pt

;
dφ
ds

¼ ∂H
∂pφ

;
dr
ds

¼ ∂H
∂pr

ð50Þ

yields

dt
dr

¼ ΦðrÞ; dφ
dr

¼ ΨðrÞ; ð51Þ

where

ΦðrÞ ¼ �cr

FðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2FðrÞ

p �
1 −

ϕ0ðrÞðr2 − 2b2FðrÞÞ
2ðr2 − b2FðrÞÞ

þ ϕ1ðrÞ
2

−
ϕ2ðrÞb2FðrÞ

2r2

�
1 −

2b2FðrÞ
r2

��
; ð52Þ

ΨðrÞ ¼ �cb

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2FðrÞ

p �
1þ ϕ0ðrÞr2

2ðr2 − b2FðrÞÞ þ
ϕ1ðrÞ
2

− ϕ2ðrÞ
�
1 −

3b2FðrÞ
2r2

��
: ð53Þ

In (49), (52), and (53) the upper sign is valid if r2 > r1 and
the lower sign is valid if r1 > r2. Note that pt is negative if
the light rays are future oriented, dt=ds > 0.
Integration of (51) from the emitter worldline to the

receiver worldline results in

t2 − t1 ¼
Z

r2

r1

ΦðrÞdr; ð54Þ

φ20 þ Ω2t2 − φ10 −Ω1t1 ¼
Z

r2

r1

ΨðrÞdr: ð55Þ

If r1, r2, Ω1, Ω2, φ10 and φ20 and t2 are known, Eqs. (54)
and (55) determine t1 and b. Inserting into (46) then gives
the redshift as a function of the observation time t2. In
contrast to the case Ω1 ¼ Ω2, the redshift now depends on
the Finslerity ϕ2. Note that, by (37), our radius coordinate
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has a geometric meaning: A circle r ¼ const in the
equatorial plane has circumference 2πr. Also, the angles
φ10 and φ20 are measurable quantities and the frequencies
Ω1 and Ω2 can be determined from measuring the rotation
periods in terms of proper time and converting into
coordinate time with the help of the functions f1ðrÞ and
f2ðrÞ, respectively. In this sense, the results of this section
give a method for experimentally detecting possible Finsler
deviations in the gravitational field of Earth or of the Sun
with satellites in circular orbits. For applications to satel-
lites in noncircular orbits, such as the two Galileo satellites
that have gone astray [3,4], the relevant equations are
considerably more involved. We are planning to work this
out in a follow-up paper.

V. REDSHIFT IN A COSMOLOGICAL
FINSLER SPACETIME

As a second example, we consider a cosmological model
with a Finsler perturbation. As the unperturbed spacetime,
we choose a kinematical Robertson-Walker model with
scale factor SðtÞ and spatial curvature parameter k; the latter
takes the value þ1, 0 or −1, depending on whether the
spatial sections are positively curved, flat or negatively
curved. The Lagrangian for the geodesics in the unper-
turbed spacetime is

2L0 ¼ −c2_t2 þ SðtÞ2ð_r2 þ ΣðrÞ2ð _ϑ2 þ sin2ϑ _φ2ÞÞ; ð56Þ

where

ΣðrÞ2 ¼

8>><
>>:

k−1sin2ð ffiffiffi
k

p
rÞ for k > 0;

r2 for k ¼ 0;

jkj−1sinh2ð ffiffiffiffiffijkjp
rÞ for k < 0.

