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Quasinormal modes (QNMs) uniquely characterize the final black hole. Until now, only the QNM
frequency and damping time have been used to test general relativity. In this work, we show explicitly that
another property of the QNMs—their polarization—can be a reliable tool for probing gravity. We provide a
consistent test for general relativity by considering Chern-Simons gravity. Distinguishing Chern-Simons
gravity from general relativity using only template matching is highly challenging. Thus, a parameter that
can differentiate between Chern-Simons gravity and GR will be a suitable candidate for any modified
theories of gravity. We discuss the implications of our result for the future gravitational wave detectors.
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I. INTRODUCTION

Direct detection of gravitational waves (GW) from com-
pact binary objects has energized searches for deviations
from the general theory of relativity (GR) [1–3]. In Ref. [4],
constraints on the graviton mass were obtained based on
dispersion in a vacuum, and a more general prescription was
given in [5]. These constraints were obtained by matching
templates from numerical simulations of GR with observed
data and by introducing new parameters corresponding to
extended gravity theories [6–8]. However, as the accuracy of
the current and upcoming detectors (including LISA)
increase, the sensitivities of template matching techniques
will saturate, and there is an urgent need to find alternative
strategies to test for deviations from GR.
Even if waveforms for the numerous modifications to

gravity [9,10] can be obtained, it is imperative to obtain a
handful of parameters that can be used as a consistency test of
GR. Specifically, it is essential to find a dimensionless,
model-independent parameter which vanishes for GR and
that is finite for modified gravity theories. Such parameters
have been constructed to distinguish between dark energy
models andmodified gravity theories (see, for instance, [11]).
Gravitational waves emitted by perturbed black holes

(BHs) during the ring-down epoch are mathematically
described by quasinormal modes (QNMs) and are finger-
prints of the final black hole as they depend only on
parameters characterizing the black hole (like mass, charge,

and angular momentum) [12–15]. Thus, extracting the
frequencies and damping times allows one to test GR
[2,16,17]. However, another property of the QNMs, their
polarizations, can be a reliable tool for probing gravity.
Recently, the current authors used an inequality between
polar and axial gravitational perturbations in fðRÞ theories
to obtain a parameter that is vanishing for GR and finite for
fðRÞ theories [18,19]. In this study, we propose a parameter
to distinguish GR from (dynamical) Chern-Simons (CS)
gravity and show that the inequality between polar and
axial perturbations is model independent and valid for any
modification to GR.
CS gravity is indistinguishable from GR for all con-

formally flat space-times and space-times that possess a
maximally symmetric 2-dimensional subspace [20]. Thus,
a parameter that can distinguish between CS gravity and
GR will be a suitable candidate for any modified theories
of gravity. Naturally, as of late, there has been much interest
in studying the perturbations about Schwarzschild and
slowly rotating black holes in dynamical CS gravity (see
Refs. [21–26] and, more recently, in Ref. [27]).
In this article, we show that isospectrality [28] between

odd and even parity perturbations is broken for a perturbed
Schwarzschild black hole, and slowly rotating, in dynami-
cal Chern-Simons (dCS) gravity in a gauge invariant
manner [29]. Consequently, odd-even parities carry differ-
ent amounts of gravitational energy to asymptotic infinity.
We quantify the relative difference between the two by
constructing an energy-momentum pseudotensor of per-
turbation and show that the modification to gravitational
radiation is more significant around the black-hole region
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compared to flat space-times. Also, we remark that the
quantifying parameter can distinguish between GR and
any modified theory of gravity.
For ease of comparison, we use the notations and

conventions of Ref. [30]. We use the ð−;þ;þ;þÞ signa-
ture, Greek indices for the 4D space-time, uppercase Latin
indices for ðθ;ϕÞ, and lowercase Latin indices for ðt; rÞ,
c ¼ G ¼ 1 such that κ2 ¼ 8π. Here, ∇ and the subscript
semicolon are covariant derivatives of the full space-time,
D is the covariant derivative for ðt; rÞ, D̂ is the covariant
derivative on a 2-sphere, and Ω≡Ωðθ;ϕÞ denote the
coordinates on a 2-sphere. Overbarred quantities are back-
ground, and AðiÞ denotes the ith order perturbation of the
object A.

