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We investigate stellar core collapse in scalar-tensor theory with a massive self-interacting scalar field.
In these theories, strong long-lived inverse chirp signals could be induced during the stellar core collapse,
which provides us with several potential smoking-gun signatures that could be found using current ground-
based detectors. We show that the existence of self-interaction in the potential of the scalar field can
significantly suppress spontaneous scalarization and the amplitude of the monopole gravitational-wave
radiation. Moreover, this suppression due to self-interaction is frequency dependent and may be discernible
in LIGO/Virgo’s sensitive band. Therefore, self-interaction should be considered when constraining scalar-
tensor coupling parameters with gravitational-wave detections. Alternatively, if such monopole gravita-
tional-wave signals are detected, then one may be able to infer the presence of self-interaction.
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I. INTRODUCTION

General relativity (GR) has passed a large number of tests,
which scale from submillimeter scale to the Solar System
scale and in astrophysical and cosmological scales (see, e.g.,
Refs. [1–3] and references therein). The nonrenormaliz-
ability of GR in quantum field theory suggests that GR
should be regarded as an effective theory. In addition, with
the existence of dark matter and dark energy, modifications
of GR may be unavoidable in different energy regimes.
Most of the tests of GR were performed in the relatively

weak-field regime. By means of gravitational-waves obser-
vations by LIGO-Virgo [4], we are able to probe the
extreme physics in the strong-field gravity, and it provides
us with another way to test Einstein’s theory [5,6]. One way
to test GR based on gravitational-wave (GW) detections is
to choose an alternative theory and see whether it can
explain the data well or not.
A possible cosmological and astrophysical extension of

GR is the scalar-tensor (ST) theory of gravity [7,8]. This
theory has been studied over the past decades, and the
mathematical understanding of scalar-tensor theories has
matured enough to allow for fully nonlinear numerical
simulations [9,10]. Scalar-tensor theories allow for GWs in
the well-tested weak-field regime, yet show significant
deviations in strong gravity. For example, the existence of
nonperturbative strong-field effects in neutron stars, also
known as spontaneous scalarization [11].
The parameter space of scalar-tensor theories is

considerably constrained through various astrophysical

observations, for example, by measuring the orbital
decay of binary pulsars [12,13]. No significant GR devia-
tions are allowed within the narrow parameter space of
these theories. However, the parameter space of scalar-
tensor theories is weakly constrained if we extend the
theory with a massive scalar field. For instance, for a scalar
field with mass μ, the corresponding Compton wavelength
is λφ ¼ 2πℏ=ðμcÞ. The observations mentioned above
cannot be applied if the length scale of those systems is
greater than the Compton wavelength of the scalar field λφ.
Therefore, the bounds from those observations are only
valid on extremely light (i.e., the scalar mass μ ≲ 10−19 eV)
or even massless scalar-tensor theories [14,15].
Spontaneous scalarization in neutron stars with massive

scalar fields has been well studied in static, slowly rotating,
and rapidly rotating cases [16–18]. All of those studies
show that the observationally allowed range of the scalar-
tensor parameters is dramatically changed if the mass of
the scalar field had been taken into account. The studies
on neutron stars with the natural extension with self-
interaction was just recently initiated [19].
An interesting channel in which to study this class

of theories is therefore in the formation of neutron stars.
Massive stars with zero-age main sequence (ZAMS)
masses in the range of 8 M⊙ ≲MZAMS ≲ 100 M⊙ die as
a core-collapse supernova (CCSN). A protoneutron star is
formed during the whole dynamical process and is left as a
neutron star if the CCSN explodes successfully or other-
wise becomes a black hole. Therefore, core-collapse super-
novae are the test bed on which we can investigate the
spontaneous scalarization dynamically as it forms neutron
stars and black holes.
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The spontaneous scalarization has also been studied in
the fully nonlinear dynamical regime. A recent study shows
that in massive scalar-tensor theory hyperscalarization
could be induced during the stellar core collapse. It also
generates dispersive hyperscalarized long-lived inverse
chirp monopole GW signals [20]. The signal depends
mainly on a coupling parameter for the scalar-tensor theory
and the amplitude of the scalar field. As the simulations
suggest that the amplitude of the scalar field is intrinsic and
insensitive to many parameters, one can put an impressive
constraint on scalar-tensor parameters by assuming no such
detection.
Inspired by the studies above, we present the initial

