PHYSICAL REVIEW D 100, 024028 (2019)

Black hole shadow in a general rotating spacetime obtained
through Newman-Janis algorithm

Rajibul Shaikh"
Department of Physics, Indian Institute of Technology, Kanpur 208016, India

® (Received 22 April 2019; published 15 July 2019)

The Newman-Janis (NJ) algorithm has been extensively used in the literature to generate rotating black
hole solutions from nonrotating seed spacetimes. In this work, we show, using various constants of motion,
that the null geodesic equations in an arbitrary stationary and axially symmetric rotating spacetime obtained
through the NJ algorithm can be separated completely, provided that the algorithm is applied successfully
without any inconsistency. Using the separated null geodesic equations, we then obtain an analytic general
formula for obtaining the contour of a shadow cast by a compact object whose gravitational field is given by
the arbitrary rotating spacetime under consideration. As special cases, we apply our general analytic
formula to some known black holes and reproduce the corresponding results for black hole shadow. Finally,
we consider a new example and study shadow using our analytic general formula.
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I. INTRODUCTION

It is generally believed that the central supermassive
compact region of our Galaxy and those of many other
galaxies contain supermassive black holes. Images and
shadows formed due to gravitational lensing of light
provide an observational tool in probing the gravitational
fields around such compact objects and in detecting their
nature. The gravitational field near a black hole event
horizon becomes so strong that its exterior geometry can
possesses unstable circular photon orbits or unstable light
rings (or a photon sphere in the case of a spherically
symmetric, static black hole) which causes photons to
undergo unboundedly large amount of bending (strong
gravitational lensing) [1-5]. A slight perturbation on
photons on such unstable orbits can cause them to be
either absorbed by the black hole or sent off to a faraway
observer. Therefore, the event horizon of a black hole,
together with the unstable light rings, is expected to create a
characteristic shadowlike image (a darker region over a
brighter background) of the photons emitted from nearby
light sources or of the radiation emitted from an accretion
flow around it. Very recently, the event horizon telescope
(EHT) [6-8] has observed this shadow in the image of
M8&7*. However, the observational outcome of the image of
the supermassive compact object Sagittarius A* (Sgr A*)
present at our Galactic center is yet to come.

While the intensity map of an image depends on the
details of the emission mechanisms of photons, the contour
(silhouette) of the shadow is determined only by the
spacetime metric itself, since it corresponds to the apparent
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shape of the photon capture orbits (or the unstable light
rings) as seen by a distant observer. Therefore, strong
lensing images and shadows offer us an exciting oppor-
tunity not only to detect the nature of a compact object but
also to test whether or not the gravitational field around a
compact object is described by the Schwarzschild or Kerr
geometry. In light of this, there have been both analytic and
numerical efforts to investigate shadows cast by different
black holes in the last few decades. The shadow of a
Schwarzschild black hole was studied by Synge [9] and
Luminet [10]. Bardeen studied the shadow cast by a Kerr
black hole [11] (see [12] also). Consequently, the Kerr
black hole shadow and its different aspects such as the
measurement of the mass and spin parameter have been
investigated by several authors [13-25]. The shadows
cast by various other black holes have also been studied
[26-71]. See [72] for a recent brief review on shadows.
Some recent studies, however, suggest that the presence of
a shadow does not by itself prove that a compact object is
necessarily a black hole. Other horizonless compact
objects, which posses light rings around them, can also
cast shadows [73-88].

Unlike the nonrotating ones, rotating black hole sol-
utions are very hard to obtain as exact solutions of the field
equations of various gravity theories. On the other hand, the
Newman-Janis (NJ) algorithm provides an easier and more
useful way to generate a stationary and axisymmetric
rotating black hole spacetime from a static and spherically
symmetric nonrotating seed metric [89,90] (see [91,92]
also). This method has been extensively used in the
literature in recent times. In fact, many of the rotating
black hole solutions cited above have been obtained
through this method. The NJ method, however, has some

© 2019 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.024028&domain=pdf&date_stamp=2019-07-15
https://doi.org/10.1103/PhysRevD.100.024028
https://doi.org/10.1103/PhysRevD.100.024028
https://doi.org/10.1103/PhysRevD.100.024028
https://doi.org/10.1103/PhysRevD.100.024028

RAJIBUL SHAIKH

PHYS. REV. D 100, 024028 (2019)

shortcomings and may not be useful in some cases to
generate the rotating black hole metric. Another useful
method to derive general parametrization of axisymmetric
black holes can be found in [93,94]. In this work, we study
shadow cast by a general rotating black hole generated from
a nonrotating one through the NJ algorithm. A similar work
has been considered in [95] in the case when the initial
nonrotating seed black hole spacetime has a particular
ansatz. However, our work here is not restricted to such an
ansatz and deals with a most general rotating black hole
generated through the NJ algorithm.

This paper is organized as follows. In the next section,
we briefly summarize the NJ algorithm and apply it to
obtain a most general rotating black hole spacetime from a
nonrotating one. In Sec. III, we separate null geodesic
equations in the general rotating black hole spacetime and
obtain a general analytic formula for obtaining the contour
of the shadow which the black hole cast. We apply our
formula to verify some known results in Sec. I'V. In Sec. V,
we generate a new rotating black hole solution using the NJ
algorithm and study its shadow. Finally, we conclude
in Sec. VL

II. ROTATING SPACETIME THROUGH
NEWMAN-JANIS ALGORITHM

In this section, we briefly summarize the NJ algorithm
described in [89,90] for the construction of a stationary and
axisymmetric spacetime from a static and spherically
symmetric one (see [91] also for more details). We start
with the spherically symmetric, static spacetime given by
2 ,  dr 2 1 win2 2
ds* = —f(r)dt +%+h(r)(d6 + sin® 0d¢*). (1)

The first step of the algorithm is to write down the above
metric in the advance null (Eddington-Finkelstein) coor-
dinates (u, r, 6, ) using the transformation,

dr
du = dt ———. 2
u=di= @)

The metric in the advance null coordinates becomes

d52:—f(r)du2—2\/]—;dudr—l-h(r)(dGz+sin29d¢2). (3)