II. PERTURBATIONS IN GR

We consider Schwarzschild space-time as our back-
ground ḡμν.

ds2 ¼ ḡabdxadxb þ ḡABdzAdzB ð1Þ

¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð2Þ

fðrÞ≡ f ¼ 1 −
2M
r

: ð3Þ

Here, the background space-time is split into a ðt; rÞ space
and a 2-sphere ðθ;ϕÞ. The metric perturbations (hμν),

gμν ¼ ḡμν þ ϵhμν; gμν ¼ ḡμν − ϵhμν; ð4Þ

can be separated using spherical harmonics, while ϵ is a
smallness factor which ensures the effect of hμν remains
small and does not substantially change the background.
The spherical harmonic functions corresponding to scalar,
vector, and tensor components of hμν are of two opposite
parities, odd and even. Gravitational or scalar field pertur-
bations thus reduce to a one-dimensional scattering prob-
lem of the form [28,30–34]

d2Φi

dr2�
þ ðω2 − ViÞΦi ¼ 0

i ¼ scalar; odd=even gravitational; ð5Þ

where r� is the tortoise coordinate, and Vi are effective
potentials induced by the background space-time curvature,
depending on the type of perturbation (gravitational or
scalar). Dynamics of space-time around a ringing black
hole can be replaced by a wave scattering off of a central
potential problem. For vacuum space-times (like post-
merger of a binary black-hole system) the individual
profiles of Vi determine the fraction of incident gravita-
tional radiation that escapes to infinity. For gravitational

perturbations in GR, the profiles of Vi for both odd and even
parity perturbations are the same owing to an isospectral
relationship that exists between them [28]. This, along with
the fact that the dynamics of the two parities remain
decoupled at the linear order, leads to the conclusion that
the ratio of scattered/radiated gravitational energies through
the two opposite parities will be a constant throughout the
duration of the ring-down [18]—a feature that has important
consequences for non-Einsteinian theories of gravity.

III. PERTURBATIONS IN DYNAMICAL
CHERN-SIMONS

The lowest order parity-violating coupling term deter-
mined by a dynamical scalar field will have an action of
the form [21,35–37]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

þ α

4
ϑ�RR −

β

2
ð∇ϑÞ2 − β

2
VðϑÞ

�
ð6Þ

where ϑ is a dynamical pseudoscalar field. We have chosen
ϑ to be dimensionless, which leads to ½α� ¼ L2; [β] is
dimensionless, and �RR is

�RR ¼ 1

2
Rμνρσϵ

μναβRρσ
αβ; ð7Þ

referred to as Pontryagin density quantifying the extent to
which local Lorentz invariance is violated. For spherically
symmetric space-times, the Pontryagin density vanishes,
making the Schwarzschild space-time a solution of the
CS modified field equations. Only recently have nonslow
rotating black-hole space-times been constructed [38].
For slow-rotating perturbative solutions, see [39,40]. In
the literature, one sets ϑ ¼ VðϑÞ ¼ 0 [22,23].
Expanding the metric perturbation and the pseudoscalar

using spherical harmonics [30], two coupled equations
characterize odd parity and CS field perturbations, while
the even parity remains the same as in GR. The odd parity
sector becomes

d2ΦO

dr2�
þ ðω2 − VOÞΦO ¼ Seff ; ð8Þ

d2φ
dr2�

þ ðω2 − VφÞφ ¼ 6αμMf
βr5

ΦO; ð9Þ

μ ¼ ðl − 1Þlðlþ 1Þðlþ 2Þ; ð10Þ

where φ is related to ϑ as [22,23]

ϑðt; r;ΩÞ ¼ φðrÞ
r

SðΩÞeiωt ð11Þ

and SðΩÞ is a scalar spherical harmonic function. Note that
VO and Vφ are the odd parity effective potential and the
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effective potential for a massless spin-0 field, respectively;
Seff is of the form

P
2
0 an=r∂n

r�φ, and the functions an have
been given in the Appendix A 2. At asymptotic infinity
the source terms of (8) and (9) vanish, and the two fields
decouple.
Previously in [23], the preferential coupling of the CS

scalar with the odd parity mode was found using the Regge-
Wheeler gauge choice; however, to our knowledge, thiswork
is the first one to perform a gauge-invariant analysis of black-
hole perturbations in CS gravity. Aswas found previously by
[23], isospectral relations break between the even and odd
parity modes. The reason for this breaking is the appearance
of an inhomogeneous term in the rhs of (8) and an absence of
any such term in the even parity sector. Thus, the QNM
frequencies of the even and odd parity modes will be
different, a feature that can be used as a test for deviations
fromGR.Furthermore, since the oddparity nowcoupleswith
the CS field, it will exchange energy with the field, reducing
the radiated energy through the odd paritymode compared to
GR, while the radiated energy through the even parity mode
remains the same as in GR. This imbalance is another feature
that can be used to test for modifications to GR in strong
gravity regimes.

