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Gyratonic plane fronted gravitational waves are exact solutions of Einstein’s field equations, which
correspond to gravitational waves that carry momentum and angular-momentum. Using the definitions of
the Hamiltonian formulation of the teleparallel equivalent of general relativity, we explicitly evaluate the
general expressions of the energy-momentum and angular-momentum of these space-times. In order to
better understand the additional properties of these gravitational waves, we consider the motion of particles
in this space-time and obtain an interesting relation between the angular-momentum of the particles and
that of the gravitational waves.
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I. INTRODUCTION

The studyofplane frontedgravitationalwaveswithparallel
rays (pp-waves) are a standard topic in the inspection of exact
solutions of Einstein’s field equations.Although the existence
of these waves are questioned, they represent a valid class
of solutions of the gravitational field equations that do not
violate any physical principle and are geodesically complete
[1]. The pp-waves space-timewere investigated in the 1950s
and 1960s specially by Peres, Pirani, and Bondi [2,3], and
most recently in the Refs. [4–11].
The gravitational waves considered in this paper re-

present the exterior field of spinning particles (gyratons)
moving with speed of light. They were quoted by Peres [2]
and studied by Misner [12]. Most recently, the gyratonic
waves were rediscovered by Frolov and collaborators
[13,14], and studied in great detail in the Refs. [15,16],
where in the latter a direct interaction between the energy of
the gravitational field and the kinetic energy of a particle,
which is hit by the gyratonic wave, was obtained. Despite
the long history of pp-waves research, there are still
properties not yet appreciated.
A recent conjecture about the local exchange of energy

between particles and pp-waves [17] provides an interest-
ing opportunity to better understand these waves in a
general way (gyratonic) by explicitly calculating its energy
and angular-momentum. In order to achieve this, we use the
well-established expressions that arise in the Hamiltonian

formulation of the teleparallel equivalent of general
relativity (TEGR).
Our aim in this paper is to generalize the nongyra-

tonic pp-waves expressions of the energy-momentum
of the Ref. [18] and the angular-momentum of the
Ref. [19]. In order to better understand the gyratonic
effect of the gravitational field, we consider two
solutions of the Einstein’s equations: one axially sym-
metric similar to the Aichelburg-Sexl monopole solution
[20], and another which is the monopole solution with
the dipole correction.
This article is organized as follows. In Sec. II we

briefly present the structure of the TEGR and its equiv-
alence with general relativity, and then we present the
definitions of energy-momentum and angular-momentum
that arise from the Hamiltonian formulation of the TEGR.
In Sec. III the gyratonic metric and the Einstein’s vacuum
field equations for the gyratonic waves are presented,
and in addition a simple relationship between the two
functions describing the gyratonic pp-waves is pre-
sented. In Sec. IV, a set of tetrads adapted to a spatially
static observer and associated with the gyratonic metric is
constructed. Moreover, the energy density of the gyra-
tonic space-time is explicitly evaluated for an asymptoti-
cally flat solution. In Sec. V, using the tetrads obtained
in the previous section, the angular-momentum of the
gyratonic field is calculated and compared to that of the
non-gyratonic pp-waves. Also in Sec. V, the gyratonic
angular-momentum for an axially symmetric solution is
calculated. Finally, in Sec. VI, we present our conclusions
and consider the effects of the results on the angular-
momentum of a test particle, we also present an interest-
ing relationship between the asymptotic behavior of the
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angular-momentum of particles and the angular-momen-
tum of the wave.
We use the following notation: space-time indices are

denoted by Greek letters μ; ν;… and SOð3; 1Þ indices are
indicated by Latin letters a; b;…, which run from 0 to 3.
Time and space indices are indicated as μ ¼ 0; i and
a ¼ ð0Þ; ðiÞ. The tetrad field is indicated by eaμ and the
flat Minkowski space-time metric tensor by ηab ¼
diagð−1; 1; 1; 1Þ raises and lowers the Lorentz indices,
while the metric tensor gμν raises and lowers the space-time
indices. We use the geometrized units system, i.e.,
G ¼ c ¼ 1.