numerical study of dynamical strong fields in stellar core
collapses in scalar-tensor theory with a massive self-
interacting scalar field by investigating the scalar GW
signature and explore the scalar-tensor parameter space.
The paper is organised as follows. In Sec. II, we outline

the formalism we used in this work. The details of the
numerical simulation settings and results are presented in
Sec. III. This paper ends with a discussion section in
Sec. IV.

II. METHODS

The scalar-tensor theory action in the Einstein frame is
given by (using natural units G ¼ 1 ¼ c)

S ¼ 1

16π

Z
dx4

ffiffiffiffiffiffi
−ḡ

p ½R̄ − 2ḡμνð∂μφÞð∂νφÞ

− 4VðφÞ� þ Smðψm; gμν=FÞ; ð1Þ

where R̄ is the Ricci scalar and φ and VðφÞ are the scalar
field and the potential, respectively. Note that barred
variables are constructed from the conformal metric
ḡμν ¼ gμν=FðφÞ, where gμν is the physical or Jordan-
Fierz metric and FðφÞ is the coupling function. Once
the conformal factor FðφÞ and the potential VðφÞ are
chosen, the theory is specified. In this work, we study
scalar-tensor theories with quadratic coupling functions,
which are widely used in the literature [11,21],

FðφÞ ¼ expð−2α0φ − β0φ
2Þ; ð2Þ

where α0 and β0 are two free parameters in the coupling
function FðφÞ. Moreover, we use the potential of a massive
scalar field with a quartic self-interaction [19,20]

VðφÞ ¼ μ2

ℏ2

φ2

2
þ λφ4; ð3Þ

where μ is the mass of the scalar field and λ is a non-
negative coupling constant.

We follow the equations of motion from Refs. [20,22]
and implemented them in GR1D [23]. GR1D is a open-source
spherically symmetric general relativistic hydrodynamics
code for stellar collapse to neutron stars and black holes.
It is able to capture many qualitative aspects of CCSNe
and was used to study different stellar collapse and black
hole formation scenarios [24]. As in Ref. [20], we assume
spherical symmetry, use a high-resolution shock capturing
scheme for matter evolution, and do the simulation with a
phenomenological hybrid equation of state (EOS). All
equations, discretization, grid, and boundary treatment
are identical to Ref. [20], except for the potential with a
self-interacting term.

III. SIMULATIONS AND RESULTS

The simulations are specified by seven parameters:
the mass of the scalar field μ, a coupling constant λ for the
self-interaction, two parameters α0 and β0 for the coupling
functionFðφÞ, twoadiabatic indicesΓ1 andΓ2 for subnuclear
and supranuclear polytropic EOS, and the thermal adiabatic
index Γth for the thermal part pressure, which models a
mixture of relativistic and nonrelativistic gas. Similar to
Ref. [20], we used realistic nonrotating pre-supernova
models Woosley and Heger 12 from Ref. [25] as our initial
profile with initially vanishing scalar field and varying the
parameters in the ranges as shown in the Table I.
The EOS could significantly affect the dynamics of the

core collapse supernovae [26,27]. However, it was shown
that for massive-scalar theories, the scalar field is insensi-
tive to the detail of the source if the ST parameter β0 is
sufficiently negative [20]. We further demonstrate that this
is still valid even with the self-interaction parameter λ
included. To see if the effect due to different EOS is
imprinted in the monopole GWs from the stellar core
collapse, we first study the EOS parameters with other
parameters fixed (i.e., μ ¼ 10−14 eV, α0 ¼ 10−2, and
β0 ¼ −20, λ ¼ 10−1). Figure 1 shows the power spectral
density of the signal with different EOS parameters. We
find that the frequency distributions of the scalar field φ are
insensitive to the EOS parameters. To focus on the effects
of self-interaction, we present the results of simulations

TABLE I. Ranges and values of the scalar-tensor and EOS
parameters (following Ref. [20]) explored in our one-dimensional
core-collapse supernova simulations.