ð57Þ

We want to preserve spatial isotropy and spatial homo-
geneity. Then we may choose any point in space as the
spatial origin of the coordinate system and we must have
spherical symmetry about this point. According to the
analysis of McCarthy and Rutz [30,31] this implies that the
Finsler-perturbed Lagrangian must be independent of φ and
that r, ϑ, _r, _ϑ and _φ may enter into the Lagrangian only in
terms of the combination

u ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ ΣðrÞ2ð _ϑ2 þ sin2ϑ _φ2Þ

q
: ð58Þ

As a consequence, any term in the Lagrangian that is
positively homogeneous of degree zero with respect to _xα

must be some function of the two variables t and u=_t,
provided that _t ≠ 0. Thus, on the subset of the tangent
bundle TM where _t ≠ 0 the Lagrangian can be written as

2L ¼ −c2_t2l
�
u
c_t
; t

�
ð59Þ

with some function l. [As a subtlety, we remark that lmay
depend, in addition, explicitly on the sign of _t because in (1)
we required homogeneity only for positive k.] Note that in
the unperturbed spacetime t gives proper time for the
observers at rest (i.e., for observers with u ¼ 0). Without
loss of generality, we require that also in the perturbed
spacetime the time coordinate t measures (Finsler) proper
time for observers at rest. Then the function l has to
satisfy

lð0; tÞ ¼ 1 ð60Þ

for all t.
Clearly, by (59), the function l has to vanish on lightlike

vectors. In the following we will restrict to the case that the
equation l ¼ 0 can be solved for the spatial direction; i.e.,
we require that a function b of t is implicitly defined by the
equation

lðbðtÞ; tÞ ¼ 0: ð61Þ

[Up to here, we followed the same line of argument as
Hohmann and Pfeifer [32] who treat observables in
cosmological Finsler spacetimes in terms of the geodesic
spray; our equations (60) and (61) are analogous to their
equations (12) and (47), respectively. Note, however, that
their definition of a Finsler spacetime is slightly different
from ours.]
We will now discuss properties of lightlike geodesics

and, in particular, the redshift in our Finsler-perturbed
cosmological spacetimes. Owing to spatial homogeneity,
we know all lightlike geodesics in the spacetime if we know
the lightlike geodesics through one particular point in space
which we may choose as the spatial origin of the coordinate
system. Therefore, it suffices to consider radial lightlike
geodesics ( _ϑ ¼ 0 and _φ ¼ 0.) They satisfy

cbðtÞ ¼ u
_t
¼ j_rj

_t
¼ � dr

dt
; ð62Þ

where the sign depends on whether the light signal moves
in the direction of increasing or decreasing r coordinate.
For an emitter and an observer, both at rest (u ¼ 0) at r1 and
r2, respectively, we have

jr2 − r1j ¼ c
Z

t2

t1

bðtÞdt: ð63Þ

Here we consider a light ray that is emitted at time t1 and
observed at time t2. The spacetime geometry determines t2
as a function of t1. As r1 and r2 are kept fixed, differ-
entiation of (63) with respect to t1 yields

0 ¼ bðt2Þ
dt2
dt1

− bðt1Þ: ð64Þ
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Since, by construction, t is proper time for observers at rest,
this gives the redshift

1þ z ¼ ω1

ω2

¼ dt2
dt1

¼ bðt1Þ
bðt2Þ

: ð65Þ

Comparison of this equation with the standard redshift
formula in Robertson-Walker spacetimes, 1þ z ¼
Sðt2Þ=Sðt1Þ, reveals that, as far as the redshift formula is
concerned, the function

ŜðtÞ ≔ 1

bðtÞ ð66Þ

maybeviewed as theFinsler generalizationof the scale factor
SðtÞ. This becomes even more evident if we introduce on the
spacetime the real-valued function

f̂ ≔ lnðŜ∘tÞ: ð67Þ

Here t is to be viewed as the function which assigns to each
point in the spacetime the value of its t coordinate, the ring
denotes composition of maps and ln is the natural logarithm.
Then it is readily verified that f̂ is a redshift potential for the
observers at rest; see (36).
Here it is important to realize that in an unperturbed

