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We present a complete study of the geodesics around naked singularities in AdS3, the three-dimensional
anti–de Sitter spacetime. These stationary spacetimes, characterized by two conserved charges—mass and
angular momentum—are obtained through identifications along spacelike Killing vectors with a fixed
point. They are interpreted as massive spinning point particles and can be viewed as three-dimensional
analogues of cosmic strings in four spacetime dimensions. The geodesic equations are completely
integrated, and the solutions are expressed in terms of elementary functions. We classify different geodesics
in terms of their radial bounds, which depend on the constants of motion. Null and spacelike geodesics
approach the naked singularity from infinity and either fall into the singularity or wind around and go back
to infinity, depending on the values of these constants, except for the extremal and massless cases, for
which a null geodesic could have a circular orbit. Timelike geodesics never escape to infinity and do not
always fall into the singularity; namely, they can be permanently bounded between two radii. The spatial
projections of the geodesics (orbits) exhibit self-intersections, whose number is particularly simple for null
geodesics. As a particular application, we also compute the lengths of fixed-time spacelike geodesics of the
static naked singularity using two different regularizations.
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I. INTRODUCTION

Shortly after the Bañados-Teitelboim-Zanelli (BTZ)
black hole in three-dimensional spacetime was discovered
[1,2], its geodesic structure was studied in detail [3,4]. The
study of those geodesics not only gave insight into the
geometrical properties of the BTZ spacetime, but also led to
some interesting applications [5–8].
The same BTZ metric, with mass M and angular

momentum J, when continued to negative values of M
describes other interesting geometries. In the static case
J ¼ 0, for 0 > M > −1 the resulting three-dimensional
spacetime is a conical geometry with a deficit angle and a
naked singularity at the apex of the cone [9]. Naked
singularities (NSs) correspond to point particles, while
geometries with angular excesses may be interpreted as
antiparticles [10,11]. These naked singularities can be
viewed as the (2þ 1)-dimensional analogues of cosmic
strings in 3þ 1 dimensions and have been an object of
extensive study in the past [12,13]. Here we study the
geodesics around these BTZ NSs, extending toM < 0what
is already known about the black holes.
From a geometric perspective, the NSs in three-

dimensional AdS spacetime can be obtained by identifying

points along a rotational Killing vector. More precisely,
one identifies with rotations on two independent planes in
Rð2;2Þ. Identifications in AdS3 have been used to describe
black hole formation [14] and a construction of time
machines [15]. In this paper, we present all possible
geodesics around of BTZ cones. Our analysis may con-
tribute to an understanding of some aspects of current
interests: Specifically, these geodesics could be useful
for discussing entanglement entropy [16,17] and for
recent studies of quantum backreaction on naked singu-
larities [18–21].
This paper is organized as follows. In Sec. II, we review

the NSs and discuss how to obtain them by identifications
on the covering AdS3 space embedded as a pseudosphere
in R2;2. In Sec. III, we use conserved quantities along
geodesics to find the first-order geodesic equations in NS
spacetimes and then through rescaling write the equations
in a convenient form. In Sec. IV, we present solutions to the
radial equations and corresponding bounds for the different
types of geodesics. We note that all null geodesics escape to
infinity or fall into the singularity, except for a special case
which allows circular orbits. Similarly, spacelike geodesics
have either both ends at infinity or one end at infinity and the
other at the singularity. Meanwhile, all timelike geodesics
are bounded: They either orbit the NS at a finite radius or
fall into it. Section V deals with the spatial projections of
the geodesics. We find exact analytic solutions, plot repre-
sentative orbits, and discuss their qualitative behavior.
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In Sec. VI, we analyze an interesting property of the
geodesics arising from the results of Sec. V: Null, spacelike,
and timelike geodesics can all intersect themselves, and
we calculate the number of self-intersections. Section VII
presents twomore properties: the time behavior of geodesics
and the lengths of spacelike geodesics. The last section
contains a summary and discussion of the main results.

II. THE NS SPACETIME

Although all vacuum solutions of the three-dimensional
Einstein equations with negative cosmological constant Λ
are constant curvature spacetimes locally isometric to
AdS3, there exist geometries globally distinct from
AdS3, including black holes. This is the case of the family
of BTZ geometries described by the stationary line element

ds2 ¼ −
�
r2

l2
−M

�
dt2 − Jdtdθ

þ
�
r2

l2
−M þ J2

4r2

�−1
dr2 þ r2dθ2; ð2:1Þ

where l2 ¼ −Λ−1, −∞ < t < ∞, 0 < r < ∞, and
0 ≤ θ ≤ 2π. Here the mass M and angular momentum J
are integration constants.1 Depending on the values of M
and J, various spacetimes emerge from the BTZ metric
(2.1), which are summarized in Table I.
Here we are interested in the naked singularities (with

jJj ≤ jMjl), namely, the geometries without an event
horizon, which correspond to spacetimes with nonpositive
mass M ≤ 0. The only exception is the case M ¼ −1,
J ¼ 0, which is the AdS3 spacetime. NSs can be obtained
by identifications on the universal covering space CAdS3
[9]. We present below a brief review of this construction.
Consider CAdS3 as the set of points Xa ¼ ðX0; X1;