Parameter Range/value

Coupling function parameter α0 ½10−4; 10−2�
Coupling function parameter β0 ½−5;−20�
Scalar-field mass μ (eV) ½0; 10−13�
Self-interaction term λ ½10−11; 1�
First adiabatic index Γ1 1.3
Second adiabatic index Γ2 f2.5; 3g
Thermal adiabatic index Γth f1.35; 1.5g
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with the typical values of Γ [23] and set a sufficiently
negative β0, which induces the strong scalarization for
λ ¼ 0 cases [20]. Specifically, in the following studies, we
perform the simulation with μ ¼ 10−14 eV, α0 ¼ 10−2,
β0 ¼ −20, Γ1 ¼ 1.3, Γ2 ¼ 2.5, and Γth ¼ 1.35 as in
Ref. [20] as our reference parameters set and with the
self-interaction parameter λ, which we vary in the
range 10−11 ≤ λ ≤ 1.

A. Suppression of spontaneous scalarization

Figure 2 shows the scalar field φðr; tÞ at the center of the
star as the function of time [i.e., φcðtÞ ¼ φðr ¼ 0; tÞ].
This figure shows that the spontaneous scalarization arises
at the core bounce for all values of the self-interaction term
λ. However, the scalarization is suppressed progressively
when the self-interaction term λ is getting larger. Even for
sufficiently negative β0, the hyperscalarization as men-
tioned in Ref. [20] may not be that “hyper” if the self-
interaction term λ is not negligible.
Indeed, recent studies show that in cases of static and

slowly rotating neutron stars the scalarization is suppressed
due to the self-interaction term [19]. For fixed scalar-tensor
parameters, the GR deviation decreases as the coupling
constant λ in the self-interaction increases, which is
consistent with our observations. We can understand this
by noting that in the equations of motion of the scalar field
∂tψ is related to the ∂2

tφ, which behaves like the “driving
force” of the scalar field φ [22]. The scalar potential
induces an additional term −αFV;φ in the ∂tψ in Eq. (6)

in Ref. [20] in which in our case V;φ ¼ ðμ2ℏ2 þ 4λφ2Þφ. With
the negative φc, the existence of the self-interaction term λ
makes ∂tψ less negative at r ¼ 0, and hence the scalariza-
tion is expected to be suppressed.

B. Monopole gravitational-wave signals and
propagation

Besides the suppression of spontaneous scalarization,
the monopole gravitational-wave signals are also sup-
pressed by the self-interaction. In Figs. 3 and 4, we plot
the gravitational-wave signal σ≡rφ extracted at 5×104km
and the corresponding power spectral density in the fre-
quency domain with various coupling constants of the self-
interaction λ. Figure 3 shows that self-interaction could
strongly suppress the amplitude of the signals and reduce
the memory effect. For instance, the power spectral density
for the case with self-interaction term λ ¼ 1 is approx-
imately 1000 smaller than the case without self-interaction
(λ ¼ 0).1 In conclusion, the existence of the self-interaction
of the scalar field significantly affects the detectability of
the monopole GW from the collapsing stars in massive self-
interacting scalar-tensor theory.
Finally, the suppression of the signals is found to be

frequency dependent. The lower panel in Fig. 4 shows the
ratio of the power spectral density with or without self-
interaction. In particular, the low-frequency portion of the
gravitational-wave signal is suppressed significantly by the
self-interaction, but this suppression gradually diminishes
as the frequency increases. This frequency dependence may
be explained as follows: at large distances from the source,

FIG. 1. Upper panel: The monopole GWs extracted at
5 × 104 km with different EOS parameters. Lower panel: The
power spectral density of the signal with different EOS param-
eters. The frequency distributions of the scalar field φ are
insensitive to the EOS parameters.