The second step is to express the inverse metric ¢"* using a
null tetrad Z5 = (I#, n*, m*, m*) in the form

g = =IFn¥ = I'n* + m'm* + m'm*, (4)

where m# is the complex conjugate of m*, and the tetrad
vectors satisfy the relations,

LIF=n,n"=m

Ho— Ho—
" " L l,m n

mt =0, (5)

Lt = —m,m" = —1. (6)

One finds that the tetrad vectors satisfying the above
relations are given by

g g
=gy, H= |28 — =5,
n \/; 5
mi— (g (7)
V2R \ 0 sing ?)°

The third step is a complex transformation in the r — u plane
given by

r—r =r+4iacos, u—>u =u—iacosf, (8)
together with the complexification of the metric functions

f(r), g(r) and h(r). After the complex transformation, the
new tetrad vectors become

l/ﬂ — 5[;7 n/ﬂ —

1
2H(r,0)

m =

(z’asina(aﬁ -8)+8, +ﬁ5’;) . (10)

where F(r,0), G(r,0) and H(r,0) are, respectively, the

complexified form of f(r), g(r) and h(r). Using the new
tetrad, we find the new inverse metric using

g;w — _l/ﬂn/y _ l/yn/ﬂ + mlﬂm/y + m/ym/y. (11)

The new metric in the advance null coordinates becomes

F F
ds* = —Fdu® - 2\/gdudr + 2asin’6 <F - \/é) dudg¢

F
+2a \/gsinzédrdqﬁ + Hd®?

+ sin%0 [H + a’sin?0 (2\/2 - F>] dg>. (12)

The final step of the algorithm is to write down the metric in
Boyer-Lindquist form (where the only nonzero off diagonal
term is g,,) using the coordinate transformations,

du = dt' + y(r)dr, dp =d¢’ + y>(r)dr.  (13)

Inserting the above coordinate transformations in the metric
(12) and setting g,, and g, to zero, we obtain
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gE;’Z;H (r,0) + a*sin’0

" G(r.0)H(r,0) + a*sin®0’

x(r) = (14)

a

o) = - onr e T )

Note that the transformation in (13) is possible only when
x1 and y, depend only on r. If the right-hand sides of
Egs. (14) and (15) depend on € also, then we cannot
perform a global coordinate transformation of the form (13)
[92]. Although it is not always possible to find a suitable
complexification of the functions in such a way that y; and
x> are independent of 0, in many cases, it is. However, this
involves a certain arbitrariness and an element of guess.
There are many ways to complexify. Some are

1 1/1 1\ r i
O R LA

where p?> = r?> + a® cos? 6. Finally, once the global coor-
dinate transformation (13) is allowed, the metric in the
Boyer-Lindquist coordinate becomes

F
ds®> = —Fdt* — 2asin’6 <\/g - F> dtde

L H
GH + a?sin%6

+ sinZ6 {H + asin%6 <2\/§ - F)] d¢*,  (17)

where we have dropped the prime sign from # and ¢’. For
later use, we define

dr* + Hd6?

A(r) = G(r,0)H(r,0) + a’*sin0, (18)

X(r) = 4/ ;(: gH(r, 0)+a*sin?0.  (19)

From Egs. (14) and (15), note that A and X must
be independent of € so that the transformation (13) is
allowed.

III. SEPARATION OF NULL GEODESIC
EQUATIONS AND BLACK HOLE SHADOW

In this section, we separate the null geodesic equations in
the general rotating spacetime (17) using the Hamilton-
Jacobi method and obtain a general formula for finding the
contour of a shadow. The Hamilton-Jacobi equation is
given by

oS 1
24 H=0, H=-g,p"p" 20
T 5 9uP"P (20)

where 1 is the affine parameter, S is the Jacobi action, H is
the Hamiltonian, and p* is the momentum defined by

oS dx”
puzw:g;wﬁ' (21)
Since the metric tensor g, and hence the Hamiltonian H is
independent of the coordinates ¢ and ¢, we have two
constants of motion. These are the conserved energy
E = —p, and the conserved angular momentum L = p,
(about the axis of symmetry). If there is a separable solution
of Eq. (20), then, in terms of the already known constants of
the motion, it must take the form,

1
Sziyzl—Et+L¢+S,(r)+Sg(9), (22)
where p is the mass of the test particle. For a photon, we
take g = 0. Putting Eq. (22) in the Hamilton-Jacobi
equation, we obtain after some simplifications,

asy2 (/¢ +asin0)E-aL]’
—(GH +a’*sin®0) [ — ) + %
dr (GH + a*sin*0)

dSy\?
—(L—aE)*= <d—;) + L2cot? — a® E?cos?d. (23)

Note that, since the quantities (GH + a? sin® 0)[=A(r)]
and (\/éH + a*sin? 0)[= X(r)] are functions of r only

[see Egs. (18) and (19)], the left- and right-hand side of
Eq. (23) are only functions of r and 6, respectively.
Therefore, each side must be equal to a separation constant.
After separation, we obtain

— (GH +a’sin*0) <d5’>2+ [(\/§H+025in29>E—aL}2

dr (GH + a*sin*0)
—(L—aE) =K, (24)
2
(%) + L%*cot? 0 — a’E%cos? 9 = K, (25)

where the separation constant I is known as the Carter
constant. Using Eq. (21), we obtain the following separated
geodesic equations for the photon:

F . . dt F F
EA(r)%: [H—l—azsinze(Z\/;—F)] E—a< G—F)L,

(26)

F d F
5A(r) sinzﬁd—f: a sin? 9<\/2—F>E+FL, (27)
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dr
dao

R(r) = [X(r)E —aL]* = A(r)[K + (L — aE)?], (30)
0(0) = K + a?E* cos?> @ — L? cot* 0, (31)
and A(r) and X(r) are defined, respectively, in Egs. (18)

and (19). Note that R(r) and ©(0) must be non-negative;
1.e., we must have

% = [X(r) —ag = A(n)ln+ (£~ a)’] 20, (32)
%—n—f—(é—a)z—(ﬁ—asinG)zZO (33)

for the photon motion, where ¢ = L/E and n = K/E?.