IV. DIFFERENCE IN ENERGY FLUX

The ratio of radiated energies through odd and even parities
will be different inCS theories compared toGR. The extent of
the difference in ratios can be quantified by calculating the
effective energy-momentum pseudotensor of perturbation in
the curved background (for earlier work, see [41]). We use
Isaacson’s shortwave approximation [42,43]. In this scheme,
we average over the rapidly fluctuating spatial components
of the metric perturbation compared to the length scales
over which the background significantly changes and obtain
the backreaction effect on the background metric ḡμν.
The backreaction effect on the background metric is

given by

Ḡμν ¼ −tμν ≡ −2ϵ2κ2αhCð2Þ
μν i − ϵ2hGð2Þ

μν i
þ ϵ2κ2βhϑ;μϑ;νi; ð12Þ

where Gμν is the Einstein tensor. It is useful to obtain tμν in
the TT gauge and in terms of the traced-reversed perturbed
tensorψμν ¼ hμν − h

2
ḡμν, where h is the trace of hμν. The first

order perturbed field equations are

□ψμν þ 2R̄μανβψ
αβ ¼ 2κ2αϑ;τσð�R̄τ

μ
σ
ν þ �R̄τ

ν
σ
μÞ; ð13Þ

□ϑ ¼ −
α

4β
½2ψμν;βαð�R̄μανβ þ �R̄μβναÞ

þR̄αβγμð�R̄α
ν
γμψβν þ �R̄αβσμÞψσ

γ �: ð14Þ

It is important to note that, like Eqs. (8) and (9), in the
asymptotic limit, Eqs. (13) and (14) decouple, and ϑ is a
light field.

Thus, the perturbed energy-momentum pseudotensor tμν
is of the form

tμν ¼ −
ϵ2

4L2
h gð∇ψÞ2iμν −

ϵ2κ2α2

4βL6
½R̃h g∇2ψ∇2ψiμν

þ gRRh g∇ψ∇ψiμν þ gRRR ghψψiμν�
þ ϵ2κ2β

L2
h g∇ϑ∇ϑiμν ð15Þ

where ψμν, ϑ and their derivatives have been scaled with
respect to a characteristic length scale L of the background
space-time (which in this case is of the order of the size
of the light ring around a black hole) such that quantities
inside the angular brackets are dimensionless, and the
averaging is over the short wavelength modes (see
Appendix B for details). Here, R̃ is the shorthand notation
for the dimensionless Riemann tensor. We are of the
opinion that (15) in its present form is a further simplified
version of what was obtained in [41] and that it sheds a bit
more light on the effects of CS gravity on the EM
pseudotensor and how the effects scale with distance from
the black hole.
This is a new result of this article, for which we would

like to stress the following points: First, the first term in the
rhs of Eq. (15) is the energy-momentum pseudotensor of
perturbation for GR [42]. The second and third terms in the
rhs are the correction terms that arise from modification to
gravity. In this case, these are the corrections from CS
gravity. Second, the CS field ϑ alone does not appear in the
expression, only its derivatives. As seen from their exact
forms in Appendix B, the contribution from the terms in
the square brackets of (15) vanishes at a large distance from
the black hole, owing to Riemann tensors appearing as a
product. From bounds put in [23,39], it is seen that β > α2

β .
Hence, the leading order contribution at large distances
from the black hole will come from the last term of (15),
which is a kinetic term of the CS scalar, followed by terms
with a single Riemann as a product, i.e., the first term in the

square brackets of the form h g∇2ψ∇2ψiμν. However, close
to small black holes, the second term can have a much
stronger effect, owing to the large values of curvature R̃ and
L−6 dependence. The long-range effect of the last term of
(15) is in conjunction with what was discussed at the end of
the previous section.
Thus, a dimensionless parameter ΔCS can be defined by

quantifying the effect of the CS field on the gravitational
perturbations near a black hole,