X2; X3Þ of the pseudosphere embedded in R2;2 defined by

−ðX0Þ2 þ ðX1Þ2 þ ðX2Þ2 − ðX3Þ2 ¼ −l2: ð2:2Þ

This embedding can be parametrized with coordinates
ðt; r; θÞ on the hypersurface defined by (2.2), which yields
the inducedmetric (2.1). TheKillingvectorΘ ¼ ∂θ is chosen

as the identification vector and is written as a linear
combination of the soð2; 2Þ generators Jab ≔Xb∂a−Xa∂b,

2

Θ ¼ 1

2
ωabJab ¼

∂Xa

∂θ ∂a ¼ ∂θ; ð2:3Þ

where the antisymmetric matrix ωab characterizes the iden-
tification in terms of the soð2; 2Þ generators. Then, the action
of the matrixH ¼ e2πΘ on the coordinates of the embedding
space is

Ha
bXbðt; r; θÞ ¼ Xaðt; r; θ þ 2πÞ: ð2:4Þ

The explicit form of the embeddings for the different
geometries and the corresponding identification matrices
H can be found in Refs. [9,21]. The different identification
vectors Θ are shown in Table II, where we have defined

b� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M þ J=l

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M − J=l

p �
: ð2:5Þ

As Table II displays, the nonextremal NS is obtained
by an identification by a Killing vector formed by two
rotations. Note that, for the extremal and massless cases,
the Killing vectors contain rotations and boosts that are not
limiting cases of the generic form.

III. GEODESIC EQUATIONS

The NS spacetimes have two Killing vectors ξ ¼ ∂t and
Θ ¼ ∂θ. They provide two conserved quantities along the
geodesic motion, E ¼ −ξμ _xμ and L ¼ Θμ _xμ, respectively,
where _xμ ¼ dxμ=dλ is tangent to the geodesic with affine
parameter λ. This allows us to obtain the first integrals

_t ¼ Er2 − JL=2

r2ðr2l2 −M þ J2

4r2Þ
; ð3:1Þ

_θ ¼ ðr2=l2 −MÞLþ JE=2

r2ðr2l2 −M þ J2

4r2Þ
: ð3:2Þ

TABLE I. BTZ geometries for different M and J.

M − J ranges Geometries

M > 0 and jJj < Ml Black holes
M > 0 and jJj ¼ Ml Extremal black holes
M < 0 and jJj < −Ml Naked singularities
M < 0 and jJj ¼ −Ml Extremal naked singularities
M ¼ 0 and J ¼ 0 Massless BTZ geometry
M ¼ −1 and J ¼ 0 AdS3 vacuum

TABLE II. Identification Killing vectors Θ in terms of soð2; 2Þ
generators for different NS spacetimes.

Killing vector Θ Geometry

bþJ21 þ b−J30 Generic NS (0 < Ml < −jJj)ffiffiffiffiffiffiffiffiffiffiffiffiffi
−M=2

p ðJ03−J12Þ
−1

2
ðJ01þJ03þJ12−J23Þ

Extremal NS (Ml ¼ −jJj)

J12 − J13 Massless BTZ geometry
(M ¼ J ¼ 0)

1We set the three-dimensional Newton constant as G ¼ 1=8. 2Here Xa ¼ ηabXb, with ηab ¼ diagð−;þ;þ;−Þ.
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Since the velocity can be normalized as _xμ _xμ ¼ −ε (with
ε ¼ 0 for null geodesics, ε > 0 for timelike geodesics, and
ε < 0 for spacelike geodesics), one gets

r2 _r2¼−εr2
�
r2

l2
−Mþ J2

4r2

�
þ
�
E2−

L2

l2

�
r2þL2M−JEL:

ð3:3Þ

Equations (3.1)–(3.3) are exactly the same for black
holes (BHs) (M > 0) [4] and naked singularities (M < 0).
However, the denominators of _θ and _t vanish at the BH
horizons, while for NSs they are positive definite.
Consequently, the geodesics around a NS are drastically
different from those in the BH case.
Using (2.5), it is convenient to write

r2
�
r2

l2
−M þ J2

4r2

�
¼ l2

�
r2

l2
þ b2þ

��
r2

l2
þ b2−

�
; ð3:4Þ

and since M < 0 and l ≠ 0, it is useful to introduce the
following quantities3:

u ¼ r2=ð−Ml2Þ; a ¼ J=ð−MlÞ: ð3:5Þ

Furthermore, for M ≠ 0 we use the rescaled quantities

L̃¼L=ð−MlÞ; Ẽ¼E=ð−MÞ; ε̃¼ ε=ð−MÞ; λ̃¼ λ=l;

b̃�¼b�=
ffiffiffiffiffiffiffiffi
−M

p
¼

ffiffiffiffiffiffiffiffiffiffi
1þa

p � ffiffiffiffiffiffiffiffiffiffi
1−a

p

2
; ð3:6Þ

with a2 ≤ 1. Then, omitting the tildes hereafter, the
geodesic equations read

_t ¼ Eu − bþb−L
ðuþ b2þÞðuþ b2−Þ

; ð3:7Þ

_θ ¼ ðuþ 1ÞLþ bþb−E
ðuþ b2þÞðuþ b2−Þ

; ð3:8Þ

_u2

4ð−MÞ ¼ −εðuþ b2þÞðuþ b2−Þ þ ðE2 − L2Þu

− L2 − 2bþb−EL: ð3:9Þ

The solutions of these equations contain three integration
constants t0, r0, and θ0. Because of the invariance under
rotations and time translations, t0 and θ0 can be chosen to
vanish without loss of generality.