II. THE TELEPARALLEL EQUIVALENT OF
GENERAL RELATIVITY

The TEGR is an alternative description, dynamically
equivalent to the general relativity, constructed in terms
of the tetrad field eaμ. The tetrads are reference frames
adapted to preferred observers in space-time. The compo-
nents eð0Þμ are always tangent to the observer world line. In
this case, the eð0Þμ component is identified with the four-
velocity of the observer Uμ in their own rest frame. To
perform a measurement without the interference of the
frame motion, the spatial velocity Ui must be zero, i.e., the
observer moves along his own world line only. A set of
tetrads adapted to a spatially static observer must satisfy
the condition

Ui ¼ eð0Þi ¼ 0: ð1Þ

The TEGR is constructed in terms of a quadratic combi-
nation in the torsion tensor which is related to the
antisymmetric part of the Cartan connection

Γμ
λν ¼ eaμ∂λeaν: ð2Þ

The above connection is not symmetric in the permutation
of the lower indices. The Cartan connection is curvature
free, but has a non-null torsion tensor

Taμν ¼ ∂μeaν − ∂νeaμ: ð3Þ

With the torsion tensor above it is possible to obtain a
curvature scalar RðeÞ such that

eRðeÞ ¼ −e
�
1

4
TabcTabc þ

1

2
TabcTbac − TaTa

�

þ 2∂μðeTμÞ;

and the Lagrangian density L for the gravitational and
matter fields may be written as [21]

L ¼ −keΣabcTabc − LM; ð4Þ

where

Σabc ≡ 1

4
ðTabc þ Tbac − TcabÞ þ 1

2
ðηacTb − ηabTcÞ; ð5Þ

with Ta ≡ Tb
b
a, e≡ detðeaμÞ, k ¼ 1=16π and Lm is the

Lagrangian density for the matter fields. The field equa-
tions are obtained varying the above Lagrangian density
with respect to the tetrad field eaμ, thus they read [21]

eaλebλ∂νðeΣbλνÞ − e

�
Σbν

aTbνμ −
1

4
eaμTbcdΣbcd

�

¼ 1

4k
eTaμ; ð6Þ

where eTaμ ≡ δLM
δeaμ is the projected energy-momentum

tensor due the matter fields.
Although the field equations (6) are dynamically

equivalent to Einstein’s field equations [21], their sym-
metries are not. The absence of the divergence term on the
right-hand side of Eq. (4) makes L invariant only under
global SOð3; 1Þ transformations. In order to obtain the
Hamiltonian density of the TEGR for the gravitational
field (LM ¼ 0), we rewrite the Lagrangian density L in
the phase space as L¼Πai _eai−H, where Πai ¼ −4kΣa0i

are the momenta canonically conjugated to eai and the
dot represents the derivative with respect to the time t.
The Hamiltonian density may then be written as [22]

Hðe;ΠÞ ¼ ea0Ca þ λabΓab; ð7Þ

where λab and ea0 are Lagrange multipliers.
The constraints Ca and Γab in the above Hamiltonian

density are first class constraints and are functions of Πai

and eai. The constraint Ca may be written as

Ca ¼ −∂iΠai þ ha ¼ 0; ð8Þ

where ha is a very long expression of the field variables
(explicitly written in the Ref. [21]). The constraint Γab is
given by

Γab ≡ 2Π½ab� þ 4keðΣa0b − Σb0aÞ
¼ 2Π½ab� − 2k∂i½eðeaieb0 − ebiea0Þ� ¼ 0: ð9Þ

The constraints above satisfy the algebra of the Poincaré
group [22]. Both constraints Ca and Γab contain a total
divergence and under integration yield expressions for the
gravitational energy-momentum and angular-momentum,
respectively.
From the integration of the constraint Ca in (8) it is

possible to define the energy-momentum four-vector Pa as
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Pa ¼
Z
V
had3x ¼

Z
V
∂iΠaid3x:

Since the expression for ha is too long, it is more
convenient to work with the right-hand side of the above
expression. The energy-momentum four-vector Pa of the
gravitational and matter fields, contained in a volume V of
space, is then defined as

Pa ¼ 4k
Z
V
∂iðeΣa0iÞd3x: ð10Þ

The expression (9) is identically zero, and in analogy to the
definitions of the energy-momentum four-vector, the pri-
mary constraint Γab ¼ 0 under integration give us the
angular-momentum of the gravitational field as

Lab ¼
Z
V
Mabd3x ¼ −2k

Z
V
∂i½eðeaieb0 − ebiea0Þ�d3x;

ð11Þ

where Mab is the gravitational angular-momentum density
and V is the three-dimensional volume of the space of
interest.
The expressions (10) and (11) are both invariant under

spatial coordinate transformations and time reparametriza-
tions, but they are not under local Lorentz transformations.
The former make these quantities frame dependent, as
happens in classical physics, e.g., a moving observer with
velocity v ≠ 0 measures a different energy than a spatially
static observer (v ¼ 0). In the case of a vacuum solution,
like the pp-waves, the expressions (10) and (11) represent
the energy-momentum four-vector and angular-momentum
of the gravitational field, respectively.
As mentioned previously, the constraints Ca and Γab

satisfy the algebra of the Poincaré group [22]

fCa; Cbg ¼ 0;

fCa;Γbcg ¼ ηabCc − ηacCb;

fΓab;Γcdg ¼ ηacΓbd þ ηbdΓac − ηadLbc − ηbcΓad:

Therefore, the interpretations of Pa and Lab, which also
satisfy the same algebra, are physically consistent. We shall
use these definitions to explicitly evaluate the energy and
angular-momentum of the gyratonic space-time, to be
presented in the next section.