Robertson-Walker universe the scale factor SðtÞ does not
only give the redshift but also the growth rate of distances,
as measured with the purely spatial part of the metric,
between two observers at rest. As to the latter property, our
function Ŝ must not be viewed as the Finsler generalization
of the scale factor. This can be seen by considering the
Finslerian arclength s of a segment of an r coordinate
line parametrized by r itself, r1 ≤ r ≤ r2 or r2 ≤ r ≤ r1.
Along such a segment u ¼ j_rj ¼ 1, _ϑ ¼ _φ ¼ 0 and _t ¼ 0.
Therefore, we find this arclength s from (59) by a limit
procedure:

s ¼
����
Z

r2

r1

ffiffiffiffiffiffi
2L

p
dr

���� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
B→∞

jlðB; tÞj
B2

r
jr2 − r1j: ð68Þ

This implies that the function

S̄ðtÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
B→∞

jlðB; tÞj
B2

r
ð69Þ

has to be viewed as the Finsler generalization of the scale
factor as far as the growth rate of distances is concerned.
We summarize these findings in the following way. In

standard general relativity a spatially homogeneous and
isotropic cosmological model is completely determined by
one function of cosmic time, provided that the spatial
curvature parameter k has been fixed. This is the scale
factor SðtÞwhich determines the redshift, the growth rate of
spatial distances and all the other geometric features of the

model. By contrast, in the case of a spatially homogeneous
and isotropic Finsler model the redshift and the growth rate
of spatial distances are given by two different functions,
ŜðtÞ and S̄ðtÞ.
On the basis of this observation it should not come as a

surprise that the relations between the redshift and certain
distance measures in a cosmological Finsler model are
more complicated than in a standard Robertson-Walker
model. In the following we will work out these relations for
the two most important distance measures, the area distance
and the luminosity distance. For this part we will restrict to
a special class of cosmological Finsler spacetimes which
are small perturbations of standard Robertson-Walker
spacetimes. It will then be possible to operate with explicit
expressions, to compare with the unperturbed Robertson-
Walker model and, in doing so, to demonstrate the
applicability of our redshift formula.
In analogy to the procedure in the preceding example, we

consider a perturbed Lagrangian of the form

2L ¼ −c2_t2ð1þ ϕ0ðtÞÞ
þ SðtÞ2ð_r2 þ ΣðrÞ2ð _ϑ2 þ sin2ϑ _φ2ÞÞð1þ ϕ1ðtÞÞ

þ ϕ2ðtÞS2c2_t2ð_r2 þ ΣðrÞ2ð _ϑ2 þ sin2ϑ _φ2ÞÞ
SðtÞ2ð_r2 þ ΣðrÞ2ð _ϑ2 þ sin2ϑ _φ2ÞÞ þ c2_t2

: ð70Þ

In contrast to the example of Sec. IV, where we had
perturbation coefficients depending on r, now we have
perturbation coefficients ϕA that are functions of t. Clearly,
ϕ0 changes the time measurement, ϕ1 changes the length
measurement in all spatial directions, and ϕ2 is a genuine
Finsler perturbation.
It is easy to verify that the Lagrangian (70) is of the form

of (59) with

lðB; tÞ ¼ 1þ ϕ0ðtÞ − SðtÞ2B2ð1þ ϕ1ðtÞÞ

− ϕ2ðtÞ
SðtÞ2B2

SðtÞ2B2 þ 1
; ð71Þ

where B is a place holder for the first argument of the
function l. Our condition (60) implies that

ϕ0ðtÞ≡ 0: ð72Þ

Note that, in addition, we could transform ϕ1ðtÞ to zero by
redefining the scale factor, SðtÞ2 ↦ SðtÞ2ð1þ ϕ1ðtÞÞ. This
is, of course, related to the fact that ϕ1ðtÞ describes a
perturbation within the class of standard Robertson-Walker
models and not a genuine Finsler perturbation. However,
we will not make use of the freedom to transform ϕ1ðtÞ to
zero because we want to compare our cosmological Finsler
spacetime with a prescribed unperturbed Robertson-
Walker model; i.e., we want to consider SðtÞ as a given
function which is fixed.
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As in the preceding section, we linearize all expressions
with respect to the perturbations ϕA. To derive the function
ŜðtÞ which was defined in (66) we insert (71) with (72) into
(61). This gives the quadratic equation