IV. RADIAL BOUNDS

The equation for the radial motion (3.9) is conveniently
written as

_u2

4ð−MÞ ¼ −εu2 þ Bu − C≡ hðuÞ; ð4:1Þ

with

B ¼ E2 − L2 − ε and C ¼ εa2=4þ L2 þ aEL: ð4:2Þ

Geodesics exist in the regions u ≥ 0 where hðuÞ is non-
negative. With this criterion, one can find radial bounds for
the different geodesics. It is important to note that, for
timelike and null geodesics, E2 ≤ L2 would imply B < 0
and C > 0, which in turn implies hðuÞ < 0 for all u > 0.
Hence, E2 > L2 is a necessary condition for the existence
of timelike and null geodesics, although not for space-
like ones.
In what follows, we analyze the r dependence of the

different types of geodesics, first for generic M < 0 and
separately for M ¼ 0.

A. Null geodesics (ε= 0)

The existence of null geodesics for nonextremal NSs
requires E2 > L2, and, since E ≠ 0, it is useful to define

η ¼ L
E
; ð4:3Þ

which verifies η2 < 1. Under this condition on η, the region
where hðuÞ is non-negative depends on the sign of
C ¼ E2ηðηþ aÞ. In the case ηðηþ aÞ ≥ 0, null geodesics
are allowed for ηðηþ aÞ=ð1 − η2Þ ≤ u < ∞. Alternatively,
for ηðηþ aÞ < 0, the null geodesics are permitted in the
half line 0 ≤ u < ∞. Table III summarizes the possible
ranges of r for null geodesics around a naked singularity.
Integrating Eq. (4.1) with ε ¼ 0, we obtain

uðλÞ ¼ ηðηþ aÞ
1 − η2

−ME2ð1 − η2Þλ2: ð4:4Þ

Note that for ηðηþ aÞ ≤ 0 the minimum of the parabola
uðλÞ given by (4.4) is nonpositive, which implies that any
null geodesic coming from a finite radius reaches u ¼ 0 at
a finite value of λ. Hence, these null geodesics have no

TABLE III. Radial bounds for null geodesics with η2 ≯ 1.

Range of η and a Range of r

ηðηþ aÞ ≤ 0 0 ≤ r2 < ∞
ηðηþ aÞ > 0 0 < −Ml2 ηðηþaÞ

1−η2 ≤ r2 < ∞

a2 ¼ 1, ηa ¼ −1 r constant and arbitrary
3The massless BTZ spacetime is considered separately in

Sec. IV D.
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turning point. Meanwhile, in the case ηðηþ aÞ > 0, there is
a nonzero turning point at

umin ¼
ηðηþ aÞ
1 − η2

; ð4:5Þ

as shown in Table III.
For the extremal naked singularity (a2 ¼ 1), the cases

η2 > 1 and ηa ¼ 1 are not allowed for null geodesics.
Remarkably, for ηa ¼ −1, Eq. (4.1) provides the circular
null geodesics uðλÞ ¼ const, where any radius is permis-
sible. For η2 < 1, null geodesics are allowed for 0 ≤ u < ∞
if ηa < 0 or η ¼ 0 and have a turning point if ηa > 0, as
shown in Table III.

B. Timelike geodesics (ε > 0)

Timelike geodesics exist in the regions where the
quadratic function hðuÞ in Eq. (4.1), defined in the domain
u ≥ 0, is non-negative. In cases (a) C < 0 and (b) C ¼ 0,
B > 0, the function hðuÞ is non-negative in the interval
0 ≤ u ≤ uþ, where

u� ¼ B� ffiffiffiffi
Δ

p

2ε
; with Δ ¼ B2 − 4εC: ð4:6Þ

Note that, under conditions (a) or (b), the discriminant Δ is
always positive. A third case is defined by the condition
(c) C > 0, B > 0, Δ > 0. Here, hðuÞ ≥ 0 in the interval
½u−; uþ�. On the other hand, timelike geodesics are not
possible for the cases C > 0, Δ ≤ 0 or B ≤ 0, C ≥ 0.
For the static NSs (a ¼ 0), timelike geodesics with

L ≠ 0 satisfy condition (c), since C ¼ L2 > 0, and thus
do not fall into the singularity. The radial timelike geo-
desics (a ¼ 0, L ¼ 0) satisfy condition (b).
The radial equation (4.1) for ε > 0 is integrated as

uðλÞ ¼ Bþ ffiffiffiffi
Δ

p
sinð2 ffiffiffiffiffiffiffiffiffiffi

−Mε
p

λÞ
2ε

; ð4:7Þ

which agrees with cases (a), (b), and (c) previously dis-
cussed. In the extremal NSs, the cases η2 > 1 or ηa ¼ �1

are also not allowed for timelike geodesics. For η2 < 1, the
bounds shown in Table IVare obtained under the condition
a ¼ �1. Equation (4.7) also holds for the extremal NS.

C. Spacelike geodesics (ε < 0)

For spacelike geodesics, hðuÞ becomes a convex
parabola. In the analysis of radial bounds, there are three
cases to consider.
(a) For B ≥ 0 and C > 0, the geodesics stretch from

infinity to a minimum radius r2min ¼ −Ml2u−.
(b) For B ≥ 0 and C ≤ 0, all geodesics end at the

singularity.

(c) For B < 0 and C ≥ 0, once again the geodesics can be
in the region u− ≤ u < ∞. It can be shown that B < 0
is incompatible with C < 0, so we do not consider
this case.