III. GYRATONIC SPACE-TIME

The gyratonic pp-waves line element is described in
terms of generalized Brinkmann coordinates as [15]

ds2 ¼ Hðu; ρ;ϕÞdu2 þ dρ2 þ ρ2dϕ2 − 2Jðu; ρ;ϕÞdudϕ
þ 2dudv: ð12Þ

This wave moves with the speed of light, so the wave front
is always at u ¼ 0 and the surfaces u ¼ constant are flat.
The above line element represents the field generated by
spinning particles that move at the speed of light, named
“gyratonic” by Frolov and Fursaev [13]. Outside the
source, this metric represents a pure radiation field that
propagates along the null direction v. In the asymptotic
limit, one may identify

u≡ z − tffiffiffi
2

p ð13Þ

and

v≡ zþ tffiffiffi
2

p ; ð14Þ

where the z axis represents the propagation axis of the
wave.
The gyratonic metric is specified by two, in principle,

independent functions Hðu; ρ;ϕÞ and Jðu; ρ;ϕÞ. These
functions must be periodic in the angular coordinate ϕ,
and if they are independent of ϕ, the space-time is axially
symmetric around the propagation axis. If the functions H
and J are written as

H ¼ ω2ðuÞρ2 þ 2ωðuÞχðu;ϕÞ þH0ðu; ρ;ϕÞ ð15Þ

and

J ¼ ωðuÞρ2 þ χðu;ϕÞ; ð16Þ

respectively, the Einstein’s vacuum field equations are
reduced to [15]

∇2H0 ≡ ∂ρ∂ρH0 þ
1

ρ
∂ρH0 þ

1

ρ2
∂ϕ∂ϕH0

¼ 2

ρ2
ð∂u∂ϕχ − ω∂ϕ∂ϕχÞ: ð17Þ

As mentioned in Ref. [15], there exists a gauge freedom
fðuÞ in the choice of the angular coordinate, resulting in
the gauge ω̃ðuÞ ¼ ωðuÞ þ ∂ufðuÞ. The function ωðuÞ in
Eq. (15) may be set to zero by an appropriate gauge
transformation. With this simplification, the gyratonic
function J becomes

J ¼ Jðu;ϕÞ ¼ χðu;ϕÞ ð18Þ

and Eq. (17) is simplified to

∇2H0 ¼
2

ρ2
ð∂u∂ϕJÞ: ð19Þ

Applying separation of variables in the functions J and
H as
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Jðu;ϕÞ ¼ j1ðuÞj2ðϕÞ

and

Hðu; ρ;ϕÞ ¼ h1ðuÞh2ðρ;ϕÞ;

the Eq. (19) becomes

ρ2∇2h2ðρ;ϕÞ
2∂ϕj2ðϕÞ

¼ ∂uj1ðuÞ
h1ðuÞ

¼ constant≡ ϑ: ð20Þ

Thus, we have two different equations, namely

ρ2∂ρ∂ρh2 þ ρ∂ρh2 þ ∂ϕ∂ϕh2 ¼ 2ϑ∂ϕj2ðϕÞ ð21Þ

and

∂uj1ðuÞ ¼ ϑh1ðuÞ: ð22Þ

A particular solution for h2p, satisfying Eq. (21), with the
homogeneous equation ∇2h2h ¼ 0, is given by

h2pðρ;ϕÞ ¼ α ln ρþ 2ϑfðϕÞ;

where ∂ϕfðϕÞ ¼ j2ðϕÞ and α ¼ constant. It should be
noted that Eq. (22) allows an explicit relation between
H and J on the variable u. Also from the expression (18), if
χ ¼ χðuÞ, then H must satisfy ∇2H ¼ 0. In addition to an
arbitrary dependence in u, the metric functions can be
explicitly determined by the Einstein’s equations. This fact
is typical of waves solutions, where the geometry of the
wave pulse may be chosen.
In the next two sections, we evaluate the quantities (10)

and (11) for the gyratonic space-time. In this point, it is
important to emphasize that in what follows we will
consider solutions of Einstein’s equations only in the
vacuum regions outside the gyratonic matter source, i.e.,
in regions where ρ > ρ0 and the energy momentum tensor
vanishes (Tμν ¼ 0). In fact, for a more realistic analysis of
these solutions it would be necessary to know the solutions
inside the gyratonic matter source, i.e., in regions where
ρ < ρ0 and the energy momentum tensor is such that
Tμν ≠ 0. In addition, as mentioned in the Ref. [23], for
physically realistic solutions it is expected that the gyra-
tonic matter source has finite radius ρ ¼ ρ0 ≠ 0.