ΔCS ¼
κ2α2

βL4
; ð16Þ

quantifying the amount to which the odd-to-even radiated
energy ratio is suppressed in CS theories compared to
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GR [details of the estimation (16) are given in Appendix B].
We will discuss the relevance of the above parameter on
consistency tests of GR in the next section.
Lastly, an attentive reader would have noticed that the

energy-momentum pseudotensor analysis we have obtained
is independent of the background metric and holds for any
black-hole space-timewith a characteristic length scale (rH).
In particular, the analysis applies to slowly rotating black
holes. Like in the spherically symmetric black holes, in the
slowly rotating case, the odd and evenperturbations decouple
at linear order (see, for instance, [44–47]). Specifically, since
the decoupling depends on the background geometry, for
slowly rotating background space-times in dynamical CS, as
found in [40], the above analysis will hold as well.

V. IMPLICATIONS FOR FUTURE
GW DETECTORS

In the rest of this article, wewill discuss the implications of
our work for future observations to distinguish between
general relativity andmodified theories of gravity in general.
Using gauge-invariant formalism [30] for CS gravity, we

find that the parity-violating scalar field couples only to the
odd parity perturbations of a spherically symmetric space-
time, keeping the even parity unchanged from its GR
counterpart. Similarly, the dynamics of ϑ is also influenced
by the odd parity master function, leading to the coupled
system of equations (8) and (9).
This naturally leads to the following question: Can future

detectors measure changes in the energy ratio of the two
opposite parity modes? To answer this question, we go
back to the energy-momentum pseudotensor (15). The
direct coupling of the dynamics of ϑ with the gravitational
perturbation ΦO allows one to write the energy-momentum
tensor contribution from the CS-gravitational coupling
solely in terms of the trace-reversed perturbation tensor
ψμν, as seen in Eq. (15). Thus, the rhs terms in the square
brackets of (15) can be represented as a correction to the
usual graviton-graviton interaction term in GR. The appear-
ance of background Riemann curvatures in the stress tensor
leads to the conclusion that terms appearing as a correction
to GR do not propagate to asymptotic infinity. However, the
effect of the CS term on gravitational radiation is strongest
close to the black hole.
Awave scattering process occurring near a black holewill

thus leak energy from the odd parity mode to the CS field.
The decoupled nature of the odd and even parity modes in
the linear regime will ensure no energy exchange takes
place between them, leading to an overall decrease in the net
gravitational radiation and suppression of the odd-to-even
scattered energy ratio compared to GR. The gravitational
wave detectors only see the two gravitational modes, and it is
possible to observe the ratio suppression directly with more
detectors being planned or commissioned.
The even and odd parity modes manifest as the usual

plus and cross polarizations at detectors at asymptotic

infinity. The relations between the odd and even wave
functions and the plus and cross amplitudes were given in
terms of spin-weighted spherical harmonic dependence
by [48] as

ℜðhlmÞ ≃
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ΦE; ℑðhlmÞ ≃

1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ΦO

h̃þ − ih̃× ¼
X
l;m

hlm−2Ylm; ð17Þ

where −2Yl;m is the spin-weighted spherical harmonic and
h̃þ=× are not the amplitudes of linear polarizations of
GR but a circular polarization given by [37]

h̃þ=× ¼ hþ=× ∓ ip _ϑh×=þ ð18Þ

where p is the wave number of the pseudoscalar. We define
a dimensionless parameter corresponding to the dominant
multipole indices l; m

Δl;m ¼ j _Ψl;m
O j2 − j _Ψl;m

E j2
j _Ψl;m

O j2 þ j _Ψl;m
E j2 ð19Þ

where the overdot denotes the time derivative. From the
system (8) and (9), and the even parity dynamics, as an
analogy, one can think of the net system as three harmonic
oscillators, two of which are coupled (oddþ CS scalar),
whereas the even parity remains uncoupled from the
coupled system. In GR, the net system consists of just
two decoupled oscillators, for which (19) is a con-
stant throughout the duration of the ring-down (see
Appendix D 1 for a proof), given that the dominant modes
for both odd and even parities have the same multipole
indices. However, due to the preferential coupling of the
pseudoscalar with the odd parity in CS, ΔCS