Solving Eq. (4.1) with ε < 0 yields

uðλÞ ¼ 1

4ð−εÞ ðe
2
ffiffiffiffiffi
εM

p
λ þ Δe−2

ffiffiffiffiffi
εM

p
λ − 2BÞ: ð4:8Þ

It can be verified that this solution satisfies the bounds
mentioned earlier as summarized in Table V. This table
also provides radial bounds for the extremal case a2 ¼ 1,
for which the solution (4.8) holds as well.
A qualitative summary of the results for radial bounds is

that null and spacelike geodesics approach the NS from
infinity and either fall into the singularity or wind around
and go back to infinity (with the exception of the extremal
case, for which a null geodesic with ηa ¼ −1 has a circular
orbit). Meanwhile, timelike geodesics either orbit continu-
ally bounded between two radii or fall into the NS.

D. Geodesics on the massless BTZ geometry

The geodesic equations for the massless BTZ spacetime
(M ¼ J ¼ 0), written in terms of the original variables4 of
Eqs. (3.1)–(3.3), are given by

_t ¼ El2

r2
; _θ ¼ L

r2
; _r2 ¼ −ε

r2

l2
þ E2 −

L2

l2
: ð4:9Þ

The integration of these equations is straightforward, and
Table VI summarizes the solutions of the radial equation
and bounds. Note that L ¼ 0 provides radial geodesics and
the case E2 < L2=l2 is not allowed for null and timelike
geodesics. Moreover, the bounds match those forM ≠ 0 in
the limit M → 0; cf. Ref. [4].

TABLE IV. Radial bounds for timelike geodesics.

Cases Range of r

(a),(b) 0 ≤ r2 ≤ −Ml2uþ
(c) −Ml2u− ≤ r2 ≤ −Ml2uþ

TABLE V. Radial bounds for spacelike geodesics.

Cases Range of r

(b) 0 ≤ r2 < ∞
(a),(c) −Ml2u− ≤ r2 < ∞

4In this case, the rescalings (3.6) are no longer valid.
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In the null case (ε ¼ 0), for E2 > L2=l2, we obtain

rðλÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − L2=l2

q
λþ r0; ð4:10Þ

where r0 > 0 is an arbitrary integration constant. The
range of the affine parameter is 0 ≤ λ < ∞ for the upper
sign and −∞ < λ ≤ r0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − L2=l2

p
for the lower sign.

For E2 ¼ L2=l2, rðλÞ is constant (circular orbit).
For the timelike case (ε > 0), the solution of the radial

equation is given by

rðλÞ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − L2=l2

ε

r
sin

� ffiffiffi
ε

p
l

λ

�
; ð4:11Þ

with 0 < λ < lffiffi
ε

p π; i.e., λ is bounded.

Finally, for spacelike geodesics (ε < 0), the solution of
the radial equation is

rðλÞ¼

8>>>>>>>>><
>>>>>>>>>:

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

−ε

r
sinh

�
�

ffiffiffiffiffiffi
−ε

p
l

λ

�
; if E2 >L2=l2;

r0e�
ffiffiffi
−ε

p
l λ; if E2 ¼L2=l2;

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

−ε

r
cosh

� ffiffiffiffiffiffi
−ε

p
l

λ

�
; if E2 <L2=l2;

ð4:12Þ

where the upper (lower) sign corresponds to outgoing
(ingoing) geodesics. For E2 ≥ L2=l2, the range of the

affine parameter is 0 ≤ λ < ∞ for outgoing geodesics
and −∞ < λ ≤ 0 for the incoming case. Otherwise, if
E2 < L2=l2, the affine parameter can take all real values.

V. ORBITS IN THE r− θ PLANE

Now, we analyze the orbit equation rðθÞ, which can be
obtained from Eqs. (3.8) and (3.9). Once again, we begin
with the nonextremal case. Integration of the orbit equation
yields

2
ffiffiffiffiffiffiffiffi
−M

p
θ ¼ AþIþðuÞ þ A−I−ðuÞ; ð5:1Þ

with

A� ¼∓ b∓
b2þ − b2−

ð5:2Þ

and

I� ¼

8>>>><
>>>>:

arctan
D�ðuþb2�Þ−2F2

�
2F�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−εu2þBu−C

p ; if ε≠ 0;

2arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−η2Þu−ηðηþaÞ

p
b�þηb∓

; if ε¼ 0;

ð5:3Þ

where D� ¼ �εðb2þ − b2−Þ þ E2 − L2 and F� ¼ b�Eþ
b∓L ≠ 0.
For null and timelike geodesics, E2 > L2 holds, so

Fþ ≠ 0. Then, in the subcase Fþ ≠ 0, F− ¼ 0, Eq. (5.1)
reduces to 2

ffiffiffiffiffiffiffiffi
−M

p
θ ¼ AþIþ. On the other hand, Fþ ¼ 0,

TABLE VI. Radial bounds and solutions for geodesics of the massless BTZ spacetime. The signs � refer to
outgoing or ingoing geodesics. The time component can be obtained as tðλÞ ¼ El2θðλÞ=L.
Case Range of r rðλÞ, θðλÞ

ε ¼ 0, E2 > L2=l2 0 ≤ r < ∞ r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − L2=l2

p
λþ r0

θ ¼ ∓Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

p
ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

p
λþr0Þ

ε ¼ 0, E2 ¼ L2=l2 r constant and arbitrary r ¼ r0
θ ¼ L

r2
0

λ

ε > 0, E2 > L2=l2

0 ≤ r ≤ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

ε

q
r ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

ε

q
sin ð

ffiffi
ε

p
l λÞ

θ ¼ − lL
ffiffi
ε

p
E2l2−L2 cot ð

ffiffi
ε

p
l λÞ

ε < 0, E2 > L2=l2 0 ≤ r < ∞
r ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