FIG. 2. The scalar field φðr; tÞ at the center of the star as the
function of time [i.e., φcðtÞ ¼ φðr ¼ 0; tÞ]. The plots show
that spontaneous scalarization arises at the core bounce for all
values of the self-interaction parameter λ. The existence of self-
interaction of the scalar field progressively suppresses the
spontaneous scalarization.

1Here, we note that the units in Figs. 2 and 4 are different.
In Fig. 2, we plot the scalar field at the center directly, while in
Figs. 3 and 4, the waveforms are defined as σ ≡ rφ, and the
power-spectral density is defined as jσj2. If the waveform is
suppressed by a factor of 31.6, it would be suppressed roughly
1000 times in the power spectral density.
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we can express the wave equation in the flat spacetime
approximately, namely,

∂2σ

∂t2 −
∂2σ

∂r2 þ
μ2

ℏ2
σ þ 4λ

σ3

r2
¼ 0; ð4Þ

where σ ≡ rφ. The self-interaction is short range for the
wave propagation due to the 1=r2 falloff. Moreover, the
plane waves propagate with group velocity vg ≈ ½1 −
ðω2�=ω2Þ�1=2 for ω > ω� ≡ μ=ℏ [20]. The group velocity

is lower for the lower frequencies. Therefore, the self-
interaction is expected to have a larger effect in the lower
frequencies as it takes longer for the low frequencies to
propagate out of the “self-interacting regime.” This fre-
quency-related signature lies in the LIGO/Virgo sensitive
band (i.e., 10 Hz–103 Hz). Therefore, if such monopole
gravitational waves are detected, then one may be able to
infer if the scalar field is self-interacting.
The signal will not be the same as shown in Fig. 3 at

larger distances due to the dispersive nature of the scalar
field. In this case, the λ term can be ignored since the
distance between the observer and the source r is normally
on astrophysical scales. The signal with the angular
frequencies lower than ω� ≡ μ=ℏ is damped exponentially,
which gives a conclusion to that in Ref. [20].2 To
demonstrate this, we extracted the waveform at various
distances, as shown in Fig. 5. As the signal propagates, the
signal becomes increasingly oscillatory, and the memory
effect is suppressed significantly. Frequencies below
ω�=ð2πÞ are damped exponentially, but the part above
the critical frequency remains unaltered. Therefore, the
stationary phase approximation is still valid and yields an
inverse chirplike signal that may result in a near mono-
chromatic signal at the detector frame. The three GW-
search strategies (i.e., monochromatic, burst, and stochastic
searches) proposed in Ref. [20] remain applicable in the
case of a self-interacting scalar field.

IV. DISCUSSION

We extended an open-source code GR1D [23] with
massive self-interacting scalar-tensor gravity theories and

FIG. 3. Waveforms σðr; tÞ≡ rφ extracted at 5 × 104 km. The
existence of self-interaction of the scalar field significantly
reduces the amplitude and the memory effect of the scalar field.

FIG. 4. Upper panel: The power spectral density of the signal in
Fig. 3 in the frequency domain. Lower panel: The ratio of the
power spectral density with or without self-interaction λ.
Although the existence of the self-interaction suppresses the
spontaneous scalarization and the scalar field, the frequency
distributions of the signals in the low-frequency domain are
almost the same. As shown in the lower panel, the suppression
depends on the frequency. The low-frequency portion of the
signal is suppressed significantly by self-interaction. The effect
gradually decreases as the frequency increases.

FIG. 5. The power spectral density of the signal (with λ ¼ 0.1)
at different distances. The frequencies below ω� ≡ μ=ℏ are
damped exponentially, but the part above the critical frequency
almost remains unaltered.