l;m ≤ ΔGR
l;m, and

the difference between the GR and CS values will be of the
order of ΔCS. Specifically, (19) will be a decreasing
function of time and will be less than the corresponding
GR value throughout the duration of the ring-down (a proof
of which has been given in Appendix D 2)—a feature that
can act as a consistency test for GR, as well as for
constraining deviations from it.
It is important to note that the factor ip _ϑ in (18), which

imparts circular polarization to GWs at infinity, does not
appear in (19). More generally, the parameter Δl;m will not
take into account equal or unequal suppression or enhance-
ment of plus/cross polarizations from the modified theories
of gravity. However, such modifications to gravity do not
usually arise, and they are special cases. To see this,
consider the modifications from fðRÞ and CS together.
If we fine-tune the coupling parameters, it is possible to
have the suppression/enhancement of the plus/cross with a
constant Δl;m, as in GR. However, as the reader can easily
verify, these are highly unnatural. Broadly speaking, themost
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general local theory for a modification to GR (like [49,50])
will consist of parity-violating and parity-nonviolating sec-
tors, whose effects on the two opposite parity massless
gravitational modes may not be equal. Thus, the above
parameter is a generic quantifying tool to distinguish
modified theories of gravity from GR. In the future gravita-
tional wave detectors (for instance, Cosmic Explorer [51]),
the signal-to-noise ratio in the QNM regime could be 50 [52].
These observations will help us to put a stringent bound on
the factor ðα2=βÞ and constrain any deviation from GR, in
general, much better than from the currently used template
matching techniques.
An astute reader can make the argument that for cases

like head-on collisions and radial plunges of particles into
black holes, the CS pseudoscalar will not be perturbed at
all since the odd parity is not being perturbed. However,
this can only be true when a nonlinear regime does not
precede a linear perturbation—like radial particle infall.
Situations like BHBH collisions involve sufficient non-
linearities, which mix opposite parities [53,54], before the
system transitions to the ring-down regime. Hence, for such
cases, the odd parity and, consequently, the CS pseudo-
scalar will always be perturbed.
The earlier analyses [18,19] and the current work

strongly establish the fact that any modification to GR
will lead to parity preferences of the odd and even modes,
and hence, the quantity Δl;m will not be a constant. The
general nature of isospectrality breaking and its relation to
modified theories of gravity have been discussed [3,55].
However, to our knowledge, our work is the first to evaluate
the difference and obtain a quantifying tool.
It is also possible that isospectrality breaks due to

environmental contaminants around a black hole [56].
However, environmental contaminants around a black hole
vary with each detection and would show up as different
Δl;m in different cases. However, modified theories of
gravity will lead to a consistent nonconstant value of Δl;m

in all observations.
We note again that the calculation for the energy-

momentum pseudotensor is independent of the back-
ground. For slowly rotating black holes, the odd and even
metric perturbations remain decoupled, and hence, our
current analysis holds. However, the same is not evident for
fast rotating space-times where the Pontryagin density does
not vanish in the background, and we are not aware of any
nonperturbative (in spin) axisymmetric black-hole solu-
tions in dynamical CS gravity. However, a feature that is
noticeable while perturbing space-times of generic spins in
GR is that gravitational perturbations of opposite parities
and the same multipoles do not mix [47]—indicating that
the dominant odd parity ðl; mÞ ¼ ð2; 2Þmode does not mix
with the even parity mode of the same multipolar indices.
One possible direction for future work will be to obtain
the (2,2) calculation of (19) using numerical relativity data
of final states of binary black-hole mergers and precisely

evaluate the changes between GR and modified theories of
gravity. Simulations of the CS system, like the one
proposed in [27], will also help us understand the dynamics
and asymptotic behavior of the radiation associated with
the CS field, i.e., the last term of (15). Detectors with better
sensitivity towards scalar degrees of freedom can then
technically probe for scalar radiation from scattering proc-
esses or merger events. Since the CS pseudoscalar is a
massless field, its kinetic term will have a markedly stronger
effect at long ranges compared to the coupling terms; hence,
it can help us ascertain whether scalar fields (such as the CS
field) exist in the Universe.
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APPENDIX A: VARIOUS FIRST ORDER
PERTURBED 2+ 2 DECOMPOSED