−ε

q
sinh ð�

ffiffiffiffi
−ε

p
l λÞ

θ ¼ − lL
ffiffiffiffi
−ε

p
E2l2−L2 coth ð

ffiffiffiffi
−ε

p
l λÞ

ε < 0, E2 ¼ L2=l2 0 < r < ∞ r ¼ r0e�
ffiffiffi
−ε

p
l λ

θ ¼∓ lL
2r2

0

ffiffiffiffi
−ε

p e∓2
ffiffiffi
−ε

p
l λ

ε < 0, E2 < L2=l2

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

ε

q
≤ r < ∞ r ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−L2=l2

−ε

q
cosh ð

ffiffiffiffi
−ε

p
l λÞ

θ ¼ lL
ffiffiffiffi
−ε

p
E2l2−L2 tanh ð

ffiffiffiffi
−ε

p
l λÞ
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F− ≠ 0 is allowed for a spacelike geodesic, and in this
case 2

ffiffiffiffiffiffiffiffi
−M

p
θ ¼ A−I−.

In the static case (a ¼ 0), Eq. (3.8) gives the radial
geodesic θ ¼ const for L ¼ 0. Note that there are no radial
geodesics if a ≠ 0; i.e., rotating NSs always produce
dragging.
Null geodesics with L ≠ 0 have the simple expression

r2ðθÞ ¼ −Ml2η2

ð1 − η2Þ cos2ð ffiffiffiffiffiffiffiffi
−M

p
θÞ ; ð5:4Þ

which has a turning point at rmin ¼ l
ffiffiffiffiffiffiffiffiffi
−Mη2

1−η2

q
. For timelike

and spacelike geodesics,

r2ðθÞ ¼ −2Ml2L2

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4εL2

p
cosð2 ffiffiffiffiffiffiffiffi

−M
p

θÞ
; ð5:5Þ

in agreement with the radial bounds shown for condition
(c) in Table IV. In the limit ε → 0, Eq. (5.5) matches the
orbit for the static null geodesics (5.4). Note that the
integration constant here has been chosen as θ0 ≠ 0, unlike
in Eq. (5.1), to make the expression (5.5) simpler.
We include plots that help visualize the different geo-

desics. Note, in particular, the possibility of null geodesics
to reach infinity. Additionally, the winding of geodesics
near the NS can either be increased or decreased, depending
on the magnitude of L and its sign relative to J. This
dragging produced by the rotation of the NS, can be seen in
Figs. 1(a) and 1(b).
As we adjust different parameters (in particular, M), the

number of times geodesics wind around the NS and
intersect themselves changes. This winding phenomenon
is studied in detail in the following section.
In agreement with the solutions discussed in the

previous section, timelike geodesics follow bounded
orbits around the NS. For C > 0 and rational values
of

ffiffiffiffiffiffiffiffi
−M

p
, the orbits are closed. As the denominator

of
ffiffiffiffiffiffiffiffi
−M

p
(expressed as an irreducible fraction) grows,

timelike geodesics take more winds to close. Figure 2(c)
is an example of the failure of timelike geodesics to
close when

ffiffiffiffiffiffiffiffi
−M

p
is irrational. In this figure, λ is not

allowed to cover its entire range, for otherwise nothing
would be visible.
The extremal naked singularity produces different sol-

utions for orbits. For null geodesics, the orbit equation is
defined only if η2 < 1 and the solution is

2sgnðEÞ
ffiffiffiffiffiffiffiffi
−M

p
θ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−η2Þu−ηðη�1Þ

p
ðη�1Þðuþ1=2Þ

þ
ffiffiffi
2

p
arctan

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−η2Þu−ηðη�1Þ

p
ðη�1Þ :

ð5:6Þ
As for timelike and spacelike geodesics, we have

(a) (b)

FIG. 1. Null geodesics with equal jηaj. (a) ηa > 0. (b) ηa < 0.

(a) (b) (c)

FIG. 2. Timelike geodesics. (a)
ffiffiffiffiffiffiffiffi
−M

p ¼ 1=5. (b)
ffiffiffiffiffiffiffiffi
−M

p ¼ 1=17. (c)
ffiffiffiffiffiffiffiffi
−M

p ¼ 1=
ffiffiffiffiffi
15

p
.
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2sgnðEÞ
ffiffiffiffiffiffiffiffi
−M

p
θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−εðuþ 1=2Þ2=E2 þ ð1 − η2Þu − ηðη� 1Þ

p
ðη� 1Þðuþ 1=2Þ

þ 1ffiffiffi
2

p arctan
ð1 − η2Þðuþ 1=2Þ − ð1� ηÞ2ffiffiffi

2
p ðη� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−εðuþ 1=2Þ2=E2 þ ð1 − η2Þu − ηðη� 1Þ

p : ð5:7Þ

We note that sgnðEÞ can always be chosen to be positive
for the null and timelike cases, as will be discussed in
Sec. VII.

A. Orbits for the massless BTZ geometry

Finally, we consider orbits in the massless BTZ space-
time. The nonradial (L ≠ 0) and noncircular (E2 ≠ L2=l2)
orbits for all geodesics are given by

r2ðθÞ ¼ L2

ðE2 − L2=l2Þθ2 þ εL2

E2l2−L2

: ð5:8Þ

where ε can be set as �1 or 0.