IV. THE ENERGY-MOMENTUM
OF GYRATONIC pp-WAVES

For the evaluation of the energy-momentum of a
gravitational field in the TEGR, we need of a set of tetrads
eaμ associated with the space-time and adapted to a
spatially static observer. The energy expression (10) comes
from a secondary constraint of the Hamiltonian formu-
lation, so the metric must be written in the ðt; ρ;ϕ; zÞ

coordinates using the expressions (13) and (14). In these
coordinates the metric (12) reads

ds2 ¼
�
H
2
− 1

�
dt2 þ dρ2 þ ρ2dϕ2 þ

ffiffiffi
2

p
Jdtdϕ

−
ffiffiffi
2

p
Jdzdϕþ

�
1þH

2

�
dz2 −Hdtdz: ð23Þ

The frame is determined by fixing six conditions in the
tetrad field. The fact that

Uμ ¼ eð0Þμ ¼
�
1

A
; 0; 0; 0

�
ð24Þ

ensures that the observers adapted to this set of tetrads
follows a time like world line and in view of Eq. (1) the
observers do not have any spatial translation movement.
The four-velocity Uμ is a timelike vector, i.e., U2 ¼
UμUμ ¼ g00=A2 ¼ −1 and this result is independent of
values ofH, however to evaluate the physical quantities we
emphasize that the tetrad field is valid in space time regions
where 2 −H > 0. Anyway, it should be expected that in
regions far way from the source these waves have small
amplitudes.
The others conditions fix the spatial orientation of

the frame, i.e., eð1Þμ, eð2Þμ, and eð3Þμ are asymptotically
unit four-vectors along the directions of x, y, and z,
respectively. A suitable set of tetrads adapted to a spatially
static observer and associated with the line element (23) is
given by

eaμ ¼

0
BBBBB@

−A 0 Jffiffi
2

p
A

−B

0 cosðϕÞ −ρ sinðϕÞ 0

0 sinðϕÞ ρ cosðϕÞ 0

0 0 − Jffiffi
2

p
A

C

1
CCCCCA
; ð25Þ

were A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H=2

p
, B ¼ H

2
ffiffiffiffiffiffiffiffiffiffiffi
1−H=2

p , C ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1−H=2

p and

e ¼ detðeaμÞ ¼ ρ is the determinant of the tetrad field.
The set of inverse tetrads may be obtained by the relation
eaμ ¼ ηabgμνebν and it reads

eaμ ¼

0
BBBBB@

−1=A 0 0 0

− J sinϕffiffi
2

p
ρ

cosðϕÞ − sinðϕÞ
ρ − J sinϕffiffi

2
p

ρ

J cosϕffiffi
2

p
ρ

sinðϕÞ cosðϕÞ
ρ

J cosϕffiffi
2

p
ρ

− Hffiffi
2

p
A

0 0 A

1
CCCCCA
: ð26Þ

It is possible to see that by putting H ¼ 0 ¼ J, one obtains
eaμ ¼ δμa and the torsion Taμν vanishes, which excludes the
necessity to regularize the field.
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With the set of tetrads (25), the energy-momentum of the
gravitational field can be obtained. In order to achieve such
aim, first we calculate the nonvanishing components of
Tabc ¼ ebμecνTa

μν, reading

Tð0Þð0Þð1Þ ¼−Tð3Þð1Þð3Þ

¼−
1

4ρA2
ð2

ffiffiffi
2

p
sinϕ∂tJ−sinϕ∂ϕHþρcosϕ∂ρHÞ;

Tð0Þð0Þð2Þ ¼−Tð3Þð2Þð3Þ

¼−
1

4ρA2
ð−2

ffiffiffi
2

p
cosϕ∂tJþcosϕ∂ϕH

þρsinϕ∂ρHÞ;
Tð0Þð0Þð3Þ ¼Tð3Þð0Þð3Þ

¼−
1

4A3
∂tH;

Tð0Þð1Þð3Þ ¼ 1

2ρA2
ð

ffiffiffi
2

p
sinϕ∂tJ−sinϕ∂ϕHþρcosϕ∂ρHÞ;