ð1þ ϕ1ÞðS2b2Þ2 þ ðϕ1 þ ϕ2ÞðS2b2Þ − 1 ¼ 0 ð73Þ

for S2b2 (where the argument t of the functions S, b, ϕ1 and
ϕ2 has been omitted). After the above-mentioned lineari-
zation, the solution reads S2b2 ¼ 1 − ϕ1 − ϕ2=2 which
yields

ŜðtÞ ¼ 1

bðtÞ ¼ SðtÞð1þ ϕ̂ðtÞÞ; ϕ̂ ¼ ϕ1

2
þ ϕ2

4
: ð74Þ

Thus, a redshift potential is given by

f̂ ¼ lnðŜ∘tÞ ¼ f þ ϕ̂∘t; ð75Þ

where f ¼ lnðS∘tÞ is a redshift potential for the unper-
turbed spacetime.
To derive the function S̄ðtÞ which was defined in (69) we

divide (71) by B2 and send B to infinity. This results in

S̄ðtÞ ¼ SðtÞ
�
1þ ϕ1ðtÞ

2

�
: ð76Þ

According to (74) and (75), for emitters and observers at
rest a light signal emitted at time t1 and observed at time t2
will show a redshift of

1þ z ¼ Ŝðt2Þ
Ŝðt1Þ

¼ Sðt2Þ
Sðt1Þ

ð1þ ϕ̂ðt2Þ − ϕ̂ðt1ÞÞ: ð77Þ

From (77) we will now derive the relation between the
redshift z, the area distance DA and the luminosity distance
DL. Recall that the area distance DA is defined by the
property that, for a thin pencil of light rays with a vertex at
the observer, the cross-sectional area increases with D2

A. In
our cosmological Finsler spacetime the most convenient
way of calculating the area distance is by placing the
observer in the origin, r2 ¼ 0, and utilizing the isotropy.
Intersecting the past light cone of the observation event
with the hypersurface t ¼ t1 gives a sphere of constant
coordinate radius r ¼ R. From (70) we read that this sphere
has area 4πSðt1Þ2ΣðRÞ2ð1þ ϕ1ðt1ÞÞ. Equating this expres-
sion to 4πD2

A determines the area distance:

DA ¼ Sðt1ÞΣðRÞ
�
1þ ϕ1ðt1Þ

2

�
; ð78Þ

R ¼
Z

t2

t1

ð1 − ϕ̂ðtÞÞcdt
SðtÞ : ð79Þ

Here the expression for R follows from (63) and (74) with
r2 ¼ 0 and r1 ¼ R.
Now we consider the luminosity distance DL. As a

preliminary first step, one usually introduces the so-called
corrected luminosity distance DC, which is defined quite
analogously to DA, but now for a pencil with a vertex at the
emitter. For calculating DC in our cosmological Finsler
spacetime it is most convenient to place the emitter in the
origin of the coordinate system, r1 ¼ 0. In analogy to (78)
we then find

DC ¼ Sðt2ÞΣðRÞ
�
1þ ϕ1ðt2Þ

2

�
; ð80Þ

where R is again given by (79), but this time we have to use
(63) and (74) with r1 ¼ 0 and r2 ¼ R. The (uncorrected)
luminosity distance DL is defined as

DL ¼ ð1þ zÞDC: ð81Þ

WhereasDC is a purely geometrical quantity, describing for
a pencil with a vertex at the emitter how the cross-sectional
area changes, DL carries an additional redshift factor;
thereby, DL is defined such that the radiated energy flux
decreases with D2

L. From (78), (80) and (81) we find that

DL ¼ ð1þ zÞ Sðt2Þ
Sðt1Þ

�
1þ ϕ1ðt2Þ

2
−
ϕ1ðt1Þ

2

�
DA: ð82Þ

With (77), this result can be rewritten as

DL ¼ ð1þ zÞ2
�
1 −

ϕ2ðt2Þ
4

þ ϕ2ðt1Þ
4

�
DA: ð83Þ

In the unperturbed case, (83) reduces to Etherington’s [33]
reciprocity law DL ¼ ð1þ zÞ2DA, which is well known to
hold in any general-relativistic spacetime; for a proof and a
discussion see, e.g., Perlick [34]. Equation (83) shows how
Etherington’s law is modified in our cosmological Finsler
spacetime. Note that ϕ1 does not enter; i.e., only the
genuine Finsler perturbation ϕ2 has an effect.
Finally, we derive the relation between the redshift and

the (area or luminosity) distance in our cosmological
Finsler model. To that end we introduce the distance DT
measured in terms of the travel time of light:

DT ¼ cðt2 − t1Þ: ð84Þ

Taylor expansion of (77) yields

1þ z ¼ Sðt2Þð1þ ϕ̂0ðt2Þ DT
c þOðD2

TÞÞ
Sðt2Þ − S0ðt2Þ DT

c þOðD2
TÞ

¼ 1þ
�
S0ðt2Þ
Sðt2Þ

þ ϕ̂0ðt2Þ
�
DT

c
þOðD2

TÞ ð85Þ
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and thus

DT ¼ cSðt2Þ
S0ðt2Þ

�
1 −

Sðt2Þ
S0ðt2Þ

ϕ̂0ðt2Þ
�
zþOðz2Þ: ð86Þ

In the unperturbed case, (86) reduces of course to the
familiar Lemaître-Hubble law.
For deriving the relation between DA and z we observe

that, by (79),

R ¼ 1 − ϕ̂ðt2Þ
Sðt2Þ

DT þOðD2
TÞ: ð87Þ

From (57) we read that, for any value of k,

ΣðRÞ ¼ 1 − ϕ̂ðt2Þ
Sðt2Þ

DT þOðD2
TÞ: ð88Þ

With Sðt1Þ ¼ Sðt2Þ þOðDTÞ and ϕ1ðt1Þ ¼ ϕ1ðt2Þ þ
OðDTÞ we find from (78), (86) and (88) that

DA ¼
cSðt2Þ
S0ðt2Þ

�
1−

ϕ2ðt2Þ
4

−
Sðt2Þ
S0ðt2Þ

ϕ̂0ðt2Þ
�
zþOðz2Þ: ð89Þ

By (83), we have the same relation between DL and z:

DL ¼
cSðt2Þ
S0ðt2Þ

�
1−

ϕ2ðt2Þ
4

−
Sðt2Þ
S0ðt2Þ

ϕ̂0ðt2Þ
�
zþOðz2Þ; ð90Þ

i.e., the linear Lemaître-Hubble law is modified for DA and
for DL in the same way. In principle, the relation (90) can
be tested with standard candles such as type Ia supernovae.
It was the purpose of this section to illustrate our general

redshift formula with a cosmological example. To that end
we restricted to Finsler spacetimes that are small perturba-
tions of Robertson-Walker spacetimes. For a discussion of
the distance-redshift relation in other cosmological Finsler
models we refer to Hohmann and Pfeifer [32].

VI. CONCLUSIONS

In this paper we have presented a redshift formula that
holds for emitters and receivers on arbitrary worldlines in
an unspecified Finsler spacetime. We have illustrated the
physical relevance of this formula with two examples: a
Finsler-perturbed Schwarzschild spacetime, that may be
used for applying our formula to tests in the gravitational
field of Earth or the Sun, and a Finsler-perturbed
Robertson-Walker spacetime, that may be used for cosmo-
logical redshift tests of Finsler geometry. In both cases we
have restricted to the simplest nontrivial examples because
it was our purpose just to illustrate the general features of
our redshift formula. In view of applications, more sophis-
ticated examples are certainly of interest. In particular,
instead of just considering circular orbits in the

gravitational field of a spherically symmetric and static
body, as we did in Sec. IV, it would certainly desirable to
consider noncircular orbits. This would make it possible to
use the two Galileo satellites that have gone astray for
testing possible Finsler deviations of our spacetime geom-
etry. We are planning to do this in a follow-up article.
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APPENDIX: A GEOMETRIC DERIVATION OF
THE REDSHIFT FORMULA