The unstable circular photon orbits in the general
rotating spacetime must satisfy R(r,;,) =0, R'(r,,) =0
and R” >0, where r = r,, is the radius of the unstable
photon orbit. The first two conditions give

[X(rpn) = all? = A(rpp)ln + (= a)?] = 0. (34)
2X!(rpn) X (rp) — a] = A'(rpp)n+ (= a)’] = 0. (35)

After eliminating # from the last two equations and solving
for £, we obtain

§:X(rph> or Zj:X(rph)A/(rph) _ZA(rph)X/(rph>'

a aA’(rph)

(36)

Out of these two solutions for £, only one is valid for the
purpose of describing a black hole shadow. If we take
the first solution £ = X/a, then from Eq. (34), we find that
the corresponding solution for # is given by

n+(E-a) =0, (37)

which is compatible with the requirement ®(6) > 0 [see
Eq. (33)] only for

6 =0,, =aconstant, and &= asin’d,,. (38)
when ©(6) = 0 for § = 6,,,. This case is similar to the one
of the cases of the Kerr black hole [12]. This set of solutions

for £ and 7 represents principal null-geodesics and can not
describe a black hole shadow. Therefore, to describe a black

hole shadow, we consider the second solution of £ given in
Eq. (36). Using this second solution, we solve for # from
Eq. (35). We obtain

X

AL —2A X
h=ph h“* ph
e e Ll (39)
ph
2yr2 2 2
y= 4a X/phAPh — [(Xph —d )A/ph _2X/phAph] 7 (40)

2 A2
a Aph

where the subscript “ph” indicates that the quantities are
evaluated at r = r,,. Equations (39) and (40) give the
general expressions for the critical impact parameters & and
n of the unstable photon orbits which describe the contour
of a shadow.

A particular case of the above study with

h(ry=7r> (41)

has been considered in [95]. In this case, using (16), the
metric functions can be complexified to obtain [92]

2m(r)r

P

F=G=1-

H=p?  p*=r>+d’cost.

(42)
Therefore, A(r) and X(r) become

A(r) =r* =2m(r)r + a?, X(r)=r*+a* (43)
which are functions of r only. Using Eqgs. (42) and (43),
it is straightforward to show that the geodesic equa-
tions (26)—(29) as well as the expressions for & and 7
given in Egs. (39) and (40) exactly match with those
obtained in [95]. However, in our most general case here,
we do not restrict the metric functions to be of the form
given in Eq. (41).

The unstable photon orbits form the boundary of a
shadow. The apparent shape of a shadow are obtained by
using the celestial coordinates a and f which lie in the
celestial plane perpendicular to the line joining the observer
and the center of the spacetime geometry. The coordinates
a and p are defined by [96]

d
a= lim <—r3 sin :90—¢ ) (44)
fomee "1 (r0.00)
deo
p = lim <r2— >, (45)
oo\ dr (r0.60)

where (rg, 0,) are the position coordinates of the observer.
We consider that the general metric is asymptotically flat.
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Therefore, F~1,G~1, H~r* A ~r*and X ~ r? in the
limit r — oco. After taking the limit, we obtain

¢
S 46
= T sing, (46)
= j:\/n + a® cos? By — & cot 6. (47)

The shadows are constructed by using the unstable photon
orbit radius r,, as a parameter and then plotting parametric
plots of a and f using Egs. (39), (40), (46) and (47).

IV. SOME KNOWN EXAMPLES

A. Kerr, Kerr-Newman, and tidally charged
rotating braneworld black hole

The Kerr [89,97], the Kerr-Newman [90] and the tidally
charged rotating braneworld black hole [98] are, respec-
tively, rotating solutions of Einstein-vacuum equations,
Einstein-Maxwell equations and the effective field equa-
tions of the Randall-Sundrum braneworld in vacuum.
Through the NJ algorithm, these black hole solutions
can be obtained from the nonrotating metric given by

f =g =1-=24 50 k() =r (48)

-
where g = 0 represents Schwarzschild black hole, ¢ = Q?
represents electrically charged Reissner-Nordstrom black
hole with Q being the electric charge, and ¢ = —Q?
represents tidally charged braneworld black hole with Q.
being the tidal charge. Using (16), the metric functions in
this case can be complexified as [89,90]

2Mr g

F=G=1 e +;, H=p>  p*=r*+d*cos?6.

(49)

Using these complexified functions in Eqgs. (18) and (19),
we obtain

A(r) =r*=2Mr +a* +q, X(r)=r*+d>. (50
The black hole horizons are given by A =0. When
(M? — a*> — q) > 0, we have Kerr black hole for ¢ =0,
Kerr-Newman black hole for ¢ = Q? and tidally charged
braneworld black hole for ¢ = —Q2. The shadows cast by
these black holes have already been studied [11,32-34,50].

Using the above expression for A(r) and X(r) in Egs. (39)
and (40), we obtain

:2rph(2Mrph _q) - (rph +M)(r57h +a2)
a(rph_M) '

(51)

B 4a2r§h(Mr,,h —-q)— rf,h[rph(rph -3M)+2¢q)?
az(rph _M)z

n . (52)

which are the same as those of the Kerr (¢ = 0), Kerr-
Newman (g = Q?) and tidally charged braneworld black
hole (¢ = —Q?) obtained, respectively, in [11,33,50]. Note
that the authors in [50] have taken ¢ = Q with Q < 0 for
the tidally charged braneworld black hole.

B. Kerr-Sen black hole

The Kerr-Sen black hole is a rotating charged black hole
solution obtained in heterotic string theory [99]. In [100],
the author has shown that, using the NJ algorithm, the Kerr-
Sen black hole solution can be obtained from the spheri-
cally symmetric, static metric given by

s =o)=irh W =r(142). @

where r; and r, are related to the mass M and the electric
charge Q by r; +r, = 2M and r, = Q*/M. Note however
that M and Q in [99] are related to the two parameters m and «
by M = (m/2)(1 +cosha) and Q = (m/+/2)sinha. In
this case, using (16), the metric functions can be complexi-
fied as [100]

rr

F=G s

ryr
= I +ﬂ’
P

H=p? <1 + p > p? =r>+a*cos’0.