QUANTITIES

1. Perturbed Pontryagin density

The perturbed metric tensor can be 2þ 2 decomposed
following [29],

hμν ≡
�
fabS fEaSA þ fOaVA

Sym HE
TSAB þHO

TVAB þHE
LγABS

�
ðA1Þ

where fab, fEa , fOa , HE
T , H

O
T , and HE

L are a set of ten scalars
only dependent on ðt; rÞ (subscriptsT andL imply transverse
and longitudinal components, respectively). An implicit
summation over l, m was assumed in (A1). Note that S,
SA, and SAB are the even parity spherical harmonic scalar,
vector, and tensor, respectively.Here,VA andVAB are theodd
parity spherical harmonic vector and tensor, respectively.
The odd parity spherical harmonic vector on a 2-sphere is
related to the even parity spherical harmonic scalar as

VA ¼ ϵABD̂
BS ¼ ϵAB∂BS ðA2Þ

as defined in [30], where ϵAB and D̂ are the covariant
Levi-Civita density and the covariant derivative defined on
a 2-sphere, respectively.
A covariant Levi-Civita on a 2-sphere can be constructed

by projecting out of a Levi-Civita in the full space-time as

ϵAB ¼ 1ffiffiffi
2

p
r2
ϵAaBbϵ

ab ðA3Þ

where ϵab is the covariant Levi-Civita on the ðt; rÞ space.
Equation (A3) satisfies all the properties of the antisym-
metric 2-form in the 2-sphere. Using (A1), (A2), and (A3),
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the perturbed Pontryagin density for a background
Schwarzschild space-time in terms of the Cunningham-
Price-Moncrief variable ΦO (as defined in [30]) becomes

δð�RRÞ ¼ 24ðl − 1Þlðlþ 1Þðlþ 2ÞM
r6

ΦOS ðA4Þ

where Slm is the scalar spherical harmonic and we see that
only the odd parity master function contributes to the
perturbed Pontryagin density.

2. Perturbed Cotton tensor as an effective source

The perturbed Cotton tensor can be written as an effective
energy-momentum tensor in the following manner:

Rð1Þ
μν ¼ κ2T μν; ðA5Þ

T μν ¼ −αΘ;τσð�R̄τ
μν

σ þ �R̄τ
νμ

σÞ: ðA6Þ

Avector and a scalar can bedefined fromTeff
μν in the following

manner, following [30],

Pa ¼ κ2r2

k2

Z
T aAVAdΩ; ðA7Þ

P ¼ κ2r4

ðl − 1Þlðlþ 1Þðlþ 2Þ
Z

T ABVABdΩ: ðA8Þ

Using Θ ¼ ψ
r S, we obtain the following:

Pt ¼ −
6M
r2

∂rφ; ðA9Þ

Pr ¼ 6iωM
r2

φ; ðA10Þ

P ¼ 0: ðA11Þ

The above components satisfy the conservation equation
∇μT μν ¼ 0. Following [30], we find

∂tPt þ ∂rPr þ 2

r
Pr ¼ 0 ðA12Þ

which serves as a consistency check for the obtained
components. Again, following [30], the effective source
term coupling with the odd parity gravitational perturbation
is found to be

Seff ¼ κ2α

ðl − 1Þðlþ 2Þ
�
6M
r

∂2
r�φ −

12M
r2

∂r�φþ 6ω2M
r

φ

�
:

ðA13Þ

APPENDIX B: GRAVITATIONAL RADIATION
IN THE SHORTWAVE LIMIT

A vanishing background ϑ and transverse-traceless
gauge were used. For a metric and CS field perturbation,

gμν ¼ ḡμν þ ehμν; ðB1Þ

ϑ ¼ eϑ; ðB2Þ

the modified field tensor Gμν ¼ Rμν2κ
2αCμν − κ2βϑ;μϑ;ν

can be expanded in powers of e as

Ḡμν þ eGð1Þ
μν þ e2Gð2Þ

μν ¼ 0: ðB3Þ

Solving for Gð1Þ
μν ¼ 0 gives the dynamics of the perturba-

tion. However, the radiated energy and momentum
flux due to perturbation can be found from an energy-
momentum pseudotensor due to perturbation. From (B3)
we then get

Ḡμν ¼ κ2tμν ðB4Þ

¼ −e2hGð2Þ
μν i; ðB5Þ

tμν ¼ −
e2

κ2
hGð2Þ

μν i; ðB6Þ

Gð2Þ
μν ¼ Gð2Þ

μν − 4κ2α½∇ð1Þ
σ ∇τϑ

�R̄τðμσνÞ

þ∇σ∇τϑ
�Rð1ÞτðμσνÞ� − κ2βϑ;μϑ;ν; ðB7Þ

where h…i was defined in [43] and consists of the
following effective operations:

(i) The total derivative terms are put to zero.
(ii) hA;μB;νi ¼ −hA;μνBi.
(iii) Covariant derivatives commute.
(iv) The average of a product of two different fields is put

to zero, since for high frequencies they are Gaussian
random variables.