Tð0Þð2Þð3Þ ¼ 1

2ρA2
ð−

ffiffiffi
2

p
cosϕ∂tJþcosϕ∂ϕHþρsinϕ∂ρHÞ;

Tð3Þð0Þð1Þ ¼−
1ffiffiffi
2

p
ρA2

sinϕ∂tJ;

Tð3Þð0Þð2Þ ¼ 1ffiffiffi
2

p
ρA2

cosϕ∂tJ;

where we made use of ð∂t þ ∂zÞðH; JÞ ¼ 0. From the
above expressions and the definition in (5), the non-null
components Σa0ν are

Σð0Þ01 ¼ Σð3Þ01 ¼ −
1

4
ffiffiffi
2

p ∂ρHffiffiffiffiffiffiffiffiffiffiffiffi
2 −H

p

Σð0Þ02 ¼ Σð3Þ02 ¼ −
1

4
ffiffiffi
2

p
ρ2

∂ϕHffiffiffiffiffiffiffiffiffiffiffiffi
2 −H

p þ ∂tJ

2ρ2
ffiffiffiffiffiffiffiffiffiffiffiffi
2 −H

p

Σð1Þ01 ¼ 1

4

∂tH
2 −H

cosϕ

Σð1Þ02 ¼ −
1

4ρ

∂tH
2 −H

sinϕ

Σð1Þ03 ¼ −
1

4ρ

∂ϕH sinϕ − ρ∂ρH cosϕ

2 −H

Σð2Þ01 ¼ 1

4

∂tH
2 −H

sinϕ

Σð2Þ02 ¼ 1

4ρ

∂tH
2 −H

cosϕ

Σð2Þ03 ¼ 1

4ρ

∂ϕH cosϕþ ρ∂ρH sinϕ

2 −H
: ð27Þ

Finally, from Eq. (10) and the expressions in (27) we have

Pð0Þ ¼Pð3Þ ¼−
k
8

Z
V
d3x½∂ρðeΣð0Þ01Þþ½∂ϕðeΣð0Þ02Þ�: ð28Þ

Using the Eq. (19) and noticing that ∂tJ ¼ − 1ffiffi
2

p ∂uJ, the

above expression reduces to

Pð0Þ ¼ Pð3Þ ¼ −k
Z
V

�
ρ2ð∂ρHÞ2 þ ð∂2

ϕHÞ2 þ 2∂uJ∂ϕH

8ρA3

þ 2
∂u∂ϕJ

ρA

�
d3x: ð29Þ

The remaining components of the energy-momentum four-
vector vanish, i.e.,

Pð1Þ ¼ 0 ¼ Pð2Þ: ð30Þ

The square of the energy-momentum four-vector is null, as
it happens for the nongyratonic pp-wave, i.e., PaPa ¼ 0
[18]. This result is consistent with the fact that these fields
describe massless particles.
In the expression (29), the nongyratonic pp-waves

space-time may be obtained only by taking J ¼ 0. This
can be seen by comparing the results obtained here with
those obtained in Ref. [18] by identifying x ¼ ρ cosϕ and
y ¼ ρ sinϕ. This shows that the gyratonic pp-waves are
more general than the nongyratonic pp-waves.
The result in Eq. (29) has two interesting features. First,

if the gravitational field is axially symmetric, i.e., H ¼
Hðu; ρÞ and J ¼ JðuÞ, the energy of the wave will be the
same of the nongyratonic case. The effect of the gyratonic
term in the gravitational energy may only be detected in
waves that are not axially symmetric so, for these solutions,
the gyratonic wave cannot be distinguished from a non-
gyratonic wave by its gravitational energy. Second, the
nongyratonic pp-waves have only negative energy [18],
but the gyratonic waves may have positive energy.

A. Multipole solution

In order to better understand the effects of the gyratonic
term on the pp-waves, in this subsection the expression
(29) is evaluated for the multipole solution for H with the
function J depending only on u, i.e., J ¼ JðuÞ and in this
case j1ðuÞ and h1ðuÞ are arbitrary functions. For H we
choose the monopole solution with the dipole correction,
namely,

H ¼ −
�
1

8
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
−
1

4

�
xy

ðx2 þ y2Þ2 þ
x2 − y2

ðx2 þ y2Þ2
��

e−u
2

¼ −
1

8

�
ln ρþ 1

ρ2
ðsin 2ϕþ cos 2ϕÞ

�
e−u

2

: ð31Þ

and we choose

J ¼ d
du

e−u
2

: ð32Þ
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Replacing H and J in the argument of the integral (29) with the solution (31), (32), we obtain the energy density ϵ given by