(54)
Therefore, A(r) and X(r) in this case become
A(r) = rr—rr+ad,

X(r)=r*+ryr+a*  (55)

The shadows for this black hole have been studied in [39].
Using the last equation in Egs. (39) and (40), we obtain

_(n+ r2><r§h —a*) = (2rp + r2)<r§h — rirpy + a?)

¢

ar,, —ry) ’
(56)
r2h
n= mﬂaz(rl + 1) (27 + 12)
—[@rpn+ 1) (rpp = r1) = (r1 4+ r2)rp*}. (57)

We find that the above expressions for the critical impact
parameters £ and # are the same as those obtained in Eq. (27)
of [39], after we replace r, = ry and r; = 2M — ry in the
above expressions for & and #.
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V. A NEW EXAMPLE: ROTATING DILATON
BLACK HOLE AND ITS SHADOW

We now consider a new example to bring out the
usefulness of our general analytic formula for obtaining
a shadow. We consider the nonrotating charged dilaton
black hole given by [101,102]

)=o) == = (1-9),

2

.

1-%
:

Y
ri:A4iNﬂW+¢§—Q%—Qﬁ, ==L (59)
2M
and apply the NJ algorithm to obtain the corresponding

rotating charged dilaton black hole. Here, M is the mass,

and Qp, Q) and r are, respectively, related to the electric,
the magnetic and the dilaton charge. To complexify the
function, we first write f(r) and g(r) as

f(r)=g(r) = ——F%", (60)

where we have replaced (r_ + r,) = 2M and have defined
g=r_r. = (Q%+ Q3 —r}). Using (16), we now com-
plexify the functions in the following way:

—2Mr 4 4

F=G=(1”72;L”2), H:pz(l—r—§>,
1—% p

p* = r* + a*cos0. (61)

Using above equations, we find that the expressions for
A(r) and X(r) become

4}

a/M

a/M

FIG. 1.

a/lM
© Qr/M = 0.3, Qu/M =0.2

Shadows cast by a rotating charged dilaton black hole for different parameter values [(a)—(c)]. The dashed contours are for a

Kerr black hole with the spin values shown in the corresponding plot. The inclination angle of the observer is 8, = /2.
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A(r)=r*=2Mr+a*+q, X(r)=r-ri+ad>. (62)

Therefore, the critical impact parameters of the null geo-
desics in this case become

_ 2r,,(2Mr ), —q) — r%(r,,h —M)—(rp, +M)(rih +ad?)

a(rph_M) '
(63)
1
n= aZ(rph —M)2 {4a2r§h(Mrph - CI) _4a2rérph(rph _M)
_[r§h<rph_3M)+2qrph+r(%(”ph_M)]2}' (64)

Note that when Qr = Qy, i.e., ry = 0, the dilaton charge
vanishes, and the above results match with those of the
Kerr-Newman black hole obtained in the previous section.
To the best of our knowledge, construction of the above
rotating metric using the NJ algorithm and its shadows have
not been considered before. Figure 1 shows the shadows
cast by the above rotating dilaton black hole for different
values of the parameters.

VI. CONCLUSIONS

After the very recent observation of the very first image
of the black hole M87* [6-8], a black hole shadow will
continue to be an important probe of spacetime structure
and gravity in the strong curvature regime. In this work, we
have studied the shadow cast by an arbitrary stationary,
axially symmetric and asymptotically flat rotating black
hole spacetime generated through the NJ algorithm. To this
end, we have completely separated the null geodesic
equations using different constants of motion and obtained
an analytic general formula which can be used to find the
contour of the shadow cast by a rotating black hole. To
demonstrate the usefulness of our general analytic formula,
we have applied it to some known examples and repro-
duced the corresponding results. Finally, we have consid-
ered a new example and studied its shadows. Our analytic
formula will be useful to obtain more new results for black
hole shadows. Though we have applied our analytic
formula to study shadows cast by rotating black holes, it
can also be used to study shadows cast by other compact
objects.

[1] K. S. Virbhadra and G.F.R. Ellis, Schwarzschild black
hole lensing, Phys. Rev. D 62, 084003 (2000).

[2] V. Bozza, S. Capozziello, G. lovane, and G. Scarptta,
Strong field limit of black hole gravitational lensing, Gen.
Relativ. Gravit. 33, 1535 (2001).

[3] V. Bozza, Gravitational lensing in the strong field limit,
Phys. Rev. D 66, 103001 (2002).

[4] V. Bozza, Gravitational lensing by black holes, Gen.
Relativ. Gravit. 42, 2269 (2010).

[5] R. Shaikh, P. Banerjee, S. Paul, and T. Sarkar, An
analytical approach to strong gravitational lensing from
ultra-compact objects, Phys. Rev. D 99, 104040 (2019).

[6] The Event Horizon Telescope Collaboration, First M87
event horizon telescope results. I. The shadow of the
supermassive black hole, Astrophys. J. Lett. 875, L1
(2019).

[7] The Event Horizon Telescope Collaboration, First M87
event horizon telescope results. V. Physical origin of the
asymmetric ring, Astrophys. J. Lett. 875, L5 (2019).

[8] The Event Horizon Telescope Collaboration, First M87
event horizon telescope results. VI. The shadow and mass
of the central black hole, Astrophys. J. Lett. 875, L6
(2019).

[9] J.L. Synge, The escape of photons from gravitationally
intense stars, Mon. Not. R. Astron. Soc. 131, 463 (1966).

[10] J.-P. Luminet, Image of a spherical black hole with thin
accretion disk, Astron. Astrophys. 75, 228 (1979).

[11] J. M. Bardeen, in Black Holes (Les Astres Occlus), edited
by C. Dewitt and B.S. Dewitt (Gordon and Breach,
New York, 1973), pp. 215-239.

[12] S. Chandrasekhar, The Mathematical Theory of Black
Holes (Oxford University Press, New York, 1998).

[13] H. Falcke, F. Melia, and E. Agol, Viewing the shadow of
the black hole at the galactic center, Astrophys. J. 528, L13
(2000).

