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Adding a light scalar degree of freedom to general relativity often induces a fifth force whose magnitude
is strongly constrained by laboratory experiments and Solar System tests. The Vainshtein screening
mechanism ensures that the effects of this supplementary force are suppressed in dense environments.
However, the field solution of theories exhibiting Vainshtein screening is only known in spherically
symmetric situations. In this article we examine in different configurations the two-body potential energy of
pointlike particles in a specific PðXÞ theory with Vainshtein screening. We use ideas borrowed from the
effective one-body approach of Buonanno and Damour in order to restrict the form of the solution. Our
results indicate that, even if Vainshtein screening is also fully active in the equal-mass case, the nonlinear
dependance of the two-body energy on the mass ratio implies a violation of the equivalence principle. We
compute the contribution of this effect to the Moon orbit for generic theories equipped with Vainshtein
screening.

DOI: 10.1103/PhysRevD.100.024024

I. INTRODUCTION

The possibility of adding a new degree of freedom to
general relativity (GR) is often motivated by cosmic
acceleration. Horndeski [1] and its recent extensions
Gleyzes-Langlois-Piazza-Vernizzi and degenerate higher-
order scalar-tensor theories [2,3] are prime examples of
such alternative explanations to the cosmological constant.
However, these theories rely on a screening mechanism in
order to hide the fifth force effects of the scalar field on
Solar System scales. Among these mechanisms, Vainshtein
or K-mouflage screening [4–6] is due to the fact that
classical nonlinearities are dominant on scales smaller than
the nonlinear Vainshtein radius (the quantum-dominated
regime, where loop corrections should be taken into
account, happens at a much smaller scale [7]).
In this nonlinear regime, the exact field generated by

massive bodies is known only in the spherically symmetric
case. Generically, it is found that the field goes as ϕ ∼ rn

with n > −1 so that it is subdominant compared to the
Newtonian gravitational potential Φ ∼ r−1. However, tests
of GR on Solar System scales are very precise and provide
useful bounds on these theories using the anomalous
perihelion precession that they predict even if the field is
screened. Moreover, the recent detection of a binary
neutron star merger GW170817 both in the gravitational
and electromagnetic channels [8] has constrained the speed
of gravitational waves to be that of light, killing a large set
of modified gravity models [9–15] and constraining the
Vainshtein mechanism [16–18].

Focusing on the Solar System for now, the simplest
approximation that one can do is to treat planets as test
masses in the (screened) field generated by the Sun. This
implies that there is no observable effect on the precession
of the perihelion of Mercury for the quartic Galileon but
that the cubic Galileon is already constrained by observa-
tions [19–21]. However, for comparable mass bodies the
test-mass approximation is not good and this could affect
the motion of bodies in a way that depends on their
composition, thus violating the equivalence principle
[22,23]. In this case, an analytic form of the two-body
potential in the screened regime is missing; it could be
particularly relevant for the Earth-Moon system, where the
Earth-Moon distance is measured with millimeter accuracy
by lunar laser ranging experiments [24,25].
Another important physical situation where the two-

body potential could be of interest (at least in principle)
is the case of two gravitationally bound compact objects
(neutron stars or black holes) of comparable mass whose
gravitational wave emission is now directly detected at the
LIGO/Virgo interferometers. A simple order-of-magnitude
estimate shows that the nonlinear Vainshtein radius for
solar mass objects is r�;1 ∼ 1015 m and r�;2 ∼ 1019 m for
two typical theories that incorporate Vainshtein screening,
namely K-essence [26,27] and Galileons [28,29], respec-
tively. As the correction to any quantity like the Newtonian
energy is suppressed by powers of r=r�, where r is the
typical size of the system, this makes the effect of the scalar
field on such a binary system suppressed by powers of,
respectively, 10−10 and 10−14 for the two theories consid-
ered. As the gravitational wave phase is measured with an
accuracy of 10−4 in detectors, this hides efficiently the*kuntz@cpt.univ-mrs.fr
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effect of the scalar field from observations. However, the
comparable mass case has not been studied in detail yet.
Furthermore, recent work on the radiation of binary

systems in Galileon theories, both theoretical [30–32]
and numerical [33], has shown that the radiation itself is
screened with powers of λ=r�, where λ is the wavelength of
the emitted radiation which is greater by an amount 1=v
than the size of the system r (here v is the typical velocity of
the bodies). The theoretical calculations, which are per-
formed assuming a background field generated by a central
massM ¼ m1 þm2, are better suited for a small mass ratio
inspiral, and it would be interesting to investigate the case
of a nearly equal mass ratio. While we will only consider
the simpler case of the conservative dynamics in this article,
we find that it would be an interesting direction to continue
this work.
Here we present a first step towards the study of

comparable mass objects in Vainshtein screened theories,
namely an approximation to the nonrelativistic energy of
two bodies. We first approximate the two-body energy
outside of the screening radius where traditional calcula-
tions based on an expansion in terms of the interactions are
reliable. We then try to obtain information on the energy in
the screened region based on the knowledge that we gained
from the outside. In order to restrict the form of the energy
inside the screening region, we use ideas similar to the
effective one-body (EOB) approach of Buonanno and
Damour [34]. The EOB approach is the relativistic gener-
alization of the well-known fact that the two-body problem
in Newtonian mechanics is solved by relating it to the
motion of a test particle of mass μ ¼ m1m2

m1þm2
in an external

field generated by a body of mass M ¼ m1 þm2. The
generalization to GR is that the two-body motion can be
approximated by the motion of a test particle of mass μ in
an external deformed Schwarzschild metric, the deforma-
tion parameter being the symmetric mass ratio ν ¼ μ

M.
This allows one to provide an accurate description of the
dynamics of binary systems in regimes that are inaccessible
to other analytical approaches, such as post-Newtonian or
gravitational self-force computations [35]. Concerning
modified gravity, the EOB formalism has been generalized
to scalar-tensor theories in [36,37].
We propose to apply this idea to a two-body system in a

Vainshtein screened theory. Since it maps the two-body
problem into a spherically symmetric one-body problem, it
allows one to recover the energy as a function of the known
exact field solution. The difficulty is then to identify the
parameters of this deformed exact solution. Outside the
screening radius, a perturbative (Feynman) expansion
allows us to identify the EOB parameters. However, the
perturbative expansion breaks down for objects separated
by less than the screening radius.
It is however easy to identify the EOB parameters using a

simple numerical simulation, and the rest of this article will
be devoted to this task. Numerical simulations of screened

theories in the quasistatic limit have mostly focused on N-
body simulations for cosmological applications [38–43],
which is not our concern here. We thus implement our own
code using the finite element solver FENICS [44]. We first
obtain the energy outside the screening radius in order to
confirm our preliminary results. We then concentrate on the
two-body energy in the fully screened situation which is
relevant for astrophysical systems, and for arbitrary mass
ratios. The most important result of this paper is the final
mass ratio dependance of the two-body energy, and it is
shown in Fig. 6. We will finally derive the effect on the
orbit of the Moon around Earth of such a violation of the
equivalence principle in Sec. V.
Let us now be more precise about the screening theory

that we consider. We will focus on a typical theory that
incorporate this effect, namely a specific form of K-
mouflage or PðXÞ [5]