For null or spacelike geodesics and E2 > L2=l2, this
equation describes a spiral connecting r ¼ 0 with r ¼ ∞.
Additionally, there is a reflected spiral due to the symmetry
θ → −θ of Eq. (5.8) (not shown in Fig. 3).
Timelike geodesics—which require E2 > L2=l2—are

spirals connecting the origin for θ → −∞ to a maximum
finite radius rmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2l2 − L2Þ=ε

p
at θ ¼ 0. Then, after

an infinite number of turns, they return to the origin for
θ → ∞. Note that, as shown in Eq. (4.11), the entire
geodesic is covered by an affine parameter λ that is
bounded for timelike geodesics of the massless BTZ
spacetime. Although the radial motion for a timelike
geodesic (4.11) is sinusoidal, it does not describe an

(a) (b) (c)

FIG. 3. Geodesics of the massless BTZ spacetime for E2 > L2=l2. The ingoing null and spacelike geodesics spiral into r ¼ 0, while
the outgoing ones spiral away from the origin to infinity. Timelike geodesics are spirals bounded by 0 < r < rmax as shown in Table VI.
(a) Null, (b) spacelike, and (c) timelike.

(a) (b)

FIG. 4. Spacelike geodesics of the massless BTZ spacetime with E2 < L2=l2. (a) θ∞ ¼ 0.8π and θ∞ ¼ π. (b) θ∞ ¼ 3π.
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oscillation near the singularity.5 In Fig. 3, we illustrate each
type of geodesic. Globally, they are quite different, though
close to the singularity all geodesics simply look like the
aforementioned spirals.
The case E2 < L2=l2 for spacelike geodesics is also

considered in Eq. (5.8), but here the geodesics do not reach
the singularity. Instead, they have a finite minimum radius
as indicated in Sec. IV D. In these spacelike geodesics, θðλÞ
is bounded as −θ∞ < θðλÞ < θ∞, where

θ∞ ¼ lL
L2 − E2l2

ð5:9Þ

is the angle for r → ∞. If θ∞ ≤ π, the geodesic comes from
infinity and goes back to infinity without self-intersections.
For θ∞ > π, the geodesic winds around the singularity a
number of times before going back to infinity. This
behavior is illustrated with two examples in Fig. 4.

VI. SELF-INTERSECTIONS

Null and spacelike geodesics that have a turning point
intersect themselves. These geodesics start at infinity and
wind around the singularity a finite number of turns, reach
the turning point rmin and go back to infinity after repeating
the same number of turns. The number of self-intersections
is the integer number of times that 2π is contained in the
angle swept by the geodesic as r goes from r ¼ ∞ to r ¼
rmin and back to r ¼ ∞. First, we count self-intersections
for M ≠ 0.
Let us consider null geodesics with a turning point rmin,

which require η2 < 1 and ηðηþ aÞ > 0. Setting the angle
at rmin equal to 0, then at r ¼ ∞ it is

jθð∞Þj ¼ π

2
ffiffiffiffiffiffiffiffi
−M

p ðb2þ − b2−Þ
jbþsgnðb− þ ηbþÞ

− b−sgnðbþ þ ηb−Þj: ð6:1Þ

Since bþ > b− and η2 < 1, we have sgnðbþ þ ηb−Þ ¼ 1.
Moreover, if ηðηþ aÞ > 0, we have sgnðb− þ ηbþÞ ¼
sgnðηÞ and, therefore,

N ≔
���� θð∞Þ

π

���� ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M þ sgnðηÞJ=lp : ð6:2Þ

The number of self-intersections (N) is the integer part of
N , except for N ∈ Z, in which case one must subtract 1
(which corresponds to a self-intersection at r ¼ ∞). Hence,
this number is given by

N� ¼
�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M þ sgnðηÞJ=lp

	
− 1; ð6:3Þ

where the ceiling function dxe is the least integer greater
than or equal to x and � ¼ sgnðηÞ. The difference between
Nþ and N− for a given sign of J is due to the fact that the
rotating background breaks the clockwise or counterclock-
wise symmetry of the null geodesic. Once again, we see
that the rotation of the NS can either increase or decrease
the winding of the geodesic.
For the extremal case, self-intersections occur only if

sgnðηÞa ¼ 1, and then we get

N ¼
�

1

2
ffiffiffiffiffiffiffiffiffiffiffi
−2M

p
	
− 1: ð6:4Þ

We can also obtain the winding number for spacelike
geodesics, which start at infinity and reach a minimum
radius, as jθð∞Þ − θðrminÞj=π. Assuming F� ≠ 0 in
Eq. (5.3), the angle at the turning point is given by

θðrminÞ ¼
π

4
ffiffiffiffiffiffiffiffi
−M

p ðb2þ − b2−Þ
× ½−b−sgnðFþðDþðumin þ b2þÞ − 2F2þÞÞ
þ bþsgnðF−ðD−ðumin þ b2−Þ − 2F2

−ÞÞ�: ð6:5Þ

From this, it is relatively straightforward to show that

θðrminÞ ¼
π

4
ffiffiffiffiffiffiffiffi
−M

p ðb2þ − b2−Þ
½b−sgnðFþÞ − bþsgnðF−Þ�;

ð6:6Þ

while at r ¼ ∞ one finds

θð∞Þ ¼ 1

2
ffiffiffiffiffiffiffiffi
−M

p ðb2þ − b2−Þ

�
−b− arctan

Dþ
2Fþ

ffiffiffiffiffiffi
−ε

p

þ bþ arctan
D−

2F−
ffiffiffiffiffiffi
−ε

p
�
: ð6:7Þ

As explained in Sec. V, if Fþ ¼ 0, only the second terms in
Eqs. (6.6) and (6.7) must be considered, while if F− ¼ 0,
just the first ones appear in those expressions.
Self-intersections are also present in timelike orbits.