[14] R. Takahashi, Shapes and positions of black hole shadows
in accretion disks and spin parameters of black holes,
Astrophys. J. 611, 996 (2004).

[15] A.F. Zakharov, A. A. Nucita, F. De Paolis, and G. Ingrosso,
Measuring the black hole parameters in the galactic center
with RADIOASTRON, New Astron. 10, 479 (2005).

[16] K. Beckwith and C. Done, Extreme gravitational lensing
near rotating black holes, Mon. Not. R. Astron. Soc. 359,
1217 (2005).

[17] A.E. Broderick and A. Loeb, Frequency-dependent shift in
the image centroid of the black hole at the galactic center as
a test of general relativity, Astrophys. J. 636, L.109 (2006).

[18] R. Takahashi and K. Y. Watarai, Eclipsing light curves for
accretion flows around a rotating black hole and atmos-
pheric effects of the companion star, Mon. Not. R. Astron.
Soc. 374, 1515 (2007).

[19] K. Hioki and K.-I. Maeda, Measurement of the Kerr spin
parameter by observation of a compact object’s shadow,
Phys. Rev. D 80, 024042 (2009).

[20] T. Johannsen and D. Psaltis, Testing the no-hair theorem
with observations in the electromagnetic spectrum. II.
black hole images, Astrophys. J. 718, 446 (2010).

[21] F. De Paolis, G. Ingrosso, A. A. Nucita, A. Qadir, and A. F.
Zakharov, Estimating the parameters of the Sgr A* black
hole, Gen. Relativ. Gravit. 43, 977 (2011).

024028-7


https://doi.org/10.1103/PhysRevD.62.084003
https://doi.org/10.1023/A:1012292927358
https://doi.org/10.1023/A:1012292927358
https://doi.org/10.1103/PhysRevD.66.103001
https://doi.org/10.1007/s10714-010-0988-2
https://doi.org/10.1007/s10714-010-0988-2
https://doi.org/10.1103/PhysRevD.99.104040
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1093/mnras/131.3.463
https://doi.org/10.1086/312423
https://doi.org/10.1086/312423
https://doi.org/10.1086/422403
https://doi.org/10.1016/j.newast.2005.02.007
https://doi.org/10.1111/j.1365-2966.2005.08980.x
https://doi.org/10.1111/j.1365-2966.2005.08980.x
https://doi.org/10.1086/500008
https://doi.org/10.1111/j.1365-2966.2006.11262.x
https://doi.org/10.1111/j.1365-2966.2006.11262.x
https://doi.org/10.1103/PhysRevD.80.024042
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1007/s10714-010-1122-1

RAJIBUL SHAIKH

PHYS. REV. D 100, 024028 (2019)

[22] G. V. Kraniotis, Precise analytic treatment of Kerr and
Kerr-(anti) de Sitter black holes as gravitational lenses,
Classical Quantum Gravity 28, 085021 (2011).

[23] Z. Stuchlik, D. Charbulak, and J. Schee, Light escape
cones in local reference frames of Kerr-de Sitter black hole
spacetimes and related black hole shadows, Eur. Phys. J. C
78, 180 (2018).

[24] R. Kumar and S.G. Ghosh, Black hole parameters
estimation from its shadow, arXiv:1811.01260.

[25] S. W. Wei, Y.C. Zou, Y. X. Liu, and R. B. Mann, Curvature
radius and Kerr black hole shadow, arXiv:1904.07710.

[26] A.F. Zakharov, F. De Paolis, G. Ingrosso, and A.A.
Nucita, Direct measurements of black hole charge with
future astrometrical missions, Astron. Astrophys. 442, 795
(2005).

[27] A.F. Zakharov, Constraints on a charge in the Reissner-
Nordstrom metric for the black hole at the Galactic Center,
Phys. Rev. D 90, 062007 (2014).

[28] Z. Stuchlik and J. Schee, Shadow of the regular Bardeen
black holes and comparison of the motion of photons and
neutrinos, Eur. Phys. J. C 79, 44 (2019).

[29] A. Yumoto, D. Nitta, T. Chiba, and N. Sugiyama, Shadows
of multi-black holes: Analytic exploration, Phys. Rev. D
86, 103001 (2012).

[30] J. O. Shipley and S. R. Dolan, Binary black hole shadows,
chaotic scattering and the Cantor set, Classical Quantum
Gravity 33, 175001 (2016).

[31] H. Gott, D. Ayzenberg, N. Yunes, and A. Lohfink,
Observing the shadows of stellar-mass black holes with
binary companions, Classical Quantum Gravity 36,
055007 (2019).

[32] P.J. Young, Capture of particles from plunge orbits by a
black hole, Phys. Rev. D 14, 3281 (1976).

[33] A.de Vries, The apparent shape of a rotating charged black
hole, closed photon orbits and the bifurcation set Ay,
Classical Quantum Gravity 17, 123 (2000).

[34] R. Takahashi, Black hole shadows of charged spinning
black holes, Publ. Astron. Soc. Jpn. 57, 273 (2005).

[35] G. V. Kraniotis, Gravitational lensing and frame dragging
of light in the Kerr-Newman and the Kerr-Newman-(anti)
de Sitter black hole spacetimes, Gen. Relativ. Gravit. 46,
1818 (2014).

[36] J. W. Moffat, Modified gravity black holes and their
observable shadows, Eur. Phys. J. C 75, 130 (2015).

[37] A. Held, R. Gold, and A. Eichhorn, Asymptotic safety
casts its shadow, arXiv:1904.07133.

[38] P. V.P. Cunha, C.A.R. Herdeiro, E. Radu, and H.F.
Runarsson, Shadows of Kerr Black Holes with Scalar
Hair, Phys. Rev. Lett. 115, 211102 (2015).

[39] K. Hioki and U. Miyamoto, Hidden symmetries, null
geodesics, and photon capture in the Sen black hole, Phys.
Rev. D 78, 044007 (2008).

[40] S. Dastan, R. Saffari, and S. Soroushfar, Shadow of a Kerr-
Sen dilaton-axion black hole, arXiv:1610.09477.