ϵ≡ 4k∂iðeΣð0Þ0iÞ ¼ −
e−2u

2 ½ρ4 þ 4ρ2ð32u2 − 17Þ sinð2ϕÞ − 4ρ2ð32u2 − 15Þ cosð2ϕÞ þ 8�
8192πρ5

: ð33Þ

The above energy density depends on three variables, then
it is not possible to plot a four-dimensional figure, however,
we can plot a contour surface for u ¼ 0. The flatness in the
asymptotic limit can be seen in Fig. 1 for the wave front at
u ¼ 0. For a fixed radial position ρ ¼ 5, the plot of ϵ is
displayed in Fig. 2 for the gyratonic wave. It can be
compared with the nongyratonic case in Fig. 3. The
gravitational energy density is not dependent on the angular
variable in the nongyratonic case. For the gyratonic wave,
there are regions of positive and negative energy density,

depending on the azimuthal coordinate, while in the non-
gyratonic wave the energy density is always negative.
Although the energy density ϵ depends on three varia-

bles, for fixed values of t it is possible to plot levels surfaces

FIG. 1. Energy density (33) on the wave front u ¼ 0.

FIG. 2. Energy density (33) for ρ ¼ 5.

FIG. 3. Energy density (33) for ρ ¼ 5 and J ¼ 0.

FIG. 4. Contour plot for the energy density (33) at t ¼ 0.
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for fixed values of ϵ. For instance, with the aid of the
relation (13) for t ¼ 0 ⇒ u ¼ z=

ffiffiffi
2

p
, the level surface can

be seen in Fig. 4, where in the pink region the energy
density is negative (ϵ ¼ −0.0012) and in the yellow region
it is positive (ϵ ¼ þ0.0012).
Also with the aid of the relation (13), the gravitational

energy density can be numerically integrated to obtain P0ðtÞ
in a sufficiently large z interval, excluding the region around
the z axis (ρ ¼ 0), this is because this region contains a
singularity in the axis ρ ¼ 0. The result is presented in Fig. 5.
The study of singularities in pp-waves space-times is a
recent topic of research [24]. The peak in Fig. 5 represents
the total energy of the gyratonic pp-wave that a spatially
static observer will measures. For a particle that interacts
with the wave, the difference in the energy of the particle
before and after the wave hits the particle, represents the
energy absorbed or emitted by the particle. This difference
depends on the direction of the acceleration of the gravita-
tional field, as well on the initial conditions of the particle
[25]. The peak value in Fig. 5 represents the maximum
energy that the particle can absorb from the wave.

V. THE ANGULAR MOMENTUM OF
GYRATONIC PP-WAVES

In this section, we calculate the components of the
angular-momentum of a gyratonic pp-wave. We will use
the set of tetrads (26) that is adapted to a spatially static
observer. With the expression (11) and after some calcu-
lations, it is possible to obtain the nonvanishing compo-
nents of the gravitational angular-momentum, they are

Lð0Þð1Þ ¼ −2k
Z
V
d3x

�
− sinϕ∂ϕH þ ρ cosϕ∂ρHffiffiffi

2
p ð2 −HÞ3=2

− sinϕ∂z

�
Jffiffiffiffiffiffiffiffiffiffiffiffi

2 −H
p

��
; ð34Þ

Lð0Þð2Þ ¼ −2k
Z
V
d3x

�
cosϕ∂ϕH þ ρ sinϕ∂ρHffiffiffi

2
p ð2 −HÞ3=2

þ cosϕ∂z

�
Jffiffiffiffiffiffiffiffiffiffiffiffi

2 −H
p

��
; ð35Þ

Lð1Þð3Þ ¼ −2k
Z
V
d3x

�
ð4 −HÞ sinϕ∂ϕH − ρ cosϕ∂ρH

2
ffiffiffi
2

p ð2 −HÞ3=2

þ sinϕ∂z

�
Jffiffiffiffiffiffiffiffiffiffiffiffi

2 −H
p

��
; ð36Þ

Lð2Þð3Þ ¼ −2k
Z
V
d3x

�
−ð4 −HÞ cosϕ∂ϕH þ ρ sinϕ∂ρH

2
ffiffiffi
2

p ð2 −HÞ3=2

− cosϕ∂z

�
Jffiffiffiffiffiffiffiffiffiffiffiffi

2 −H
p

��
: ð37Þ

Taking J ¼ 0, we obtain the same results presented in
Ref. [19] for the case of a nongyratonic wave.
The components Lð0ÞðiÞ are related to the gravitational

center of mass [26] and to boosts in the (i) direction. The
components Lð2Þð3Þ and Lð3Þð1Þ are related to rotations
around the x and y axes, respectively. The local indices
are always those of the flat space-time, coinciding with the
space-time indices on the flat wave front. Therefore, it is
possible to identify Mð2Þð3Þ ¼ Mx and Mð1Þð3Þ ¼ −My, so
from Eqs. (36) and (37), the angular-momentum vector
density is given by