Here, hGð2Þ
μν i was found to be

−hGð2Þ
μν i ¼ 1

4
hψρτ

;μψρτ;νi þ
κ2α2

2β
hPμνi − κ2βhϑ;μϑ;νi;

ðB8Þ
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hPμνi ¼ −2hψβγ;δλψνα;σ
;ρiϵμρσαð�R̄λβδγ þ �R̄δβλγÞ − 2hψβγ;δλψμα;σ

;ρiϵνρσαð�R̄λβδγ þ �R̄δβλγÞ
− 2hψρσ;δψαβ;γi½�R̄γαδβð�R̄μσνρ þ �R̄νσμρÞ þ �R̄δαγβð�R̄μσνρ þ �R̄νσμρÞ�
þ R̄ρσαβ½ϵμγδλðhψη

σ
;γψνλ;δi�R̄ρηαβ þ hψη

α
;γψνλ;δi�R̄ρσηβÞ

þ ϵνλ
δγðhψη

σ
;γψμλ;δi�R̄ρηαβ þ hψη

α
;γψμλ;δi�R̄ρσηβÞ�

þ R̄ρσαβ½hψγδψλ
αi�R̄ρσλβð�R̄μδνγ þ �R̄νδμγÞ

þ hψγδψλ
σi�R̄ρλαβð�R̄μδνγ þ �R̄νδμγÞ�: ðB9Þ

An estimate for the leading order power density for the
coupling term can be obtained from (B9) using the 00
component. If we consider a background space-time with
characteristic length scale L, the metric perturbation and
the background Riemann tensor will be of the form

ψμν ∼
L
r
; ðB10Þ

R̄μνρσ ∼
L
r3

; ðB11Þ

such that the leading order term in hP00i becomes

hP00i ∼
κ2α2

β

1

Lr5
ðB12Þ

and the first (GR) term of (B9) can be represented as

hψρτ
;0ψρτ;0i ∼

1

r2
ðB13Þ

from which we take the ratio of the two terms and define

ΔCS ¼
κ2α2

β

1

Lr3
: ðB14Þ

Scaling the radial variable with respect to the background
characteristic length scale as r ¼ yL,

ΔCS ¼
κ2α2

βL4

1

y3
; ðB15Þ

the 1
y3 dimensionless factor can be integrated out to give a

factor which will not change the approximate order of ΔCS;
hence, we obtain

ΔCS ¼
κ2α2

βL4
: ðB16Þ

APPENDIX C: MATCHING WITH THE PLUS
AND CROSS AT ASYMPTOTIC INFINITY

In order to equate the parity polarizations with the plus
and the cross, we project the radiative part of the metric
perturbation on a tetrad of freely falling observers in the
radiation zone. The radiative part is simply the perturbation
about the background 2-sphere in the 2þ 2 decomposed
metric. We have, from [30,37,48,59],

hÂ B̂ ¼ eA
Â
eB
B̂
hAB ðC1Þ

¼ ΦE

r

�Sθθ
Sθϕ
sin θ

Sθϕ
sin θ

Sϕϕ
sin2 θ

�
þΦO

r

�Vθθ
Vθϕ

sin θ
Vθϕ

sin θ
Vϕϕ

sin2 θ

�
ðC2Þ

¼
�
hþ − ip _ϑh× h× þ ip _ϑhþ
h× þ ip _ϑhþ −hþ þ ip _ϑh×

�
ðC3Þ

¼
�
h̃þ h̃×

h̃× −h̃þ

�
; ðC4Þ

where an implicit summation of l; m was assumed and p is
the wave number corresponding to the plus/cross polar-
izations. Comparing (C2) and (C4) and using the relation
between the tensor spherical harmonics and spin-weighted
spherical harmonics [48], we obtain

h̃þ − ih̃× ≃
1

r

X
l;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ðΦE þ iΦOÞ−2Ylm: ðC5Þ

The lhs is the doubly integrated Weyl scalar Ψ4 at
asymptotic infinity, and it can be expanded in spin-
weighted spherical harmonics as