[41] S. Abdolrahimi, R. B. Mann, and C. Tzounis, Distorted
local shadows, Phys. Rev. D 91, 084052 (2015).

[42] Z. Li and C. Bambi, Measuring the Kerr spin parameter
of regular black holes from their shadow, J. Cosmol.
Astropart. Phys. 01 (2014) 041.

[43] A. Abdujabbarov, M. Amir, B. Ahmedov, and S. G. Ghosh,
Shadow of rotating regular black holes, Phys. Rev. D 93,
104004 (2016).

[44] M. Amir and S. G. Ghosh, Shapes of rotating nonsingular
black hole shadows, Phys. Rev. D 94, 024054 (2016).

[45] M. Sharif and S. Iftikhar, Shadow of a charged rotating
non-commutative black hole, Eur. Phys. J. C 76, 630
(2016).

[46] A.Saha, M. Modumudi, and S. Gangopadhyay, Shadow of
a noncommutative geometry inspired Ayon Beato Garcia
black hole, Gen. Relativ. Gravit. 50, 103 (2018).

[47] S.W. Wei and Y.X. Liu, Observing the shadow of
Einstein-Maxwell-Dilaton-Axion black hole, J. Cosmol.
Astropart. Phys. 11 (2013) 063.

[48] A. Abdujabbarov, F. Atamurotov, Y. Kucukakca, B.
Ahmedov, and U. Camci, Shadow of Kerr-Taub-NUT
black hole, Astrophys. Space Sci. 344, 429 (2013).

[49] A. Grenzebach, V. Perlick, and C. Lammerzahl, Photon
regions and shadows of Kerr-Newman-NUT black holes with
a cosmological constant, Phys. Rev. D 89, 124004 (2014).

[50] L. Amarilla and E. F. Eiroa, Shadow of a rotating brane-
world black hole, Phys. Rev. D 85, 064019 (2012).

[51] E.F. Eiroa and C.M. Sendra, Shadow cast by rotating
braneworld black holes with a cosmological constant, Eur.
Phys. J. C 78, 91 (2018).

[52] L. Amarilla and E.F. Eiroa, Shadow of a Kaluza-Klein
rotating dilaton black hole, Phys. Rev. D 87, 044057
(2013).

[53] P. V.P. Cunha, C. A.R. Herdeiro, B. Kleihaus, J. Kunz,
and E. Radu, Shadows of Einstein-dilaton-Gauss-Bonnet
black holes, Phys. Lett. B 768, 373 (2017).

[54] F. Atamurotov, A. Abdujabbarov, and B. Ahmedov,
Shadow of rotating Horava-Lifshitz black hole, Astrophys.
Space Sci. 348, 179 (2013).

[55] F. Atamurotov, A. Abdujabbarov, and B. Ahmedov,
Shadow of rotating non-Kerr black hole, Phys. Rev. D
88, 064004 (2013).

[56] M. Wang, S. Chen, and J. Jing, Shadow casted by a
Konoplya-Zhidenko rotating non-Kerr black hole, J.
Cosmol. Astropart. Phys. 10 (2017) 051.

[57] H. M. Wang, Y. M. Xu, and S. W. Wei, Shadows of Kerr-
like black holes in a modified gravity theory, J. Cosmol.
Astropart. Phys. 03 (2019) 046.

[58] A. Ovgun, I. Sakalli, and J. Saavedra, Shadow cast and
deflection angle of Kerr-Newman-Kasuya spacetime, J.
Cosmol. Astropart. Phys. 10 (2018) 041.

[59] X. Hou, Z. Xu, and J. Wang, Rotating black hole shadow in
perfect fluid dark matter, J. Cosmol. Astropart. Phys. 12
(2018) 040.

[60] S. Haroon, M. Jamil, K. Jusufi, K. Lin, and R. B. Mann,
Shadow and deflection angle of rotating black holes in
perfect fluid dark matter with a cosmological constant,
Phys. Rev. D 99, 044015 (2019).

[61] S. Haroon, K. Jusufi, and M. Jamil, Shadow images of a
rotating dyonic black hole with a global monopole
surrounded by perfect fluid, arXiv:1904.00711.

[62] V. Perlick, O.Y. Tsupko, and G.S. Bisnovatyi-Kogan,
Black hole shadow in an expanding universe with a
cosmological constant, Phys. Rev. D 97, 104062 (2018).