M⃗ ¼ 2kðMxx̂þMyŷÞ

¼ 2k

��
4 −H
8A3

∂ϕH þ 1

2
∂u

�
J
A

��
ρ̂ −

�
4 −H
8A3

ρ∂ρH

�
ϕ̂

�
;

ð38Þ

where we have made use of x̂ ¼ ρ̂ cosϕ − ϕ̂ sinϕ and
ŷ ¼ ρ̂ sinϕþ ϕ̂ cosϕ in standard cylindrical coordinates.
It is possible to see that an axially symmetric gyratonic

space-time has a distinct angular-momentum, i.e., is not
the same of the nongyratonic pp-wave. The gyratonic
pp-waves carry the rotational character of the source, so
these waves are expected to bring some information
about the angular-momentum of its source. We note
from Eq. (38) that when the pp-wave is axially sym-
metric, the term in the radial component of the angular-
momentum density is due to the gyratonic term only. This
fact will be explored in the following subsection. Since
for gyratonic and non gyratonic pp-waves with axial
symmetry, the energy is the same [see Eq. (29)] and the
effect of the gyratonic term in the pp-waves may be
analyzed only in terms of the angular momentum.
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t

–0.0020

–0.0015
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P (0)

FIG. 5. Gravitational energy in the region 20 > ρ > 1 as a
function of the time t.
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The gyratonic term does not affect the azimuthal angular-
momentum of the wave.

A. Axially symmetric solution

In this subsection, the expression (38) is evaluated for a
solution of the Eq. (19). The energy of an axially symmetric
solution is the same for gyratonic and nongyratonic
pp-waves, so the distinction between the two cases is
caused solely by the radial angular-momentum of the wave.
We choose an Aichelburg-Sexl type solution

H ¼ −
1

4
ln ðρ=ρ0Þe−u2 ; ð39Þ

where in the following we take ρ0 ¼ 1. We choose

J ¼ d
du

e−u
2

; ð40Þ

so the components of the angular-momentum density in
(38) are given by

Mρ ¼
e−2u

2

64πA3
½ðu2 − 1Þ logðρÞ þ 8eu

2ð2u2 − 1Þ� ð41Þ

and

Mϕ ¼ e−u
2

256π

�
1

4
e−u

2

logðρÞ þ 4

�
: ð42Þ

Since the above components are independent of the angular
variable ϕ, it is possible to plot them in terms of the
variables ρ and u. The component Mρ is plotted in Fig. 6
and Mϕ in Fig. 7. From Eq. (38) we may notice that in the
nongyratonic case, Mρ is null everywhere for H given by
(39) and Mϕ has the same expression (42).

The total gravitational angular-momentum contained in a
finite volume V, which excludes the axis ρ ¼ 0, may be
obtained performing a numerical integration of the quan-
tities in Eqs. (36) and (37). In terms of the coordinates x, y,
and z, this procedure gives

L⃗ ¼
Z
V
Mxx̂d3xþ

Z
V
Myŷd3x ¼ 0:

The total gravitational angular-momentum vector L⃗,
unlike the gravitational energy Pð0Þ, consists of a vector
field. Since the space is axially symmetric the positive
and negative contributions, in the integration above,
cancel each other out. Nevertheless, it is possible to
obtain a non-null angular-momentum in a specific region
of space, e.g., the integration of the angular-momentum
density over the region (0 < ϕ < π) yields the exactly
opposite of the integration over the region (π < ϕ < 2π),
i.e.,

Z
L

−L
dz

Z
R

ρ0

dρ
Z

π

0

dϕMx;y

¼ −
Z

L

−L
dz

Z
R

ρ0

dρ
Z

2π

π
dϕMx;y ≠ 0:

The same happens in the case J ¼ 0 for an axially
symmetric gravitational wave, not being an exclusive
gyratonic behavior.

VI. FINAL CONSIDERATIONS

In this article we reviewed some important aspects of the
TEGR, which is a formulation where the effects of the
gravitational field are described in terms of the torsion
tensor. In this formalism it is possible to define physicalFIG. 6. Mρ given by Eq. (41).