hþ − ih× ¼
X
l;m

hlm−2Ylm: ðC6Þ

Comparing (C5) and (C6), we have

ℜðhlmÞ ≃
1

r

X
l;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ΦE; ðC7Þ
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ℑðhlmÞ ≃
1

r

X
l;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
ΦO: ðC8Þ

APPENDIX D: CONSTANCY OF Δlm IN GR
AND ITS TIME DEPENDENCE IN CS

1. Constancy in GR

The quantity Δlm in the main text, given by

Δl;m ¼ j _Ψl;m
O j2 − j _Ψl;m

E j2
j _Ψl;m

O j2 þ j _Ψl;m
E j2 ; ðD1Þ

can be written as

Δl;m ¼
j _Ψl;m

O j2
j _Ψl;m

E j2 − 1

j _Ψl;m
O j2

j _Ψl;m
E j2 þ 1

: ðD2Þ

In the wave zone, the even/odd modes are of the form

ΨE=O ¼ AE=Oe−κE=OteiωE=Ot ðD3Þ

where AE=O is a constant amplitude that depends on the
initial conditions of the perturbation process. Due to the
isospectrality relation for GR, κE ¼ κO ¼ κ and ωE ¼
ωO ¼ ω. Substituting (D3) in (D2) one obtains

Δl;m ¼

��� AO
AE

���2 − 1��� AO
AE

���2 þ 1
ðD4Þ

which is a constant.

2. Time-dependent Δl;m in CS gravity

The radiation rate escaping to asymptotic infinity for
general relativity is given by [30]

h _EijGR ¼ 1

64π

X
lm

μhj _ΨEj2 þ j _ΨOj2i; ðD5Þ

μ ¼ ðl − 1Þlðlþ 1Þðlþ 2Þ: ðD6Þ

Similarly, for dynamical CS gravity the rate at which
radiation (both gravitational and scalar) escapes to asymp-
totic infinity can be given by

h _EijCS ¼
1

64π

X
lm

μhj _ΨEj2 þ j _̃ΨOj2 þ κ2βj _φj2i: ðD7Þ

There is also energy loss h _Ecoup;CSi in the form of the
graviton-graviton coupling near the BH region (B9) which
does not travel to asymptotic infinity, thereby effectively
reducing the odd parity reflection coefficient, or the fraction
of the odd parity initial excitation that gets scattered off to
asymptotic infinity, compared to GR. Considering the same
initial perturbation energy for a Schwarzschild solution in
GR and dynamical CS, the latter shall then radiate lesser
gravitational flux, with the difference in energy coming
from both the graviton-graviton coupling (which was
absorbed by the BH), and the kinetic term of the pseudo-
scalar field. Thus, we can write the following:

h _EijCS þ h _Eijcoup;CS ¼ h _EijGR ðD8Þ

from which one obtains the following inequality:

j _ΨOj2 > j _̃ΨOj2 ðD9Þ

at all times. A suitable ansatz for the modified odd parity
wavefunction for CS gravity can be written

Ψ̃O ¼ ÃOe−κ̃Oteiω̃Ot ðD10Þ

where ÃO < AO, and the real and imaginary parts of the
odd parity QNM frequency are modified due to the
coupling with the CS field in the form of an inhomo-
geneous term in the rhs of the differential equation (9) in the
main text. This leads to the following:

j _̃ΨOj2

j _ΨEj2
¼ Ã2

Oðκ̃2O þ ω̃2
OÞ

A2
Eðκ2E þ ω2

EÞ
e−2ðκ̃O−κEÞt ðD11Þ

which is less than the corresponding GR value at all times
courtesy of (D9), with a growth/decay rate proportional to
e−2ðκ̃O−κEÞt (depending on whether the imaginary part of
the odd parity dominant mode frequency is enhanced or
suppressed due to CS modification). However, for the same
initial energy of perturbation, the odd parity mode can now
relax to a stable Schwarzschild faster because of the
presence of further channels (pseudoscalar and graviton-
graviton coupling) to take away the initial perturbation
energy. This leads to a shorter modified decay time for the
odd parity mode compared to the even parity [60], i.e.
κ̃O > κE—implying that (D11) and, correspondingly, Δl;m

will be decreasing functions of time in CS gravity.
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