024028-8


https://doi.org/10.1088/0264-9381/28/8/085021
https://doi.org/10.1140/epjc/s10052-018-5578-6
https://doi.org/10.1140/epjc/s10052-018-5578-6
http://arXiv.org/abs/1811.01260
http://arXiv.org/abs/1904.07710
https://doi.org/10.1051/0004-6361:20053432
https://doi.org/10.1051/0004-6361:20053432
https://doi.org/10.1103/PhysRevD.90.062007
https://doi.org/10.1140/epjc/s10052-019-6543-8
https://doi.org/10.1103/PhysRevD.86.103001
https://doi.org/10.1103/PhysRevD.86.103001
https://doi.org/10.1088/0264-9381/33/17/175001
https://doi.org/10.1088/0264-9381/33/17/175001
https://doi.org/10.1088/1361-6382/ab01b0
https://doi.org/10.1088/1361-6382/ab01b0
https://doi.org/10.1103/PhysRevD.14.3281
https://doi.org/10.1088/0264-9381/17/1/309
https://doi.org/10.1093/pasj/57.2.273
https://doi.org/10.1007/s10714-014-1818-8
https://doi.org/10.1007/s10714-014-1818-8
https://doi.org/10.1140/epjc/s10052-015-3352-6
http://arXiv.org/abs/1904.07133
https://doi.org/10.1103/PhysRevLett.115.211102
https://doi.org/10.1103/PhysRevD.78.044007
https://doi.org/10.1103/PhysRevD.78.044007
http://arXiv.org/abs/1610.09477
https://doi.org/10.1103/PhysRevD.91.084052
https://doi.org/10.1088/1475-7516/2014/01/041
https://doi.org/10.1088/1475-7516/2014/01/041
https://doi.org/10.1103/PhysRevD.93.104004
https://doi.org/10.1103/PhysRevD.93.104004
https://doi.org/10.1103/PhysRevD.94.024054
https://doi.org/10.1140/epjc/s10052-016-4472-3
https://doi.org/10.1140/epjc/s10052-016-4472-3
https://doi.org/10.1007/s10714-018-2423-z
https://doi.org/10.1088/1475-7516/2013/11/063
https://doi.org/10.1088/1475-7516/2013/11/063
https://doi.org/10.1007/s10509-012-1337-6
https://doi.org/10.1103/PhysRevD.89.124004
https://doi.org/10.1103/PhysRevD.85.064019
https://doi.org/10.1140/epjc/s10052-018-5586-6
https://doi.org/10.1140/epjc/s10052-018-5586-6
https://doi.org/10.1103/PhysRevD.87.044057
https://doi.org/10.1103/PhysRevD.87.044057
https://doi.org/10.1016/j.physletb.2017.03.020
https://doi.org/10.1007/s10509-013-1548-5
https://doi.org/10.1007/s10509-013-1548-5
https://doi.org/10.1103/PhysRevD.88.064004
https://doi.org/10.1103/PhysRevD.88.064004
https://doi.org/10.1088/1475-7516/2017/10/051
https://doi.org/10.1088/1475-7516/2017/10/051
https://doi.org/10.1088/1475-7516/2019/03/046
https://doi.org/10.1088/1475-7516/2019/03/046
https://doi.org/10.1088/1475-7516/2018/10/041
https://doi.org/10.1088/1475-7516/2018/10/041
https://doi.org/10.1088/1475-7516/2018/12/040
https://doi.org/10.1088/1475-7516/2018/12/040
https://doi.org/10.1103/PhysRevD.99.044015
http://arXiv.org/abs/1904.00711
https://doi.org/10.1103/PhysRevD.97.104062

BLACK HOLE SHADOW IN A GENERAL ROTATING SPACETIME ...

PHYS. REV. D 100, 024028 (2019)

[63] A.K. Mishra, S. Chakraborty, and S. Sarkar, Understand-
ing photon sphere and black hole shadow in dynamically
evolving spacetimes, Phys. Rev. D 99, 104080 (2019).

[64] U. Papnoi, F. Atamurotov, S. G. Ghosh, and B. Ahmedov,
Shadow of five-dimensional rotating Myers-Perry black
hole, Phys. Rev. D 90, 024073 (2014).

[65] M. Amir, B.P. Singh, and S.G. Ghosh, Shadows of
rotating five-dimensional charged EMCS black holes,
Eur. Phys. J. C 78, 399 (2018).

[66] A.A. Abdujabbarov, F. Atamurotov, N. Dadhich, B.J.
Ahmedov, and Z. Stuchlik, Energetics and optical proper-
ties of 6-dimensional rotating black hole in pure Gauss-
Bonnet gravity, Eur. Phys. J. C 75, 399 (2015).

[67] F. Atamurotov, B. Ahmedov, and A. Abdujabbarov,
Optical properties of black holes in the presence of a
plasma: The shadow, Phys. Rev. D 92, 084005 (2015).

[68] A. Abdujabbarov, B. Toshmatov, Z. Stuchlik, and B.
Ahmedov, Shadow of the rotating black hole with quintes-
sential energy in the presence of plasma, Int. J. Mod. Phys.
D 26, 1750051 (2017).

[69] A.A. Abdujabbarov, L. Rezzolla, and B.J. Ahmedov,
A coordinate-independent characterization of a black
hole shadow, Mon. Not. R. Astron. Soc. 454, 2423
(2015).

[70] Z. Younsi, A. Zhidenko, L. Rezzolla, R. Konoplya, and Y.
Mizuno, New method for shadow calculations: Applica-
tion to parametrized axisymmetric black holes, Phys. Rev.
D 94, 084025 (2016).

[71] A. Held, R. Gold, and A. Eichhorn, Asymptotic safety
casts its shadow, arXiv:1904.07133.

[72] P. V. P. Cunha and C. A. R. Herdeiro, Shadows and strong
gravitational lensing: A brief review, Gen. Relativ. Gravit.
50, 42 (2018).

[73] P. V.P. Cunha, C. A.R. Herdeiro, and M.J. Rodriguez,
Does the black hole shadow probe the event horizon
geometry?, Phys. Rev. D 97, 084020 (2018).

[74] A.E. Broderick and R. Narayan, On the nature of the
compact dark mass at the galactic center, Astrophys. J.
638, L21 (2006).

[75] C. Bambi and K. Freese, Apparent shape of super-spinning
black holes, Phys. Rev. D 79, 043002 (2009).

[76] R. Shaikh, P. Kocherlakota, R. Narayan, and P.S. Joshi,
Shadows of spherically symmetric black holes and naked
singularities, Mon. Not. R. Astron. Soc. 482, 52 (2019).

[77] C. Bambi, Can the supermassive objects at the centers of
galaxies be traversable wormholes? The first test of strong
gravity for mm/sub-mm very long baseline interferometry
facilities, Phys. Rev. D 87, 107501 (2013).

[78] T. Ohgami and N. Sakai, Wormhole shadows, Phys. Rev. D
91, 124020 (2015).

[79] M. Azreg-Ainou, Confined-exotic-matter wormholes with
no gluing effect-Imaging supermassive wormholes and
black holes, J. Cosmol. Astropart. Phys. 07 (2015) 037.

[80] T. Ohgami and N. Sakai, Wormhole shadows in rotating
dust, Phys. Rev. D 94, 064071 (2016).

[81] R. Shaikh, P. Banerjee, S. Paul, and T. Sarkar, A novel
gravitational lensing feature by wormholes, Phys. Lett. B
789, 270 (2019).

[82] P. G. Nedkova, V. Tinchev, and S. S. Yazadjiev, Shadow of
a rotating traversable wormhole, Phys. Rev. D 88, 124019
(2013).

[83] A. Abdujabbarov, B. Juraev, B. Ahmedov, and Z. Stuchlik,
Shadow of rotating wormhole in plasma environment,
Astrophys. Space Sci. 361, 226 (2016).