FIG. 7. Mϕ given by Eq. (42).
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quantities, namely, the energy-momentum four-vector and
the angular-momentum of the gravitational field. These
physical quantities are invariant under coordinates trans-
formations and time reparametrizations. Using these
definitions we calculated the energy and the angular-
momentum of a gyratonic pp-wave, which was presented
in Sec. III of this work. The energy of the gyratonic wave
yields the expression (29), which is reduced to the case
of nongyratonic pp-wave when the function J ¼ 0.
Therefore, the gyratonic pp-wave is a generalization of
the nongyratonic pp-wave. The fact that the energy of a
gyratonic pp-wave is distinct of the nongyratonic case and
the fact that the definition of energy in Eq. (10) is
coordinate independent, goes towards the argument pre-
sented in Ref. [15] on the loss of properties of the
gravitational field when the term J is not considered in
the pp-waves. The total energy for a gyratonic space-time
was integrated using the expression (33), and the result was
presented in Fig. 5. The way in which the energy of the
gravitational wave is altered when it interacts with a particle
is yet to be determined.
The presence of the gyratonic term significantly affects

the radial angular-momentum density of the field. If the
gravitational waves can be detected by their effects on
particles, it is interesting to consider an example of how the
gyratonic term affects some physical properties of free
particles. Let us analyze the case of a particle, initially free
of any forces, that is hit by an axially symmetric wave. The
trajectory of the particle is obtained by numerically solving
the geodesic equations (9)–(11) of the Ref. [16], para-
metrized with respect to u. The effect of the gyratonic term
may be better perceived by considering a wave solution
with a more prominent gyratonic characteristic.
Considering a wave with J given by

J ¼ 8
d
du

e−u
2 ð43Þ

and H given by Eq. (39), a particle initially at rest at
position ρðu → ∞Þ ¼ 5 achieve a three-dimensional
motion. The same particle has a movement constrained
into a plane when hit by a nongyratonic wave. In both
cases, for the tested solution, the particle does not remain at
rest after the passage of the wave, i.e., there is no permanent
exchange of energy between the particle and the field [27].
This can be best seen by evaluating the components of the
velocity of the particle in both cases. This is shown in the
Figs. 8 and 9. We can see in the first one that the gyratonic
wave imparts a permanent displacement on the particle, i.e.,
after the passage of the wave the radial velocity tends to a
non-null constant value. Note that by the definition (13) a
positive parameter u indicates a negative time t, so the
initial conditions represent a particle at rest before the wave
passes. As presented in the expressions (29) and (38) the
physical difference between axially symmetric gyratonic
and nongyratonic pp-waves is the presence of a non-null

radial angular-momentum density. This ensures that the
different behaviors of the velocity in the Figs. 8 and 9 are
due to the wave radial angular-momentum density only.
The non-nullity of the radial angular-momentum density of
the field affects the behavior of the particles by changing
their angular-momentum components. To demonstrate this,
we consider the angular-momentum per unit of mass for a
classical particle, given by

M⃗ ¼ 1ffiffiffi
2

p ρz _ϕ ρ̂þ 1ffiffiffi
2

p ðρ_z − z_ρÞϕ̂ −
1ffiffiffi
2

p ρ2 _ϕ ẑ : ð44Þ

The total angular-momentum M2 ≡ M⃗ · M⃗ is permanently
altered during the passage of the wave, i.e., the gyratonic
term induces a permanent variation in the particle total
angular-momentumM2 ≡ M⃗ · M⃗, as can be seen in Fig. 10.
In the nongyratonic case, where the field has only azimu-
thal angular-momentum density, there is not permanent
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FIG. 8. Velocity of a free particle initially at rest in ρðu → ∞Þ ¼
5 with J given by (43).
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FIG. 9. Velocity of a free particle initially at rest in ρðu → ∞Þ ¼
5 with J ¼ 0.
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exchange of angular-momentum between the wave and
the particle, as can be seen in Fig. 11. We can then conclude
that the angular-momentum of the field is directly con-
nected to the angular-momentum of the particle, especially
the radial angular-momentum density of the field.
A direct analysis between the angular-momentum of the

particle and the angular-momentum of the field cannot be
made in the coordinates used in this paper. An integration
of the angular momentum density of the gravitational field

produces an expression that is a function of the variable t,
while the geodesic equations of the particle are para-
metrized by the variable u which is related with the time
t and the coordinate z. Therefore, only a qualitative analysis
can be obtained. In order to have a consistent quantitative
analysis, one must construct the tetrads associated with
the line element in (12) in pure Brinkmann coordinates,
establishing the appropriated spatially static condition for
this tetrads. This will be pursued elsewhere.
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