S ¼
Z

d4x

�
−
ð∂ϕÞ2
2

−
1

4Λ4
ð∂ϕÞ4 þ ϕT

MP

�
; ð1Þ

with two static pointlike sources,

T ¼ −m1δ
3ðx − x1Þ −m2δ

3ðx − x2Þ: ð2Þ
Note that we have concentrated on the scalar part of the
action, the gravitational action being the one of standard
GR. It would be easy to generalize our results to other well-
known theories that incorporate Vainshtein screening, e.g.,
the cubic Galileon [28].
We stress that the chosen form for the interaction in the

K-mouflage case (with a negative sign in front of the
quartic term) has a speed of sound around a cosmological
background greater than one. Reference [45] discusses the
conditions needed in order to have a viable K-mouflage
theory. Nonetheless, we chose the theory (1) to test our
method because it is one of the simplest settings in which
there is Vainshtein screening and the numerical implemen-
tation with finite elements is easier since its (weak form)
equation of motion involves only first derivatives.
This paper is organized as follows. In Sec. II we compute

the two-body energy in the weakly coupled regime where
standard perturbative techniques apply. After resumming a
class of Feynman diagrams, we recast the problem into an
EOB framework in Sec. III and discuss the form of the EOB
energy map in the strongly coupled regime. Section IV then
presents the numerical solution to the two-body problem
in different regimes. We analyze the consequences of the
violation of the equivalence principle that it implies on the
Earth-Moon-Sun system in Sec. V, before concluding in
Sec. VI. We use natural units where ℏ ¼ c ¼ 1.

II. TWO-BODY ENERGY OUTSIDE THE
SCREENING RADIUS

In this section we will concentrate on the action (1). We
will only consider static point sources, so we will ignore
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time from now on and focus only on the potential energy E.
In order to have simpler expression in what follows and
also to compare directly our results to the numerical
simulation, we will introduce rescaled variables

ϕ̃ ¼ ϕ

Λ2
; m̃ ¼ m

4πMPΛ2
; ð3Þ

so that the action of the system is written as

S ¼ Λ4

Z
dtd3x

�
−
1

2
ð∇ϕ̃Þ2 − 1

4
ð∇ϕ̃Þ4 þ ϕ̃ T̃

�
; ð4Þ

where T̃ ¼ −4πm̃1δ
3ðx − x1Þ − 4πm̃2δ

3ðx − x2Þ, and we
will ignore the tilde from now on. Be careful that now the
dimension of m is (in natural units) −2 and the dimension
of ϕ is −1.

A. Spherically symmetric case

Consider the action (4) with a single pointlike source
T ¼ −4πMδ3ðxÞ. The equation of motion that follows from
it reads

∂ið∂iϕþ ð∂ϕÞ2∂iϕÞ ¼ −T: ð5Þ

Using spherical symmetry and integrating over a sphere,
one can reduce it to a single ordinary differential equation:

ϕ0 þ ðϕ0Þ3 ¼ M
r2

: ð6Þ

This can be solved exactly and is written, for a field
vanishing at infinity,

ϕMðrÞ ¼ −
M
r 3F2

�
1

4
;
1

3
;
2

3
;
5

4
;
3

2
;−

27M2

4r4

�
; ð7Þ

where pFq is the generalized hypergeometric function.
The solution has two regimes separated by the nonlinear

scale r�:

ϕM ¼
�−M

r þ M3

5r5
þ � � � ; r > r�;

Cþ 3ðMrÞ1=3 þ � � � ; r < r�;
ð8Þ

where C ≃ −3.7
ffiffiffiffiffi
M

p
is a constant of integration (we

chose the constant such that the field vanishes at infinity,
so it cannot also vanish in zero), and the nonlinear scale is
given by

r� ¼
�
27

4

�
1=4 ffiffiffiffiffi

M
p

ð9Þ

and corresponds to the radius of convergence of the two
series written above.

These two regimes can be seen as expansions in r�=r and
r=r�, respectively (in fact, it is even possible to reformulate
the initial action with additional fields in order to make the
screened regime appear from the beginning; see [46]). We
have expanded up to next-to-leading order in the r > r�
case because it will prove useful in the following. Choosing
Λ to be responsible for the cosmic acceleration, Λ2 ¼
MPH0 [45], one has r� ∼ 0.1 Pc for the Sun, thus rendering
the next order in the r < r� case very subdominant
concerning Solar System experiments.

B. Two-body problem

Let us now take a two-body source T ¼
−4πm1δ

3ðx − x1Þ − 4πm2δ
3ðx − x2Þ. The salient feature

of the two-body problem in screened theories is that one
cannot compute the energy by superposing one-body
energies, as one usually does in Newtonian gravity. Said
differently, one cannot recast the problem in terms of a
simple ordinary differential equation, and instead one
should solve a nonlinear partial differential equation
(PDE) of two variables, thus explaining the lack of
analytical results. Nonetheless, the problem is well for-
mulated outside the screening radius where the nonlinear
term can be treated as an interaction. Let us now imagine to
have two bodies outside of their respective screening radius
and calculate the first nonlinear correction to the potential
energy of the two objects. To this aim, wewill use Feynman
rules derived from the action (4). The potential energy of
the system is

R
dtE ¼ −Scl, where the classical action is

obtained as the saddle point of the path integral:

eiScl½x1;x2� ¼
Z

D½ϕ�eiS½x1;x2;ϕ�: ð10Þ

Before we start, let us give directly the main result of this
section: the gravitational energy of the two bodies is

E
4πΛ4

¼ −
m1m2

r
þm1m2ðm2

1 þm2
2Þ

5r5
þ � � � ; ð11Þ

where r ¼ jx1 − x2j. We have factored out a multiplicative
coefficient of Λ4 coming directly from Eq. (4): for
convenience we will also use a rescaled energy defined by

Ẽ ¼ E
Λ4

ð12Þ

and forget the tilde from now on.
Let us now derive this result. Introducing the Fourier

modes of the field ϕ ¼ R
k ϕkeik·r (where

R
k means

R
d3k
ð2πÞ3),

the nonrelativistic propagator of the field is given by
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hTϕkðtÞϕqðt0Þi ¼ −ið2πÞ3δ3ðkþ qÞδðt − t0Þ 1
k2

: ð13Þ

To obtain Scl, we have to calculate all connected (once
we remove the source) Feynman diagrams without internal
loops, treating ð∂ϕÞ4 and T as interactions (loops would
represent quantum corrections to this potential and are
suppressed by powers of ℏ=L, where L is the total angular
momentum of the system [47], so we will completely
ignore them). The full Feynman rules of a simple con-
formally coupled scalar field in the presence of gravity are
given in Ref. [48]. At lowest order, there is the one-scalar
exchange of Fig. 1 that gives rise to the Newtonian potential
between the two sources:

ENewt

4π
¼ −

m1m2

r
: ð14Þ

In order to compute the first nonlinear correction to it,
we have to calculate the two diagrams of Fig. 2. The first
one can be put in the following form:

Fig:2ðaÞ¼ i
ð4πÞ4
3

m3
1m2

×
Z
K;k1;k2

eiK·r 1

k2
1k

2
2K

2ðKþk1þk2Þ2
× ðk1 ·k2ðKþk1þk2Þ ·Kþ2 permÞ; ð15Þ

where r ¼ x1 − x2. The remaining integrals over momen-
tum should be computed with dimensional regularization.
To this aim a set of useful integrals in d ¼ 3 − 2ϵ are given
in the Appendix A. One can simplify the calculation with
the following observation: after having integrated k1 and
k2, one is left with an integral over K which, for dimen-
sional reasons [the first correction to the two-body potential
is proportional to r−5; see (8)], is of the form

Z
K
K2eiK·r ð16Þ

(there could also be a factor of ϵ in the power of K2, but it
does not change the validity of the argument). Then using
formula (A4), one can see that there is a pole of the Gamma
function in the denominator. Consequently, this integral
will vanish in dim reg (it will be proportional to ϵ) unless

there is also a pole of the Gamma function in the numerator.
Keeping the only pole that appear in the numerator and
repeatedly using the formulas given in Appendix A, one
can find that

Fig: 2ðaÞ ¼ −4πi
m3

1m2

5r5
: ð17Þ

One can use the same machinery to calculate the second
diagram 2(b). However, in this case there is no pole of the
Gamma function at the numerator, and consequently this
diagram vanishes in dim reg. Including the symmetric
counterpart of Fig. 2(a), we finally obtain the formula
for the first correction to the two-body energy given
in Eq. (11).

C. Resumming the test-mass diagrams

The result of Feynman integrals concerning diagram 2(a)
should come as no surprise. Indeed, as we will now explain,
it should come back to the energy of a point-particle mass
in case one of the masses goes to zero. In the following, we
will assume without loss of generality that m1 < m2.
Consider the limit m1 → 0. Then the two-body

energy should reduce to the energy of a point particle
m1 in the external field generated by m2, which is [the
energy being obtained from the field ϕcl of Eq. (8) via
Epp ¼ −

R
d3xϕclT]

Epp

4π
¼ −

m1m2

r
þm1m3

2

5r5
þ � � � : ð18Þ

From there we see that the result of diagram 2(a), which
ultimately gives the numerical prefactor in front of the first-
order correction to the two-body energy, could not have
been otherwise. Had the diagram of Fig. 2(b) been nonzero,
its value would not have been fixed by this observation,
because it is proportional to m2

1m
2
2, which vanishes (com-

pared to the test-mass diagram proportional to m1) in the
test-mass limit.
Based on this observation, we propose to resum a

particular class of diagrams which share the same property
at any order in the nonlinear expansion, which we call test-
mass diagrams. They are given by a single coupling to the
mass m1 and any number of couplings to m2, as illustrated

FIG. 1. Feynman diagram contributing to the Newtonian
potential. External sources are represented as straight lines and
scalars as dotted lines.

(a) (b)

FIG. 2. Feynman diagrams contributing to the first nonlinear
correction in a K-mouflage theory. The first one should be added
with its symmetric counterpart.
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in Fig. 3. Denoting by N the expansion order (i.e., the
number of vertex corresponding to the insertion of the
nonlinear operator in the diagrams) and by P the number of
m2 mass insertions, we have that there are 1þ 4N þ P field
insertions in this diagram. Since there are no loops and the
diagram should be connected once we remove the particle
worldlines, there are N − 1 “internal” propagators, i.e.,
propagators that connect two nonlinear vertices. Finally, the
total number of propagators is Pþ 1þ ðN − 1Þ. Since the
total number of field insertions is 2 times the number of
propagators, we get the relation

P ¼ 2N þ 1; ð19Þ

so that at order N the mass coefficient of this graph (and its
symmetric counterpart) is m1m2ðm2N

1 þm2N
2 Þ.

One can even argue that, at a given perturbation order N,
this test-mass diagram is the leading one away from the
test-mass limit. Indeed, the contribution of other kinds of
diagrams, with morem1 insertions (we found the only other
second-order diagram to vanish, but we see no reason why
it should be the case at higher orders), would be of the form

ðm1m2Þqðm2ðNþ1−qÞ
1 þm2ðNþ1−qÞ

2 Þ, where 2 ≤ q ≤ N þ 1.
For m2 > m1 and in the large N limit, the ratio of this
quantity to the test-mass diagram is

�
m1

m2

�
q−1

; ð20Þ

which is less than one. However, this is not accounting for
the fact that there can be a large number of these other
diagrams, which can make them count as much as the test-
mass one. Anyway, we shall content ourselves with having
understood at least a part of the nonlinear energy.
Now the exact energy of a point particle m1 in the field

generated by m2 is

Epp

4π
¼ m1

X
N≥0

αN
m2Nþ1

2

r4Nþ1
; ð21Þ

where αN are numerical coefficients that can be easily
found by solving Eq. (6). By writing in an identical way
the contribution of the test-mass graphs to the two-body
energy,

E
4π

¼
X
N≥0

βN
m1m2ðm2N

1 þm2N
2 Þ

r4Nþ1
; ð22Þ

we see that in order to have the good test-mass limit one
should impose βN ¼ αN for N ≥ 1, and β0 ¼ α0

2
¼ − 1

2
.

Denoting by ϕm the (exact) spherically symmetric field
generated by a body of mass m in Eq. (8), one finally finds
for the contribution of test-mass graphs to the two-body
energy:

E
4π

¼ m1m2

r
þm1ϕm2

ðrÞ þm2ϕm1
ðrÞ: ð23Þ

This result can be intuitively understood as being the
symmetric sum of one-body energies, plus a compensating
term that ensures that the Newtonian limit r → ∞ (where
ϕm ∼ −m=r) is correct. We will compare this analytical
resummed energy to the numerical solution in Sec. IV C.

III. EFFECTIVE ONE-BODY APPROACH

A. Energy map outside

Very much like in GR, where the motion of a
two-body system (expanded in powers of rs=r, where rs
is the Schwarzschild radius of the combined mass
M ¼ m1 þm2) can be recast in the motion of a test mass
in a modified external Schwarzschild metric [34], the above
formula for the two-body energy can be expressed into the
energy of such a point particle in a modified external field.
Of course, what will now play the role of the Schwarzschild
radius is the nonlinear radius r�. Let us define, on top of the
reduced mass μ and the total mass M which are the two
masses naturally associated to the effective problem, the
mass ratio x as

μ ¼ m1m2

m1 þm2

;

M ¼ m1 þm2;

x ¼ m1

m1 þm2

: ð24Þ

The kinetic energy of the two objects is easy to rewrite
in terms of an effective kinetic energy since we have the
well-known relation

1

2
m1v21 þ

1

2
m2v22 ¼

1

2
μv2; ð25Þ

where v ¼ v1 − v2, and we have set the center of mass to
the origin of coordinates (this center-of-mass definition
would be modified by relativistic corrections, but we do not
consider these in this treatment).
As for the approximate potential energy that we obtained

above (22), it can be rewritten in terms of the effective
parameters as

FIG. 3. Test-mass diagram with a single coupling to the first
particle m1 and P couplings to the second particle m2. The
number of internal vertices (not involving particles worldlines)
is N.
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E
4π