[84] R. Shaikh, Shadows of rotating wormholes, Phys. Rev. D
98, 024044 (2018).

[85] G. Gyulchev, P. Nedkova, V. Tinchev, and S. Yazadjiev, On
the shadow of rotating traversable wormholes, Eur. Phys.
J. C 78, 544 (2018).

[86] M. Amir, K. Jusufi, A. Banerjee, and S. Hansraj, Shadow
images of Kerr-like wormholes, arXiv:1806.07782.

[87] E. H. Vincent, Z. Meliani, P. Grandclement, E. Gourgoulhon,
and O. Straub, Imaging a boson star at the Galactic center,
Classical Quantum Gravity 33, 105015 (2016).

[88] A.B. Abdikamalov, A. A. Abdujabbarov, D. Malafarina,
C. Bambi, and B. Ahmedov, A black hole mimicker hiding
in the shadow: Optical properties of the y metric,
arXiv:1904.06207.

[89] E. T. Newman and A. 1. Janis, Note on the Kerr spinning-
particle metric, J. Math. Phys. (N.Y.) 6, 915 (1965).

[90] E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A.
Prakash, and R. Torrence, Metric of a rotating, charged
Mass, J. Math. Phys. (N.Y.) 6, 918 (1965).

[91] S.P. Drake and P. Szekeres, Uniqueness of the Newman-
Janis algorithm in generating the Kerr-Newman metric,
Gen. Relativ. Gravit. 32, 445 (2000).

[92] C. Bambi and L. Modesto, Rotating regular black holes,
Phys. Lett. B 721, 329 (2013).

[93] L. Rezzolla and A. Zhidenko, New parametrization for
spherically symmetric black holes in metric theories of
gravity, Phys. Rev. D 90, 084009 (2014).

[94] R. Konoplya, L. Rezzolla, and A. Zhidenko, General
parametrization of axisymmetric black holesin metric
theories of gravity, Phys. Rev. D 93, 064015 (2016).

[95] N. Tsukamoto, Black hole shadow in an asymptotically-
flat, stationary, and axisymmetric spacetime: The Kerr-
Newman and rotating regular black holes, Phys. Rev. D 97,
064021 (2018).

[96] S.E. Vazquez and E. P. Esteban, Strong-field gravitational
lensing by a Kerr black hole, Nuovo Cimento B 119, 489
(2004).

[97] R. P. Kerr, Gravitational Field of a Spinning Mass as an
Example of Algebraically Special Metrics, Phys. Rev. Lett.
11, 237 (1963).

[98] A.N. Aliev and A.E. Gumrukcuoglu, Charged rotating
black holes on a 3-brane, Phys. Rev. D 71, 104027 (2005).

[99] A. Sen, Rotating Charged Black Hole Solution in Heterotic
String Theory, Phys. Rev. Lett. 69, 1006 (1992).

[100] S. Yazadjiev, Newman-Janis method and rotating dilaton
axion black hole, Gen. Relativ. Gravit. 32, 2345 (2000).

[101] G. Gibbons and K. Maeda, Black holes and membranes in
higher-dimensional theories with dilaton fields, Nucl.
Phys. B298, 741 (1988).

[102] R. Kallosh, A. Linde, T. Ortin, A. Peet, and A. Van
Proeyen, Supersymmetry as a cosmic censor, Phys. Rev. D
46, 5278 (1992).

024028-9


https://doi.org/10.1103/PhysRevD.99.104080
https://doi.org/10.1103/PhysRevD.90.024073
https://doi.org/10.1140/epjc/s10052-018-5872-3
https://doi.org/10.1140/epjc/s10052-015-3604-5
https://doi.org/10.1103/PhysRevD.92.084005
https://doi.org/10.1142/S0218271817500511
https://doi.org/10.1142/S0218271817500511
https://doi.org/10.1093/mnras/stv2079
https://doi.org/10.1093/mnras/stv2079
https://doi.org/10.1103/PhysRevD.94.084025
https://doi.org/10.1103/PhysRevD.94.084025
http://arXiv.org/abs/1904.07133
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1103/PhysRevD.97.084020
https://doi.org/10.1086/500930
https://doi.org/10.1086/500930
https://doi.org/10.1103/PhysRevD.79.043002
https://doi.org/10.1093/mnras/sty2624
https://doi.org/10.1103/PhysRevD.87.107501
https://doi.org/10.1103/PhysRevD.91.124020
https://doi.org/10.1103/PhysRevD.91.124020
https://doi.org/10.1088/1475-7516/2015/07/037
https://doi.org/10.1103/PhysRevD.94.064071
https://doi.org/10.1016/j.physletb.2018.12.030
https://doi.org/10.1016/j.physletb.2018.12.030
https://doi.org/10.1103/PhysRevD.88.124019
https://doi.org/10.1103/PhysRevD.88.124019
https://doi.org/10.1007/s10509-016-2818-9
https://doi.org/10.1103/PhysRevD.98.024044
https://doi.org/10.1103/PhysRevD.98.024044
https://doi.org/10.1140/epjc/s10052-018-6012-9
https://doi.org/10.1140/epjc/s10052-018-6012-9
http://arXiv.org/abs/1806.07782
https://doi.org/10.1088/0264-9381/33/10/105015
http://arXiv.org/abs/1904.06207
https://doi.org/10.1063/1.1704350
https://doi.org/10.1063/1.1704351
https://doi.org/10.1023/A:1001920232180
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.97.064021
https://doi.org/10.1103/PhysRevD.97.064021
https://doi.org/10.1393/ncb/i2004-10121-y
https://doi.org/10.1393/ncb/i2004-10121-y
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevD.71.104027
https://doi.org/10.1103/PhysRevLett.69.1006
https://doi.org/10.1023/A:1002080003862
https://doi.org/10.1016/0550-3213(88)90006-5
https://doi.org/10.1016/0550-3213(88)90006-5
https://doi.org/10.1103/PhysRevD.46.5278
https://doi.org/10.1103/PhysRevD.46.5278