Our derivation of the general redshift formula (32) was
based on the formal definition of the frequency in terms of
the canonical momentum of the light ray, (27). In this
Appendix we demonstrate that the same formula can be
derived by a more geometrical procedure. The derivation
follows closely Brill’s derivation [35] of the redshift formula
for general-relativistic spacetimes; cf. Straumann [28].
The only assumptions used in the following derivation

are that the spacetime is a (four-dimensional) manifold and
that light rays are the solutions to the Euler-Lagrange
equations (3) with L ¼ 0.
We consider two curves

γ∶ I → M; τ ↦ γðτÞ ðA1Þ

and

γ̃∶ Ĩ → M; τ̃ ↦ γ̃ðτ̃Þ; ðA2Þ

where I and Ĩ are real intervals. We refer to γ as to the
worldline of the emitter and to γ̃ as to the worldline of the
receiver. For our application to Finsler geometry, they
should be timelike curves parametrized by Finsler proper
time; the following mathematical consideration, however,
holds for arbitrarily parametrized curves.
Assume that in the events γðτÞ and γðτ þ ΔτÞ two light

rays are emitted. They will be received in two events γ̃ðτ̃Þ
and γ̃ðτ̃ þ Δτ̃Þ; see Fig. 2. Then we define the frequency
ratio

dτ̃
dτ

¼ lim
Δτ→0

Δτ̃
Δτ

¼ ω1

ω2

¼ 1þ z: ðA3Þ

Here ω1 and ω2 refer to the emitted and received frequency,
respectively, as measured with clocks whose reading is
given by the chosen parametrizations. Mathematically, this
defines the redshift factor z for any parametrizations.
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Wewant to derive a formula for the frequency ratio (A3).
To that end we consider a variation

μ∶½s1; s2� × I → M; ðs; τÞ ↦ μðs; τÞ

such that μðs1; τÞ ¼ γðτÞ, μðs2; τÞ ¼ γ̃ðτ̃ðτÞÞ and μð·; τÞ is a
solution to the Euler-Lagrange equation (3) with L ¼ 0 for
all τ ∈ I; see Fig. 3.
Then, by assumption,

0 ¼ Lðμðs; τÞ; ∂sμðs; τÞÞ ðA4Þ

for all s and τ. Calculating the total derivative with respect
to τ yields

0 ¼ ∂L
∂xρ ðμðs; τÞ; ∂sμðs; τÞÞ∂τμ

ρðs; τÞ

þ ∂L
∂ _xρ ðμðs; τÞ; ∂sμðs; τÞÞ∂τ∂sμ

ρðs; τÞ: ðA5Þ

After commuting the partial derivatives ∂s and ∂τ and using
the product rule we find

0 ¼
�∂L
∂xρ ðμðs; τÞ; ∂sμðs; τÞÞ − ∂s

∂L
∂ _xρ ðμðs; τÞ; ∂sμðs; τÞÞ

�

× ∂τμ
ρðs; τÞ þ ∂s

�∂L
∂ _xρ ðμðs; τÞ; ∂sμðs; τÞÞ∂τμ

ρðs; τÞ
�
:

ðA6Þ

The first term vanishes because we assume that all
curves μð·; τÞ satisfy the Euler-Lagrange equation. So the
term in the square brackets takes the same value at s ¼ s1
and at s ¼ s2. We evaluate this equality for the light ray
xðsÞ ¼ μðs; τ1Þ, where τ1 is a particular value of the
parameter τ, and we write τ̃ðτ1Þ ¼ τ̃2. With

∂τμ
ρðs1; τ1Þ ¼

dγρ

dτ
ðτ1Þ; ∂τμ

ρðs2; τ2Þ ¼
dγ̃ρ

dτ̃
ðτ̃2Þ

1

1þ z
;

ðA7Þ

where (A3) has been used; this results indeed in our redshift
formula (32).

FIG. 3. The variation μ.

FIG. 2. Two light rays connecting an emitter worldline with a
receiver worldline.
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