¼ μ
X
N≥0

βN
M2Nþ1ðx2N þ ð1 − xÞ2NÞ

r4Nþ1
: ð26Þ

We now see that, outside the nonlinear radius, the motion
of a two-body system separated by r ¼ jx1 − x2j can be
identified with the motion of a test particle of mass μ (at a
distance r from the origin) in a modified external field
created by M, whose modified coefficients in the nonlinear
expansion are given by

α̃N ¼ αNðx2N þ ð1 − xÞ2NÞ; N > 0;

α̃0 ¼ α0: ð27Þ
What is the nonlinear radius associated to the effective

problem? The perturbative expansion (27) that we wrote
above breaks down at the nonlinear radius associated to the
biggest of the two masses, i.e., r� ¼ Mð1 − xÞ. However
this result is really tied to the test-mass resummation, and
calculating more precisely the two-body energy could
change it. It is nonetheless natural to assume that the
nonlinear radius of the full two-body problem is the one
associated to the total mass M, i.e.,

r� ¼
�
27

4

�
1=4 ffiffiffiffiffi

M
p

; ð28Þ

knowing that the real two-body Vainshtein radius (defined
as the radius of convergence of the energy expansion for
r → ∞) could differ by numerical factors dependent on x.
Alternatively, we can formulate the equivalent one-body

problem in a different way which will prove useful when
investigating the behavior inside the nonlinear radius.
Using the energy of a test mass μ in an external field
generated by M ¼ m1 þm2,

Etm

4π
¼ μϕMðrÞ ¼ μ

X
N≥0

αN
M2Nþ1

r4Nþ1
; ð29Þ

we can build an energy map between the real energy E and
the effective test-mass energy Etm as follows:

E
Etm

¼ f

�
Etm

EN
− 1

�

¼ a0 þ a1

�
Etm

EN
− 1

�
þ a2

�
Etm

EN
− 1

�
2

þ � � � : ð30Þ

Here EN ¼ −μM=r is the Newtonian reference energy,
and the function f has been Taylor expanded for small
values of the dimensionless ratio Etm=EN − 1. Indeed, from
Eq. (8) this ratio can be expanded outside the nonlinear
radius as

Etm

EN
− 1 ¼ −

M2

5r4
þ � � � : ð31Þ

To construct such an energy map, one can choose each
value aN such that each coefficient in front of ðM2=r4ÞN
of Eq. (30) matches. Since the small ratio Etm=EN − 1 is
chosen such that aNðEtm=EN − 1ÞN contributes only at
order ðM2=r4ÞN or higher, this procedure yields an unam-
biguous value for aN for all N.
This energy map proves very useful because it allows one

to resum the nonlinear behavior into the small parameter
Etm=EN − 1. We refer the reader to Ref. [34] for its
derivation in the context of the post-Newtonian formalism.

B. Energy map inside

Having understood the behavior of the energy outside
the nonlinear radius, we would like now to generalize to
astrophysical situations of interest where the two bodies lie
deep within their nonlinear radius. The above formula (23)
for the two-body energy, even if it resums part of the
nonlinear corrections, has no chance to be valid inside r�
because it contains the Newtonian reference energy (14)
valid only at large radius. However, one can still obtain the
coefficients of an energy map from numerical simulations.
In Appendix B we adopt an analytical approach that
attempts to relate the two energy maps by a matching
condition at the nonlinear radius. While we will argue that
this part should yield a qualitative result concerning the
two-body energy, we will see when comparing to the
numerical simulation that even this qualitative result does
not compare well to the real two-body energy. Further
improvement is needed in order to obtain a sensible
analytical result.
In the following, we will assume that the two-body

energy for r < r� can be related, in a spirit similar to the
one for r > r�, to the energy of a test mass μ in an external
field generated by the total massM through an energy map.
We have no possibility to calculate directly the modified
coefficients as we did in the last section, but we can obtain
them numerically as we will do in Sec. IV.
Inside the nonlinear radius, the energy map should take

the form

E0

E0
tm

¼ g
�
E0
tm

E0
ref

− 1

�

¼ b0 þ b1

�
E0
tm

E0
ref

− 1

�
þ b2

�
E0
tm

E0
ref

− 1

�
2

þ � � � : ð32Þ

A few comments are required here. First, in order to
avoid the appearance of an unphysical (mass-dependent)
constant in the energy (which we calculated before by
assuming its vanishing at infinity, so it cannot also vanish
in zero), we chose to write the energy map using the r
derivative of the energy E0. Second, we use a reference
energy level equal to the small-r value of the energy since
the Newtonian energy is irrelevant inside the Vainshtein
radius:
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E0
ref

4π
¼ μ

�
M
r2

�
1=3

: ð33Þ

Finally, note that the small parameter E0
tm=E0

ref − 1 is this
time expanded as

E0
tm

E0
ref

− 1 ¼
X
N≥1

γN

�
r2

M

�
2N=3

¼ −
1

3

�
r2

M

�
2=3

þ � � � ; ð34Þ

where the coefficients γN can be found by solving exactly
the nonlinear equation (6) (we will not need their exact
expression here).
In the test-mass limit, the real two-body energy should be

approximated by the point-particle energy, and conse-
quently b0 ¼ 1 and b1;…bN ¼ 0. Now, away from the
test-mass limit, we are only interested by the behavior of b0
as a function of the mass ratio x, since we recall that the
next order is further Vainshtein suppressed and thus
irrelevant for astrophysical systems. We will now turn to
a numerical implementation that will allow us to obtain the
coefficient b0.

IV. NUMERICAL SIMULATION

In this section, we will directly solve the nonlinear PDE
in the two-body case using a finite element solver and
obtain the two-body energy in order to compare it to the
analytical result.

A. Setup

Using the action (4), one has the following equation of
motion for the scalar field:

∇ · ð∇ϕþ ð∇ϕÞ2∇ϕÞ ¼ −T; ð35Þ

where we recall that

T ¼ −4πm1δ
3ðx − x1Þ − 4πm2δ

3ðx − x2Þ: ð36Þ

To numerically solve this equation, a finite element
(FEM) solver [49] is well adapted to the problem, since the
PDE can easily be put into a weak form: for any test
function v that vanishes on the boundary of the integration
domain,

Z
d3xðð1þ ð∇ϕÞ2Þ∇ϕ · ∇v − TvÞ ¼ 0: ð37Þ

FEM solvers solve the weak form equation by decom-
posing the unknown ϕ on some basis functions ψ j, here
chosen to be the continuous Lagrange polynomials
of second order on the grid chosen to discretize the
problem. The solver then finds the coefficients cj of this

decomposition ϕ ¼ P
j cjψ j by evaluating the weak form

equation (37) with the test function v being one of the basis
functions ψ i. This produces a matrix equation for the
unknown vector of coefficients ðcjÞj≥0 that is solved by an
efficient sparse LU decomposition. The nonlinear term
is dealt with by Newton iterations, i.e., by setting ϕ ¼
ϕ0 þ ϕ1 with ϕ0 a function that is close to the solution
sought after, linearizing over ϕ1 then solving for it, and
finally iterating the procedure until a desired convergence
threshold has been reached.
In cylindrical coordinates (so that the problem becomes

effectively two dimensional), we choose the two bodies
to lie along the z axis at positions þa=2 and −a=2. We
regularize the delta functions by replacing them with
Gaussians:

δ3ðxÞ ¼ δðrÞδðzÞ
2πr

¼ 1

2π2σ2r
e−½ðr2þz2Þ=2σ2�; ð38Þ

where we have taken care of the fact that the r variable goes
from 0 to ∞ while z goes from −∞ to ∞.
There are two scales involved in this problem, the

separation between the two bodies that we denote by a
and the nonlinear scale r� ¼

ffiffiffiffiffi
M

p
. We choose for the

domain of integration the half disk defined by r > 0,
R ≤ Rmax, where R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
. The domain is automati-

cally discretized by the FEM solver with a resolution of
approximately 64 × 64 points, with a manual refinement of
the grid near the two bodies. The boundary conditions are
chosen such that ∂rϕð0; zÞ ¼ 0 (as required by the sym-
metry of the problem) and ϕðr; zÞ ¼ − m1þm2

R for R ¼ Rmax.
The second boundary condition corresponds to recovering
both spherical symmetry and the Newtonian-like behavior
of the field far from the two bodies, where we know the
exact solution which is given by Eq. (8). For it to be
consistent, we must also ensure r� ≪ Rmax.
Once we get the field solution, the energy can be

computed as

E ¼
Z

d3x

�ð∇ϕÞ2
2

þ ð∇ϕÞ4
4

�

þ 4πm1ϕðx1Þ þ 4πm2ϕðx2Þ: ð39Þ

A remarkable fact to be noted is that the self-energy
contribution 4πm1ϕðx1Þ þ 4πm2ϕðx2Þ is not divergent,
contrary to the Newtonian case. This is due to the fact
that the field goes to a constant as ϕ ∼ jr − xαj1=3 close to
the source α, instead of diverging as 1

jr−xαj. The same goes
for the integral over all space. We consequently do not need
to renormalize the energy.
Finally, after having compared the behavior of the energy

for r≳ r� to the theoretical predictions, we will need the
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energy in the realistic r ≪ r� case. In this setup, we can
ignore the quadratic term in the equation of motion (37).
This corresponds to taking an infinite Vainshtein radius.
Correspondingly, we have to change the exterior boundary
condition to ϕðr; zÞ ¼ 3ððm1 þm2ÞRÞ1=3 for R ¼ Rmax
because the field is screened over all space. The energy
is computed ignoring also the quadratic term, but there is a
subtlety in its definition because the integral is formally
divergent as R1=3

max (a consequence of the good UV and bad
IR behavior of the field). This divergence is the same as the
one associated to a single particle of mass M ¼ m1 þm2

sitting at the origin, and so to renormalize the theory we
subtract from the energy the contribution of such a field
which is

3πððm1 þm2ÞRmaxÞ1=3: ð40Þ

B. Numerical tests

In order to assess the validity of our numerical scheme,
we have performed two numerical tests. Before presenting
them, let us first discuss the choice of the numerical
parameters Rmax and σ. A finite choice of Rmax brings a
correction of the order a=Rmax to the field (where we recall
that a is the separation between the two bodies), and so we
choose Rmax ¼ 50a in our simulation.
Concerning the effect of σ, let us consider a single

point particle of mass m2 in the r ≪ r� case with
boundary condition ϕðr; zÞ ¼ 3ðm2RÞ1=3 for R ¼ Rmax.
In this case, if the particle was really pointlike, the field
would vanish at the origin. This is no longer the case if
the particle has a finite extent σ. Rather, the central value of
the field is

ϕð0; 0Þ ∼ ðm2σÞ1=3; ð41Þ

simply by dimensional analysis. But this could potentially
be problematic in the calculation of the two-body energy
which requires the evaluation of the field at the particle
location; see Eq. (39). The contribution of this term in the
total two-body energy is

m2ϕðx2Þ ∼ Etm

∼
m1m2

m1 þm2

ððm1 þm2ÞaÞ1=3; ð42Þ

this equality being true up to a numerical factor.
In order to avoid an unphysical dependance on σ in the

energy, we have to tune σ in order that the term in Eq. (41)
is much smaller than the term in Eq. (42). This gives the
following bound:

σ ≪
x3

1 − x
a; ð43Þ

where we recall that x ¼ m1=ðm1 þm2Þ is the mass ratio.
We choose σ ¼ 10−6a, which is consistent with the
minimal value of x, xmin ¼ 0.03 for a ¼ 1, that we will use.
Having chosen a value for the numerical parameters,

we have first checked that, for a single particle at the
origin of the coordinates, the field solution corresponds
to the exact solution given in Eq. (7). The result is
plotted in Fig. 4, where we see that there is perfect
agreement between the theoretical and numerical
values.
The second nontrivial check that we have performed is to

verify that the two-body energy in the fully screened regime
(i.e., neglecting the quadratic operator as explained in
Sec. IVA) indeed varies as E ∝ a1=3. In Fig. 4 we have
plotted the numerical value of the two-body energy in the
r ≪ r� case in a logarithmic plot, from which we immedi-
ately confirm the expected behavior.

C. Results

Figure 5 presents the numerical two body in the r≳ r�
regime against different theoretical predictions for equal
masses. The value of the energy when the charges are
taken infinitely far apart is not zero: it can be easily
calculated as 2 times the value of the energy when we
plug the exact one-body field solution (7) into the action.
This yields

Eð∞Þ ≃ −31ðm3=2
1 þm3=2

2 Þ: ð44Þ

FIG. 4. Checks of the numerical code. The main plot is the
fractional difference of the numerical field solution in the
spherically symmetric case of a single particle of mass M ¼ 1,
compared to the exact solution of Eq. (7). The subplot is the two-
body energy defined by Eq. (39) in the r ≪ r� case, keeping
m1 ¼ 1 and for two values of m2. The parameter σ is taken to be
σ ¼ 10−4. The upper points, with parameter m2 ¼ 1, show good
agreement between the expected power-law behavior E ∝ a1=3

(continuous cyan curve) and the numerical result. The agreement
between the two is a good check of the validity of our code. The
bottom points, with m2 ¼ 0.1, show a deviation from the simple
power-law behavior (continuous yellow curve) due to the fact that
condition (43) is not satisfied any more.
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We can see that the numerical value of the energy
for large separation matches very well this result, thus
providing again a strong check of the validity of our code.
The resummed energy provides an improvement over the
simple Newtonian potential, although the gain is ∼50% at
the nonlinear radius.
Concerning the fully screened situation r ≪ r�, Fig. 6

presents the effective parameter b0 as a function of the mass
ratio x, where b0 is defined as

b0 ¼
E
Etm

;

Etm

4π
¼ 3μðMaÞ1=3; ð45Þ

where we chose a ¼ 1 to obtain our results (b0 does not
depend on a, as emphasized in Sec. IV B) and the
numerical energy E is computed by keeping only the
nonlinear term in the action, as explained in Sec. IVA. This
is the most important result of this work, since it presents
the two-body energy in astrophysically relevant situations
and for arbitrary mass ratios. We can see that b0 ≃ 0.75 in
the equal-mass case, which means that screening is a bit
more efficient than when there is a large mass hierarchy
(for which b0 ¼ 1). For convenience, a fit to b0 with a
sixth-order polynomial gives

b0ðxÞ ¼ 1 − 3.17xþ 23.7x2 − 105.89x3

þ 266.48x4 − 347.46x5 þ 182.64x6: ð46Þ

The dependence of the two-body energy on the mass
ratio implies a direct violation of the weak equivalence

principle. In the next section we will explore the conse-
quences of this result on the orbit of the Moon, which is
measured with a great accuracy by lunar laser ranging.