2This also suggests that if the scalar field is massless the
frequency dependence will become weaker.
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performed the numerical simulations to study the strong-
field dynamics and the monopole gravitational-waves
generation in stellar core collapse.
We find that the amplitude of the scalar field is

insensitive to the EOS parameters and depends weakly
on the scalar-tensor coupling parameters α0 and β0 and the
mass of the scalar field μ, similarly to Ref. [20]. The self-
interaction parameter λ suppresses the spontaneous scala-
rization and the whole evolution of the scalar field. Even for
sufficiently negative β0, the scalarization is suppressed
significantly if the coupling constant of the self-interaction
λ is large enough.
Moreover, we show that the dispersion relation of the

scalar field at a large distance from the source depends
mainly on the mass of the scalar field μ, and the effects due
to the coupling constant of the self-interaction λ can be
ignored. Therefore, we recover the results from Ref. [20]
that the scalar gravitational-wave signal disperses as it
propagates through astrophysical distances and becomes an
inverse chirp signal.
For a different range of the scalar-tensor parameters, the

signature of the GW signal from stellar collapse in scalar-
tensor theory may occur in continuous-wave searches,
stochastic searches, and burst searches. For all these types
of searches, the effect due to the self-interaction should be
considered. In case of monochromatic searches, the signal
can be described mainly by the magnitude of the scalari-
zation (which affects the amplitude of the signal) and the
mass μ of the scalar field. Although the GW strain scales
linearly with α0 (i.e., h ∝ α0φ), we cannot simply put a
constraint on α0 by the nondetection of such signals as the

magnitude of the scalarization could be suppressed sig-
nificantly by the self-interaction of the scalar field.
Moreover, the amount of the self-interaction induced

suppression of the signals depends on the frequency of
the signals. Since this frequency-related signature lies in the
LIGO/Virgo sensitive band, one may be able to infer the
existence of self-interaction through gravitational-wave
measurements.
It is well known that microphysics and neutrino physics

play a large role in core-collapse supernovae, the dynamical
features of core-collapse supernovae will no longer be the
same if we make use of realistic EOS and implement a
proper neutrino treatment. The matter evolution will
significantly affect the evolution of the scalar field, and
the GWs signature should be changed dramatically. With
more detailed and realistic input physics, not only are we
able to study how those input physics imprinted in the
monopole GWs, but also the resulting neutrino luminosity
might provide us with another way to constraint the scalar-
tensor theories. This will be left for future work.

ACKNOWLEDGMENTS

We thank U. Sperhake for giving us the pointers when
we started the project and L. M. Lin for detailed discussions
and suggestions on numerical methods. This work was
partially supported by grants from the Research Grants
Council of the Hong Kong (Projects No. CUHK 14310816
and No. CUHK 24304317) and by the Direct Grant for
Research from the Research Committee of the Chinese
University of Hong Kong.

[1] C. M. Will, Living Rev. Relativity 17, 4 (2014).
[2] D. Psaltis, Living Rev. Relativity 11, 9 (2008).
[3] E. Berti et al., Classical Quantum Gravity 32, 243001

(2015).
[4] B. P. e. Abbott (LIGO Scientific and Virgo Collaborations),

Phys. Rev. Lett. 116, 061102 (2016).
[5] N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D 94,

084002 (2016).
[6] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Phys. Rev. Lett. 116, 221101 (2016).
[7] T. Damour and G. Esposito-Farese, Classical Quantum

Gravity 9, 2093 (1992).
[8] Y. Fujii and K.-i. Maeda, The Scalar-Tensor Theory of

Gravitation, Cambridge Monographs on Mathematical Phys-
ics (CambridgeUniversity Press, Cambridge, England, 2003).

[9] M. Shibata, K. Taniguchi, H. Okawa, and A. Buonanno,
Phys. Rev. D 89, 084005 (2014).

[10] M. Horbatsch, H. O. Silva, D. Gerosa, P. Pani, E. Berti, L.
Gualtieri, and U. Sperhake, Classical Quantum Gravity 32,
204001 (2015).

[11] T. Damour and G. Esposito-Farèse, Phys. Rev. Lett. 70,
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