They occur in case (c) in Table IV, where timelike geo-
desics are bounded by two radii. However, in general, orbits
do not close, which leads to an infinite number of
intersections [see, for instance, Fig. 2(c)].
For the massless BTZ spacetime, self-intersections occur

for time- and spacelike geodesics. Initially, outgoing time-
like geodesics with E2 > L2=l2 [see Fig. 3(c)] can have an
arbitrarily large number of self-intersections depending on
the initial conditions; for spacelike geodesics with E2 <
L2=l2 [see Fig. 4(b)], using θð∞Þ in Eq. (5.9), the number
of the self-intersections is found to be5This point was incorrectly interpreted in Ref. [5].
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N ¼
�

lL
ðL2 − E2l2Þπ

	
− 1: ð6:8Þ

It is worth noting that the number of self-intersections for
null geodesics depends only on the spacetime quantities
M and J, while for spacelike and timelike geodesics, the
number of self-intersections also depends on the constants
of the orbit E and L.

VII. ADDITIONAL FEATURES

A. The time coordinate t

So far, we have not discussed the behavior of the time
coordinate for geodesics in the NS spacetimes. We note,
first, that the equation of motion (3.7) for t closely
resembles Eq. (3.8) for θ. Indeed, integrating Eq. (3.7)
gives a very similar expression to Eq. (5.1):

2
ffiffiffiffiffiffiffiffi
−M

p
ðt − t0Þ ¼ ÃþIþ þ Ã−I−; ð7:1Þ

where

Ã� ¼ A∓ ¼ � b�
b2þ − b2−

ð7:2Þ

and I� are given by Eq. (5.3).
Another aspect of the time coordinate worth noting is the

sign of _tðλÞ throughout a trajectory. We can see from the
geodesic equation (3.7) that _t could change sign at
uc ≡ ηbþb− ¼ ηa=2 > 0. However, this does not occur
for timelike or null geodesics, which can be seen as follows.
(i) Null geodesics either are radial or never reach the

singularity and have a turning point at umin > uc. Hence,

massless particles never reach the uc point, and the sign of _t
for their geodesics is constant.
(ii) For timelike geodesics, it can be shown that

hðucÞ < 0 in Eq. (4.1), and therefore uc lies outside of
the allowed range for u.
Additionally, from Eq. (3.7), note that as u → ∞,

sgnð_tÞ ¼ sgnðEÞ and, therefore, without loss of generality
one can always choose E > 0 and λ so that tðλÞ is
monotonically increasing for timelike and null geodesics.
This means that there are no closed timelike geodesics in a
NS spacetime in AdS3 [2]. On the other hand, for spacelike
geodesics, no such restrictions exist, and both _t and E can
have any sign and could even vanish for the entire geodesic.

B. Lengths of spacelike geodesics

The lengths of spacelike geodesics have been relevant for
some time now due to the Ryu-Takayanagi (RT) prescrip-
tion for computing entanglement entropy from the area of
minimal surfaces [16]. The relevant geodesic is a purely
spatial curve _t ¼ 0, and, therefore, we consider the space-
like geodesics with E ¼ 0 and J ¼ 0. The length of a
geodesic arc is given by ds ¼ ffiffiffiffiffiffi

−ε
p

dλ. Then, the arclength
of a geodesic path that sweeps out an angle 0 < α < π=2 in
going from r ¼ ∞ back to r ¼ ∞ is

λ ¼ 2

Z
α

0

dθ
_θ
; ð7:3Þ

where θ ¼ 0 corresponds to the minimum radius. The
integration yields6

λ ¼ l log
�
L2 −M − ðL2 þMÞ cos 2 ffiffiffiffiffiffiffiffi

−M
p

θ þ 2L
ffiffiffiffiffiffiffiffi
−M

p
sin 2

ffiffiffiffiffiffiffiffi
−M

p
θ

ðL2 −MÞ cos 2 ffiffiffiffiffiffiffiffi
−M

p
θ − ðL2 þMÞ

�����
α

0

; ð7:4Þ

where α satisfies

cos 2
ffiffiffiffiffiffiffiffi
−M

p
α ¼ ðL2 þMÞ=ðL2 −MÞ: ð7:5Þ

As could be expected, expression (7.4) diverges. To give
physical meaning to this length, it is necessary to regularize
it by subtracting off another divergent length. In this case, a
reasonable choice is to compare with the corresponding
geodesic length in AdS3 ðM ¼ −1Þ, which in a sense
corresponds to the vacuum geometry. A problem is that
there can be different meanings for “corresponding geo-
desics” between different spacetimes. One can choose
geodesics that have the same parameters L and E or that

sweep the same angle α. These two options lead to different
results. Indeed, comparing geodesics of the same L (and
E ¼ 0) leads to

ΔλjL ≡ λjL − λAdSjL ¼ 0; ð7:6Þ

i.e., the length of spacelike geodesics with E ¼ 0 and the
same angular momentum L are equal in a NS spacetime as
in AdS. On the other hand, comparing geodesics that sweep
the same angle α gives