V. VIOLATION OF THE WEAK
EQUIVALENCE PRINCIPLE

In this section we will show how our results imply an
equivalence principle violation that would be visible on
the Moon orbit. We will make heavy use of the following
mass ratios:

xSE ¼ m⊕

m⊙ þm⊕
≃ 3 × 10−6;

xSM ¼ mM

m⊙ þmM
≃ 3 × 10−8;

xEM ¼ mM

m⊕ þmM
≃ 10−2; ð47Þ

where m⊙ is the Sun mass,m⊕ is the Earth mass and mM is
the Moon mass.

A. Three-body system and finite size corrections

In this part we will examine the applicability of our
results to a three-body system like the one formed by the
Sun, the Earth and the Moon (hereafter, SEM system). Fifth
forces generated by the scalar interaction are expected to
induce a supplementary perihelion precession that would
be visible on planetary orbits [50]. But the lunar perihelion
precession cannot be computed by ignoring the scalar field
generated by the Sun, and using a perturbative treatment
Ref. [19] reached the conclusion that the perturbation
blows up once distance hierarchies are taken into account.
We will recover their result using a different approach.
To start with, let us reformulate the action of a two-body

system in a different way. Labeling the two objects as 1
and 2, we split the scalar field according to

FIG. 5. Plot of the numerical solution to the energy close to the
Vainshtein radius as a function of the point masses spacing a, for
parameters m1 ¼ m2 ¼ 10−2. The energy is normalized to its
absolute value at infinity (44). The numerical solution corre-
sponds to the blue filled circles, the Newtonian potential
−m1m2=rþ E∞ to the dashed line and the resummed solution
(23) (shifted with respect to E∞) to the solid curve. The vertical
bar is the location of the Vainshtein radius associated to the total
mass M ¼ m1 þm2.

FIG. 6. Plot of the numerical solution for the coefficient
b0 defined in Eq. (45), for a spacing between point particles
of a ¼ 1.
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ϕ ¼ ϕ2ðr2Þ þ ψ ; ð48Þ

where r2 ¼ jx − x2j is the distance to body 2 and ϕ2 is the
spherically symmetric field (8) generated by the same body.
In the fully screened situation that is of interest to us, this
fields is written as

ϕ2ðr2Þ ¼ 3ðm2r2Þ1=3: ð49Þ

Ifm2 is much greater than the other mass, we can think of
ψ being a fluctuation on top of the dominant field generated
by the mass m2, but for now let us keep the discussion
general and not assume any mass hierarchy (we still assume
m1 ≤ m2 by symmetry). Then by inserting this decom-
position in the action (4) (where we ignored the quadratic
term that is subdominant on small scales), we get the
following action:

S¼ S½ϕ2�þΛ4

Z
dtd3x

�
−
1

2
ð∇ϕ2Þ2ð∇ψÞ2− ð∇ϕ2 ·∇ψÞ2

− ð∇ψÞ2∇ϕ2 ·∇ψ −
1

4
ð∇ψÞ4þψT1

�
; ð50Þ

where S½ϕ2� is the original action (4) applied to ϕ2 and
T1 ¼ −4πm1δ

3ðx − x1Þ is the source term corresponding
to object 1. The term linear in ψ vanishes because of the
equations of motion for ϕ2.
We now ask the question: close to object 1, what is the

behavior of the fluctuation ψ? In other words, is there an
operator that dominates the action for ψ in (50)? It seems
natural to assume that close enough to source 1, we recover
the behavior ψ ∼ ðm1r1Þ1=3, which means that the last
nonlinear operator in Eq. (50) dominates. Let us assume
this is the case and derive the condition on r1 for this to
be true.
If the term ð∇ψÞ4 dominates in the action, then we

recover the same spherically symmetric action as for the
second object, and we consequently obtain

ψ ≃ 3ðm1r1Þ1=3: ð51Þ

Let us now make the ratio between the operator ð∇ψÞ4
and another one in the action, say the term cubic in ψ .
Using Cauchy-Schwarz inequality, we get

ð∇ψÞ2∇ϕ2 · ∇ψ
ð∇ψÞ4 ≤

j∇ϕ2j
j∇ψ j ≃

�
m2

m1

�
r1
r2

�
2
�

1=3
: ð52Þ

Using the same scaling, one can show that the term
quadratic in ψ is similarly suppressed with respect to the
term cubic in ψ . This result is quite important. It means that
around the first body, the field can be well approximated
simply by taking the linear superposition ϕ2 þ ψ of two
spherically symmetric solutions. This is true up to the
maximal distance to the first body,

rmax
1 ¼ r2

ffiffiffiffiffiffi
m1

m2

r
; ð53Þ

which depends on the mass ratio. Since the Vainshtein
radius of a massive body is r�;α ¼ ffiffiffiffiffiffi

mα
p

, this equation can
also be interpreted as

rmax
1

r�;1
¼ r2

r�;2
; ð54Þ

which simply means that the distance to each body is
measured in units of its Vainshtein radius.
This has several consequences. First, it means that we

can ignore the finite size of the bodies and treat them as
point particles as long as their radius is less than rmax

1 . In
this particular theory, this is true both for the Sun-Earth
system and for the Earth-Moon system if we take the
numerical values of their respective radius and masses.
Second, it means that we can simply add the fifth forces

felt by a satellite that orbits sufficiently close to a planet
itself orbiting around its star. Unfortunately, for the SEM
system and the particular screening theory considered here
this is not true, as

�
m⊙

m⊕

�
r1
r2

�
2
�

1=3
≃ 1; ð55Þ

where we have taken r1 to be the Earth-Moon distance
and r2 to be the Sun-Earth distance. The end result is
that we expect the lunar perihelion precession rate to be
corrected by an amount depending on the masses and
distances hierarchies.
For another type of Vainshtein screening such as the

Galileon-3 [28], the same reasoning shows that we can
superpose the nonlinear solutions provided

�
m2

m1

�
r1
r2

�
3
�

1=2
≪ 1; ð56Þ

which is true at the 10% level for the SEM system. The
same conclusion was also reached in [51] with similar
arguments. This shows that in the case of a Galileon-3, the
lunar perihelion precession can be calculated by simply
ignoring the Sun [52]. Since the Earth-Moon mass ratio is
x ≃ 10−2, the calculation can be carried out in the test-mass
approximation and yields an interesting constraint on the
size of a Galileon-3 operator [20].

B. Weak equivalence principle violation

The fact that the two-body energy of two massive
particles is not the one of a reduced mass μ in an external
field implies a violation of the weak equivalence principle,
as we will now show. In this section we will assume a
general Vainshtein screening mechanism that gives rise to a
fifth force [not necessarily the specific PðXÞ theory that we
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studied in the rest of the article]. If we first neglect the
Moon, the total (gravitational and scalar) interacting
Lagrangian of the Earth and the Sun is written as

LSE ¼ Gm⊙m⊕

rSE

�
1þ αðxSEÞ

�
rSE
r�

�
n
�
: ð57Þ

Here rSE ¼ jyS − yEj is the Earth-Sun distance, xSE ¼
m⊕=ðm⊙ þm⊕Þ is the Earth-Sun mass ratio, r� is the
Vainshtein radius of the Sun, n is an exponent that depends
on the type of screening considered, and α is an unknown
function of the coefficient xSE that can be found numerically
as in Sec. IV. In order to avoid confusion between positions
andmass ratios, we denote in this section the positions by the
letter y. This type of Lagrangian is common to all theories
endorsed with Vainshtein screening, with the expressions of
n, r� and α different among theories. For example, n ¼ 4=3
for the PðXÞ theory considered above in this article, and
n ¼ 3=2 for a Galileon-3.
We will make the supplementary assumption that we can

get the total force felt by the Moon by simply adding the
fifth forces of the Earth and the Sun. As we showed in
Sec. VA, this is the case for a Galileon-3 but not for the
particular PðXÞ example examined in the rest of the article.
A complete treatment of this case would necessitate further
work. With this assumption we can write the total (non-
relativistic) interaction Lagrangian of this three-body sys-
tem (to get the total Lagrangian from this, one should also
add the kinetic energies from the three bodies):

Lint ¼
Gm⊙m⊕

rSE

�
1þ αðxSEÞ

�
rSE
r�

�
n
�

þGm⊙mM

rSM

�
1þ αðxSMÞ

�
rSM
r�

�
n
�

þGm⊕mM

rEM

�
1þ αðxEMÞ

�
rEM
r�

�
n
�
; ð58Þ

where S designates the Sun, E the Earth, M the Moon, and
each line of this equation is the two-body Lagrangian of
Eq. (57) adapted to each pair of bodies. We will now derive
the fifth force incidence on the lunar motion along the lines
of Ref. [53].
The first line of Eq. (58) gives rise to the Earth anomalous

perihelion precession and the third line to the lunar anoma-
lous perihelion precession. These effects are already dis-
cussed in Refs. [19–21] and we will not comment on them.
From now on, we will ignore the last line of Eq. (58) which
does not give rise to the leading order equivalence principle
violation that we are going to derive. Let us expand the
distances to the Sun around the Earth-Moon center of mass,
which is defined with the usual expression

ðm⊕ þmMÞY ¼ m⊕yE þmMyM; ð59Þ

where yE and yM are the positions of the Earth and the
Moon, respectively. Then the distances to the Sun can be
expressed by

rSE ¼ jyS − Y − xSMyEMj;
rSM ¼ jyS − Y þ xSEyEMj; ð60Þ

where yS is the Sunposition. Expanding the total Lagrangian
to first order in rEM, one finds

Lint¼
Gm⊙ðm⊕þmMÞ

r

×

�
1þ½ð1−xEMÞαðxSEÞþxEMαðxSMÞ�

�
r
r�

�
n
�

−Gm⊙m⊕xEMriEM
∂
∂ri

�
1

r

�
1þαðxSEÞ

�
r
r�

�
n
��

þGm⊙mMð1−xEMÞriEM
∂
∂ri

�
1

r

�
1þαðxSMÞ

�
r
r�

�
n
��

;

ð61Þ

where r ¼ jyS − Yj is the center-of-mass distance to
the Sun, and as discussed above we have dropped the
third line of Eq. (58). Upon introducing the reduced
mass μEM ¼ m⊕mM=ðm⊕ þmMÞ, one finds the following
expression:

Lint¼
Gm⊙ðm⊕þmMÞ

r

�
1þ½ð1−xEMÞαðxSEÞ

þxEMαðxSMÞ�
�
r
r�

�
n
�

þGμEMm⊙
riEMri
r3

�
ð1−nÞðαðxSEÞ−αðxSMÞÞ

�
r
r�

�
n
�
:

ð62Þ

As discussed in Ref. [53], there are two physical effects
that stem from this Lagrangian [54]. The first and second
lines of Eq. (62) implies that the gravitational constant
involved in the motion of the Earth-Moon system around
the Sun is not the same as the one involved in the motion
of this system around its barycenter [third line of
Eq. (58)]. However, this effect has practically no observ-
able consequences.
The second physical effect, on which we will con-

centrate, is the perturbation on the lunar orbit implied by
the third line of Eq. (62). Nordtvedt [55] showed in
1968, in the context of scalar-tensor theories, that this
term implies a modulation of the lunar orbit with
amplitude

δrEM ≃ 3 × 1012jδ⊕ − δMj cm: ð63Þ
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In scalar-tensor theories, jδ⊕ − δMj is the fractional
variation of Newton’s constant due to the gravitational
self-energy of each body; said equivalently, Newton’s
constant appearing in the gravitational attraction between
two bodies A and B is

GAB ¼ Gð1þ δA þ δBÞ: ð64Þ

Although the physical origin is quite different, the
equivalence principle violation considered here gives rise
to the same term in the third line of the Lagrangian (62)
as the equivalence principle violation of scalar-tensor
theories. The parameter δ⊕ − δM is replaced by the follow-
ing quantity:

δ⊕ − δM → ð1 − nÞðαðxSEÞ − αðxSMÞÞ
�
r
r�

�
n

≃ ð1 − nÞα1xSE
�
r
r�

�
n
: ð65Þ

In the second line we have expanded α to first order
in the mass ratios, αðxÞ ≃ α0 þ α1x and neglected the
Moon mass ratio compared to the Earth mass ratio,
xSM ≪ xSE.
Current lunar laser ranging data give the constraint

jδ⊕ − δMj ≲ 10−13 [24], which by ignoring the Oð1Þ factor
of (1 − n) yield the constraint

α1xSE

�
r
r�

�
n ≲ 10−13: ð66Þ

Let us contrast this with the anomalous perihelion
constraint. For Earth, the precession is measured with an
accuracy of 10−11 (for a precise constraint on a Galileon-3,
see Ref. [21]), and the anomalous perihelion precession in
typical Vainshtein screened theories is proportional to the
ratio of scalar and gravitational potentials [20], which gives
the constraint

α0

�
r
r�

�
n ≲ 10−11: ð67Þ

On the one hand, we gain 2 orders of magnitude by
using lunar laser ranging data, but on the other hand
the equivalence principle violation is suppressed by the
mass ratio xSE ≃ 10−6 with respect to the perihelion
bound, resulting in a looser constraint if we assume
that α0 ∼ α1 ∼Oð1Þ.