Δλjα ≡ λjα − λAdSjα ¼ l log
�

1ffiffiffiffiffiffiffiffi
−M

p sin 2
ffiffiffiffiffiffiffiffi
−M

p
α

sin 2α

�
: ð7:7Þ

To arrive at this expression, the regularization leading to
Eq. (7.6) is obtained as

6In the original variables, save for a rescaling of L by l. Here,
B ¼ E2 − L2 −M, with ε ¼ −1.
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ΔλjL ¼ lim
θ→αðLÞ

λjL − lim
θ→α̃ðLÞ

λAdSjL; ð7:8Þ

where α is defined by Eq. (7.5) and α̃ is defined analo-
gously but forM ¼ −1. Thus, in order to subtract the limits,
one must make an appropriate change of variables first. The
two expressions (7.6) and (7.7) could be thought of as
arising in different thermodynamic ensembles: In the first
case the angular momentum is held fixed, while in the
second its canonical conjugate (the angle α) is fixed.
Our results for Δλ differ from those found by other

authors. For instance, the expression for Δλ in Eq. (2.5) of
Ref. [17] (with n ¼ 1=

ffiffiffiffiffiffiffiffi
−M

p
) in our notation reads

Δλ ¼ 2l log
�
2l
μ
sin

ffiffiffiffiffiffiffiffi
−M

p
α

�
; ð7:9Þ

where μ is a regulator and the discrepancy may be attributed
to the different regularization prescription.
The expression (7.7) naturally vanishes for M ¼ −1 but

yields a finite result in the limit M → 0−, which would not
match the vanishing entropy of a massless BTZ black hole.
In contrastwith this, Eq. (7.9) diverges forM → 0− but gives
a nonvanishing result for AdS, which means that regulari-
zation corresponds to comparing with a different geometry.
The result (7.6), on the other hand, seems reasonable if the
NS geometry is viewed as a point particle that has no horizon
and, therefore, no Hawking temperature and no entropy.
There is an additional difficulty with the interpretation of
Eq. (7.7): Since theNS geometry is obtained by removing an
angular sector from AdS, this renders uncertain the idea of
comparing lengths with the same opening angle in the two
geometries. For instance, it is not clear what happens if the
removed angle is larger than 2ðπ − αÞ.

VIII. CONCLUSIONS AND DISCUSSION

Wehave investigated the geodesic structure ofNS in three-
dimensional anti–de Sitter spacetime. We found that null
and spacelike geodesics have a finite number of self-
intersections. This occurs when they do not reach the
singularity but rather start and end at infinity. For null
geodesics the number of self-intersections is a simple
expression that depends only on properties of the spacetime
(M and J), independently of the values E and L of the
particular geodesic. On the other hand, for spacelike geo-
desics, the number of self-intersections depends on the
constants E andL as well. Timelike geodesics have bounded
orbits and also intersect themselves, but this behavior is more
complicated, as shown in Fig. 2. For example, for the static
NS, the orbits do not close unless 1=

ffiffiffiffiffiffiffiffi
−M

p
is a rational

number.When they donot close, they have an infinite number
of self-intersections.
It is interesting to point out differences and similarities

with theM > 0 case. For the black hole, the dependence of
θ on r is logarithmic and no self-intersections are present.
For the black hole, massive particles always fall into the

singularity, while for the NS this does not happen in case
(c) of Table IV (see also Fig. 2). Null geodesics can escape
the singularity for both black holes and NS, but radial
bounds are complementary: If a null geodesic has param-
eters E and L such that it reaches the NS, a geodesic with
those same parameters will not reach the black hole
singularity. Conversely, a null geodesic that reaches the
black hole singularity would not fall into the NS.
Our results can be related to a recent observation which

shows that, in the presence of a conformally coupled scalar
field, the naked singularity in 2þ 1 dimensions becomes
surrounded by a “quantum dress” [18–21], which could be
a physical mechanism for realizing the cosmic censorship
conjecture [22]. In the static case, the Green functions in the
NS spacetime can be constructed using the method of
images, since the conical singularity is obtained by iden-
tifications in AdS3. The number of images to be summed
over is in correspondence with the number of self-
intersections of the null geodesics calculated here. This
last statement can be understood pictorially as follows: To
compute Green functions, one needs the geodesic distance
between two points. If null geodesics in a spacetime haveN
self-intersections, any two infinitesimally close points can
be joined by N topologically distinct null geodesics, and, to
compute the two-point function, one must sum over all of
these geodesics. Hence, there is a correspondence between
this number N and the number of images of a point under
the identification used to get a NS from AdS3.
Another application lies in the study of entanglement

entropy of the (1þ 1)-dimensional CFT dual of the NS in
2þ 1 dimensions. In this analysis, according to the RT
conjecture, the length of the minimal spatial geodesics play a
central role [16]. In Sec. VII, we computed these lengths
comparing them to the corresponding geodesics in AdS3 and
found different results depending on which ensemble we
considered: If the corresponding geodesics have the same
value ofL, the regularized length vanishes; if the correspond-
ing geodesics have the same value of α, the result is nonzero.
Neither of these results match the finding in Ref. [17].
There are related questions that we have not touched upon

but that could be considered in the future. For instance, a
similarly detailed study of multiple conical singularities
could be carried out. Moreover, if one considers identifica-
tions of AdS3 different from the one considered here using a
spacelike Killing vector, it is possible to build other space-
times [14,15] and study their corresponding geodesics.
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