VI. CONCLUSIONS

In this paper we have analyzed for the first time the
two-body potential energy of pointlike objects in
Vainshtein screened theories for arbitrary mass ratios.
One the one hand, from outside the nonlinear radius, the
problem is amenable to a perturbative treatment which we
use to resum a class of Feynman graphs. We derive an
effective one-body energy map which relates the two-
body energy to the one of a test particle in an external
field. On the other hand, we conjecture the existence of
such an energy map inside the nonlinear radius where the
nonlinear screening term dominates the action. We have
tried to get the analytical behavior of this expansion by a
matching procedure at the nonlinear scale. Improving the
accuracy of this matching procedure would necessitate
knowing the exterior potential energy with a higher
accuracy. This could be done by calculating Feynman
diagrams with two insertions of the nonlinear operator,
instead of only one as we did in Sec. II B. This would
necessitate more involved computations that we leave for
future work.
At the same time, we have performed a numerical

simulation in order to get the most relevant effective
coefficient b0 corresponding to the ratio between the real
two-body energy and the energy of a test mass in an
external field. In the test-mass limit, b0 ≃ 1, while in the
equal-mass limit, we find b0 ≃ 0.75 in the particular PðXÞ
theory that we considered. This means that Vainshtein
screening is active even in the fully nonlinear situation
where we do not assume one mass to be smaller than
the other, with a departure from simple order-of-
magnitude estimates encoded into a simple coefficient
b0 which can be found with a numerical simulation.
While we have focused on a particular model exhibiting
nonlinearities, we expect such a feature to be valid in
any model endorsed with Vainshtein screening such as
Galileons.
As we showed in Sec. V, the fact that the two-body

energy differs from the test-mass one implies a violation of
the weak equivalence principle, as Earth and the Moon
would not fall the same way towards the Sun. We used this
fact to bound the size of the coupling parameters of any
theory relying on Vainshtein screening to hide the effects
of a fifth force in the Solar System. Although the final
constraint is looser than the one obtained from perihelion
precession for a Galileon-3, the methodology employed
is quite general and we intend to use it to investigate on
the case of two neutron stars or black holes in their
inspiral phase.
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APPENDIX A: USEFUL INTEGRALS

Z
ddk
ð2πÞd

1

ðk2ÞaððkþKÞ2Þb ¼
1

ð4πÞd=2
Γðaþ b − d=2ÞΓðd=2 − aÞΓðd=2 − bÞ

ΓðaÞΓðbÞΓðd − a − bÞ ðK2Þd=2−a−b; ðA1Þ

Z
ddk
ð2πÞd

ki

ðk2ÞaððkþKÞ2Þb ¼
1

ð4πÞd=2
Γðaþ b − d=2ÞΓðd=2 − aþ 1ÞΓðd=2 − bÞ

ΓðaÞΓðbÞΓðd − a − bþ 1Þ ðK2Þd=2−a−bKi; ðA2Þ

Z
ddk
ð2πÞd

kikj

ðk2ÞaððkþKÞ2Þb ¼
1

ð4πÞd=2
Γðaþ b − d=2 − 1ÞΓðd=2 − aþ 1ÞΓðd=2 − bÞ

ΓðaÞΓðbÞΓðd − a − bþ 2Þ ðK2Þd=2−a−b

×

�
d=2 − b

2
K2δij þ ðaþ b − d=2 − 1Þðd=2 − aþ 1ÞKiKj

�
; ðA3Þ

Z
ddk
ð2πÞd ðk

2Þαeikr ¼ 22α−1

πðd−1Þ=2
Γðαþ d=2Þ

Γðd=2ÞΓðð3 − dÞ=2 − αÞ ðr
2Þ−α−d=2: ðA4Þ

APPENDIX B: MATCHING INTERIOR AND
EXTERIOR SOLUTIONS

In this Appendix, we will attempt to obtain a qualitative
analytical behavior of the energy as a function of the mass
ratio inside the nonlinear radius. We can use the formula for
the energy outside the screening radius that we found in
Sec. II C as a limiting boundary condition for the energy
map inside the screening radius. Since the energy map
partly resums the nonlinear behavior, it should allow us to
get a qualitative description of the coefficient b0.
Using the energy derived in Eq. (23), one finds that the

left-hand side of the energy map (32) is written as

E0

E0
tm

¼ 1

ϕ0
M

�
−
M
r2

þ
ϕ0
Mð1−xÞ
1 − x

þ ϕ0
Mx

x

�
≡ Fðr; xÞ; ðB1Þ

for r close to r�. We recall that x is the mass ratio x ¼
m1=M ≤ 1=2 and that ϕm is the spherically symmetric field

(8) generated by a mass m. Note that, as ϕ0
Mx
x → M

r2 as x → 0,
this expression has the good test-mass limit, and in this
limit we recover that b0 ¼ 1 and b1;…bN ¼ 0.
If the energy map really resums a part of the nonlinear

dynamics, then it should give an asymptotic expansion near
to the Vainshtein radius, as suggested by the relative
smallness of the expansion parameter at r�:

E0
tm

E0
ref

− 1

����
r�

≃ −0.53; ðB2Þ

where we recall that r� ¼ ð27=4Þ1=4 ffiffiffiffiffi
M

p
.

Consequently, we can try to find a first approximation for
the value of b0 by neglecting higher-order contributions in
the right-hand side of Eq. (32). This gives for b0

bð0Þ0 ðxÞ ≃ Fðr�; xÞ: ðB3Þ

This first prediction for b0 is plotted in Fig. 7.
One can try to improve the result by matching not only

the numerical value of the energy map (32) at r ¼ r�,
but also its derivatives with respect to r. This will allow us
to extract b1; b2;… while at the same time refining our
prediction on b0. More precisely, matching up to the kth
derivative will allow us to determine kþ 1 coefficients in

the energy map, say bðkÞ0 ; bðkÞ1 ;…bðkÞk .

FIG. 7. Plot of the first four predictions for the coefficient b0
defined in Eq. (32) using the procedure defined in the main text.
For comparison, the numerical coefficient b0 is also plotted.
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When should we stop this procedure? Obviously it
cannot be pushed to arbitrary order because the boundary
condition on the energy is not sufficiently precise. A
sensible criterion can be found by thinking in terms of
asymptotic series. Let us write the kth prediction for b0 as

bðkÞ0 ¼
Xk
l¼0

bðlÞ0 − bðl−1Þ0 ; ðB4Þ

where we have defined bð−1Þ0 ¼ 0.

In this equation we have highlighted the fact that
each step of the iteration brings out an additional factor
of bðlÞ0 − bðl−1Þ0 to b0. Then the asymptotic series criterion

requires us to cut the sum at the term at which jbðlÞ0 − bðl−1Þ0 j
is minimized in order to get the best precision on b0. In
Fig. 8 we have plotted the ratio

rl ¼
���� bðlÞ0 − bðl−1Þ0

bðl−1Þ0 − bðl−2Þ0

����; ðB5Þ

for l ¼ 1, 2, 3. The minimal term of the series is the one
for which rl < 1 and rlþ1 > 1. We can see directly that,
while the two first iterations of the procedure (i.e., match-
ing up to the second derivative) seem to bring an improve-
ment in the determination of b0, the third one gives a large
correction.
The end result of this Appendix is shown in Fig. 7, where

we plot the first four predictions bð0Þ0 , bð1Þ0 , bð2Þ0 and bð3Þ0

for b0. Of course, an immediate drawback of this method is
that we are not able to assess quantitatively the precision of
the estimation of this coefficient; moreover, it is apparent
from Fig. 7 that even the qualitative behavior is not correct.
A refinement of the method is needed but we leave this for
future work.
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